Gaussian Elimination Example 1

Gaussian elimination for the solution of a linear system transforms the Suppose that we want to solve
system Sz = f into an equivalent system Ux = ¢ with upper triangular 2 4 =2\ [n 2
matrix U (that means all entries in U below the diagonal are zero). 42 93 ‘73 v | = 180 ©
. . . ) . - - 3
This transformation is done by applying three types of transformations to
the augmented matrix (S ‘ f) We apply Gaussian elimination. To keep track of the operations, we use,
’ e.g., Ry = Ry — 2% Ry, which means that the new row 2 is computed by
Type 1: Interchange two equations; and subtracting 2 times row 1 from row 2.
Type 2: Replace an equation with the sum of the same equation and a 2 4 -2 2 2 4 -2 2
: : 4 9 3| 8| =01 1] 4] Re=Ry—2+R
multiple of another equation. P 01 5/12) ReR+R
Once the augmented matrix (U | f) is transformed into (U | ¢), where U 2 4 —2]2
is an upper triangular matrix, we can solve this transformed system -0 1 14
0 0 4|8 ) Ry=Rs—Ry

Uz = c using backsubstitution.
The original system (1) is equivalent to

2 4 =2 T
01 1 | =(4]. (2)
)6

The system (2) can be solved by backsubstitution. We get the solution

23 =8/4=2, x9=(4-1x2)/1=2, a1 = (2—4x2—(-2)%2)/2=—1.
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Example 2 Example 2 (cont.)
Suppose that we want to solve If f3 —2fs — f1 =0, then z3 can be chosen arbitrarily and 5, 21 can be
2 3 -2\ /n h determined by backsubstitution.
1 -2 3 | =|f]. (3) If f3 —2fs — f1 =0, then
4 -1 4 T3 f3

xg = any scalar, xp = (fo—f1/2—4w3)*(=2/7), 21 = (f1—3z2+223)/2.

We apply Gaussian elimination.

2 3 =2|h 2 3 -2 f For example if fi = fo = f3 =1, and if we choose x3 = 0, then
1 -2 3 f2 — 0 77/2 4 f27f1/2 R2:R270.5*R1
4 -1 4| f 0 -7 8| fs—2fi )] Rs=Rs—2xR, 23 =0, w3=-1/7, 21 =>5/T.
2 3 -2 fi
— 0 —7/2 4 fo—f1/2
0 0 0|fs—=2fo—f1 R3 = R3 — 2R,

The original system (3) is equivalent to

2 3 =2\ [x f
0 -7/2 4 xz2 | = fo=Ff/2 . (4)
0 0 0 T3 fa=2fr—f1

The last equation in system (4) reads 0z1 4 Ozg + Oz = f3 — 2f2 — f1.
This can only be satisfied of the right hand side satisfies
f3—2fa— f1 =0, for example if f1 = fo = f3=1.
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The Matrix Inverse Computation of the Matrix Inverse
)A(sg‘;lg;exf‘:zrciﬁ iftR7LX'L is invertible f there exists a matrix We want to find the inverse of S € R"*", that is we want to find a
matrix X € R™*"™ such that SX = 1.
> Let X. ; denote the jth column of X, ie., X = (X.1,...,X. ).
Consider the matrix-matrix product SX. The jth column of SX is

XS=1 and SX=1.

The matrix X is called the inverse of S and is denoted by S~1.

> An inve.rti.ble matrix is .also clalled no.n—singu!ar'. . ' ' the matrix-vector product SX:,J,’ ie., SX = (SAX':,17 L ,SX:,H).
A matrix is called non-invertible or singular if it is not invertible. . . . . . .
> A matrix S € R"*" cannot have two different inverses. The ]th column of the |dent|ty I'is the ]th unit vector
In fact, if X, Y € R™*™ are two matrices with XS =T and SY =1, e; = (O7 . 7O, 1, 07 R O)T
then _ _ I H
X = XT= X(SY) = (XS)Y = IV — V. Hence SX = (SX:’IV . .,b;;—X;’n) = A()?’ ...f,in).— 1 mp?e; Ehat we
can compute the columns . . . n, OT the Inverse o
> The property SX = I (right inverse) is important for the existence . P . Sl LTEem y
of a solution. In fact, if there is a matrix X with SX = I, then solving n systems of linear equations
x = X f satisfies Se = SXf=1f=f,ie, x = Xfis a solution to
the linear system. SX. 1 =e1
5 )

> The property XS = I (left inverse) is important for the uniqueness
of the solution. In fact, if there is a matrix X with XS =1 and if
and y satisfy Sz = f and Sy = f, then
Sx—y)=Sz—Sy=f—-f=0andz—y=X0=0. SX. —e
> |t can be shown that if the square matrix S has a left inverse LT N
XS =1, then X is also a right inverse, SX = I, and vice versa.

» If S is invertible, then for every f the linear system Sz = f has the Note that if for every f the linear system Sr = f has a unique

unique solution x = S~ f. . . . - .
> We will see later that if for every f the linear system Sz = f has a solution z, then there exists a unique X' = <X:71’ T ’X”") with

unique solution x, then S is invertible. SX =1.
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Example 3 Example 4
Suppose that we want the inverse of Suppose that we want the inverse of
2 4 =2 9 3 _9
s=[4 9 -3]. S=11 -2 3
-2 =3 7 - o
4 -1 4
We can use Gaussian Elimination to solve the systems
SX.1=¢e1,5X.2=e,5X. 3= e; for the three columns of X = §~! We can use Gaussian Elimination to solve the systems
SX.1=e1,5X. 0 =ey,5X. 5 =es for the three columns of X = 5!
2 4 =211 0 O 2 4 =2 1 0 0 ’ ’ ’
4 9 -3|0 1 0 — 0 1 11-2 1 0
9 -3 7lo 01 015101) 2 3 =21 0 O 2 3 -2 1 0 0
S R 1 -2 3/0 10 |—=|0 —7/2 4|-1/2 1 0
“{e1 1l 10 4 -1 410 0 1 0 -7 8 -2 0 1
00 4| 3 -1 1 2 3 -2 1 0 0
2 4 0| 5/2 —1/2 1/2 1.0 0| 27/4 —11/4 3/4 -0 —-7/2 4|-1/2 1 0
|01 0|-11/4 5/4 —-1/4 || 0 1 0|-11/4 5/4 —1/4 0 0 0| -1 -2 1
00 1| 3/4 —1/4 1/4 00 1| 3/4 -1/4 1/4

None of the linear systems SX. 1 =e;,5X.2 =€2,5X.3 =e3 has a

o1 1 ?I _% :1)) solution. Therefore, S is not invertible.
4 3 -1 1
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