Narrowband FM



* FM wave is a nonlinear function of the modulating wave. This
property makes the spectral analysis of the FM wave a much more
difficult task than that of the corresponding AM wave.

* spectral analysis described

* above provides us with enough insight to propose a useful solution to
the problem.



e Consider then a sinusoidal modulating wave defined by

m‘(f) = A, CDS(ZTTf;,,f)
The instantaneous frequency of the resulting FM wave is

ﬁ(t) = f-: + -‘FafAm CDS(ZTT}L;”I‘)
= f, + Af cos(2mf,,t)
where

ﬂ‘f = ’&fAm

Af 1s called the frequency deviation,



* the angle of the FM wave is obtained as

0;(t) = 2wf.t + ?—fsin(}:rﬁ,,t}



The ratio of the frequency deviation Af to the modulation frequency f£,, 1s commonly called
the modulation index of the FM wave. We denote this new parameter by B, so we write

Af
S 4.13
3 #-13)

and

0;(t) = 2mft + B sin(27f,,t) (4.14)

B is measured in radians.

s(t) = A, cos[2wf.t + B sin(27f,,t)]



For the FM wave of to be narrow-band the modulation
index must be small compared to one radian

s(t) = A, cos(27f.t) cos[ B sin(27f,,t)] — A, sin(27f.t) sin[ B sin(27f,,t)]

Rememberthat: cos(A + B) = cos A cos B — sin A sin B

Then under the condition that the modulation index B is small compared to one radian,
we may use the following two approximations for all times #:

cos[ B sin(27f,t)] = 1

and

sin| B sin(27f,,t)] = B sin(27f,,t)

the approximate form of a narrow-band FM ~ s(t) = A, cos(2mf.t) — BA, sin(2wf.t) sin(2wf,,1)
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» Drill Problem 4.3 The Cartesian representation of band-pass signals discussed in Sec-
tion 3.8 is well-suited for linear modulation schemes exemplified by the amplitude modulation
family. On the other hand, the polar representation

s(t) = a(t) cos[2mft + &(1)]

is well-suited for nonlinear modulation schemes exemplified by the angle modulation family. The
a(t) in this new representation is the envelope of s(#) and ¢(¢) is its phase.
Starting with the representation [see Eq. (3.39)]

s(t) = si(t) cos(2wf.t) — so(t) sin(2wft)

where s;(¢) is the in-phase component and sg(#) is the quadrature component, we may write

1
a(t) = [s1(t) + so() ]2

(1) tan_II:SQ{f)J

si(t)

and

Show that the polar representation of s(¢) in terms of a(z) and ¢(t) is exactly equivalent to its
Cartesian representation in terms of s;(¢) and sg(t). <4



Solution
We are given

p) 2 b7

a(t) = [s,(1)+sQ(t)]
and

-l So(1)
O(7r) = tan [5_1(,)]
Hence, expanding the polar representation of s(7), we write
s(t) = a(t)cos|0O¢]

= a(t)cos[2nf .t +¢(1)]

2




= a(r)cos(d(r))cos(2mf 1) —a(t)ysin(b(r))sin(2n f 1)

. SQ(’) .
Since tan[d(7)] = I:S (,)],nt follows that
/
S (7 S
cosO(r) = - S’()) i = l?
[s}(t)+s£,(t)] ) a(?)
and
sing(r) = — SQ(:) 7 a1
[s‘,'(f)+s£,(f)] ) a(t)
Hence.
a(t)coso(t) = s,(1)
and

a(t)ysind(r) = SQ({)

Substituting Eqgs. (2) and (3) into (1), we get
s(t) = s,(t)cos(Zn‘/'(.t)—.S'Q(t)sin(Zn./".t)
which is the Cartesian representation of s(7).



Consider the narrow-band FM wave approximately defined by Eq. (4.17). Building on Problem

4.3, do the following:

(a) Determine the envelope of this modulated wave. What is the ratio of the maximum to the
minimum value of this envelope?

(b) Determine the average power of the narrow-band FM wave, expressed as a percentage of the
average power of the unmodulated carrier wave.

(c) By expanding the angular argument 6(7) = 2nf .t + ¢(r) of the narrow-band FM wave s(r)

in the form of a power series and restricting the modulation index  to a maximum value of
0.3 radian, show that
3

0(t)=2nf .t +Psin(2nf 1) - B?sin?’(btfmt)

What is the value of the harmonic distortion for § = 0.3 radian?

Hint: For small x, the following power series approximation

=1 1 3
tan (X)=X—=X

3

holds. In this approximation, terms involving x° and higher order ones are ignored, which is
justified when x 1s small compared to unity.



Solution
(a) From Eq. (4.17), the narrow-band FM wave is approximately defined by

s(t)= A cos((2nf t)—PBA, sin(2rf t)sin(2n f 1))
The envelope of s(7) is therefore

1/2
a(t) = A (1+B°sin’2nf, 1))
1.5 5 1/2
= A(,(l + 5[3“ sin (21;/',,,1)) for small 3
The maximum value of a(f) occurs when sin2(2nf,,,t) = 1, yielding
1 52
Amax = A(,(l * EB )

The minimum value of a(r) occurs when sin2(21t‘/'mt) = 0, yielding
Ao = A

min C
The ratio of the maximum to the minimum value is therefore

Amm 1,2
- + -
=143

min




(b) Expanding Eq. (1) into its individual frequency components, we may write

s(t)=A.cos(2nf 1)+ %BA(.cos(Zn(_/'(. * [ )t} — %BA(.cos(Zn(f(, = )r)

The average power of s(7) is therefore

1 2. £1 2 1] 2
Pav — zA(+(§BA‘) +(§BA()

1 ,2 2
— -
5401+ B?)

The average power of the unmodulated carrier is

1 2
P(. — EA(
Hence,
av - 1+B2

P,



(¢) The angle 0(7) is defined by
0(r) = 2nf .1+ 6(1)

= 2nf t+tan (Bsin2nf, 1))
Setting B = sin(2nf 1)

and using the approximation (based on the Hint), we may approximate 0(7) as
: : : Lad ;
0(r)=2nf t+PBsin(2nf 1) - §B sin(2m f 1)

Ideally, we should have (see Eq. (4.15))
0(t) = 2nf .t +Bsin(2nf 1)

The harmonic distortion produced by using the narrow-band approximation is therefore
3

D(t) = %sin";(Zn./'mt)

The maximum absolute value of D(7) for B = 0.3 is therefore

3
Donax = B
3

max

33
= — = 0.009= 1%

|O
9

which is small enough for it to be ignored in practice.



The important point to note from Problem 4.4 is that by restricting the modulation
index to B = 0.3 radian, the effects of residual amplitude modulation and harmonic dis-
tortion are limited to negligible levels. We are therefore emboldened to proceed further
with the use of Eq. (4.17), provided B = 0.3 radian. In particular, we may expand the

modulated wave further into three frequency components:

s(t) = A, cos(2mf.t) + %,BAE{CDS[ZTT{}‘; + fu)t] — cos[ 2@ (f. — f.)t]}  (4.18)

This expression is somewhat similar to the corresponding one defining an AM wave, which
is reproduced from Example 3.1 of Chapter 3 as follows:

sam(t) = A, cos(2mf.t) + %ﬁAE{CDS[Zﬂ(ﬂ + fu)t] + cos[27(f. — fin)t]} (4.19)



® PHASOR INTERPRETATION

We may represent the narrow-band FM wave with a phasor diagram as shown in Fig. 4.5(a),
where we have used the carrier phasor as reference. We see that the resultant of the two side-
trequency phasors is always at right angles to the carrier phasor. The effect of this geometry is
to produce a resultant phasor representing the narrow-band FM wave that is approximately
of the same amplitude as the carrier phasor, but out of phase with respect to it.
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FIGURE 4.5 Phasor comparison of
narrow-band FM and AM waves for
sinusoidal modulation. (@) Narrow-band
FM wave. (b) AM wave.



Wide-Band Frequency
Modulation



* how can we simplify the spectral analysis of the wide-band
* FM wave defined in Eqg. (4.15)7

* The answer lies in using the complex baseband representation of a
modulated (i.e., bandpass) signal, which was discussed in Section 3.8.
Specifically, assume that the carrier frequency is large enough
(compared to the bandwidth of the FM wave) to justify rewriting Eq.
(4.15) in the form

s(t) = Re[A, exp(j2@ft + jp sin(27f,t))]

= Re[s(?) exp(727f.1)]



the complex envelope of the FM wave s(t)

3(t) = A, exp[jB sin(2mf,,t)]

introduced in Eq. (4.21) is the complex envelope of the FM wave s(t). The important point tc
note from Eq. (4.21) is that unlike the original FM wave s(#), the complex envelope 5(#) is :
periodic function of time with a fundamental frequency equal to the modulation frequency f,,,
Specifically, replacing time ¢ in Eq. (4.21) with ¢t + k/f,, for some integer k, we have

3(1) = A, expljB sin(2afu(t + k/f.))]

= A, exp[/B sin(27wf,,t + 2k7)]
= A, expljB sin(2mfyt)]




which confirms f,,, as the fundamental frequency of 5(#). We may therefore expand 5(#)
in the form of a complex Fourier series as follows:

s(1) = § ¢y exp(j2mnf,,t) (4.22)

H==00

where the complex Fourier coefficient

1/(2f,y,)
o=t [ 30 expl—j2mtyt) d

1/(2f,,)
= fmAC] exp|jB sin(27f,,t) — j2mnf,t] dt (4.23)
_lfrizfm)

Define the new variable:
x = 2mf,t (4.24)

Hence, we may redefine the complex Fourier coefficient ¢, in Eq. (4.23) in the new form

Cp = %[ﬂ exp[/(B sin x — nx)] dx (4.25)



The integral on the right-hand side of Eq. (4.25), except for the carrier amplitude A_, is
referred to as the nth order Bessel function of the first kind and argument . This function
is commonly denoted by the symbol J,(8), so we may write

1 s
W(B) = 5= [ expli(B sinx = mx)) d (4.26)

Accordingly, we may rewrite Eq. (4.25) in the compact form

cn = AcJu(B) (4.27)

Substituting Eq. (4.27) into (4.22), we get, in terms of the Bessel function J,(B), the fol-
lowing expansion for the complex envelope of the FM wave:

) = A S L(B) exp(i2anfy) (4.28)

= =0D0

Next, substituting Eq. (4.28) into (4.20), we get

s(t) = Re| A, i Ji(B) explj2m(fc + Hﬂn)f]] (4.29)

n==00



The carrier amplitude A, is a constant and may therefore be taken outside the real-time oper-
ator Re[.]. Moreover, we may interchange the order of summation and real-part opera-
tion, as they are both linear operators. Accordingly, we may rewrite Eq. (4.29) in the
simplified form

oo
s(t) = Ac 2 Ju(B) cos[2m(f. + nfy)t] (4.30)
n==—=co
Equation (4.30) is the desired form for the Fourier series expansion of the single-tone FM
signal s(2) for an arbitrary value of modulation index .

The discrete spectrum of s(#) 1s obtained by taking the Fourier transforms of both sides
of Eq. (4.30), which yields

S() =5 S BB~ £~ nb) + 8¢+ +nf)] (431

M= =00

where s(¢) = S(f) and cos(27fit) = %[S(f — f;) + 8(f + f;)] for an arbitrary f;. Equation

(4.31) shows that the spectrum of s(#) consists of an infinite number of delta functions
spaced atf = f. = nf,, forn =0, +1, +2,....
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. For different integer (positive and negative) values of n, we have

J(B) = J-n(B), for n even

and

J(B) = —]-u(B), for n odd

. For small values of the modulation index B, we have

h(B) =1, ‘
_B

]l(B) = 23 ’

]n(B) =0, n = 2,

. The equality

S B =1

n==oo

holds exactly for arbitrary .



1. The spectrum of an FM wave contains a carrier component and an infinite set of side
frequencies located symmetrically on either side of the carrier at frequency separations
Of fors 2fs 3fms-- - - In this respect, the result is unlike the picture that prevails in
AM, since in the latter case a sinusoidal modulating wave gives rise to only one pair
of side frequencies.

2. For the special case of 8 small compared with unity, only the Bessel coefficients J(3)
and J;(B) have significant values, so that the FM wave is etfectively composed of a
carrier and a single pair of side-frequencies at f. = f,,. This situation corresponds to
the special case of narrow-band FM that was considered in Section 4.4.

3. The amplitude of the carrier component varies with 8 according to Jy(B). That 1s,
unlike an AM wave, the amplitude of the carrier component of an FM wave is depen-
dent on the modulation index B. The physical explanation for this property is that
the envelope of an FM wave is constant, so that the average power of such a signal
developed across a 1-ohm resistor is also constant, as in Eq. (4.8), which is reproduced
here for convenience of presentation:

1
Pav = EAf

When the carrier is modulated to generate the FM wave, the power in the side-
frequencies may appear only at the expense of the power originally in the carrier,
thereby making the amplitude of the carrier component dependent on . Note that the
average power of an FM wave may also be determined from Eq. (4.30), as shown by

1 o0
P=2A; X JuB) (4.36)

= =D

Substituting Eq. (4.35) into (4.36), the expression for the average power P,, reduces
to Eq. (4.8), and so it should.



Bessel function

FM signal is
xepm(E) = A cos(w .t + fsinw t)

From properties of the FM signal we can present it as

n=-+oco

xem() =A ) J,(B)cos(w, + 1 wy,)t

H=—00



xem(t) = Jo(P)A cos ot
+ J,(f)A cos(w. + w, )t +]_;(f)A cos(w. — w,, )t
+ J,(p)A cos(w. + 2w, )t + ] _,(f)A cos(w,. — 2w, )t
+ J5(p)A cos(w,. + 3w, )t + ] _3(f)A cos(w,. — 3w, )t
F ..



FM frequency spectrum
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Bessel functions J_(p)

Modulation index g

B J, J; J, J5 J, Jg Jg J; Jg Jq Ji

0 1.00 — — — — — — — — — —

025 098 012 — — — — — — — — —

0.5 094 024 0.03 — — — — — — — —

1 077 044 012 002 — — — — — — —

1.5 051 056 023 006 001 — — — — — —

2 022 058 035 013 003 — — — — — —

2.4 0.00 052 043 020 006 002 — — — — —

25 =005 050 045 022 007 002 — — — — —

3 -026 034 049 031 013 004 001 — — — —

4 -040 -007 036 043 028 013 005 001 — — —

5 -0.18 -033 005 036 039 026 013 005 002 — —

6 0.15 -0.28 -024 011 036 036 025 013 006 002 —

7 030 00 -030 -0.17 016 035 034 023 013 006 0.02

8 0.17 023 -011 -029 -010 019 034 032 022 013 0.06

9 -0.09 024 015 -0.18 -0.26 -0.06 020 033 031 021 0.13
10 -025 004 026 006 -022 -023 -001 022 032 029 021
12 0.05 -0.22 -0.08 019 018 -0.07 -0.24 -0.17 0.05 023 0.30
15 -001 020 0.04 -019 -012 013 021 003 -0.17 -0.22 -0.09




Parameter name Symbol Value
Carrier frequency f. 600 kHz
Carrier amplitude A, 200 mVpp
Modulating frequency S 20 kHz
Frequency deviation Af 20kHz

A

Jim

The sidebands are scaled according to the Bessel coefficient values. For f =1,

Jo(B) = 0.77
J1(B) = 0.44
J,(B) = 0.12

J5(B) = 0.02



ExampLE 4.2 FM Spectrum for Varying Amplitude and Frequency
of Sinusoidal Modulating Wave

In this example, we wish to investigate the ways in which variations in the amplitude and fre-
quency of a sinusoidal modulating wave affect the spectrum of the FM wave. Consider first the
case when the frequency of the modulating wave is fixed, but its amplitude is varied, produc-
ing a corresponding variation in the frequency deviation Af. Thus, keeping the modulation
frequency f,, fixed, we find that the amplitude spectrum of the resulting FM wave is as shown
plotted in Fig. 4.7 for 8 = 1, 2, and 5. In this diagram, we have normalized the spectrum with
respect to the unmodulated carrier amplitude.
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FIGURE 4.7 Discrete amplitude
spectra of an FM wave, normalized
with respect to the unmodulated
carrier amplitude, for the case of
sinusoidal modulation of fixed
frequency and varying amplitude.
Only the spectra for positive
frequencies are shown.



Consider next the case when the amplitude of the modulating wave is fixed; that is, the
frequency deviation Af is maintained constant, and the modulation frequency f,,, is varied. In
this second case, we find that the amplitude spectrum of the resulting FM wave is as shown
plotted in Fig. 4.8 for B = 1, 2, and 5. We now see that when Af is fixed and B is increased,
we have an increasing number of spectral lines crowding into the fixed frequency interval
f. = Af < |f| < f. + Af. Thatis, when B approaches infinity, the bandwidth of the FM wave
approaches the limiting value of 2Af, which is an important point to keep in mind.

— 1.0

~—— 2Af
(a)
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FIGURE 4.8 Discrete amplitude spectra of an FM wave, normalized with respect to the
unmodulated carrier amplitude, for the case of sinusoidal modulation of varying frequency
and fixed amplitude. Only the spectra for positive frequencies are shown.



Transmission Bandwidth of FM Waves

» CArson’'s RULE

In theory, an FM wave contains an infinite number of side-frequencies so that the band-
width required to transmit such a modulated wave is similarly infinite in extent. In prac-
tice, however, we find that the FM wave is effectively limited to a finite number of significant
side-frequencies compatible with a specified amount of distortion. We may therefore build
on this idea to specify an effective bandwidth required for the transmission of an FM wave.
Consider first the case of an FM wave generated by a single-tone modulating wave of fre-
quency fy,. In such an FM wave, the side-frequencies that are separated from the carrier fre-
quency f. by an amount greater than the frequency deviation Af decrease rapidly toward
zero, so that the bandwidth always exceeds the total frequency excursion, but nevertheless
is limited. Specifically, we may identify two limiting cases:

1. For large values of the modulation index B, the bandwidth approaches, and is only
slightly greater than the total frequency excursion 2Af, as illustrated in Fig. 4.8(c¢).

2. For small values of the modulation index B, the spectrum of the FM wave is effec-
tively limited to the carrier frequency f, and one pair of side-frequencies at f. = f,,,

so that the bandwidth approaches 2f,,, as illustrated in Section 4.4.
In light of these two limiting scenarios, we may define an approximate rule for the trans-
mission bandwidth of an FM wave generated by a single-tone modulating wave of fre-

quency f,, as

By = 2Af + 2f, = 2.&{(1 + %) (4.37)

This simple empirical relation is known as Carson’s rule.
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FIGURE 4.9 Universal curve for evaluating the one percent bandwidth of an FM wave.



2 ARBITRARY MODULATING WAVE

TABLE 4.2  Number of Significant Side-Frequencies of a Wide-Band FM
Signal for Varying Modulation Index

Modulation Index B Number of Significant Side-Frequencies 20
0.1 2
0.3 4
0.5 4
1.0 6
2.0 8
5.0 16
10.0 28
20.0 50

30.0 70




the modulation wave (1), to the highest modulation frequency W. These conditions rep-
resent the extreme cases possible. We may thus formally write

Af

D=— 4.38

= (4.38)
The deviation ratio D plays the same role for nonsinusoidal modulation that the modula-
tion index B plays for the case of sinusoidal modulation. Hence, replacing g by D and
replacing f,,, with W, we may generalize Eq. (4.37) as follows:

Br = 2(Af + W) (4.39)



ExampLE 4.3 Commercial FM Broadcasting

In North America, the maximum value of frequency deviation Af is fixed at 75 kHz for com-
mercial FM broadcasting by radio. If we take the modulation frequency W = 15 kHz, which
is typically the “maximum™ audio frequency of interest in FM transmission, we find that the
corresponding value of the deviation ratio is [using Eq. (4.38)]

75
D=—=35
15

Using the values Af = 75 kHz and D = 5 in the generalized Carson rule of Eq. (4.39), we find
that the approximate value of the transmission bandwidth of the FM signal is obtained as

By = 2(75 + 15) = 180 kHz

On the other hand, use of the universal curve of Fig. 4.9 gives the transmission bandwidth of

the FM signal to be
Br=32Af=32x75=240kHz

In this example, Carson’s rule underestimates the transmission bandwidth by 25 percent
compared with the result of using the universal curve of Fig. 4.9.



4.12 A carrier wave is frequency-modulated using a sinusoidal signal of frequency f,; and amplitude A,,, .
(a) Determine the values of the modulation index B for which the carrier component of the FM wave
1s reduced to zero. For this calculation you may use the values of J( ) given in Appendix 3.
(b) In a certain experiment conducted with f,, = 1 kHz and increasing A, (starting from zero
volt), it 1s found that the carrier component of the FM wave 1s reduced to zero for the first

time when A, = 2 volts. Whart is the frequency sensitivity of the modulator? What 1s the
value of A, for which the carrier component 1s reduced to zero for the second time?



(a) From Table A3.1 in Appendix 3, we find (by interpolation) that /() is zero for the following
values of modulation index:

B=2.44,
B=15.52,
B =865,
B=11.8,
and so on.

(b) The modulation index is defined by

Therefore, the frequency sensitivity factor is

_ B-/‘m
I T4

m

k (1)



We are given f,, = | kHz and 4,, = 2 volts. Hence, with J,(B) = 0 for the first time when
B =2.44, the use of Eq. (1) yields

. = 244 % 10°
[ 7,

= 1.22%10° hertz/volt
Next, we note that Jy(3) = 0 for the second time when 3 = 5.52. Hence, the corresponding
value of 4, for which the carrier component 1s reduced to zero is
A — B-/'I"
m k’
5.52 % 10’

122%10°
= 4.52 volts




4.13 A carrier wave of frequency 100 MHz is frequency-modulated by a sinusoidal wave of ampli-
tude 20 V and frequency 100 kHz. The trequency sensitivity of the modulator 1s 25 kHz/V.

(a) Determine the approximate bandwidth of the FM wave, using Carson’s rule.

(b) Determine the bandwidth obtained by transmitting only those side-frequencies with ampli-
tudes that exceed one percent of the unmodulated carrier amplitude. Use the universal curve
of Fig. 4.9 for this calculation.

(c) Repeat your calculations, assuming that the amplitude ot the modulating wave is doubled.

(d) Repeat your calculations, assuming that the modulation frequency 1s doubled.



(a) The frequency deviation is

Af = kA, = 25x10°x20 = 5x 10°Hz

The corresponding value of the modulation index 1s

Using Carson’s rule, the transmission bandwidth of the FM wave 1s therefore
Br=2f,(1+P) =2x100(1+5) = 1200kHz = 1.2MHz



(b) Using the universal curve of Fig. 4.9, we find that for 3 = 5:
B?"‘
— =3
Af
Therefore, the transmission bandwidth 1s
B, = 3x500 = 1500kHz = 1.5MHz

which 1s greater than the value calculated by Carson’s rule.

(c) If the amplitude of the modulating wave 1s doubled, we find that
Af = IMHz and B = 10
Thus, using Carson’s rule we now obtain the transmission bandwidth
By = 2x100(1+10) = 2200kHz = 2.2MHz

On the other hand, using the universal curve of Fig. 4.9, we get

BT
A 2.75

and By =2.75 MHz.



(d) If £,, 1s doubled, B = 2.5. Then, using Carson’s rule, By = 1.4 MHz. Using the universal curve,
(B7/Af)=4, and
B, = 4Af = 2MHz



	Slide 1: Narrowband FM
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: For the FM wave of to be narrow-band the modulation index must be small compared to one radian
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Wide-Band Frequency Modulation
	Slide 18
	Slide 19: the complex envelope of the FM wave s(t)
	Slide 20
	Slide 21
	Slide 22
	Slide 23: PROPERTIES OF SINGLE-TONE FM FOR ARBITRARY MODULATION INDEX
	Slide 24
	Slide 25
	Slide 26: Bessel function
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Transmission Bandwidth of FM Waves
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

