

Data Structure

Lab Manual

First semester

2018-2019

Data Structures Lab Manual

Data Structure Lab Schedule

Data Structure Lab Schedule (First Semester 2018-2019)

Week# Topic

2 Object- Oriented Design

3+4 Graphical User Interface and Event-Driven Programming

5+6 Fundamental Data Structures

7 Recursion

8 Midterm Exam

9+10 Stack and Queues

11+12 BST

13 Graphics

14 AVL tree

15 Final Exam

Data Structures Lab Manual

Experiment No. 1

OOP Revision

Description:

Object-oriented programming (OOP) involves programming using objects. An object represents

an entity in the real world that can be distinctly identified. For example, a student, a desk, a

circle, a button, and even a loan can all be viewed as objects. An object has a unique identity,

state, and behavior.

 The state of an object (also known as its properties or attributes) is represented by data

fields with their current values.

 The behavior of an object (also known as its actions) is defined by methods. To invoke a

method on an object is to ask the object to perform an action

Objects of the same type are defined using a common class. A class is a template, blueprint, or

contract that defines what an object’s data fields and methods will be. An object is an instance of

a class. You can create many instances of a class.

The aim of this lab is to conduct a revision of OOP and its related concepts.

The basic concepts of OOP: Object, Class and Interface, Inheritance, Abstraction,

Polymorphism, Encapsulation, Overloading and overriding.

Suggested Exercises:

1) Design and implement GeometricShape class and classes of each geometric shape

(Circle, Rectangle, Triangle, Line…etc.).

2) Apply the basic concepts on the geometric example (inheritance, polymorphism,

abstraction, interfaces...etc.).

3) Override the equals method in the Object class.

4) Rewrite the Rectangle, Circle, and Triangle…etc. classes and implement the Comparable

interface.

Data Structures Lab Manual

Experiment No. 2

GUI and Event handling

Description:

In this lab, we will introduce the basics of Java GUI programming and Event-Driven

Programming.

 There are current three sets of java APIs for graphics programming: AWT

(abstract windowing toolkit), Swing and JavaFX.

o AWT API was introduced in JDK 1.0. Most of the AWT components have

become obsolete and should be replaced by newer Swing components.

o Swing API, a much more comprehensive set of graphics libraries that enhances

the AWT. Swing components depend less on the target platform and use less of

the native GUI resource. For this reason, Swing components that don’t rely on

native GUI are referred to as lightweight components, and AWT components are

referred to as heavyweight components.

o The latest JavaFX, which was integrated into JDK 8, is meant to replace Swing.

In this lab we will use Swing because it has been adopted in the theoretical course

 The GUI API contains classes that can be classified into three groups: component classes,

container classes, and helper classes.

 The component classes, such as JButton, JLabel, and JTextField, are for creating the user

interface. The container classes, such as JFrame, JPanel, and JApplet, are used to contain

other components. The helper classes, such as Graphics, Color, Font, FontMetrics, and

Dimension, are used to support GUI components.

 The basic components that will be used (JFrame,JPanle, JButton, JTextField and

JLabels).

o JFrame: To create a user interface, you need to create either a frame or an applet

to hold the user-interface components.

o JPanel: JPanels act as subcontainers to group user-interface components.

Data Structures Lab Manual

 The components will be arranged in the container depending on the layout of the

container. There are many layouts manager as: FlowLayout, GridLayout, BorderLayout.

 Java uses a delegation-based model for event handling: a source object fires an event, and

an object interested in the event handles it. The latter object is called a listener. In this lab

we will deal with ActionListener, MouseListener, KeyListner and WindowsListner.

Example of designing a GUI

Data Structures Lab Manual

Suggested Exercises:

In the following question use the layout managers and new components like JRadioButton,

JCheckBox, JTextArea, JProgressBar…etc.

1) Design and implement a scientific calculator.

2) Design and implement Tic Tac Toe game.

3) Design and implement a program to calculate the area of any geometric shape.

Data Structures Lab Manual

Experiment No. 3

ArrayList

Description:

An array list is implemented using an array.

An array is a fixed-size data structure. Once an array is created, its size cannot be changed.

Nevertheless, you can still use arrays to implement dynamic data structures.

Initially, an array, say data of E [] type, is created with a default size.

1) When inserting a new element into the array, first make sure that there is enough room in

the array. If not, create a new array twice as large as the current one. Copy the elements

from the current array to the new array. The new array now becomes the current array.

Before inserting a new element at a specified index, shift all the elements after the index

to the right and increase the list size by 1, as shown in the following figure.

2) To remove an element at a specified index, shift all the elements after the index to the left

by one position and decrease the list size by 1, as shown in the following figure.

Data Structures Lab Manual

Implementation:

Data Structures Lab Manual

Data Structures Lab Manual

Suggested Exercises:

Create the following methods in MyArrayList class

1) Method to swap two elements in an arraylist.

2) Method to revers an arraylist using recursion.

3) Implement the rotate() method that rotates the elements in cyclic order following is the

method signature: Static void rotate (MyArrayList list, int r): Rotates the elements in

the arraylist list by the specified distance r.

4) Write a method to merge two sorted ArrayLists.

Data Structures Lab Manual

Experiment No. 4

LinkedList

Description:

LinkedList class uses a linked structure to implement a dynamic list. A linked structure consists

of nodes. Each node is dynamically created to hold an element. All the nodes are linked together

to form a list.

There are many types of linked list:

1- Single LinkedList: The most common type where each node has data and a pointer to the

next node.

2- Double LinkedList: another additional pointer is added to point to the previous node

enabling moving forward and backward.

3- Circular LinkedList: in this form the last node is linked to the first node forming a loop.

Data Next Data Next Data Next Head

Data Next Data Next Data Next Head

Head Data Next Prev

.
Data Next Prev

.
Data Next Prev

.

a) Single LinkedList

b) Double LinkedList

c) Circular LinkedList

Data Structures Lab Manual

Implementation:

In this lab, LinkedList class will be implemented in addition to different operation on LinkedList.

First, class Node is implemented, where each object from this class holds an element in the

LinkedList.

a) Node Class implementation:

b) MyLinkedList Class implementation:

Data Structures Lab Manual

Data Structures Lab Manual

Suggested Exercises:

1) Implement add method to add element at specific index.

2) Implement remove method to remove element at specific index.

3) Implement reverse method to reverse linked list using recursion and iteration.

4) Implement the methods contains(E e), get(int index), indexOf(E e), lastIndexOf(E e), and

set(int index, E e).

5) Write a test class to deal with Linked List.

6) Write a method to merge two sorted linked lists.

7) Implement the Double LinkedList class.

8) Implement the Circular LinkedList class.

Data Structures Lab Manual

Experiment No. 5

Stacks

Description:

Stacks can be implemented using array lists and queues can be implemented using linked lists.

 A stack can be viewed as a special type of list whose elements are accessed, inserted, and

deleted only from the end (top), as shown in the following figure.

 A stack holds data in a last-in, first-out fashion.

Implementation:

Data Structures Lab Manual

Data Structures Lab Manual

Suggested Exercises:

1.

2.

Data Structures Lab Manual

Experiment No. 6

Queue

Description:

1. A queue represents a waiting list. It can be viewed as a special type of list whose

elements are inserted into the end (tail) of the queue, and are accessed and deleted from

the beginning (head), as shown in the following figure.

2. A queue holds objects in a first-in, first-out fashion.

Implementation:

Data Structures Lab Manual

Data Structures Lab Manual

Suggested Exercises:

1. We are given a stack data structure with push and pop operations, the task is to

implement a queue using instances of stack data structure and operations on them.

2. The problem is opposite of the previous one. We are given a Queue data structure that

supports standard operations like enqueue () and dequeue (). We need to implement a

Stack data structure using only instances of Queue and queue operations allowed on the

instances.

3. Reversing a Queue : implement a method for reversing a queue Q

Input: [10, 22, 13, 40, 2]

Output: [2, 40, 13, 22, 10]

Data Structures Lab Manual

Experiment No. 7

Recursion

Description:

Recursion is a technique that leads to elegant solutions to problems that are difficult to program

using simple loops. A method is recursive if it calls itself to accomplish its work. A recursive

method is defined in terms of a smaller instance of itself. In the recursive method we have two

cases a basic case which can be solved without recursion and a general case which solved by

recursion, so there are two basic rules in recursion:

1. Base case: simplest case, always have at least one case that can be solved without using

recursion.

2. Make progress: Any recursive call (general case) must progress toward a base case.

Examples:

a) Factorial

The factorial of any positive integer is the product of all the numbers between 1 and the

number.

As we seen and so on. In addition, the factorial of 1 is known and doesn’t

need to be calculated it equals 1. We conclude from this that the base case is 1 and the

general case equals to the product of the number with the factorial of the number-1.

Data Structures Lab Manual

b) Checking whether a string is a palindrome

In the following experiment we will see how the recursion facilitate some processes in the data

structures and learn how to use it to solve the problems.

Suggested Exercises:

Write the following recursive methods:

1) A method to compute 2
n
 for a positive integer n.

2) A method to compute x
n
 for a positive integer n.

3) A method to reverse a string.

4) A method to reverse array.

5) A method to compute the GCD (greatest common divisor).

6) A recursive binary search method.

7) A method to compute the following series:

8) A method to find the occurrence of a specific character in a string.

Data Structures Lab Manual

Experiment No. 8

Binary Search Tree (BST)

Description:

A tree provides a hierarchical organization in which data are stored in the nodes. A binary tree is

a hierarchical structure. It either is empty or consists of an element, called the root, and two

distinct binary trees, called the left subtree and right subtree, either or both of which may be

empty, if both are empty the node is called leaf.

A BST is special type of binary tree has the property that for every node in the tree, the value of

any node in its left subtree is less than the value of the node, and the value of any node in its

right subtree is greater than the value of the node.

Implementation:

In this lab, BST class will be implemented in addition to different operation on BST. A binary

search tree can be represented using a set of linked nodes. First, class TreeNode is implemented,

where each node from this class holds an element in the tree and two links named left and right

that reference the left child and right child, respectively.

Data Structures Lab Manual

a) TreeNode class implementation:

b) BST class implementation:

Data Structures Lab Manual

Data Structures Lab Manual

Suggested Exercises:

1) Implement the method delete in BST class.

2) Implement methods to find the height, number of levels, number of leave nodes,

number of internal nodes and total number of nodes in BST

3) Implement the method pathToNode.

4) Implement the method BFT (Breadth First Traversal).

5) Implement the methods isFull to check if BST is full.

6) Implement the method isLeaf.

7) Implement recursive methods to find the height, number of levels, number of leave

nodes, number of internal nodes and total number of nodes in BST.

8) Write a GUI enables the user to create and deal with BST.

Data Structures Lab Manual

Experiment No. 9

AVL Tree

Description:

AVL Tree is a balanced binary search tree. the difference between the heights of every node’s

two subtrees is 0 or 1. It can be shown that the maximum height of an AVL tree is O(log n).

The process for inserting or deleting an element in an AVL tree is the same as in a regular

binary search tree, except that you may have to rebalance the tree after an insertion or deletion

operation. The balance factor (BF) of a node is the height of its right subtree minus the height

of its left subtree. A node is said to be balanced if its balance factor is -1, 0, or 1. A node is

considered left-heavy if its balance factor is -1, and right-heavy if its balance factor is +1.

If a node is not balanced after an insertion or deletion operation, you need to rebalance it. The

process of rebalancing a node is called rotation.

There are four possible rotations:

 LL: single right rotation around the imbalanced node (if BF of the imbalanced node = -2

and the BF of the left child of the imbalanced node=0 or -1).

 RR: single left rotation around the imbalanced node (if BF of the imbalanced node = +2

and the BF of the left child of the imbalanced node=0 or +1).

 LR: (double rotation) left rotation around the left child of the imbalanced node then right

rotation around the imbalanced node (if BF of the imbalanced node = -2 and the BF of

the left child of the imbalanced node =+1).

 RL: (double rotation) right rotation around the right child of the imbalanced node then

left rotation around the imbalanced node (if BF of the imbalanced node = +2 and the BF

of the left child of the imbalanced node= -1).

Data Structures Lab Manual

In the following figures example for each case is presented

Data Structures Lab Manual

Suggested Exercises:

1) Implement the AVL Tree class by extending the BST class implemented in the

previous experiment.

2) Implement the methods balanceFactor, rotateRight, rotateLeft.

3) Override insert and delete methods.

