
NoSQL Databases

Recap

Data Management: Trends &
Requirement

• Volume of data, requires:

• Database scalability

• massive data distribution

• Velocity of data, requires:

• frequent update operation

• Variety of data, requires:

• flexible database schema

• Big Users, requires:

• massive read throughput

NoSQL
• a movement for finding an alternative to solve problems that RDBMS is not

able to solve

• NoSQL databases is

• not using relational model

• designed to run on clusters

• scale horizontally

• No Schema

• fields can be added easily at anytime

• easy replication support

Types of NoSQL databases

• Key-value stores

• Data Model: Key-value

• Examples: Redis, Amazon DynamoDB, RocksDB

• Document stores

• Data Model: Document such as XML or JSON

• Examples: MongoDB, CouchDB

Types of NoSQL databases
• Column oriented databases

• Data model: rows that are associated with multiple columns
which can be grouped in families

• Examples: BigTable, Hbase, Cassandra

• Graph databases

• Data Model: entities and relationships between them

• Examples: Apache Giraph, Stardog

End of RDBMS?
• Relational databases are not going anyway

• are still good fit and ideal for structured, mature , reliable
data

• Polyglot persistence = Usually different databases are used in
different circumstances

• Two trends

• NoSQL implements RDBMS standards

• RDBMS are adopting NoSQL principles

Facebook: Database Tech. Behind

• Apache Hadoop http://hadoop.apache.org/

• Hadoop File System (HDFS)

• MapReduce for batch processing

• Apache Hive http://hive.apache.org/

• SQL-like access to Hadoop-stored data 

http://hadoop.apache.org/
http://hive.apache.org/

Facebook: Database Tech. Behind
• Apache HBase http://hbase.apache.org/

• a Hadoop column-family database

• used for e-mails, and SMS

• Memcached http://memcached.org/

• distributed key-value store

• used as a cache between web servers  

and MySQL servers in the beginning of FB 

http://hbase.apache.org/
http://memcached.org/

Facebook: Database Tech. Behind

• Apache Giraph http://giraph.apache.org/

• graph database

• facebook users and connections is one very large graph

• used since 2013 for various analytic tasks (trillion edges)

• RocksDB http://rocksdb.org/

• high-performance key-value store

• developed internally in FB, now open-source 

http://hbase.apache.org/
http://rocksdb.org/

NoSQL Databases
Principles

Different Aspect of Data
Distribution

• Scaling

• vertical vs. horizontal

• Distribution model

• sharding

• replication

• CAP properties

• Consistency, Availability, and Partition tolerance

Data Model

• The model represent the way by which the system
organizes the data

• Each noSQL DB has a different data model

• different noSQL: key-value, document, column-family,
graph

• key-value, document, column-family are oriented on
Aggregates

Aggregates

• An aggregate

• is a data unit with complex structure

• not simply a tuple (row) as in RDBMS

• a collection of related objects treated as a unit

• a unit for data manipulation & management

NoSQL databases:
Aggregate Oriented

• Many noSQL databases are aggregate-oriented

• there is no general strategy on how to set the aggregate boundaries

• but the aggregate give the database information about which bits of
data to be manipulated together

• which data to be stored together (on the same node for example)

• this will minimize number of nodes to be access at read time

• impact on concurrency control

• atomic manipulation of a single aggregate at a time

Scalability
• is the capability of the system to handle growing amount

of data and/or queries without loosing performance

• it is potential to be enlarged in order to accommodate the
growth

• Two general approaches

• Vertical

• Horizontal

Vertical Scaling
• Scaling up/down

• adding resources to a single node

• such as increasing number of CPUs, extending the memory, using larger disk
storage

• using larger and more powerful machines

• Traditional choice:

• favor of strong consistency

• easy to implement

• don’t deal with issues related to data distribution

• works well in many cases but …

Vertical Scalability:
drawbacks

• Performance limit

• everything works fine until we reach the limits of the node

• Cost

• the cost is higher than the sum of the cost of equivalent commodity
machines

• Proactive provisioning

• at the beginning, applications have no idea about the final scale

• upfront budget is needed when deploying new machines

• flexibility is not supported

Vertical Scalability:
drawbacks

• vendor lock-in

• producers of large machines are limited

• which will make customers dependent on the vendors

• deployment downtime

• to scale up, it is not possible to do without turning off
(downtime)

Horizontal Scalability
• Scaling out/in

• adding more nodes to the system

• the system is running on multiple nodes, adding/removing nodes is easy

• this is the choice for many NoSQL databases

• Advantages:

• commodity hardware; cost effective

• flexible deployment

• no single point of failure

Horizontal Scalability:
False Assumptions

• Network is reliable

• latency is zero

• Bandwidth is infinite

• Network is secure

• transport cost is zero

Horizontal Scalability:
Consequences

• Increases complexity of management

• introduces new issues

• Synchronization

• data distribution

• data consistency

• recovery from failure

Horizontal Scalability:
Architecture

• runs on a cluster

• cluster consists of:

• a collection of interconnected commodity machines

• based on shared-nothing architecture

• each node has its own CPU, memory, disk storage

• each node runs its own operating system

• data, queries, workload is distributed among the nodes

