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Thus, the Fourier series of a function f(x) defined on the interval [—m, ]
and continuous at x = +w behaves at the points x = 1 just as it does at
the other points of continuity, provided that f(—=) = f(x). However, if
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J(—=) # f(w), the series obviously cannot converge to f(x) at x = &, and in
this case, it is meaningful to pose the problem of expanding f(x) in Fourier
series only for —% < x < = and not for — < x < ®. A similar remark
can be made concerning the Fourier series of a function specified in an interval
of the type [a, a + 2=x], where a is any number,

In solving any concrete problem, if the reader draws a graph of the
periodic extension of the function (this is always recommended!) and bears
in mind the criterion just formulated, then the nature of the behavior of
the Fourier series at the end points of the interval will be immediately

apparent.

11. Even and Odd Functions

Let the function f(x), defined either on the whole x-axis or on some
interval, be symmetric with respect to the origin of coordinates. We say
that f(x) is an even function if

f(=%) = f(x)

for every x. This definition implies that the graph of any even function
y=f(x)is symn}etric with respect to the y-axis [see Fig. 12(a)]. It follows
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from the interpretation of the integral as an area that for even functions we
have

[} swydx =2 [ py ax L.

for any /, provided that f(x) is defined and integrable on the interval [—/, /].
We say that the function f(x) is odd if

S(=x) = —f(x)
for every x. In particular, for an odd function we have
f(—=0) = - f(0),

so that f(0) = 0. The graph of any odd function y = f(x) is symmetricwith
respect to the point O [see Fig. 12(b)]. For odd functions

L ) dx =0 (11.2)

for any /, provided that f(x) is defined and integrable on the interval [/, /].
The following properties are simple consequences of the definition of even
and odd functions:

(a) The product of two even or odd functions is an even function;
(b) The production of an even and an odd function is an odd function.

In fact, if ¢(x) and {(x) are even functions, then for f(x) = @(x)y(x), we
have

S(=%) = o(=x)Y(—x) = e(W(x) = f(x),
while if p(x) and {(x) are odd, we have
S(=x) = o(= (=) = [ [—$x)] = p(x)P(x) = f(x).

This proves Property (a). On the other hand, if ¢(x) is even and {(x) is
odd, then

S(=2) = o(= (= x) = e()[-¢(¥)] = —@(I(x) = —f(%),
which proves Property (b).

12. Cosine and Sine Series

Let f(x) be an even function defined on the interval [—=, =], or else an
even periodic function. Since cosnx (n =0, 1, 2, ...) is obviously an even
function, then by Property (a) of Sec. 11 the function f(x) cos nx is also even.
On the other hand, the function sinnx (n = 1, 2,...) is odd, so that the
function f(x) sin nx is also odd, by Property (b) of Sec. 11. Then, using
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(6.5), (11.1) and (11.2), we find that the Fourier coefficients of the even
function f(x) are

a, = %J:‘ f(x) cos nx dx = %J:f(x) cosnxdx (n=0,12...),
a2.1)
,,=7—lt£”f(x)sinnxdx=0 n=12,...).

Therefore, the Fourier series of an even function contains only cosines, i.e.,
LJ
a
)~ 2+ Za,,cosnx,
2 n=l

where the coefficients a, are given by the formula (12.1).

Now, let f(x) be an odd function, defined on the interval [—, =], or else
an odd periodic function. Sincecos nx (n = 0, 1, 2,. . .)is an even function,
the function f(x) cos nx is odd, by Property (b) of Sec. 11, and since sin nx
(n=1,2,...) is odd, the function f(x) sin nx is even, by Property (a) of
Sec. 11. Then, using (6.5), (11.1), and (11.2), we find that the Fourier
coefficients of the odd function f(x) are

an=1—1fﬂf(x)cosnxdx=0 (n=012,...),
| (12.2)
b, = 7-“:J:‘f(.x)sinnxdx = %I:f(x) sinnxdx (n=12,...).

Therefore, the Fourier series of an odd function contains only sines, i.e.,

f(x) ~ z b, sin nx,
n=1
where the coefficients b, are given by the formula (12.2). Since the Fourier
series of an odd function contains only sines, it obviously vanishes for
x = —m, x =0, and x = = (and in general for x = kr), regardless of the
values of f(x) at these points.

A problem which often arises is that of making an expansion in cosine
series or sine series of an absolutely integrable function f(x) defined on the
interval [0, ). To expand f(x) in cosine series, we can reason as follows:
Make the even extension of f(x) from the interval [0, =] onto the interval
[—m, 0] [see Fig. 13(a)]. Then all the previous considerations apply to the
even extension of f(x), so that its Fourier coefficients can be calculated by the
formulas

2
a,=-| f(cosnxdx (n=0,1,2,...),

“J: 12.3)
b,=0 n=12...),
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which involve only the values of f(x) in the interval [0, ®]. Therefore, for
computational purposes, there is no need to actually make the even extension
of f(x) from [0, =] onto [—, 0].
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FIGURE 13

To expand f(x) in sine series, we first make the odd extension of f(x)
from the interval [0, =] onto the interval [, 0] [see Fig. 13(b)]. In doing
80, the oddness requires that we set f(0) = 0. Then, the previous considera-
tions again apply to the odd extension of f(x), so that its Fourier coefficients
are given by the formulas

=0 @®=0,12..),
(12.4)

b, =1%J:f(x)ﬁnnxdx n=12...),

which involve only the values of f(x) in the interval [0, ©]. Therefore, as in
the case of cosine series, there is no need to actually make the odd extension
of f(x) from [0, =] onto [—, 0].

However, in order to avoid mistakes in using the convergence criterion of
Sec. 10, it is still recommended that a sketch be made of the function f(x)
and its even (or odd) extension onto the interval [—m, 0], as well as of its
periodic extension (with period 2r) onto the whole x-axis. This sketch will
help in investigating the behavior of the “extended” function, which is the
function to which the convergence criterion has to be applied.

13. Examples of Expansions in Fourier Series

Example 1. Expand f(x) = x2 (—=® < x < ©) in Fourier series. The
function f(x) is even; the graph of f(x) together with its periodic extension is
shown in Fig. 14. The extended function is continuous and piecewise
smooth. Therefore, by the criterion of Sec. 10, its Fourier series converges
to f(x) = x2 everywhere in [—m, ], and converges to the periodic extension
of f(x) outside [-=, ®). Moreover, the convergence is absolute and uniform.
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A calculation shows that
2 2 [x3]*r 2x2
T - 2 = - —_— E= em—
o 1:-[: ®dx =213 =73

Furthermore, integrating by parts, we find that

_2 2 _ 4 .
a,,—T-:J:x cos nx dx = —ﬁf:xsmnxdx

4 x=r 4
= — [x cos nx] ———zrcosnxdx
TN x=0 TnzJo

=:—2cosm: = (‘1)",%’

whileb, =0 (n = 1,2,...),since f(x)iseven. Therefore, for - < x < =,
we have

. o+ (13.1)

2
2=T_ 4(cosx- cos 2x  cos 3x _)

Example 2. Expand f(x) = |x| (—= < x < =) in Fourier series. The
function f(x) is even; Fig. 15 shows the graph of f(x) together with its periodic

extension. The extended function is continuous and piecewise smooth, so

FIGURE 15
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that the criterion of Sec. 10 is applicable. Therefore, its Fourier series
converges to f(x) = |x| everywhere in [—=, =] and converges to the periodic
extension of f(x) outside [—=, ®]. Moreover, the convergence is absolute
and uniform.

Since |x| = x for x > 0, we have

2 2 [x2]x==
ao=1—t.]:xdx=;;[§] =T,

x=0

2 2 .
a, =;J:xcosnxdx= —ﬂ—i‘f:smnxdx

2 x=r 2 1
=i [cos nx]ho— s [cosnm — 1]

= 2 -1y -1

It follows that a, = 0 for even n, and that a, = —4/=xn2 for odd n. Finally,
b,=0(@®m=1,2,...), since f(x) is even. Thus, for —n < x < =, we have

cos:3x = cos 5x ) 132

® 4
|x|=§—1-t(cosx+—32—- =t )

Example 3. Expand f(x) = [sin x| in Fourier series. This function is
defined for all x, and represents a continuous, piecewise smooth, even func-
tion. Its graph is shown in Fig. 16. The criterion of Sec. 10 is applicable,
and hence f(x) = |sin x| is everywhere equal to its Fourier series, which is
absolutely and uniformly convergent.

3r

FIGURE 16
Since |sin x| = sin x for 0 < x < =, we have

2~ . 4
ao—‘r—h‘:smxdx =2
and

2 (m .
a, =-rsmxcosnxdx
TJo
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= }J: [sin (n + 1)x — sin (n — 1)x] dx

_ _lJcos(m + 1)x cos(n— Dx]*=~
T n+1 n—1 ]

_lpEyt-1 - (= l] _2( 1)"+1
nl n+1 n—1 ®mnZ — 1)

x=0

for n # 1, while forn = 1
2 . 1 .
a -;-:J:smxcosxdx=ﬁ.’:sm2xdx=0

Moreover, b, =0 (n = 1, 2,...), since f(x) is even. Therefore, for all x
we have

. 2 4 (cos2x , cos4x , cos6bx
sin x| =1—t_-7:( 7 + 5+ 33 +)

Example 4. Expand f(x) = x (—x < x < %) in Fourier series. The
function f(x) is odd; Fig. 17 shows the graph of f(x) together with its periodic
extension. The extended function is piecewise smooth and discontinuous at
the points x =2k + )x (k =0, +1, +2,...). The test of Sec. 10 is
applicable, and the Fourier series of f(x) converges to zero at the points of
discontinuity.

FIGURE 17

Since f(x) is odd
an=0 (n=012...),

=-rxsxnnxdx

xX=T 2 J’n dx
- 1?1 [x cos nx]x_°+ o Jo COS X

__2 2yt
= ncosmt—n( 1"+,
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Therefore, for —t < x < 7, we have

(13.3)

x=2(sinx—M+sm3x—---)-

2 3

Example 5. Expand f(x) =1 (0 < x < «) in sine series. Making the
odd extension of f(x) onto the interval [—=, 0] produces a discontinuity at
x = 0. Figure 18 shows the graph of f(x) and its odd extension, together
with its subsequent periodic extension (with period 2w) over the whole
x-axis. The convergence criterion of Sec. 10 is applicable to this “‘extended”
function. Therefore, its Fourier series converges to f(x) = 1for0 < x < .
Outside the interval 0 < x < =, it converges to the function shown in
Fig. 18, with the sum of the series being equal to zero at the points x = kx
k=0, %1, +2,...).

Yy
| +L ‘IL f m f 1
1 o] =4 ﬁrr 3¢1 iﬁ? 5&_’ g
FIGURE 18
Since
a=0 @0=012..)),
2 .
b, = ;J: sin nx dx
2 x=r 2 u
= o [—cos nx}“o =51 -1l
we have
4/ . sin 3x _ sin 5x
l—;(smx+ gL ) (13.4)

for0 < x < m.

Example 6. Expand f(x) = x (0 < x < 2r) in Fourier series. This
example bears a superficial resemblance to Example 4, but the difference is
immediately apparent if we construct the periodic extension of f(x) (see
Fig. 19). The criterion of Sec. 10 is applicable to this extended function.
At the points of discontinuity, the Fourier series converges to the arithmetic
mean of the right-hand and left-hand limits, i.e., to the value . The function
Jf(x) is neither even nor odd.
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Since
1p2n 1 [x2]x=2r
ao—"-efo de—; -2—’]”‘0 -—21!:,

1 (2
a,,=-f X cos nx dx
T

1 . X=2m 1 2r
—E[xsmnx]“o —1—‘:;]; sinnxdx=0 (n=1,2,.
1 f2e .
b,,=1-tf: x sin nx dx
l x=2r l 2 2
= —a[xCOSnxho +”—nJ; cos nx dx = -
we have
x=n—2(sinx+msz+§%3x-+...),

for 0 < x < 2m.

),

(13.5)

Example 7. Expand f(x) = x2 (0 < x < 2x) in Fourier series. This
example resembles Example 1, but the graph of the periodic extension of f(x)
immediately shows the difference (see Fig. 20). The criterion of Sec. 10 is
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FIGURE 20
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applicable, and at the points of discontinuity the series converges to the
arithmetic mean of the right-hand and left-hand limits, i.e., to the value 272,
The function f(x) is neither even nor odd.

Since
l x3 x=2r 81:2
=2 2dx = = | %
% J x* dx [ ]xno
2
a, =-f x2cos nx dx = ——j“xsinnxdx
TJO ™ Jo
2 x=21 2 2=
—.n7[xcosnx]x“o —nTZJ; cos nx dx = —
2
b,,=71t_’; x2 sin nx dx
x=2mr 2:
= —l[xzcosnx] +lf"xcosnxdx
Tn x=0 TN Jo
4r 2 4%
———n——;n—zfusmnxdx -
we have
2 .
x2—4T+4(oosx—1:smx+c°;22x—%-2—x+

cos nx nsinnx+ )

+n2 n

(13.6)

cosnx T sinnx
n? n

L (

472 <
T2
42 < COS nx < sin nx
T+4,,Z| nZ —41:2 PR
for0 < x < 2.

Example 8. Expand f(x) = Ax2 + Bx + C (—%® < x < ), where A, B,
and C are constants, in Fourier series. The graph of f(x) is a parabola. By
periodic extension, we can obtain a continuous or a discontinuous function,
depending on the choice of the constants 4, B, and C. Figure 21 shows a
possible extension for certain values of 4, B, and C.

We could calculate the Fourier coefficients from the appropriate formulas,
but there is no need to do so, since we can use the expansions for the functions
x2and x (—m < x < =), given in Examples 1 and 4. The result is

Ax2 + Bx + C_A_"+ C+ 4AZ(_1),.OOSnX_ 232( 1),,smmc

3 n=1 n=1
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FIGURE 21

Example 9. Expand f(x) = Ax2 + Bx + C (0 < x < 2n) in Fourier
series. Figure 22 shows the periodic extension of f(x) for a certain choice of
the constants 4, B, and C. Using the expansions of the functions x2 and x
(0 < x < 2r), given in Examples 6 and 7, we find that

44r2 < COS nX
2 = —
Ax? + Bx + C = = +Bn:+C+4A”§=:l ~
< sin nx
— (4nA4 — 2B) ;l ——
for0 < x < 2m.
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FIGURE 22

We can use these examples to calculate the sums of some important
trigonometric series. For example, (13.5) immediately gives

isinnx T—-X

n 2

0 <.x < 2m), a13.7

n=1

and from (13.5) and (13.6), we infer that

L

Zcos nx _ 3x2 — 6nx + 2m2
n2 12

0 < x < 2n). (13.8)

n=1

Since the terms of the series on the left do not exceed 1/n2 in absolute value,
the series is uniformly convergent, which means that its sum is continuous
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for all x (see Sec. 4). Therefore, (13.8) is valid for 0 < x < 2w, and not just
for0 < x < 2w,
Similarly, (13.3) gives

Z( 1y —— sinnx _ x (- <x <™, (13.9)
“y n 2
(13.1) gives
S -y _ w2 I23" (-r<x<m),  (13.10)
n=1
(13.4) gives
= sin (2n + 1)x _T
2 msr —3 O<x<m (13.11)
and (13.2) gives
Zm @ntlx P2 ogxgm), (13.12)

Zy 2n+1)2 = 8
Moreover, subtracting (13.11) from (13.7), we obtain

<sin2nx w—2x
> 5= O<x<m, (13.13)

n=1

and subttacting (13.2) from (13.8), we obtain

cos 2nx  6x2 — 6mx + w2
..Z. Gy - 0<x< 7). (13.14)

These formulas also allow us to calculate the sums of some numerical
series, For example, if we set x = 0, (13.8) and (13.10) become

2 1 1 1 w2 1 1 1
3 l+22+32+ +- ﬁ=l-2—2+§-4—2+.“
while if we set x = =/2, (13.11) becomes
T
z—l-§'+‘}—

I14. The Complex Form of a Fourier Series

Let the function f(x) be integrable on the interval [—=, =], and form its
Fourier series



