
(b) Show that

1 F s
n

k 1

P rk
Q rk

erk t (iii)

In Section 6.2 we outlined the general procedure involved in solving initial value
problems by means of the Laplace transform. Some of the most interesting elemen-
tary applications of the transform method occur in the solution of linear differential
equations with discontinuous or impulsive forcing functions. Equations of this type
frequently arise in the analysis of the flow of current in electric circuits or the vibra-
tions of mechanical systems. In this section and the following ones we develop some
additional properties of the Laplace transform that are useful in the solution of such
problems. Unless a specific statement is made to the contrary, all functions appearing
below will be assumed to be piecewise continuous and of exponential order, so that
their Laplace transforms exist, at least for s sufficiently large.
To deal effectively with functions having jump discontinuities, it is very helpful to

introduce a function known as the unit step function, or Heaviside function. This
function will be denoted by uc, and is defined by

uc t 0 t c
1 t c

c 0 (1)

The graph of y uc t is shown in Figure 6.3.1. The step can also be negative. For
instance, Figure 6.3.2 shows the graph y 1 uc t .

FIGURE 6.3.1 Graph of y uc t . FIGURE 6.3.2 Graph of
y 1 uc t .

Sketch the graph of y h t , where

h t u t u2 t t 0

From the definition of uc t in Eq. (1) we have

h t
0 0 0 0 t
1 0 1 t 2
1 1 0 2 t



Thus the equation y h t has the graph shown in Figure 6.3.3. This function can be
thought of as a rectangular pulse.

FIGURE 6.3.3 Graph of y u t u2 t .

The Laplace transform of uc is easily determined:

uc t
0

e stuc t dt
c

e st dt

e cs

s
s 0 (2)

For a given function f , defined for t 0, we will often want to consider the related
function g defined by

y g t 0 t c
f t c t c

which represents a translation of f a distance c in the positive t direction; see Figure
6.3.4. In terms of the unit step function we can write g t in the convenient form

g t uc t f t c

The unit step function is particularly important in transform use because of the fol-
lowing relation between the transform of f t and that of its translation uc t f t c

FIGURE 6.3.4 A translation of the given function. (a) y f t ; (b) y uc t f t c .

If F s f t exists for s a 0, and if c is a positive constant, then

uc t f t c e cs f t e cs F s s a (3)



Conversely, if f t 1 F s , then

uc t f t c 1 e cs F s (4)

Theorem 6.3.1 simply states that the translation of f t a distance c in the positive t
direction corresponds to the multiplication of F s by e cs . To prove Theorem 6.3.1 it
is sufficient to compute the transform of uc t f t c :

uc t f t c
0

e stuc t f t c dt

c
e st f t c dt

Introducing a new integration variable t c, we have

uc t f t c
0

e c s f d e cs

0
e s f d

e cs F s

Thus Eq. (3) is established; Eq. (4) follows by taking the inverse transform of both
sides of Eq. (3).
A simple example of this theorem occurs if we take f t 1. Recalling that 1

1 s, we immediately have from Eq. (3) that uc t e cs s. This result agrees with
that of Eq. (2). Examples 2 and 3 illustrate further how Theorem 6.3.1 can be used in
the calculation of transforms and inverse transforms.

If the function f is defined by

f t sin t 0 t 4
sin t cos t 4 t 4

find f t . The graph of y f t is shown in Figure 6.3.5.
Note that f t sin t g t , where

g t 0 t 4
cos t 4 t 4

Thus

g t u 4 t cos t 4

and

f t sin t u 4 t cos t 4

sin t e s 4 cos t

Introducing the transforms of sin t and cos t , we obtain

f t
1

s2 1
e s 4 s

s2 1

1 se s 4

s2 1

You should compare this method with the calculation of f t directly from the
definition.



FIGURE 6.3.5 Graph of the function in Example 2.

Find the inverse transform of

F s
1 e 2s

s2

From the linearity of the inverse transform we have

f t 1 F s 1 1

s2
1 e 2s

s2

t u2 t t 2

The function f may also be written as

f t t 0 t 2
2 t 2

The following theorem contains another very useful property of Laplace transforms
that is somewhat analogous to that given in Theorem 6.3.1.

If F s f t exists for s a 0, and if c is a constant, then

ect f t F s c s a c (5)

Conversely, if f t 1 F s , then

ect f t 1 F s c (6)

According to Theorem 6.3.2, multiplication of f t by ect results in a translation of
the transform F s a distance c in the positive s direction, and conversely. The proof
of this theorem requires merely the evaluation of ect f t . Thus

ect f t
0

e st ect f t dt
0

e s c t f t dt

F s c



which is Eq. (5). The restriction s a c follows from the observation that, according
to hypothesis (ii) of Theorem 6.1.2, f t Keat ; hence ect f t Ke a c t . Equa-
tion (6) follows by taking the inverse transform of Eq. (5), and the proof is complete.
The principal application of Theorem 6.3.2 is in the evaluation of certain inverse

transforms, as illustrated by Example 4.

Find the inverse transform of

G s
1

s2 4s 5

By completing the square in the denominator we can write

G s
1

s 2 2 1
F s 2

where F s s2 1 1. Since 1 F s sin t , it follows from Theorem 6.3.2
that

g t 1 G s e2t sin t

The results of this section are often useful in solving differential equations, partic-
ularly those having discontinuous forcing functions. The next section is devoted to
examples illustrating this fact.

In each of Problems 1 through 6 sketch the graph of the given function on the interval t 0.

1. u1 t 2u3 t 6u4 t 2. t 3 u2 t t 2 u3 t
3. f t u t where f t t2 4. f t 3 u3 t where f t sin t
5. f t 1 u2 t where f t 2t
6. f t t 1 u1 t 2 t 2 u2 t t 3 u3 t

In each of Problems 7 through 12 find the Laplace transform of the given function.

7. f t 0 t 2
t 2 2 t 2

8. f t 0 t 1
t2 2t 2 t 1

9. f t
0 t
t t 2
0 t 2

10. f t u1 t 2u3 t 6u4 t

11. f t t 3 u2 t t 2 u3 t 12. f t t u1 t t 1 t 0

In each of Problems 13 through 18 find the inverse Laplace transform of the given function.

13. F s
3!

s 2 4 14. F s
e 2s

s2 s 2

15. F s
2 s 1 e 2s

s2 2s 2
16. F s

2e 2s

s2 4

17. F s
s 2 e s

s2 4s 3
18. F s

e s e 2s e 3s e 4s

s


