
NoSQL
Principles (Consistency)

Consistency

• Biggest change from centralized relational databases to cluster-
oriented noSQL databases
• RDBMS: strong consistency

• be consistent

• noSQL: relaxed/eventual consistency
• everything is going to be alright, not now but eventually

Conflicts

• Read-read (simply read) conflict

• two users see different data at the same time

• Write-write conflict

• two users updating the same data at the same time

• Read-write conflict

• write & read requests on the same aggregate are made concurrently

• when not treated, this will cause inconsistency window

• propagation of changes to all replicas might take some time

• until this process finishes, inconsistent read might happen

Solutions

• two approaches

• pessimistic

• preventing conflict from occurring

• techniques: locks

• optimistic

• conflicts may occur, but detect and solve them later

• techniques: version stamps

Forms of Consistency

• Strong or immediate
• ACID transactions

• Eventual
• you may have replication inconsistency but eventually all nodes will be

updated to the same value and becomes consistent

ACID Properties
• Atomicity

• partial execution of a transaction is not possible (all or nothing)

• Consistency

• transactions bring the DB from consistent state (valid) to another consistent state

• Isolation

• transactions executed in parallel don’t see the uncommitted state of each other

• reading & writing can happen concurrently (parallel)

• failing operation should not affect others

• ensures to leave the DB as if the transaction were executed in sequence

• Durability

• if the transaction is committed, it should stay at that state even if a failure happens

CAP theorem

• Relax consistency

• CAP properties = properties of distributed system

• Consistency

• Availability

• Partition tolerance

•

CAP Properties

• Consistency:

• write and read operation must be atomic

• runs on the cluster as they were running on a single node

• The write operation must be atomic

• which means changes must be propagated to all replicas

• After a write operation, all readers must see the same data

• Since any node can be used for handling the read request

CAP Properties

• Availability:

• If node is working, then it must respond to user requests

• every request must result in a response

• no guarantee that the response contains the most recent write

• Partition tolerance

• system continues to operate even if couple of nodes gets isolated

• network failure should not result in a shutdown for the whole system

CAP theorem

• CAP theorem

It is not possible to have a distributed system that would guarantee
consistency, availability, and partition tolerance at the same time.
Only 2 of these 3 properties can be enforced.

CAP theorem consequences
• at most two properties can be guaranteed
• CA: Consistency + Availability
• CP: Consistency + Partition tolerance
• AP: Availability + Partition tolerance

It is not possible to have a distributed system that would guarantee
consistency, availability, and partition tolerance at the same time.
Only 2 of these 3 properties can be enforced.

CAP: Real Applications

• Single server system is always CA
• A distributed system has to be tolerant of network partitions
• it is difficult to detect all network failures
• does that mean only CP and AP are possible?
• Partition tolerance is a must

• but tradeoff between Consistency & Availability

Partition tolerance & consistency
• Example: two users, two nodes , two write

attempts

• before the write is committed, both nodes
should agree (strong consistency)

• if nodes are partitioned, then we are loosing
availability

CAP: Real Applications

• Single server system is always CA

• A distributed system has to be tolerant of network partitions

• tradeoff between Consistency & Availability

• give up some consistency to achieve availability

• Issue

• how much tolerant ?

• approach BASE

BASE Properties
• New concept (NoSQL)

• Basically Available

• basically the system works all the time

• partial failure can occur, without causing total system failure

• spread data on the cluster with enough replication factor

• Soft state

• changes occur all the time

• Eventual consistency

• sooner or later the system will be at consistent state

• at some point the system will converge to a consistent state

• different from the immediate consistency in ACID

Strong consistency?

• How many nodes must be involved in order to get strong consistency ?

• If all nodes holding the replicas, then this is a strong consistency

Quorums

• How many nodes must be involved in order to get strong consistency ?

• instead of all, use something in the middle (quorum)

• how many nodes you need to contact to make sure that you have the most up-to-date change?

• if N is the replication factor, W number of confirmed write , R number of reads

• write quorum : W > N/2

• W number of nodes participating in the write

• N number of nodes in replication

• read quorum: R > N-W

• R number of nodes participating in the read

• a write or a read operation has to obtain a write quorum or a read quorum

Quorums & Consistency level
• R (read quorum), W (write quorum), N (all nodes in replication)
• Consistency level
• strong: W = N
• eventual W + R < N
• write quorum: W > N/2

Summary
• a wide range of options to be considered

• scalability

• how does the system scale?

• availability

• when nodes refused to accept requests?

• consistency

• what is the level of consistency?

• latency

• delay in handling user requests?

• durability

• are the committed data written reliably?

• resilience

• can the data be recovered in case of failure?

Summary

• Many noSQL BDs are aggregate-oriented data modeling

• Conflicts:

• (write-write conflict)

• (read-write conflict)

• Relaxing consistency

• CAP

• Quorum (read quorum , write quorum)

Summary

• Different noSQL is applying different consistency levels

• It is good to know the options and choose the right one based on the
circumstances

• CA (Google BigTable)

• if network error happens, all nodes stop receiving requests

• AP

• Apache Cassandra , Apache couchDB

