
Many practical engineering problems involvemechanical or electrical systems acted on
by discontinuous or impulsive forcing terms. For such problems the methods described
in Chapter 3 are often rather awkward to use. Another method that is especially well
suited to these problems, although useful muchmore generally, is based on the Laplace
transform. In this chapter we describe how this important method works, emphasizing
problems typical of those arising in engineering applications.

Among the tools that are very useful for solving linear differential equations are integral
transforms. An integral transform is a relation of the form

F s K s t f t dt (1)

where K s t is a given function, called the kernel of the transformation, and the
limits of integration and are also given. It is possible that or ,
or both. The relation (1) transforms the function f into another function F , which is
called the transform of f . The general idea in using an integral transform to solve a
differential equation is as follows: Use the relation (1) to transform a problem for an
unknown function f into a simpler problem for F , then solve this simpler problem to
find F , and finally recover the desired function f from its transform F . This last step
is known as “inverting the transform.”



There are several integral transforms that are useful in applied mathematics, but
in this chapter we consider only the Laplace1 transform. This transform is defined in
the following way. Let f t be given for t 0, and suppose that f satisfies certain
conditions to be stated a little later. Then the Laplace transform of f , which we will
denote by f t or by F s , is defined by the equation

f t F s
0

e st f t dt (2)

The Laplace transform makes use of the kernel K s t e st . Since the solutions of
linear differential equations with constant coefficients are based on the exponential
function, the Laplace transform is particularly useful for such equations.
Since the Laplace transform is defined by an integral over the range from zero to

infinity, it is useful to review some basic facts about such integrals. In the first place,
an integral over an unbounded interval is called an improper integral, and is defined
as a limit of integrals over finite intervals; thus
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where A is a positive real number. If the integral from a to A exists for each A a,
and if the limit as A exists, then the improper integral is said to converge to
that limiting value. Otherwise the integral is said to diverge, or to fail to exist. The
following examples illustrate both possibilities.

Let f t ect , t 0, where c is a real nonzero constant. Then
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It follows that the improper integral converges if c 0, and diverges if c 0. If c 0,
the integrand f t is the constant function with value 1, and the integral again diverges.

Let f t 1 t , t 1. Then
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Since lim
A

ln A , the improper integral diverges.

1The Laplace transform is named for the eminent French mathematician P. S. Laplace, who studied the relation (2)
in 1782. However, the techniques described in this chapter were not developed until a century or more later. They
are due mainly to Oliver Heaviside (1850–1925), an innovative but unconventional English electrical engineer,
who made significant contributions to the development and application of electromagnetic theory.



Let f t t p , t 1, where p is a real constant and p 1; the case p 1 was
considered in Example 2. Then

1
t p dt lim
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A1 p 1

As A , A1 p 0 if p 1, but A1 p if p 1. Hence
1

t p dt con-

verges for p 1, but (incorporating the result of Example 2) diverges for p 1. These

results are analogous to those for the infinite series
n 1

n p .

Before discussing the possible existence of
a

f t dt , it is helpful to define certain
terms. A function f is said to be piecewise continuous on an interval t if the
interval can be partitioned by a finite number of points t0 t1 tn so
that

1. f is continuous on each open subinterval ti 1 t ti .

2. f approaches a finite limit as the endpoints of each subinterval are approached
from within the subinterval.

In other words, f is piecewise continuous on t if it is continuous there except
for a finite number of jump discontinuities. If f is piecewise continuous on t
for every , then f is said to be piecewise continuous on t . An example of a
piecewise continuous function is shown in Figure 6.1.1.
If f is piecewise continuous on the interval a t A, then it can be shown that
A

a
f t dt exists. Hence, if f is piecewise continuous for t a, then

A

a
f t dt exists

for each A a. However, piecewise continuity is not enough to ensure convergence

of the improper integral
a

f t dt , as the preceding examples show.

If f cannot be integrated easily in terms of elementary functions, the definition of

convergence of
a

f t dt may be difficult to apply. Frequently, the most convenient
way to test the convergence or divergence of an improper integral is by the following
comparison theorem, which is analogous to a similar theorem for infinite series.

FIGURE 6.1.1 A piecewise continuous function.



If f is piecewise continuous for t a, if f t g t when t M for some positive

constant M , and if
M

g t dt converges, then
a

f t dt also converges. On

the other hand, if f t g t 0 for t M , and if
M

g t dt diverges, then

a
f t dt also diverges.

The proof of this result from the calculus will not be given here. It is made plausible,

however, by comparing the areas represented by
M

g t dt and
M

f t dt . The

functions most useful for comparison purposes are ect and t p , which were considered
in Examples 1, 2, and 3.
We now return to a consideration of the Laplace transform f t or F s , which

is defined by Eq. (2) whenever this improper integral converges. In general, the pa-
rameter s may be complex, but for our discussion we need consider only real values
of s. The foregoing discussion of integrals indicates that the Laplace transform F of a
function f exists if f satisfies certain conditions, such as those stated in the following
theorem.

Suppose that

1. f is piecewise continuous on the interval 0 t A for any positive A.

2. f t Keat when t M . In this inequality K , a, and M are real constants, K
and M necessarily positive.

Then the Laplace transform f t F s , defined by Eq. (2), exists for s a.

To establish this theorem it is necessary to show only that the integral in Eq. (2)
converges for s a. Splitting the improper integral into two parts, we have

0
e st f t dt

M

0
e st f t dt

M
e st f t dt (4)

The first integral on the right side of Eq. (4) exists by hypothesis (1) of the theorem;
hence the existence of F s depends on the convergence of the second integral. By
hypothesis (2) we have, for t M ,

e st f t Ke steat Ke a s t

and thus, by Theorem 6.1.1, F s exists provided that
M

e a s t dt converges. Refer-
ring to Example 1 with c replaced by a s, we see that this latter integral converges
when a s 0, which establishes Theorem 6.1.2.
Unless the contrary is specifically stated, in this chapter we deal only with functions

satisfying the conditions of Theorem 6.1.2. Such functions are described as piecewise
continuous, and of exponential order as t . The Laplace transforms of some
important elementary functions are given in the following examples.



Let f t 1, t 0. Then

1
0

e st dt
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s
s 0

Let f t eat , t 0. Then

eat
0

e steat dt
0

e s a t dt

1

s a
s a

Let f t sin at , t 0. Then

sin at F s
0

e st sin at dt s 0

Since

F s lim
A

A

0
e st sin at dt

upon integrating by parts we obtain

F s lim
A

e st cos at
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e st cos at dt

A second integration by parts then yields

F s
1

a

s2

a2 0
e st sin at dt

1
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Hence, solving for F s , we have

F s
a

s2 a2
s 0

Now let us suppose that f1 and f2 are two functions whose Laplace transforms exist
for s a1 and s a2, respectively. Then, for s greater than the maximum of a1 and a2,

c1 f1 t c2 f2 t
0

e st[c1 f1 t c2 f2 t ] dt

c1
0

e st f1 t dt c2
0

e st f2 t dt



hence

c1 f1 t c2 f2 t c1 f1 t c2 f2 t (5)

Equation (5) is a statement of the fact that the Laplace transform is a linear operator.
This property is of paramount importance, and we make frequent use of it later.

In each of Problems 1 through 4 sketch the graph of the given function. In each case determine
whether f is continuous, piecewise continuous, or neither on the interval 0 t 3.

1. f t
t2 0 t 1
2 t 1 t 2
6 t 2 t 3

2. f t
t2 0 t 1
t 1 1 1 t 2
1 2 t 3

3. f t
t2 0 t 1
1 1 t 2
3 t 2 t 3

4. f t
t 0 t 1
3 t 1 t 2
1 2 t 3

5. Find the Laplace transform of each of the following functions:
(a) t
(b) t2

(c) tn , where n is a positive integer
6. Find the Laplace transform of f t cos at , where a is a real constant.

Recall that cosh bt ebt e bt 2 and sinhbt ebt e bt 2. In each of Problems 7
through 10 find the Laplace transform of the given function; a and b are real constants.

7. cosh bt 8. sinh bt
9. eat cosh bt 10. eat sinh bt

In each of Problems 11 through 14 recall that cos bt eibt e ibt 2 and sinbt eibt

e ibt 2i . Assuming that the necessary elementary integration formulas extend to this case, find
the Laplace transform of the given function; a and b are real constants.

11. sin bt 12. cos bt
13. eat sin bt 14. eat cos bt

In each of Problems 15 through 20, using integration by parts, find the Laplace transform of the
given function; n is a positive integer and a is a real constant.

15. teat 16. t sin at 17. t cosh at
18. tneat 19. t2 sin at 20. t2 sinhat

In each of Problems 21 through 24 determine whether the given integral converges or diverges.

21.
0

t2 1 1 dt 22.
0

te t dt

23.
1

t 2et dt 24.
0

e t cos t dt

25. Suppose that f and f are continuous for t 0, and of exponential order as t . Show
by integration by parts that if F s f t , then lim

s
F s 0. The result is actually

true under less restrictive conditions, such as those of Theorem 6.1.2.
26. The Gamma Function. The gamma function is denoted by p and is defined by the

integral

p 1
0

e x x p dx (i)


