## Amplitude Modulation

#### Content

- What is Modulation
- Amplitude Modulation (AM)
- Demodulation of AM signals
- Calculation and Examples
- Summary

### What is Modulation

- Modulation
  - In the modulation process, some characteristic of a highfrequency carrier signal (bandpass), is changed according to the instantaneous amplitude of the information (baseband) signal.
- Why Modulation
  - Suitable for signal transmission (distance...etc)
  - Multiple signals transmitted on the same channel
  - Capacitive or inductive devices require high frequency AC input (carrier) to operate.
  - Stability and noise rejection

### About Modulation

- Application Examples
  - broadcasting of both audio and video signals.
  - Mobile radio communications, such as cell phone.



- Basic Modulation Types
  - Amplitude Modulation: changes the amplitude.
  - Frequency Modulation: changes the frequency.
  - Phase Modulation: changes the phase.

### AM Modulation/Demodulation



#### Example Amplitude modulation



### Amplitude Modulation

 The amplitude of high-carrier signal is varied according to the instantaneous amplitude of the modulating message signal m(t).

Carrier Signal:  $\cos(2\pi f_c t)$  or  $\cos(\omega_c t)$ 

Modulating Message Signal: m(t):  $\cos(2\pi f_m t)$  or  $\cos(\omega_m t)$ The AM Signal:  $s_{AM}(t) = [A_c + m(t)]\cos(2\pi f_c t)$ 

### Amplitude Modulation

- The AM signal is generated using a multiplier.
- All info is carried in the amplitude of the carrier, AM carrier signal has time-varying envelope.
- In frequency domain the AM waveform are the lower-side frequency/band ( $f_c f_m$ ), the carrier frequency  $f_c$ , the upper-side frequency/band ( $f_c + f_m$ ).

### AM Modulation – Example

- The information signal is usually not a single frequency but a range of frequencies (band). For example, frequencies from 20Hz to 15KHz. If we use a carrier of 1.4MHz, what will be the AM spectrum?
- In frequency domain the AM waveform are the lower-side frequency/band ( $f_c f_m$ ), the carrier frequency  $f_c$ ,
- the upper-side frequency/band
- $(f_c + f_m)$ . Bandwidth: 2x(25K-20)Hz.



For a sinusoidal message signal  $m(t) = A_m \cos(2\pi f_m t)$ Carrier Signal:  $\cos(2\pi f_c t)$  DC:  $A_C$ Modulated Signal:  ${}^{k=\frac{A_m}{A}} S_{AM}(t) = [A_c + A_m \cos(2\pi f_m t)] \cos(2\pi f_c t)$  $= A_c [1 + k \cos(2\pi f_m t)] \cos(2\pi f_c t)$ 

Modulation Index is defined as:

Modulation index k is a measure of the extent to which a carrier voltage is varied by the modulating signal. When k=0 no modulation, when k=1 100% modulation, when k>1 over modulation.







### High Percentage Modulation

- It is important to use as high percentage of modulation as possible (k=1) while ensuring that over modulation (k>1) does not occur.
- The sidebands contain the information and have maximum power at 100% modulation.
- Useful equation

$$P_t = P_c(1 + k^2/2)$$

 $P_t$  =Total transmitted power (sidebands and carrier)  $P_c$  = Carrier power