JAVA ARRAYS

GENERAL

Java provides a data structure, the array, which stores a fixed-size sequential collection of elements of the
same type. An array is used to store a collection of data, but it is often more useful to think of an array as a
collection of variables of the same type.

Instead of declaring individual variables, such as number0Q, numberl, ..., and number99, you declare one array
variable such as numbers and use numbers[0], numbers[1], and ..., numbers[99] to represent individual
variables.

DECLARING ARRAY VARIABLES

To use an array in a program, you must declare a variable to reference the array, and you must specify the type
of array the variable can reference. Here is the syntax for declaring an array variable:

dataType[] arrayRefVar; // preferred way
or

dataType arrayRefVar[]; // works, but not preferred way

NOTE

The style dataType[] arrayRefVar is preferred. The style dataType arrayRefVar[] comesfrom
the C/C++ language and was adopted in Java to accommodate C/C++ programmers

EXAMPLE
double[] myList; // preferred way
or
double myList[]; // works but not preferred way

CREATING ARRAYS

You can create an array by using the new operator with the following syntax:

arrayRefVar = new dataTypelarraySize];



The above statement does two things:

e |tcreatesanarray using new dataTypel[arraySize];
e [t assigns the reference of the newly created array to the variable arrayRefVvar.

Declaring an array variable, creating an array, and assigning the reference of the array to the variable can be
combined in one statement, as shown below:

dataType[] arrayRefVar = new dataTypel[arraySize];
Alternatively you can create arrays as follows:

dataType[] arrayRefVar = {valueO, valuel, ..., valuek};

ACCESSING ARRAY ELEMENTS

The array elements are accessed through the index.

Array indices are 0-based; that is, they start from 0 to arrayRefVar.length-1.

EXAMPLE

Following statement declares an array variable, myList, creates an array of 10 elements of double type and
assigns its reference to myList:

double[] myList = new double[10];

Following picture represents array myList. Here, myList holds ten double values and the indices are from 0 to 9.

myList | reference - >
P |: myList|0] 5.6
’ myList[1] 45
Array reference myList[2] E -H
variable myList[3] 13.2
myList|4] 4.0
Array element st _ » myList|5] 3433 -<— Element value
index 5 . : d
myList[6] 340
myList|7] 45.45
myList|8] 99.993
myList|9] 11123

PROCESSING ARRAYS:



When processing array elements, we often use either for loop or foreach loop because all of the elements in an

array are of the same type and the size of the array is known.

EXAMPLE

Here is a complete example of showing how to create, initialize and process arrays:

public class TestArray {

public static void main(String[] args) {
double[] myList = {1.9, 2.9, 3.4, 3.5};

// Print all the array elements

for (int i = 0; 1 < myList.length; i++)
System.out.println (myList[i] + " ");

}

// Summing all elements

double total = 0;

for (int i = 0; 1 < myList.length; i++)
total += myList[i];

}

System.out.println ("Total is " + total);

// Finding the largest element

double max = myList[0];

for (int i = 1; 1 < myList.length; i++)
if (myList[i] > max) max = myList[i];

}

System.out.println("Max is " + max);

This would produce the following result:

w N -
SO O

3.
Total is 11.7
Max 1is 3.5

THE FOREACH LOOPS

{

JDK 1.5 introduced a new for loop known as foreach loop or enhanced for loop, which enables you to traverse

the complete array sequentially without using an index variable.

EXAMPLE

The following code displays all the elements in the array myList:



public class TestArray {

public static void main(String[] args) {
double[] myList = {1.9, 2.9, 3.4, 3.5};

// Print all the array elements

for (double element: myList) {
System.out.println (element) ;

}

This would produce the following result:

w w N
[0 ~ENeINe}

PASSING ARRAYS TO METHODS

Just as you can pass primitive type values to methods, you can also pass arrays to methods. For example, the
following method displays the elements in an int array:

public static void printArray( int[] array ) {
for (int i = 0; 1 < array.length; i++) {
System.out.print (array[i] + " ");

}

You can invoke it by passing an array. For example, the following statement invokes the printArray method to
display 3, 1, 2, 6, 4, and 2:

printArray(new int[]1{3, 1, 2, 6, 4, 2});

RETURNING AN ARRAY FROM A METHOD

A method may also return an array. For example, the method shown below returns an array that is the reversal
of another array:

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
result[j] = list[i];
}

return result;



