Primitive data types

® All primitive values belong to one of eight primitive types
byte short 1nt long float
double char boolean
® Primitive data types use a fixed number of bytes

= four of these types designate different sizes of bounded
integers: byte, short, int, long

® A programmer can not create new primitive data types
® Any data type you invent will be a type of object

® Most commonly used types in practice: int, boolean, and
double

Java primitive data types

Primitive Type ‘ Description ‘ Range
byte 8-bit integer -128 to 127
short 16-bit integer -32768 to 32767
int 32-bit integer -2211112':;3 ng; 0
long 64-bit integer -263 o 263-1
float 32-bit floating point 10-4¢ to 1038
double 64-bit floating point 1033 to 10308
char Unicode character

boolean Boolean variable fal=se and true

More on Data Types

* Trade-off b/w memory used and what size
value the data type can store

e Single bit: 2 values, 2 bits: 4 values, 3 bits: 8
values, and so on. N bits: 2" values

- byte uses 8 bits => 2°= 256 values (-128 to
127)

e Signed: both +ve and -ve values
* Integers: values stored in binary notation

* Floating point numbers: bits divided to store
sign, mantissa, and exponent

Example: 2.99792458x10°8

Variable Declaration

Have to declare all variables before using them!

number:

1) new variable of
2) having the name “number”

Examples

float £;
double pi1i =

char first
middle
last

char first
char middle
char last

int x, v, Z;

1int sum = 0;

. 14;

\Tf
\Lf

\Bf =
\T.f -
\Lf =
\Bf -

What's wrong in these ?

1) Int X;

2) floaty

3) int float;
4) int 2good;
5) int yes&no;

Arithmetic Expressions

* EXxpressions: collections of operands (constants and variables)

and operators

* Very similar to what you've seen in Math classes

Basic operators

Operator

Assignment

Arithmetic

Unary

Equality

Relational

Logical

Java

Description
assigns rhs to lhs

addition, subtraction,
multiplication, division,
remainder

negative, auto increment, auto
decrement

equals to, not equals to
less than, less than or equals to,
greater than, greater than or equals

to

AND, OR, NOT

Examples

int answer = 10 - 4;

Division is different, depending on integer/floating
point

- If both are integers (byte, short, int, long)=>
integer division

Example: int answer = 5/2; (remainders/fractions are
dropped:answer will be 2)

- If one or both are floating point => floating point
division

Example: double answer = 5/2.0; (fraction parts saved:
answer will be 2.5)

Remainder operator (mod operation): returns remainder

Example: 1nt answer = 10%3; (answer will be 1)

More Examples
1) X=2;
X++; (means X=X+1 —> so X will be 3)

2) a==b (checks if a is equal to b)

3) al=b (checks if a not equal to b)

4) (a==b) &&(c==d) (checks if a = b and if c=d)
(what if a=2, b=2, c=3, d=4 ?)

5) (a==Db) || (c==d) (checks if a = b or if c=d)
(what if a=2, b=2, c=3, d=4 ?)

6) if('a) (checks if a==0)

Operator precedence

® Evaluate 2 + kb * ¢
= multiplication first? a + (b * <)
» addition first? (a + b) * c

® Java solves this problem by assigning priorities to operators
(operator precedence)

Operator priority

= operators with high priority (highest to lowest)

are evaluated before
operators with low priority

= operators with equal priority
are evaluated left to right

mowhr
+ * ~
~
P

When in doubt, use parentheses

@ a+th*c=a+ (b*c
« because * has higher priority than +

® To perform the + operation first we need to use parentheses
» (a + b)) *c

® [finany doubt use extra parentheses to ensure the correct
order of evaluation

» parentheses are free!
» cause no extra work for the computer
« only make it easier for you to work out what is happening

Examples

® Java adheres to traditional order of operations
® *and / have higher priority than + and -

int x = 3 + 5 * ©; (2 = 33)

int v = (3 + 5) * &; (v = 48)
® Parentheses are free, use them liberally

int z = ((3 + 32) * (6)); (z = 48)

® Equal priority operations are evaluated left-to-right in the
absence of parentheses

int w=3%*4 /2 % g; (w = 36)
int x =3 *4/ (2 *6); (x=1)

int y =3 * 4 + 2 % g; (y = 24)
int z =3 * (4 4+ 2) * 6; (z = 108)

Syntax and semantics

Addition, subtraction: + and —, int and dcocuble

int = = Z21+4; (= = 25
doukle v = 14.1-2; (v = 12.1)
Multiplication: *, int and double

int =z = Z21*%4; (zz = H4)
doukble v = 14.1*%2.5; (yv = 35.23)

Division: /, different for int and double

int x = 21/4; (z = 5)
double v = Z21/4; (v = 5.0)
double v = 21,/4.0; (v = 5.25)

Modulus: %, only for int
int = = 21%4; (== = 1)

