
NoSQL Databases
Principles

Distribution Models
• Generic techniques of data distribution

• sharding

• different data chunks is put on different nodes

• data partitioning

• motivation: increases performance

• replication

• same data is copied on multiple nodes

• motivation: increases fault-tolerance

• We can use either of them or combine them

• Distribution model = is a specific way to do sharding, or replication or combination of both

• NoSQL databases often offer automatic sharding & replication

Distribution Model: Single
Server

• We call this setup standalone

• Running a database on a single machine spares a lot of
problems

• Running NoSQL on single server still can make sense

• if cluster is needed; we can scale when needed

• even one node, we can get other benefits; flexibility of
schema

Sharding (Data Partitioning)
• Placing different data on different nodes

• different data meaning depends on the underlying database type

• for example key-value database

• different data means different key-value pairs

• in document database

• different data means different documents

• Related pieces of data that are related to each other should be
stored physically together

Sharding (Data Partitioning)
• Try to ensure that:

1. data accessed together should be kept together

• so the user gets all related data from single node; instead of collecting from several nodes on
the cluster

• operation involving data on multiple shards should be avoided

• this is achieved with data aggregates

2. data arrangement on nodes

• try to keep the load balanced

• Many noSQL databases offer auto-sharding

• A node failure means that shards on that node becomes unavailable

• therefore, sharding is often combined with replication

Replication
• Replication

• placing multiple copies (replicas) of the same data on
different nodes

• replication factor = number of replicas

• two approaches

• master-slave architecture

• peer-to-peer architecture

Master-slave replication
• Architecture

• one node is the primary node (master)

• is responsible of data management

• process all data updates

• reads from any node

• all other nodes are secondary (slaves)

• keeps the data

Master-slave replication
• Suitable for read-intensive applications

• To scale

• more reads requests —> add more nodes

• Limited by ability of the master to handle update operations

• In case the master fails, a new master will be appointed

• manually (user-defined) or automatically (cluster-elected)

• consistency

• enough, at most one write request is handled at a time

• master propagate updates to replicas on slave nodes

• no read happens until they finish (synchronization)

Peer-to-Peer Replication
(Architecture)

• No master

• all nodes are equal, have equal roles & responsibilities

• both read & write can be handled by any node

• so no single node of failure or bottleneck

• both read and write operations scale

• more request —> deploy more nodes

• consistency

• multiple write requests can be handled at a time

• so to avoid conflict, synchronization is required

Sharding & Replication (1)

• Number of replicas

• replication factor = number of replicas

• replication factor does not have to be equal to the
number of nodes

• 3 replicas is a good replication factor

Sharding & Replication (2)

• Sharding & master-slave architecture

• each data shard is replicated

• a node can be a master for some data but slave for
other

Sharding & Replication (3)
• sharding & peer-to-peer architecture

• it is common strategy used by column-family databases

• typical default replication factor is 3

• each shard is placed on three nodes

• there is no master replica

• so we need consistency approach

• consistency is the lack of contradiction in the DB

Sharding & Replication (4)

• Any distribution model should deal with the following
questions

• can all nodes serve read and write requests?

• which replica placement strategy is used?

• level of consistency & availability?

Summary / Data Distribution
• Improving performance

1. put the relevant data close to each other, and if you have
a world wide datacenter, put data close to where it will
be accessed

2. try to keep load balanced among nodes

Summary / Master-slave Replication
• Consistency is not an issue
• at write, all operation goes via the master
• at read, the node assigned as a master replica will

response, access can be from any replica

Summary / Replication with Peer-to-Peer
• All replicas are equal, no master replica

• All node can support write operation

• Consistency is an issue

• slow propagation of changes to copies on different nodes

• inconsistent on read if the same changes is not propagated to all nodes

• updating different copies of the same data can happen at the same time

• result in write-write conflict

