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TRIGONOMETRIC
FOURIER SERIES

I. Periodic Functions

A function f(x) is called periodic if there exists a constant T > 0 for which

Six + 1) = f(x), Ln

for any x in the domain of definition of f(x). (It is understood that both x
and x + T lie in this domain.) Such a constant T is called a period of the
function f(x). The most familiar periodic functions are sin x, cos x, tan x,
etc. Periodic functions arise in many applications of mathematics to
problems of physics and engineering. It is clear that the sum, difference,
product, or quotient of two functions of period T is again a function of
period T.

If we plot a periodic function y = f(x) on any closed interval ¢ < x <
a + T,-we can obtain the entire graph of f(x) by periodic repetition of the
portion of the graph corresponding to a < x < a + T (see Fig. 1).

If T is a period of the function f(x), then the numbers 27T, 3T, 4T, ...
are also periods. This follows immediately by inspecting the graph of a
periodic function or from the series of equalities!

fO=fx+TD=f(x+2T) =f(x +3T) = ---

1 We suggest that the reader prove the validity not only of these equalities but also of
the following equalities: g
f)=fx-T)=f(x-2T)=f(x - 3T)=-..
|
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which are obtained by repeated use of the condition (1.1). Thus, if T'is a
period, so is kT, where k is any positive integer, i.e., if a period exists, it is
not unique.
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FIGURE 1
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Next, we note the following property of any function f(x) of period T

Iff(x) is integrable on any interval of length T, then it is integrable on any
other interval of the same length, and the value of the integral is the same,
ie.,

i@ dx = [ 169 a, a2
Jfor any a and b.

This property is an immediate consequence of the interpretation of an
integral as an area. In fact, each integral (1.2) equals the area included
between the curve y = f(x), the x-axis and the ordinates drawn at the end
points of the interval, where areas lying above the x-axis are regarded as
positive and areas lying below the x-axis are regarded as negative. In the
present case, the areas represented by the two integrals are the same, because
of the periodicity of f(x) (see Fig. 2).

FIGURE 2

Hereafter, when we say that a function f(x) of period T is integrable, we
shall mean that it is integrable on an interval of length T. It follows from
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the property just proved that f(x) is also integrable on any interval of finite
length.

2. Harmonics

The simplest periodic function, and the one of greatest importance for the
applications, is

y = Asin (ox + @),
where A4, o, and ¢ are constants. This function is called a harmonic of

amplitude | A|, (angular) frequency v, and initial phase ¢. The period of such
a harmonic is T = 2x/w, since for any x

A sin [w(x+%ﬂ) +cp] = A sin [(wx + ¢) + 2x] = 4 sin (ox + @).

The terms “amplitude,” “frequency,” and “initial phase* stem from the
following mechanijcal problem involving the simplest kind of oscillatory
motion, i.e., simple harmonic motion: Suppose that a point mass M, of mass
m, moves along a straight line under the action of a restoring force F which is
proportional to the distance of M from a fixed origin O and which is directed
towards O (see Fig. 3). Regarding s as positive if M lies to the right of O and

0 F M -
— s —

FIGURE 3

negative if M lies to the left of O, i.e., assigning the usual positive direction to
the line, we find that F = —ks, where k > 0 is a constant of proportionality.
Therefore

d2s

md—'z=—ks
or

d2s 2¢

ﬁ+ms—0,

where we have written w2 = k/m, so that & = Vk/m.

It is easily verified that the solution of this differential equation is the
function s = A sin (wt + ¢), where A and ¢ are constants, which can be
calculated from a knowledge of the position and velocity of the point M at
the initial time ¢ = 0. This function s is a harmonic, and in fact is a periodic
function of time with period T = 2n/w. Thus, under the action of the
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restoring force F, the point M undergoes oscillatory motion. The amplitude
| 4] is the maximum deviation of the point M from O, and the quantity 1/T
is the number of oscillations in an interval containing 2n units of time
(e.g., seconds). This explains the term “frequency”. The quantity ¢ is the
initial phase and characterizes the initial position of the point, since for
t = 0 we have sy = sin .

We now examine the appearance of the curve y = A4 sin (wx + ¢). We
assume that o > 0, since otherwise sin (— wx + ¢) is merely replaced by
—sin (ox — ¢). The simplest case is obtained when 4 = 1,0 = 1, ¢ = 0;
this gives the familiar sine curve y = sin x [sece Fig. 4a)]. For 4 =1,
® = 1, ¢ = ©/2, we obtain the cosine curve y = cos x, whose graph is the
same as that of y = sin x shifted to the left by an amount /2.

0 27 *
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FIGURE 4

Next, consider the harmonic y = sinwx, and set wx = z, thereby
obtaining y = sin x, an ordinary sine curve. Thus, the graph of y = sin wx
is obtained by deforming the graph of a sine curve: This deformation
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reduces to a uniform compression along the x-axis by a factor @ if o > 1,
and to a uniform expansion along the x-axis by a factor 1/w if ® < 1. Figure
4(b) shows the harmonic y = sin 3x, of period T = 2x/3.

Now, consider the harmonic y = sin (ox + ¢), and set wx + ¢ = wz, so
that x = z — @/w. We already know the graph of sin wz. Therefore, the
graph of y = sin (wx + ¢) is obtained by shifting the graph of y = sin wx
along the x-axis by the amount —¢/w. Figure 4(c) represents the harmonic

y =sin (3x + g)

with period 2x/3 and initial phase 7/3.

Finally, the graph of the harmonic y = 4 sin (wx + ¢) is obtained from
that of the harmonic y = sin (wx + ¢) by multiplying all ordinates by the
number 4. Figure 4(d) shows the harmonic

y = 2sin (3x +3)
These results may be summarized as follows:

The graph of the harmonic y = A sin (wx + @) is obtained from the graph
of the familiar sine curve by uniform compression (or expansion) along
the coordinate axes plus a shift along the x-axis.

Using a well-known formula from trigonometry, we write
A sin (wx + ¢) = A(cos wx sin ¢ + sin wx cos @).
Then, setting
a=Asing, b= Acose, @1
we convince ourselves that every harmonic can be represented in the form
acos wx + b sin wx. 2.2)

Conversely, every function of the form (2.2) is a harmonic. To prove this,
it is sufficient to solve (2.1) for 4 and B. The result is

T35 o a a b
A=V 102 Slnq)=z=\/a2—+b2’ OOS¢=2=——,0—2+—I,2.’

from which ¢ is easily found.
From now on, we shall write harmonics in the form (2.2). For example,
for the harmonic shown in Fig. 4(d), this form is

23in(3x+g) = V3 cos 3x + sin 3x
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It will also be convenient to explicitly introduce the period T in (2.2).
If we set T = 2I, then, since T = 2r/w, we have
2
T

W =

~ld

and therefore, the harmonic with period T = 2/ can be written as

acosn-li‘ +b smn—;‘- 2.3)

3. Trigonometric Polynomials and Series

Given the period T = 2/, consider the harmonics

. Tkx
T

with frequencies w;, = wk/! and periods T}, = 2x/w; = 2I/k. Since
T=2 = ka,

the number T = 2/ is simultaneously a period of all the harmonics (3.1), for
an integral multiple of a period is again a period (see Sec. 1). Therefore,
every sum of the form

a;, cos === " + by sin *k=12..) G.1)

si(x)=A + Z (ak cos ’; + by sin 1&11:)

where A is a constant, is a function of period 2/, since it is a sum of functions
of period 2/. (The addition of a constant obviously does not destroy
periodicity; in fact, a constant can be regarded as a function for which any
number is a period.) The function s,(x) is called a trigonometric polynomial
of order n (and period 2/).

Even though it is a sum of various harmonics, a trigonometric poly-
nomial in general represents a function of a much more complicated nature
than a simple harmonic. By suitably choosing the constants A, ay, b,
az by, ... we can form functions y = s,(x) with graphs quite unlike the
smooth and symmetric graph of a simple harmonic. For example, Fig. 5
shows the trigonometric polynomial

y = sinx + }sin 2x + }sin 3x.
The infinite trigonometric series

A+ Z(akcos%x + b,‘smil;i‘)
k=1
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(if it converges) also represents a function of period 2/. The nature of func-
tions which are sums of such infinite trigonometric series is even more
diverse. Thus, the following question arises naturally: Can any given

FIGURE 5

function of period T = 2/ be represented as the sum of a trigonometric
series? We shall see later that such a representation is in fact possible for a
very wide class of functions.

For the time being, suppose that f(x) belongs to this class. This means
that f(x) can be expanded as a sum of harmonics, i.e., as a sum of functions
with a very simple structure. The graph of the function y = f(x) is obtained
as a “superposition” of the graphs of these harmonics. Thus, to give a
mechanical interpretation, we can represent a complicated oscillatory motion
f(x) as a sum of individual oscillations which are particularly simple. How-
ever, one must not imagine that trigonometric series are applicable only to
oscillation phenomena. This is far from being the case. In fact, the
concept of a trigonometric series is also very useful in studying many
phenomena of a quite different nature.

If

L
=4+ Z (a,, cos'-zl-;i‘ + by sin 1ilx)’ 3.2

k=1

then, setting ntx/l = ¢ or x = tl/w, we find that
tl < .
o) = f(;) = A+ > @ coskt + bysin ki), (.3)
k=1

where the harmonics in this series all have period 2x. This means that if a
function f(x) of period 2/ has the expansion (3.2), then the function @(¢) =
f(tlx) is of period 2x and has the expansion (3.3). Obviously, the converse
is also true, i.e., if a function @(#) of period 2r has the expansion (3.3), then
the function f(x) = @(nx/l) is of period 2/ and has the expansion (3.2).
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Thus, it is enough to know how to solve the problem of expansion in trigono-
metric series for functions of the “standard™ period 2x. Moreover, in this
case, the series has a simpler appearance. Therefore, we shall develop the
theory for series of the form (3.3), and only the final results will be converted
to the “language” of the general series (3.2).

4. A More Precise Terminology. Integrability. Series of Functions

We now introduce a more precise terminology and recall some facts from
differential and integral calculus. When we say that f(x) is integrable on the
interval [a, b], we mean that the integral

[/ 70 ax @D

(which may be improper) exists in the elementary sense. Thus, our inte-
grable functions f(x) will always be either continuous or have a finite number
of points of discontinuity in the interval [a, b], at which the function can be
either bounded or unbounded. i

In courses on integral calculus, it is proved that if a function has a finite
number of discontinuities, then if the integral

[ 17

exists, so does the integral (4.1). (The converse is not always true.) In
this case, the function f(x) is said to be absolutely integrable. If f(x) is
absolutely integrable and ¢(x) is a bounded integrable function, then the
product f(x)p(x) is absolutely integrable. The following rule for integration
by parts holds:

Let f(x) and ¢(x) be continuous on [a, b], but perhaps non-differentiable at
a finite number of points. Then, if f(x) and ¢'(x) are absolutely inte-
grable,2 we have

x=b b
[row@ s = [feew] " - [rwemar. @2

Another familiar result is the fact that if the functions f(x), /2(%), . . ., £:(X)
are integrable on [a, b}, then their sum is also integrable, and

f: [éjlfk(x)] dx =§; f Si(%) dx. 4.3)

2 Instead of absolute integrability of both derivatives, we can weaken this requirement
to absolute integrability of just one of the derivatives. However, the stronger form of the
requirement is sufficient for what follows.
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We now consider an infinite series of functions

[0 + 10+ + /i) +---=kilfk(x). @4)

Such a series is said to be convergent for a given value of x if its partial sums

Si(%) = iﬁ‘(x) n=12..)

k=1

have a finite limit

s(x) = lim s,(x).

The quantity s(x) is said to be the sum of the series, and is obviously a function
of x. If the series converges for all x in the interval [a, b], then its sum s(x)
is defined on the whole interval [a, b].

We now ask whether the formula (4.3) can be extended to the case of a
convergent series of functions which are integrable on the interval [a, ],
i.e., is the formula

f: [ ,21 ﬂ:(x)] dx = fs(x) dx = klz::n f: fil(x) dx 4.5)

valid? In other words, can the series be integrated term by term? It turns
out that (4.5) is not always valid, if for no other reason than that a series of
integrable or even continuous functions may not even have an integrable
sum. A similar problem arises in connection with the possibility of term by
term differentiation of series. We now single out an important class of
series of functions to which these operations can be applied.

The series (4.4) is said to be uniformly convergent on the interval [a, b] if
for any positive number ¢, there exists a number N such that the inequality

ls(x) — s,(x)| < e 4.6)

holds for all n > N and for all x in the interval [a, b]. Thus, if we examine
the graph of the sum of the series s(x) and of the partial sum s,(x), uniform
convergence means that for all sufficiently large.indices » and for all x, the
curve representing s(x) and the curve representing s,(x) are less than ¢ apart,
where ¢ is any preassigned number, so that the two curves are uniformly?
close (see Fig. 6).

Not every series which converges on an interval [a, b] converges uniformly
there. The following is a very useful and simple test for the uniform con-
vergence of a series of functions (Weierstrass® M-test):

3Le., for all x in [a, b].
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If the series of positive numbers
My + My+---+Mg +---

converges and if for any x in the interval [a, b] we have |fi(x)| < M)
from a certain k on, then the series (4.3) converges uniformly (and
absolutely) on [a, b).

s(x)
Spla)

FIGURE 6

The following important theorems are valid:

THEOREM 1. If the terms of the series (4.4) are continuous on [a, b)
and if the series is uniformly convergent on [a, b), then

a) The sum of the series is continuous;

b) The sum can be integrated term by term, i.e., (4.5) holds.

THEOREM 2. If the series (4.4) converges, if its terms are differentiable
and if the series

FIG) + 1509 4+ Fi0) 4+ = 3 fif2)
is uniformly convergent on [a, b), then
(i fk(x))' =5(x) = i L),
k=1 k=1

i.e., the series (4.4) can be differentiated term by term.4

5. The Basic Trigonometric System. The Orthogonality
of Sines and Cosines

By the basic trigonometric system we mean the system of functions

1, cos x, sin x, cos 2x, sin 2x, . . ., cOs nx, sin nx, ... é.1)

4 In courses on analysis, it is usually assumed also that the derivatives are continuous,
in order to simplify the proof.
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All these functions have the common period 2= (although cosnx and
sin nx also have the smaller period 2x/n). We now prove some auxiliary
formulas.

For any integer n # 0, we have

™ sin nx]*==
f cos nx dx = [ - ] =0,
-n

X= =T

5.2)

r sin nx dx = [— cos nx]*"" =0,
-7

n x= -

and

1 + cos 2nx
"' 2 = '" ST dx =
_cos?nx dx . 3 dx =,
5.3)
[ sin? nx dx = "_" 1 — cos 2nx °§s M 4 —

Using the familiar trigonometric formulas

cos a cos B = }[cos (x + B) + cos (x — B)],
sina sin B = 4fcos (« — B) — cos (x + B)]

we find that
ff cos nx cos mx dx
= ‘}r [cos (n + m)x + cos (n — m)x]dx = 0,
(54
r sin nx sin mx dx
= '}f’_‘ [cos (n — m)x — cos(n + m)x]dx =0

for any integers » and m (n # m). Finally, using the formula
sin « cos B = [sin (« + P) + sin(x — B)],
we find that

.r_l" sin nx cos mx dx
=3[ [+ mx +sin(r-mpldx=0 (59

for any n and m. The formulas (5.2), (5.4), and (5.5) show that the integral
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over the interval [— =, =] of the product of any two different functions of the
system (5.1) vanishes.

We shall agree to call two functions ¢(x) and {(x) orthogonal> on the
interval [a, 8] if

rﬂxw(x) dx =0.

With this definition, we can say that the functions of the system (5.1) are
pairwise orthogonal on the interval [—x, ], or more briefly, that the system
(5.1) is orthogonal on [, ).

As we know, the integral of a periodic function is the same over any
interval whose length equals the period (see Sec. 1). Therefore, the formulas
(5.2) through (5.5) are valid not only for the interval [—=, =] but also for any
interval [a, a + 2x], i.e., the system (5.1) is orthogonal on every such interval.

6. Fourier Series for Functions of Period 2=

Suppose the function f(x) of period 2= has the expansion
[J
S(x) = a—2° + z (ax cos kx + b sin kx), 6.1)
k=1

where, to simplify the subsequent formulas, we denote the constant term by
ag/2. We now pose the problem of determining the coefficients ao, a; and
by (k=1,2,...) from a knowledge of f(x). To do this, we make the
following assumption: It is assumed that the series (6.1), and the series to be
written presently, can be integrated term by term, i.e., it is assumed that for
all these series the integral of the sum equals the sum of the integrals. [It is
thereby also assumed that the function f(x) is integrable.] Then, integrating
(6.1) from —x to w, we obtain

Qo & ® . .
E”f(x) dx = ] K,, dx +k; (a,, En cos kx dx + b, f_'_u sin kx dx)
By (5.2), all the integrals in the sum vanish, so that
[ ey dx = mao. 62

Next, we multiply both sides of (6.1) by cos nx and integrate the result
from —= to =, as before, obtaining

S In geometry, the word orthogonality connotes perpendicularity. One must not think
that the concept of orthogonality of two functions corresponds to anything like perpendi-
cularity of their graphs, despite the fact that this concept is related to a suitably generalized
notion of perpendicularity. In this regard, see Ch. 2, Sec. 10.
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f:ﬂf(x)cosnxdx=?£"cosnxdx
o0
+,‘Zl(a,‘f:”coskxcosnxdx

+ by J:: sin kx cos nx dx)-

By (5.2), the first integral on the right vanishes. Since the functions of the
system (5.1) are pairwise orthogonal, all the integrals in the sum also vanish,
except one. The only integral that remains is the coefficient of a,:

f“ cos?nxdx =m
[see (5.3)]. Thus we have
‘r_‘" f(x) cos nx dx = a,x. 6.3)
Similarly, we find that
[ _f(x) sin nx dx = by 6.4)
It follows from (6.2) to (6.4) that

a,,=;l-t.|‘fnf(x)cosnxdx n=0,12,..)),
6.5)

b, = ;;J"_!nf(x) sinnxdx (m=12...).

Thus, finally, if f(x) is integrable and can be expanded in a trigonometric
serjes, and if this series and the series obtained from it by multiplying by
cosnx and sinnx (n = 1,2,...) can be integrated term by term, then the
coefficients a, and b, are given by the formulas (6.5).

Now, suppose we are given an integrable function f(x) of period 2=, and
we wish to represent f(x) as the sum of a trigonometric series. If such a
representation is possible at all (and if the requirement of term by term
integrability is satisfied), then by what has been said, the coefficients a, and
b, must be given by (6.5). Therefore, in looking for a trigonometric series
whose sum is a given function f(x), it is natural to examine first the series
whose coefficients are given by (6.5), and to see whether this series has the
required properties. As we shall see later, this will be the case for a large
class of functions.

The coefficients a, and b, calculated by the formulas (6.5) are called the
Fourier coefficients of the function f(x), and the trigonometric series with
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these coefficients is called the Fourier series of f(x). Incidentally, we note
that the formulas (6.5) involve integrating a function of period 2x. There-
fore, the interval of integration [—m, ] can be replaced by any other interval
of length 27 (see Sec. 1), so that together with the formulas (6.5), we have

1 a+ 21
a,,=—J‘ SJ(x)cosnxdx (n=0,1,2,...),
e (6.6)

n =1ltf+2"f(x) sinnxdx (n=12...).

The above considerations make it natural to devote special attention to
Fourier series. It we form the Fourier series of a function f(x) without
deciding in advance whether it converges to f(x), we write

J(x) ~ % +n§=:l(a,, cos nx + b, sin nx).
This notation means only that the Fourier series written on the right corre-
sponds to the function f(x). The sign ~ can be replaced by the sign = only
if we succeed in proving that the series converges and that its sum equals
Sf(x). A simple consequence of these considerations is the following theorem,
which is quite useful:

THEOREM 1. If a function f(x) of period 2r can be expanded in a
trigonometric series which converges uniformly on the whole real axis,5
then this series is the Fourier series of f(x).

Proof. Suppose that f(x) satisfies (6.1), where the series is uni-
formly convergent. By Theorem 1 of Sec. 4, f(x) is continuous and
term by term integration of the series is possible. This gives the
formula (6.2). Next, we consider the equality

J(x)cosnx = %° cos nx

+ Z (a cos kx cos nx + by, sin kx cos nx), (6.7)
k=1

and show that the series on the right is uniformly convergent. Set
Sm(X) = %" + z (a, cos kx + by sin kx),
k=1

and let ¢ be an arbitrary positive number. If the. series (6.1) converges
uniformly, then there exists a number N such that

Ifx) = sm(x)| < €

6 By the periodicity of f(x) we can require uniform convergence on [—, =), rather than
on the whole real axis.
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for all m > N. The product s,,(x) cos nx is obviously the mth partial
sum of the series (6.7). Then, the inequality

| f(x) cos nx — s,(x) cos nx| = | f(x) — sp(x)| [cos nx| < e,

which holds for all m > N, implies the uniform convergence of the
series (6.7). It follows that this series can be integrated term by term,
and the result of the integration is the formula (6.3). Similarly, we
prove the formula (6.4). Thus, finally, the formulas (6.5) hold for the
coefficients a, and b,, which means that (6.1) is the Fourier series of

).

The modern theory of Fourier series allows us to prove the following
more general result, whose proof we cannot give because of its complexity:

THEOREM 2. If an absolutely integrable function f(x) of period 2r
can be expanded in a trigonometric series which converges to f(x) every-
where, except possibly at a finite number of points (within one period),
then this series is the Fourier series of f(x).

This theorem confirms the assertion made above, that in looking for a
trigonometric series which has a given function f(x) as its sum, we should
first consider the Fourier series of f(x).

1. Fourier Series for Functions Defined on an Interval of Length 2=

A problem which arises quite often in the applications is that of expanding
a function f(x) in trigonometric series, when f(x) is defined only on the interval
[—m,=]. In this case, nothing at all is said about the periodicity of f(x).
Nevertheless, this does not prevent us from writing the Fourier series of
JS(x), since the formulas (6.5) involve only the interval [—x, ®]. Moreover,
Jf(x) can be extended by periodicity from [—, %] onto the whole x-axis.
This leads to a periodic function which coincides with f(x) on [—=, =] and
which has a Fourier series identical with that of f(x). In fact, if the Fourier
series of f(x) turns out to converge to f(x), then, since it is a periodic function,
the sum of this Fourier series automatically gives us the required periodic
extension of f(x) from [—m, =] onto the whole x-axis.

Thus, it does not matter whether we talk about the Fourier series of a
function defined on [—, x], or whether we talk about the Fourier series of
the function obtained from f(x) by periodic extension along the x-axis.
This implies that it is sufficient to formulate the tests for convergence of
Fourier series for the case of periodic functions.

In connection with the problem of extending f(x) by periodicity from the
interval [—m, =] onto the whole x-axis, the following remarks are in order:
If f(—7) = f(x), there is no difficulty in making the extension, since in this
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case, if f(x) is continuous on [, =], its extension will be continuous on the
whole x-axis [see Fig. 7(a)]. However, if f(—%) # f(x), we cannot accom-
plish the required extension without changing the values of f(—=) and f(x),
since the periodicity requires that f(—=) and f(x) coincide. This difficulty
can be avoided in two ways: (1) We cdn completely avoid considering the
values of f(x) at x = —= and x = =, thereby making the function undefined
at these points and hence making the periodic extension of f(x) undefined at
the points x = 2k + )%, k=0, +1, +2,...; (2) We can suitably modify
the values of the function f(x) at x = —=x and x = = by making these values
equal. It is important to note that in both cases, the Fourier coefficients
will have the same values as before, since changing the values of a function at
a finite number of points, or even failing to define it at a finite number of
points, cannot affect the value of an integral, in particular, the values of the
integrals (6.5) defining the Fourier coefficients. Thus, whether or not we
carry out the indicated modification of the function f(x), its Fourier series
remains unchanged.
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FIGURE 7

It should be observed that if f(—=) # f(x) and if f(x) is continuous on
the interval [—=x, ], then the periodic extension of f(x) onto the whole
x-axis will have discontinuities at all the points x = 2k + ), k = 0, +1,
+2,..., no matter how we change the values of the function at x = —n and
x =7 [see Fig. 7(b)]. The problem of finding the values to which the
Fourier series of f(x) may be expected to converge at x = +m, when
J(—x) # f(x), is a special one, and will be solved later.

Finally, suppose that f(x) is defined on an arbitrary interval [a, a + 2r] of
length 2%, and that it is required to expand f(x) in a trigonometric series.
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As before, we arrive at the conclusion that it does not matter whether we talk
about the Fourier series of f(x) or about the Fourier series of the function
obtained from f(x) by extending it periodically onto the whole x-axis. If
f(x) is continuous on the interval [a, a + 2r] but f(a) # f(a + 2x), we
obtain an extension which is discontinuous at the points x = a + 2kn
k=0 %1, £2,...).

8. Right-Hand and Left-Hand Limits. Jump Discontinuities

We introduce the notation

lim f() = flro = 0),  im f2) = f(xo + 0),

x<xo x>x0

provided these limits exist and are finite.” The first of these limits is called
the left-hand limit of f(x) at the point xo, and the second is called the right-
hand limit of f(x) at x,. These limits both exist at points of continuity (by
the very definition of continuity), and we have

S(xo = 0) = f(x0) = f(x0 + 0) @.n

at continuity points.

If x, is a point of discontinuity of the function f(x), then the right-hand
and left-hand limits (either or both of them) may exist in some cases and fail
to exist in others. If both limits exist, we say that the point x is a point of
discontinuity of the first kind, or simply, a point of jump discontinuity. If
at least one of these limits does not exist, then the point x, is called a point
of discontinuity of the second kind. We shall be particularly interested in
jump discontinuities. If x, is such a point, then the quantity

8 = f(xo + 0) — f(xo — 0) 82

is called the jump of the function f(x) at x,.
The following example illustrates this situation. Suppose that

-x3 for x<1,
fG)=4 0 for x=1, 8.3
x for x>1,

with the graph shown in Fig. 8. The value of the function at x = 1 is
indicated by the little circle. At x = 1, the left-hand and right-hand limits
are obviously

A-0=-1, fQA1+0=1

71f xo = 0, we do not write f(0 + 0)and f(0 — 0), but simply f(+0) and f(—0).
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Therefore, the jump of the function at x = 1 is
§=f1+0-f1-0)=2,

which is in complete agreement with the intuitive idea of a jump (see Fig. 8).
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If f(x) is a function which is continuous on the interval [, ], then if
f(—=x) # f(x), jump discontinuities appear in making the periodic extension
of f(x) from [—m, ] onto the whole x-axis [see Fig. 7(b)}, and all the jump
discontinuities are equal to the number

3 = f(—m) — f(m).

9. Smooth and Piecewise Smooth Functions

The function f(x) is said to be smooth on the interval [q, b] if it has a
continuous derivative on [a, b]. In geometrical language, this means that the
direction of the tangent changes continuously, without jumps, as it moves
along the curve y = f(x) [see Fig. 9(@)]. Thus, the graph of a smooth
function is a smooth curve without any “corners.*’8

The function f(x) is said to be piecewise smooth on the interval [a, b] if
either f(x) and its derivative are both continuous on [a, b], or they have only
a finite number of jump discontinuities on [a, b]. It is easy to see that the
graph of a piecewise smooth function is either a continuous curve or a dis-
continuous curve which can have a finite number of corners (at which the
derivative has jumps). As we approach any discontinuity or corner (from
one side or the other), the direction of the tangent approaches a definite
limiting position, since the derivative can have only jump discontinuities.

8 “Corner” = Russian “yryiioBast Touka,” a point at which the curve has two distinct
tangents. (Translator)
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Figures 9(b) and 9(c) illustrate the graphs of continuous and discon-
tinuous piecewise smooth functions. From now on, we shall regard smooth
functions as a special case of piecewise smooth functions.
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A continuous or discontinuous function f(x) which is defined on the whole
x-axis, is said to be piecewise smooth if it is piecewise smooth on every
interval of finite length. In particular, this concept applies to periodic
functions. Every piecewise smooth function f(x) [whether continuous or
discontinuous] is bounded and has a bounded derivative everywhere, except
at its corners and points of discontinuity [at all these points, f*(x) does not
exist].

10. A Criterion for the Convergence of Fourier Series

We now give a more useful criterion for the convergence of a Fourier
series, deferring the proof of this criterion until Ch. 3:

The Fourier series of a piecewise smooth (continuous or discontinuous)
Sunction f(x) of period 2w converges for all values of x. The sum of the
series equals f(x) at every point of continuity and equals the number

3/(x + 0 + f(x - 0)),

the arithmetic mean of the right-hand and left-hand limits, at every point of
discontinuity (see Fig. 10). If f(x) is continuous everywhere, then the
series converges absolutely and uniformly.



