
Document Databases

Fundamentals
• Basic concept of data is: Document

• Documents are self-describing piece of information

• hierarchical data structure

• nested arrays, nested objects

• contains related information

• XML, JSON, BSON

• Documents in a collection are similar; all XML or JSON

• their schema can differ

• Document often contains values of key-value pair, like in JSON

• indexes can be applied on various fields / keys

Representatives

Ranked list: http://db-engines.com/en/ranking/document+store

http://db-engines.com/en/ranking/document+store

MongoDB: Basics,
Features, installation,

Queries

MongoDB
• JSON documents database https://www.mongodb.com/

• Initial release in 2009

• written in C++, C, JS

• open source

• cross platform

• works on linux, Mac OS x, windows, …

https://www.mongodb.com/

Basics features
• High performance

• shards, secondary indexes, data sorted using B Tree

• Automatic scaling

• automatic sharding across the cluster

• High availability

• master-slave replication, eventual consistency

• MapReduce support

MongoDB: Data Model
• Structure:

• instance —> databases —> collections —> documents

• collection

• consists of documents, usually of similar structure

• document

• one MongoDB document = JSON object

MongoDB: Document
• Each JSON document

• belong to a collection

• has a unique identifier (_id)
field, which must be unique

• Internally stored as BSON
(Binary JSON)

• Maximal allowed size: 16MB
(BSON)

• use GridFS tool to divide
large files into fragments

MongoDB: Fields
• _id is reserved for the primary key

• Field names

• cannot start with $

• reserved for query operators

• cannot contain .

• used for accessing nested fields

MongoDB: Primary Key

• is the document identifier

• Features:

• unique within a collection

• Immutable (cannot be changed once assigned)

• can be of any type except array

MongoDB: Identifier Design
• Design

• Natural identifier

• each document comes with a uniq identifier

• Auto incrementing number - not recommended

• can be slow, one counter to make sure that the number is unique

• Universally Unique Identifier (UUID)

• 128 bit, longer compared to the ObjectId below

• standard libraries can be used for that

• ObjectId (default)

• 12 bytes (96 bits) length

• 4 bytes representing the timestamp in seconds, 3 bytes machine identifier (usually derived from MAC
address), 2 bytes (process id), 3 bytes (counter)

MongoDB: Schema
• Documents have flexible schema

• schema is not required or enforced

• Key decision for data modeling

• references vs. embedded documents

• It is important because it controls

• the aggregate content

• the data structure

• relationship between data

Schema: embedded docs

• contact & access can be
considered sub-documents

• related data in one document

• the aggregate will contain all
related data

Schema: embedded docs
• Called denormalized schema

• document is not flat, contains nested sub-docs

• Benefits:

• manipulate related data in one operation

• better performance, less queries

• when to use this

• one-to-one, one-to-many relationship

• Drawback:

• document size might exceed max. allowed doc. size

Schema: references

• links / references from one
document to another

• normalized schema

• flat document

Schema: references
• Useful to model

• large hierarchal collection

• many-to-many relationships

• Drawback

• various queries to related data might be required

• related data is stored in multiple documents

Collections Example

MongoDB: Install

• Consideration

• Use window command interpreter cmd.exe

• Add mongoDB binaries to the system path

• this will help in typing mongodb from command line
with no need to put the full path

MongoDB: Install

• Download MongoDB community edition

• select the platform on which you want to install
mongoDB and the package format

download page: https://www.mongodb.com/download-center/community?jmp=docs

MongoDB: Install
• Double click on the .msi file

• follow the installation wizard

• you can choose custom or complete installation

MongoDB: Install

• Specify the directory path

• directory where mongoDB will store collections

• specify the log directory

• this directory will be used to store the logging

MongoDB: start DB

• from the path where mongoDB is installed

• run

“C:\Program Files\MongoDB\Server\4.0\bin\mongod.exe” --dbpath="c:\data\db"

• - - dbpath points to the DB directory

MongoDB: connect

• Open another command interpreter

• run

"C:\Program Files\MongoDB\Server\4.0\bin\mongo.exe"

Application Interface

• Mongo shell

• interactive JavaScript interface to mongoDB

• Drivers for various languages

• Java, Python, Scala, Ruby, PHP, C, C++, C#

Mongo Query Language
• A mongoDB query

• targets a specific collection of documents

• specifies criteria/ condition that identify returned document (selection)

• May select fields (projection)

• May impose limit, sort on returned result

• Query syntax: db.collectionName.query

• return all documents

• db.users.find(), db.users.find({})

CRUD Operations
• CRUD refers to:

• Create, Read, Update, Delete

• Operations:

• insert new document

• db.collection.insert()

• delete an existing document

• db.collection.remove()

• update an existing document

• db.collection.update()

• find document(s)

• db.collection.find()

Querying: Example

Selection

• All documents from a collection inventory, where type field has the
value snacks

• All documents from a collection inventory, where type field is either
snacks or food

• All documents from a collection inventory, where type field is snacks
and price is <9.95

db.inventory.find({ type: "snacks" })

db.inventory.find({type:{$in:['food','snacks']}})

db.inventory.find({type:’snacks',price:{$lt:9.95}})

Inserts

• insert document with three fields

• the _id is user specified

• insert document, the _id is not provided

• it will be generated by the database

db.inventory.insert({

_id: 10,

type: "misc",

item: "card",

qty: 15})

db.inventory.insert({type: "book", item: "journal"})

{ "_id": ObjectId("58e209ecb3e168f1d3915300"),

type: "book", item: "journal" }

Update
• Find all documents matching the

query

• Sets the field qty to 10

• upsert is true

• then in case of no match

• create new document

• contains: _id, type, item, qty

db.inventory.update(

 { type: "book", item :

"journal" },

 { $set: { qty: 10 } },

 { upsert: true })

{type: "book", item : "journal"}

{ qty: 10 }

