Chapter 6. The Laplace Transform
(b) Show that

$$
\mathcal{L}^{-1}{F(s)} = \sum_{k=1}^{n} \frac{P(r_k)}{Q'(r_k)} e^{r_k t}.
$$
 (iii)

Chapter 6. The Laplace Transform

(b) Show that
 $\mathcal{L}^{-1}{F(s)} = \sum_{k=1}^{n} \frac{P(r_k)}{Q'(r_k)} e^{r_kt}$. (iii)
 In Section 6.2 we outlined the general procedure involved in solving initial value

In Section 6.2 we outlined the **Chapter 6. The Laplace Transform**

(b) Show that
 $\mathcal{L}^{-1}{F(s)} = \sum_{k=1}^{n} \frac{P(r_k)}{Q(r_k)} e^{r_k t}$. (iii)
 Complementary of the most interesting elemen-
 In Section 6.2 we outlined the general procedure involved in solvin **Chapter 6. The Laplace Transform**

(b) Show that
 $\mathcal{L}^{-1}{F(s)} = \sum_{k=1}^{n} \frac{P(r_k)}{Q(r_k)} e^{r_kt}$. (iii)
 CHOIDS

In Section 6.2 we outlined the general procedure involved in solving initial value

problems by means of the **Chapter 6. The Laplace Transform**

(b) Show that
 $\mathcal{L}^{-1}{F(s)} = \sum_{k=1}^{n} \frac{P(r_k)}{Q'(r_k)} e^{r_kt}$. (iii)
 CCIOIIS

In Section 6.2 we outlined the general procedure involved in solving initial value

problems by means of t **Chapter 6. The Laplace Transform**

(b) Show that
 $\mathcal{L}^{-1}{F(s)} = \sum_{k=1}^{n} \frac{P(r_k)}{Q'(r_k)} e^{r_k t}$. (iii)
 ICIOIIS

In Section 6.2 we outlined the general procedure involved in solving initial value

In Section 6.2 we outl **Chapter 6. The Laplace Transform**

(b) Show that
 $\mathcal{L}^{-1}{F(s)} = \sum_{k=1}^{n} \frac{P(r_k)}{Q'(r_k)} e^{r_kt}$. (iii)
 ICIOIIS

In Section 6.2 we outlined the general procedure involved in solving initial value

problems by means of t **Chapter 6. The Laplace Transform**

(b) Show that
 $\mathcal{L}^{-1}[F(s)] = \sum_{h=1}^{n} \frac{P(y_k)}{Q(y_k)} e^{s_k t}$. (iii)
 CHOIDIS

In Section 6.2 we outlined the general procedure involved in solving initial value

In Section 6.2 we outli **Chapter 6. The Laplace Transform**

(b) Show that
 $\mathcal{L}^{-1}{F(s)} = \sum_{k=1}^{n} \frac{P(r_k)}{Q^t(r_k)} e^{r_kt}$. (iii)
 ICOSEC 1998

In Section 6.2 we outlined the general procedure involved in solving initial value

problems by means **Chapter 6. The Laplace Transform**

(b) Show that
 $\mathcal{L}^{-1}[F(s)] = \sum_{k=1}^{n} \frac{P(y_k)}{Q'(y_k)} e^{y_kt}$. (iii)
 ICIOIDS

ID Section 6.2 we outlined the general procedure involved in solving initial value

In Section 6.2 we outl **Chapter 6. The Laplace Transform**

(b) Show that
 $\mathcal{L}^{-1}{F(s)} = \sum_{k=1}^{n} \frac{P(r_k)}{Q'(r_k)} e^{r_k t}$. (iii)
 ICtiONS

In Section 6.2 we outlined the general procedure involved in solving initial value

are problems by means **Chapter 6. The Laplace Frantsform**

(b) Show that
 $\mathcal{L}^{-1}{F(s)} = \sum_{k=1}^{n} \frac{P(r_k)}{Q(r_k)} e^{r_k t}$. (iii)
 iii)
 iiii)
 Section 6.2 we outlined the general procedure involved in solving initial value

bolens by means o (b) Show that
 $\mathcal{L}^{-1}{F(s)} = \sum_{k=1}^{n} \frac{P(r_k)}{Q'(r_k)} e^{r_kt}$. (iii)
 introduce a function 6.2 we outlined the general procedure involved in solving initial value

In Section 6.2 we outlined the general procedure involved (b) Show that
 $L^{-1}{F(s)} = \sum_{k=1}^{n} \frac{P(r_k)}{Q'(r_k)} e^{r_kt}$. (iii)
 CEIOIDS

In Section 6.2 we outlined the general procedure involved in solving initial value

problems by means of the Laplace transform. Some of the most in $\mathcal{L}^{-1}{F(s)} = \sum_{k=1}^{n} \frac{P(r_k)}{Q'(r_k)} e^{r_k t}.$ (iii)

the general procedure involved in solving initial value

place transform. Some of the most interesting elemen-

for impulsive forcing functions. Equations of this type
 In Section 6.2 we outlined the general procedure involved in solving initial value
In Section 6.2 we outlined the general procedure involved in solving initial value
equations by means of the Laplace transform method oc tilined the general procedure involved in solving initial value
the Laplace transform. Some of the most interesting elementarisms or impulsive foreing functions. Equations of this type
tuniusuos or impulsive forcing funct **ICO IONS**
In Section 6.2 we outlined the general procedure involved in solving initial value
problems by means of the Laplace transform. Some of the most interesting elemen-
transported for the transform method occur in additional properties of the Laplace transform that are useful in the solution of such
problems. Unless a specific statement is made to the contrary, all three
tios appearing below will be assumed to be piecewise continuo

$$
u_c(t) = \begin{cases} 0, & t < c, \\ 1, & t \ge c, \end{cases} \qquad c \ge 0.
$$
 (1)

 $y = 1 - u_c(t)$.

EXAMPLE $\mathbf{1}$

$$
h(t) = u_{\pi}(t) - u_{2\pi}(t), \qquad t \ge 0.
$$

$$
h(t) = \begin{cases} 0 - 0 = 0, & 0 \le t < \pi, \\ 1 - 0 = 1, & \pi \le t < 2\pi, \\ 1 - 1 = 0, & 2\pi \le t < \infty. \end{cases}
$$

Thus the equation $y = h(t)$ has the graph shown in Figure 6.3.3. This function can be thought of as a rectangular pulse.

$$
\mathcal{L}\{u_c(t)\} = \int_0^\infty e^{-st} u_c(t) dt = \int_c^\infty e^{-st} dt
$$

= $\frac{e^{-cs}}{s}$, $s > 0$. (2)

$$
y = g(t) = \begin{cases} 0, & t < c, \\ f(t - c), & t \ge c, \end{cases}
$$

$$
g(t) = u_c(t) f(t - c).
$$

lowing relation between the transform of $f(t)$ and that of its translation $u_c(t) f(t - c)$.

FIGURE 6.3.4 A translation of the given function. (a) $y = f(t)$; (b) $y = u_c(t) f(t - c)$.

$$
u_c(t)f(t-c) = \mathcal{L}^{-1}\{e^{-cs}F(s)\}.
$$
 (4)

Chapter 6. The Laplace Transform

Conversely, if $f(t) = \mathcal{L}^{-1}{F(s)}$, then
 $u_c(t)f(t-c) = \mathcal{L}^{-1}{e^{-cs}F(s)}$. (4)

Theorem 6.3.1 simply states that the translation of $f(t)$ a distance c in the positive t

direction corresponds **Chapter 6. The Laplace Transform**

Inversely, if $f(t) = \mathcal{L}^{-1}{F(s)}$, then
 $u_c(t) f(t - c) = \mathcal{L}^{-1}{e^{-cs} F(s)}$. (4)

Theorem 6.3.1 simply states that the translation of $f(t)$ a distance c in the positive t

rection corresponds **Chapter 6. The Laplace Transform**

Conversely, if $f(t) = \mathcal{L}^{-1}{F(s)}$, then
 $u_c(t) f(t - c) = \mathcal{L}^{-1}{e^{-cs} F(s)}$. (4)

Theorem 6.3.1 simply states that the translation of $f(t)$ a distance c in the positive t

direction correspon (a) $\{e\}$ and $\{f\}$ and $\{f\}$ and $\{f\}$ and $\{f\}$ as a distance c in the positive t or $\{e^{cs}$. To prove Theorem 6.3.1 it $(t - c) dt$

(b) dt . **Chapter 6. The Laplace Transform**

Conversely, if $f(t) = \mathcal{L}^{-1}{F(s)}$, then
 $u_c(t) f(t - c) = \mathcal{L}^{-1}{e^{-cs} F(s)}$. (4)

Theorem 6.3.1 simply states that the translation of $f(t)$ a distance c in the positive t

direction correspon direction corresponds to the multiplication of $F(s)$ by e^{-cs} . To prove Theorem 6.3.1 it is sufficient to compute the transform of $u_c(t) f(t - c)$: **Chapter 6. The Laplace Transform**

Conversely, if $f(t) = \mathcal{L}^{-1}{F(s)}$, then
 $u_c(t) f(t - c) = \mathcal{L}^{-1}{e^{-cs} F(s)}$. (4)

Theorem 6.3.1 simply states that the translation of $f(t)$ a distance c in the positive t

direction correspon

$$
\mathcal{L}\lbrace u_c(t)f(t-c)\rbrace = \int_0^\infty e^{-st}u_c(t)f(t-c) dt
$$

$$
= \int_c^\infty e^{-st}f(t-c) dt.
$$

$$
\mathcal{L}{u_c(t)f(t-c)} = \int_0^\infty e^{-(\xi+c)s} f(\xi) d\xi = e^{-cs} \int_0^\infty e^{-s\xi} f(\xi) d\xi
$$

= $e^{-cs} F(s)$.

Chapter 6. The Laplace Transform

Conversely, if $f(t) = \mathcal{L}^{-1}{F(s)}$, then
 $u_c(t) f(t - c) = \mathcal{L}^{-1}{e^{-cx}F(s)}$. (4)

Theorem 6.3.1 simply states that the translation of $f(t)$ a distance c in the positive t

direction correspon **Chapter 6. The Laplace Transform**

Conversely, if $f(t) = \mathcal{L}^{-1}{F(s)}$, then
 $u_c(t) f(t - c) = \mathcal{L}^{-1}{e^{-cs} F(s)}$. (4)

Theorem 6.3.1 simply states that the translation of $f(t)$ a distance c in the positive t

direction corre one
 $u_c(t) f(t) = \mathcal{L}^{-1}{F(s)}$, then
 $u_c(t) f(t - c) = \mathcal{L}^{-1}{e^{-cs}F(s)}$. (4)

Theorem 6.3.1 simply states that the translation of $f(t)$ a distance c in the positive t

rection corresponds to the multiplication of $F(s)$ by e^{- Conversely, if $f(t) = \mathcal{L}^{-1}{F(s)}$, then
 $u_x(t) f(t - c) = \mathcal{L}^{-1}{e^{-\alpha}F(s)}$. (4)

Theorem 6.3.1 simply states that the translation of $f(t)$ a distance c in the positive idenction corresponds to the multiplication of $F(s)$ by $1/s$, we immediately have from Eq. (3) that $\mathcal{L}{u_c(t)} = e^{-cs}/s$. This result agrees with (4)

a distance c in the positive t

ⁱ. To prove Theorem 6.3.1 it
 $-c$) dt

dt.

s
 $\int_0^\infty e^{-s\xi} f(\xi) d\xi$

e inverse transform of both

= 1. Recalling that $\mathcal{L}{1}$ = $\int_0^{cs} f(s) ds$

= 1. Recalling that $\mathcal{L}{1}$ Conversely, if $f(t) = L^{-1}(t^c(s))$, then
 $u_c(t) f(t - c) = L^{-1}\{e^{-cs} F(s)\}$. (4)

Theorem 6.3.1 simply states that the translation of $f(t)$ a distance c in the positive t

direction corresponds to the multiplication of $F(s)$ by e^{-sx} $u_c(t) f(t - c) = \mathcal{L}^{-1} \{e^{-ct} F(s)\}.$ (4)

Theorem 6.3.1 simply states that the translation of $f(t)$ a distance c in the positive t

direction corresponds to the multiplication of $F(s)$ by e^{-st} . To prove Theorem 6.3.1 it

is Theorem 6.3.1 simply states that the translation of $f(t)$ a distance c in the positive t
direction corresponds to the multiplication of $F(s)$ by e^{-sT} . To prove Theorem 6.3.1 it
is sufficient to compute the transform of $\mathcal{L}\{u_c(t)f(t-c)\} = \int_0^\infty e^{-st}u_c(t)f(t-c) dt$
 $= \int_c^\infty e^{-st}f(t-c) dt$.

Introducing a new integration variable $\xi = t - c$, we have
 $\mathcal{L}\{u_c(t)f(t-c)\} = \int_0^\infty e^{-(\xi + s)ts}f(\xi) d\xi = e^{-\epsilon s} \int_0^\infty e^{-s\xi}f(\xi) d\xi$

Thus Eq. (3) is established; Eq. Lotte that f is the contribution with $\epsilon = t - \epsilon$, we have $\epsilon = t - \epsilon$, we have $\mathcal{L}\{u_c(t)/f(t-c)\} = \int_0^\infty e^{-rt} f(t-c) dt$.

So the contribution with $\epsilon = t - c$, we have $\mathcal{L}\{u_c(t)/f(t-c)\} = \int_0^\infty e^{-(t+c)x} f(t) dt = e^{-cs} \int_0^\infty e^{-tx} f(t) dt$, we ha A supper example of unstancent occurs in we have $y(t) = t$. Recenting tank $t_1 t_1 = t_2 e^{-\gamma t}$.

S, we immediately have from Eq. (3) that $\mathcal{L}(u_q(t)) = e^{-\gamma t}$ S. This result agrees with

at of Eq. (2). Examples 2 and 3 illust

$$
f(t) = \begin{cases} \sin t, & 0 \le t < \pi/4, \\ \sin t + \cos(t - \pi/4), & t \ge \pi/4, \end{cases}
$$

$$
g(t) = \begin{cases} 0, & t < \pi/4, \\ \cos(t - \pi/4), & t \ge \pi/4. \end{cases}
$$

Thus

EXAMPLE $\overline{2}$

$$
g(t) = u_{\pi/4}(t) \cos(t - \pi/4),
$$

and

$$
\mathcal{L}{f(t)} = \mathcal{L}{\sin t} + \mathcal{L}{u_{\pi/4}(t)\cos(t - \pi/4)}
$$

=
$$
\mathcal{L}{\sin t} + e^{-\pi s/4} \mathcal{L}{\cos t}.
$$

$$
\mathcal{L}{f(t)} = \frac{1}{s^2 + 1} + e^{-\pi s/4} \frac{s}{s^2 + 1} = \frac{1 + s e^{-\pi s/4}}{s^2 + 1}.
$$

If the function f is defined by
 $f(t) = \begin{cases} \sin t, & 0 \le t < \pi/4, \\ \sin t + \cos(t - \pi/4), & t \ge \pi/4, \end{cases}$

find $\mathcal{L}{f(t)}$. The graph of $y = f(t)$ is shown in Figure 6.3.5.

Note that $f(t) = \sin t + g(t)$, where
 $g(t) = \begin{cases} 0, & t < \pi/4, \\ \cos(t - \pi/4), & t$ definition.

$$
F(s) = \frac{1 - e^{-2s}}{s^2}.
$$

0.5
$$
\frac{\pi}{4}
$$
 1 1.5 2 2.5 3.6
\nFIGURE 6.3.5 Graph of the function in Example 2.
\nFind the inverse transform of
\n
$$
F(s) = \frac{1 - e^{-2s}}{s^2}.
$$
\nFrom the linearity of the inverse transform we have
\n
$$
f(t) = \mathcal{L}^{-1}{F(s)} = \mathcal{L}^{-1}\left\{\frac{1}{s^2}\right\} - \mathcal{L}^{-1}\left\{\frac{e^{-2s}}{s^2}\right\}
$$
\n
$$
= t - u_2(t)(t - 2).
$$
\nThe function f may also be written as
\n
$$
f(t) = \begin{cases} t, & 0 \le t < 2, \\ 2, & t \ge 2. \end{cases}
$$
\nThe following theorem contains another very useful property of Laplace transforms that is somewhat analogous to that given in Theorem 6.3.1.
\nIf $F(s) = \mathcal{L}{f(t)}$ exists for $s > a \ge 0$, and if c is a constant, then
\n
$$
\mathcal{L}{e^{ct} f(t)} = F(s - c), \qquad s > a + c.
$$
\n(5)
\nConversely, if $f(t) = \mathcal{L}^{-1}{F(s)}$, then
\n
$$
e^{ct} f(t) = \mathcal{L}^{-1}{F(s - c)}.
$$
\n(6)
\nAccording to Theorem 6.3.2, multiplication of $f(t)$ by e^{ct} results in a translation of
\nthe transform $F(s)$ a distance c in the positive s direction, and conversely. The proof

$$
f(t) = \begin{cases} t, & 0 \le t < 2, \\ 2, & t \ge 2. \end{cases}
$$

Theorem 6.3.2

$$
[e^{ct} f(t)] = F(s - c), \qquad s > a + c. \tag{5}
$$

$$
e^{ct} f(t) = \mathcal{L}^{-1} \{ F(s - c) \}.
$$
 (6)

 $f(t) = \mathcal{L}^{-1}{F(s)} = \mathcal{L}^{-1}\left\{\frac{1}{s^2}\right\} - \mathcal{L}^{-1}\left\{\frac{e^{-2s}}{s^2}\right\}$

= $t - u_2(t)(t - 2)$.

Le function f may also be written as
 $f(t) = \begin{cases} t_2, & 0 \le t < 2, \\ 2, & t \ge 2. \end{cases}$

The following theorem contains another very usefu $\left\{\frac{e^{-2s}}{s^2}\right\}$

entry of Laplace transforms

ant, then
 $+c$. (5)

(6)
 c^t results in a translation of

and conversely. The proof

1). Thus
 $(s-c)^t f(t) dt$ $f(t) = \mathcal{L}^{-1}{F(s)} = \mathcal{L}^{-1}\left\{\frac{1}{s^2}\right\} - \mathcal{L}^{-1}\left\{\frac{e^{-2s}}{s^2}\right\}$
 $= t - u_2(t)(t-2).$

The function *f* may also be written as
 $f(t) = \begin{cases} t, & 0 \le t < 2, \\ 2, & t \ge 2. \end{cases}$

The following theorem contains another very useful $f(t) = L^{-}(t^r \omega) = L^{-1} \left[\frac{s^2}{s^2}\right]^{-1/2}$
 $= t - u_2(t)(t - 2).$

The function f may also be written as
 $f(t) = \begin{cases} t, & 0 \le t < 2, \\ 2, & t \ge 2. \end{cases}$

The following theorem contains another very useful property of Laplace transforms
 ct ^f ^t . Thus

$$
\mathcal{L}\lbrace e^{ct} f(t)\rbrace = \int_0^\infty e^{-st} e^{ct} f(t) dt = \int_0^\infty e^{-(s-c)t} f(t) dt
$$

= $F(s - c)$,

Chapter 6. The Laplace Transform
which is Eq. (5). The restriction $s > a + c$ follows from the observation that, according
to hypothesis (ii) of Theorem 6.1.2, $|f'(t)| \leq Ke^{at}$; hence $|e^{at} f'(t)| \leq Ke^{(a-c)t}$. Equa-
tion (6) fo **Chapter 6. The Laplace Transform**

which is Eq. (5). The restriction $s > a + c$ follows from the observation that, according

to hypothesis (ii) of Theorem 6.1.2, $[f(t)] \leq Ke^{at}$; hence $|e^{at}(f(t))| \leq Ke^{at+kt}$. Equa-

tion (6) fo **Example 3.1**
 Constant Contract Constant Constan nsform
cording
. Equa-
nplete.
inverse **Chapter 6. The Laplace Transform**
which is Eq. (5). The restriction $s > a + c$ follows from the observation that, according
to hypothesis (ii) of Theorem 6.1.2, $|f(t)| \leq Ke^{at}$; hence $|e^{ct} f(t)| \leq Ke^{ta+5t}$. Equa-
tion (6) foll **Chapter 6. The Laplace Transform**

inch is Eq. (S). The restriction $s > a + c$ follows from the observation that, according

hypothesis (ii) of Theorem 6.1.2, $|f(t)| \le Ke^{a(t)}$; thence $|e^{af}(t)| \le Ke^{a(t+ct)}$. Equa-

The principal a **Chapter 6. The Laplace Transform**
which is Eq. (5). The restriction $s > a + c$ follows from the observation that, according
to hypothesis (ii) of Theorem 6.1.2, $|f(t)| \leq Ke^{a\theta}$; hence $|e^{af} f(t)| \leq Ke^{a\theta + \theta f}$. Equa-
tion (6) **Chapter 6. The Laplace Transform**

which is Eq. (5). The restriction $s > a + c$ follows from the observation that, according

to hypothesis (ii) of Theorem 6.1.2, $|f(x)| \le K e^{at'}$; hence $|e^{ct'}|$, $f(t)| \le K e^{(a+c)}$. Equation (6) **Chapter 6. The Laplace Transform**

inch is Eq. (5). The restriction $s > a + c$ follows from the observation that, according

hypothesis (ii) of Theorem 6.1.2, $|f(u)| \le K e^{u^2 + (t)}$; hence $|e^{u^2} f(u)| \le K e^{u^2 - v^2}$. Equa-

The **Chapter 6. The Laplace Transform**

cition $s > a + c$ follows from the observation that, according

rem 6.1.2, $|f(t)| \le Ke^{at}$; hence $|e^{ct} f(t)| \le Ke^{(a+c)t}$. Equa-

the inverse transform of Eq. (5), and the proof is complete.

by nich is Eq. (5). The restriction $s > a + e$ follows from the observation that, according
hypothesis (ii) of Theorem 6.1.2, $|f(t)| \leq Ke^{at}$; hence $|e^{at} f(t)| \leq Ke^{at-cst}$. Equa-

(16) follows by taking the inverse transform of Eq. which is Eq. (5). The restriction $s > a - c$ follows from the observation that, according
to hypothesis (ii) of Theorem 6.1.2, $|f(t)| \leq Ke^{at}$; hence $|e^{at}f(t)| \leq Ke^{at+ct}$. Equa-
tion (6) follows by taking the inverse transform

EXAMPLE

$$
G(s) = \frac{1}{s^2 - 4s + 5}.
$$

$$
G(s) = \frac{1}{(s-2)^2 + 1} = F(s-2),
$$

where $F(s) = (s^2 + 1)^{-1}$. Since $\mathcal{L}^{-1}{F(s)} = \sin t$, it follows: that

$$
g(t) = \mathcal{L}^{-1}{G(s)} = e^{2t}\sin t.
$$

to hypothesis (ii) of Theorem 6.1.2. $|f(x)| \leq Ke^{i\omega t}$; thence $|e^{i\omega} f(x)| \leq Ke^{i\omega t + v^2}$, $E(e^{i\omega t + v^2})$.

tion (6) follows by taking the inverse transform of Eq. (5), and the proof is complete.

The principal application

PROBLEMS

4

In epinology application of interval to 2.2 is in the evaluation of certain inverse

Find the inverse transform of
 $G(s) = \frac{1}{s^2 - 4s + 5}$.

By completing the square in the denominator we can write
 $G(s) = \frac{1}{(s - 2)^2 + 1} =$ 1. $u_1(t) + 2u_3(t) - 6u_4(t)$ 2. $(t-3)$ $(t) - 6u_4(t)$ 2. $(t - 3)u_2(t) - (t - 2)u_3(t)$ (t) 3. $f(t - \pi)u_{\pi}(t)$, where $f(t) = t^2$ 4. $f(t-3)u_3(t)$, where $f(t) = \sin t$ 5. $f(t-1)u_2(t)$, where $f(t) = 2t$

6. $f(t) = (t - 1)u_1(t) - 2(t - 2)u_2(t) + (t - 3)u_3(t)$ (t)

By completing the square in the denominator we can write
\n
$$
G(s) = \frac{1}{(s-2)^2 + 1} = F(s-2),
$$
\nwhere $F(s) = (s^2 + 1)^{-1}$. Since $\mathcal{L}^{-1}{F(s)} = \sin t$, it follows from Theorem 6.3.2 that\n
$$
g(t) = \mathcal{L}^{-1}{G(s)} = e^{2t} \sin t.
$$
\nThe results of this section are often useful in solving differential equations, particularly those having discontinuous forcing functions. The next section is devoted to examples illustrating this fact.\nIn each of Problems 1 through 6 sketch the graph of the given function on the interval $t \ge 0$.
\n1. $u_1(t) + 2u_3(t) - 6u_4(t)$
\n2. $(t-3)u_2(t) - (t-2)u_3(t)$
\n3. $f(t - \pi)u_{\pi}(t)$, where $f(t) = t^2$
\n4. $f(t-3)u_3(t)$, where $f(t) = \sin t$
\n5. $f(t) = (u-1)u_1(t) - 2(t-2)u_2(t) + (t-3)u_3(t)$
\nIn each of Problems 7 through 12 find the Laplace transform of the given function.
\n7. $f(t) = \begin{cases} 0, & t < \pi \\ (t-2)^2, & t \ge 2 \end{cases}$
\n8. $f(t) = \begin{cases} t & t < 1 \\ t^2 - 2t + 2, & t \ge 1 \end{cases}$
\n9. $f(t) = \begin{cases} 0, & t < \pi \\ t - \pi, & \pi \le t < 2\pi \\ (t-3)u_2(t) - (t-2)u_3(t) & 12. \end{cases}$
\n10. $f(t) = u_1(t) + 2u_3(t) - 6u_4(t)$
\n11. $f(t) = (t-3)u_2(t) - (t-2)u_3(t)$
\n12. $f(t) = t - u_1(t)(t-1), \quad t \ge 0$
\nIn each of Problems 1 through 18 find the inverse Laplace transform of the given function.
\n13. $F(s) = \frac{3!}{(s-2)^4}$
\n14. $F(s) = \frac{e^{-2s}}{s^2 + s - 2}$
\n15. $F(s) = \frac{$

13.
$$
F(s) = \frac{3!}{(s-2)^4}
$$

\n14. $F(s) = \frac{e^{-2s}}{s^2 + s - 2}$
\n15. $F(s) = \frac{2(s-1)e^{-2s}}{s^2 - 2s + 2}$
\n16. $F(s) = \frac{2e^{-2s}}{s^2 - 4}$
\n17. $F(s) = \frac{(s-2)e^{-s}}{s^2 - 4s + 3}$
\n18. $F(s) = \frac{e^{-s} + e^{-2s} - e^{-3s} - e^{-4s}}{s}$