
(a) Suppose that W y1 yn t0 0, and suppose that

c1y1 t cn yn t 0 (ii)

for all t in I . By writing the equations corresponding to the first n 1 derivatives of Eq. (ii)
at t0, show that c1 cn 0. Therefore, y1 yn are linearly independent.
(b) Suppose that y1 yn are linearly independent solutions of Eq. (i). If
W y1 yn t0 0 for some t0, show that there is a nonzero solution of Eq. (i) satisfying
the initial conditions

y t0 y t0 y n 1 t0 0

Since y 0 is a solution of this initial value problem, the uniqueness part of Theorem
4.1.1 yields a contradiction. Thus W is never zero.

26. Show that if y1 is a solution of

y p1 t y p2 t y p3 t y 0

then the substitution y y1 t t leads to the following second order equation for :

y1 3y1 p1y1 3y1 2p1y1 p2y1 0

In each of Problems 27 and 28 use the method of reduction of order (Problem 26) to solve the
given differential equation.

27. 2 t y 2t 3 y ty y 0 t 2 y1 t et

28. t2 t 3 y 3t t 2 y 6 1 t y 6y 0 t 0 y1 t t2 y2 t t3

Consider the nth order linear homogeneous differential equation

L[y] a0y
n a1y

n 1 an 1y an y 0 (1)

where a0 a1 an are real constants. From our knowledge of second order linear
equations with constant coefficients it is natural to anticipate that y ert is a solution
of Eq. (1) for suitable values of r . Indeed,

L[ert ] ert a0r
n a1r

n 1 an 1r an ert Z r (2)

for all r , where

Z r a0r
n a1r

n 1 an 1r an (3)

For those values of r for which Z r 0, it follows that L[ert ] 0 and y ert is a
solution of Eq. (1). The polynomial Z r is called the characteristic polynomial, and
the equation Z r 0 is the characteristic equation of the differential equation (1).



A polynomial of degree n has n zeros,1 say r1 r2 rn , some of which may be equal;
hence we can write the characteristic polynomial in the form

Z r a0 r r1 r r2 r rn (4)

If the roots of the characteristic equation are real and no
two are equal, then we have n distinct solutions er1t er2t ern t of Eq. (1). If these
functions are linearly independent, then the general solution of Eq. (1) is

y c1e
r1t c2e

r2t cne
rn t (5)

One way to establish the linear independence of er1t er2t ern t is to evaluate their
Wronskian determinant. Another way is outlined in Problem 40.

Find the general solution of

y y 7y y 6y 0 (6)

Also find the solution that satisfies the initial conditions

y 0 1 y 0 0 y 0 2 y 0 1 (7)

and plot its graph.
Assuming that y ert , we must determine r by solving the polynomial equation

r 4 r3 7r 2 r 6 0 (8)

The roots of this equation are r1 1, r2 1, r3 2, and r4 3. Therefore the
general solution of Eq. (6) is

y c1e
t c2e

t c3e
2t c4e

3t (9)

The initial conditions (7) require that c1 c4 satisfy the four equations

c1 c2 c3 c4 1

c1 c2 2c3 3c4 0
(10)

c1 c2 4c3 9c4 2

c1 c2 8c3 27c4 1

By solving this system of four linear algebraic equations, we find that

c1 11 8 c2 5 12 c3 2 3 c4 1 8

Therefore the solution of the initial value problem is

y 11
8 e

t 5
12e

t 2
3e

2t 1
8e

3t (11)

The graph of the solution is shown in Figure 4.2.1.

1An important question in mathematics for more than 200 years was whether every polynomial equation has
at least one root. The affirmative answer to this question, the fundamental theorem of algebra, was given by
Carl Friedrich Gauss in his doctoral dissertation in 1799, although his proof does not meet modern standards of
rigor. Several other proofs have been discovered since, including three by Gauss himself. Today, students often
meet the fundamental theorem of algebra in a first course on complex variables, where it can be established as a
consequence of some of the basic properties of complex analytic functions.



FIGURE 4.2.1 Solution of the initial value problem of Example 1.

As Example 1 illustrates, the procedure for solving an nth order linear differential
equation with constant coefficients depends on finding the roots of a corresponding
nth degree polynomial equation. If initial conditions are prescribed, then a system
of n linear algebraic equations must be solved to determine the proper values of the
constants c1 cn . While each of these tasks becomes much more complicated as n
increases, they can often be handled without difficulty with a calculator or computer.
For third and fourth degree polynomials there are formulas,2 analogous to the formula

for quadratic equations but more complicated, that give exact expressions for the roots.
Root-finding algorithms are readily available on calculators and computers. Sometimes
they are included in the differential equation solver, so that the process of factoring
the characteristic polynomial is hidden and the solution of the differential equation is
produced automatically.
If you are faced with the need to factor the characteristic polynomial by hand, here

is one result that is sometimes helpful. Suppose that the polynomial

a0r
n a1r

n 1 an 1r an 0 (12)

has integer coefficients. If r p q is a rational root, where p and q have no common
factors, then p must be a factor of an and q must be a factor of a0. For example, in
Eq. (8) the factors of a0 are 1 and the factors of an are 1, 2, 3, and 6. Thus, the
only possible rational roots of this equation are 1, 2, 3, and 6. By testing these
possible roots, we find that 1, 1, 2, and 3 are actual roots. In this case there are no
other roots, since the polynomial is of fourth degree. If some of the roots are irrational
or complex, as is usually the case, then this process will not find them, but at least the
degree of the polynomial can be reduced by dividing out the factors corresponding to
the rational roots.
If the roots of the characteristic equation are real and different, we have seen that the

general solution (5) is simply a sum of exponential functions. For large values of t the

2The method for solving the cubic equation was apparently discovered by Scipione dal Ferro (1465–1526) about
1500, although it was first published in 1545 by Girolamo Cardano (1501–1576) in his Ars Magna. This book also
contains a method for solving quartic equations that Cardano attributes to his pupil Ludovico Ferrari (1522–1565).
The question of whether analogous formulas exist for the roots of higher degree equations remained open for more
than two centuries, until in 1826 Niels Abel showed that no general solution formulas can exist for polynomial
equations of degree five or higher. A more general theory was developed by Evariste Galois (1811–1832) in 1831,
but unfortunately it did not become widely known for several decades.



solution will be dominated by the term corresponding to the algebraically largest root.
If this root is positive, then solutions will become exponentially unbounded, while if it
is negative, then solutions will tend exponentially to zero. Finally, if the largest root is
zero, then solutions will approach a nonzero constant as t becomes large. Of course, for
certain initial conditions the coefficient of the otherwise dominant term will be zero;
then the nature of the solution for large t is determined by the next largest root.

If the characteristic equation has complex roots, they must occur in
conjugate pairs, i , since the coefficients a0 an are real numbers. Provided
that none of the roots is repeated, the general solution of Eq. (1) is still of the form (4).
However, just as for the second order equation (Section 3.4), we can replace the
complex-valued solutions e i t and e i t by the real-valued solutions

e t cos t e t sin t (13)

obtained as the real and imaginary parts of e i t . Thus, even though some of the
roots of the characteristic equation are complex, it is still possible to express the general
solution of Eq. (1) as a linear combination of real-valued solutions.

Find the general solution of

yiv y 0 (14)

Also find the solution that satisfies the initial conditions

y 0 7 2 y 0 4 y 0 5 2 y 0 2 (15)

and draw its graph.
Substituting ert for y, we find that the characteristic equation is

r 4 1 r2 1 r 2 1 0

Therefore the roots are r 1, 1, i , i , and the general solution of Eq. (14) is

y c1e
t c2e

t c3 cos t c4 sin t

If we impose the initial conditions (15), we find that

c1 0 c2 3 c3 1 2 c4 1

thus the solution of the given initial value problem is

y 3e t 1
2 cos t sin t (16)

The graph of this solution is shown in Figure 4.2.2.
Observe that the initial conditions (15) cause the coefficient c1 of the exponentially

growing term in the general solution to be zero. Therefore this term is absent in the
solution (16), which describes an exponential decay to a steady oscillation, as Figure
4.2.2 shows. However, if the initial conditions are changed slightly, then c1 is likely to
be nonzero and the nature of the solution changes enormously. For example, if the first
three initial conditions remain the same, but the value of y 0 is changed from 2 to
15 8, then the solution of the initial value problem becomes

y 1
32e

t 95
32e

t 1
2 cos t

17
16 sin t (17)



The coefficients in Eq. (17) differ only slightly from those in Eq. (16), but the expo-
nentially growing term, even with the relatively small coefficient of 1/32, completely
dominates the solution by the time t is larger than about 4 or 5. This is clearly seen in
Figure 4.2.3, which shows the graphs of the two solutions (16) and (17).

FIGURE 4.2.2 A plot of the solution (16). FIGURE 4.2.3 Plots of the solutions (16)
(light curve) and (17) (heavy curve).

If the roots of the characteristic equation are not distinct, that is, if
some of the roots are repeated, then the solution (5) is clearly not the general solution
of Eq. (1). Recall that if r1 is a repeated root for the second order linear equation
a0y a1y a2y 0, then the two linearly independent solutions are er1t and ter1t .
For an equation of order n, if a root of Z r 0, say r r1, has multiplicity s (where
s n), then

er1t ter1t t2er1t t s 1er1t (18)

are corresponding solutions of Eq. (1).
If a complex root i is repeated s times, the complex conjugate i is

also repeated s times. Corresponding to these 2s complex-valued solutions, we can
find 2s real-valued solutions by noting that the real and imaginary parts of e i t ,
te i t t s 1e i t are also linearly independent solutions:

e t cos t e t sin t te t cos t te t sin t

t s 1e t cos t t s 1e t sin t

Hence the general solution of Eq. (1) can always be expressed as a linear combination
of n real-valued solutions. Consider the following example.

Find the general solution of

yiv 2y y 0 (19)

The characteristic equation is

r 4 2r 2 1 r2 1 r 2 1 0

The roots are r i i i i and the general solution of Eq. (19) is

y c1 cos t c2 sin t c3t cos t c4t sin t



In determining the roots of the characteristic equation it may be necessary to compute
the cube roots, or fourth roots, or even higher roots of a (possibly complex) number. This
can usually be done most conveniently by using Euler’s formula eit cos t i sin t
and the algebraic laws given in Section 3.4. This is illustrated in the following example.

Find the general solution of

yiv y 0 (20)

The characteristic equation is

r4 1 0

To solve the equation we must compute the fourth roots of 1. Now 1, thought of as
a complex number, is 1 0i . It has magnitude 1 and polar angle . Thus

1 cos i sin ei

Moreover, the angle is determined only up to a multiple of 2 . Thus

1 cos 2m i sin 2m ei 2m

where m is zero or any positive or negative integer. Thus

1 1 4 ei 4 m 2 cos
4

m

2
i sin

4

m

2
The four fourth roots of 1 are obtained by setting m 0, 1, 2, and 3; they are

1 i

2

1 i

2

1 i

2

1 i

2

It is easy to verify that for any other value of m we obtain one of these four roots.
For example, corresponding to m 4, we obtain 1 i 2. The general solution of
Eq. (20) is

y et 2 c1 cos
t

2
c2 sin

t

2
e t 2 c3 cos

t

2
c4 sin

t

2
(21)

In conclusion, we note that the problem of finding all the roots of a polynomial
equation may not be entirely straightforward, even with computer assistance. For
instance, it may be difficult to determine whether two roots are equal, or merely very
close together. Recall that the form of the general solution is different in these two cases.
If the constants a0 a1 an in Eq. (1) are complex numbers, the solution of Eq.

(1) is still of the form (4). In this case, however, the roots of the characteristic equation
are, in general, complex numbers, and it is no longer true that the complex conjugate
of a root is also a root. The corresponding solutions are complex-valued.

In each of Problems 1 through 6 express the given complex number in the form R cos
i sin Rei

1. 1 i 2. 1 3i 3. 3
4. i 5. 3 i 6. 1 i



In each of Problems 7 through 10 follow the procedure illustrated in Example 4 to determine
the indicated roots of the given complex number.

7. 11 3 8. 1 i 1 2

9. 11 4 10. [2 cos 3 i sin 3 ]1 2

In each of Problems 11 through 28 find the general solution of the given differential equation.

11. y y y y 0 12. y 3y 3y y 0
13. 2y 4y 2y 4y 0 14. yiv 4y 4y 0
15. yvi y 0 16. yiv 5y 4y 0
17. yvi 3yiv 3y y 0 18. yvi y 0
19. yv 3yiv 3y 3y 2y 0 20. yiv 8y 0
21. yviii 8yiv 16y 0 22. yiv 2y y 0
23. y 5y 3y y 0 24. y 5y 6y 2y 0

25. 18y 21y 14y 4y 0 26. yiv 7y 6y 30y 36y 0

27. 12yiv 31y 75y 37y 5y 0 28. yiv 6y 17y 22y 14y 0

In each of Problems 29 through 36 find the solution of the given initial value problem and plot
its graph. How does the solution behave as t ?

29. y y 0 y 0 0 y 0 1 y 0 2
30. yiv y 0 y 0 0 y 0 0 y 0 1 y 0 0
31. yiv 4y 4y 0 y 1 1 y 1 2 y 1 0 y 1 0
32. y y y y 0 y 0 2 y 0 1 y 0 2

33. 2y iv y 9y 4y 4y 0 y 0 2 y 0 0 y 0 2
y 0 0

34. 4y y 5y 0 y 0 2 y 0 1 y 0 1
35. 6y 5y y 0 y 0 2 y 0 2 y 0 0
36. yiv 6y 17y 22y 14y 0 y 0 1 y 0 2 y 0 0

y 0 3

37. Show that the general solution of yiv y 0 can be written as

y c1 cos t c2 sin t c3 cosh t c4 sinh t

Determine the solution satisfying the initial conditions y 0 0, y 0 0, y 0 1,
y 0 1. Why is it convenient to use the solutions cosh t and sinh t rather than et and
e t?

38. Consider the equation yiv y 0.
(a) Use Abel’s formula [Problem 20(d) of Section 4.1] to find the Wronskian of a funda-
mental set of solutions of the given equation.
(b) Determine the Wronskian of the solutions et , e t , cos t , and sin t .
(c) Determine the Wronskian of the solutions cosh t , sinh t , cos t , and sin t .

39. Consider the spring–mass system, shown in Figure 4.2.4, consisting of two unit masses
suspended from springs with spring constants 3 and 2, respectively. Assume that there is
no damping in the system.
(a) Show that the displacements u1 and u2 of the masses from their respective equilibrium
positions satisfy the equations

u1 5u1 2u2 u2 2u2 2u1 (i)

(b) Solve the first of Eqs. (i) for u2 and substitute into the second equation, thereby
obtaining the following fourth order equation for u1:

uiv1 7u1 6u1 0 (ii)

Find the general solution of Eq. (ii).


