34 TRIGONOMETRIC FOURIER SERIES CHAP. 1

The coefficients ¢, given by (14.4) are called the complex Fourier co-
efficients of the function f(x). They satisfy the relations

¢, = % [ foemar  @=0,11,22..). (4D

In fact, by Euler’s formula and (14.4), we have

%ffn J(x)e-inx dx = zln [ff“f(x) cos nx dx — i_['_'"f(x) sinnxdx]

= Ha, — ib) = ¢,

for positive indices and
2—1; J:' S(x)einx dx = % [ J:' S(x)cosnxdx + i fﬂ J(x) sin nx dx]

= %(an + ibn =C_p

for negative indices. It is useful to bear in mind that if f(x) is real, then the
coefficients ¢, and c_, are complex conjugates. This is an immediate
consequence of (14.4).

Incidentally, we note that the formula (14.7) can also be obtained directly,
just as the formulas (14.2) were (see Sec. 6), if we assume that the sign =
appears in (14.6) instead of the sign ~ and that term by term integration is
legitimate. In fact, multiplying both sides of the equality

0

foy= 3 ot
by e~i»x and integrating term by term over the interval [—=, 7], we obtain
[ feies dx = 2mc, (14.8)
since for k # n (see Sec. 5) we have
c J’f el d
= ckf" [cos (k — m)x + isin (k — n)x]dx = 0,

i.2., all the integrals on the right vanish except the one corresponding to the
index k = n, while for k = n, we obtain the number 2rc,. The formula
(14.7) is an immediate consequence of (14.8).
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I5. Functions of Period 2/

If it is required to expand a function f(x) of period 2/ in Fourier series,
we set x = Jt/m, thereby obtaining the function ¢(f) = f(/t/x) of period 2x
(see Sec. 3). For ¢(f) we can form the Fourier series

o) ~ a_20 + Z (a, cos nt + b, sin nt), (15.1)
n=1

~here

1 1 It
a,,=’—tf" q;(t)cosntdt=1—tft"f(i)cosntdt n=0,12...),

1 (= . 1 I\ .
b,, = ;j_n Q(t) sinntdt = 1—': J‘:‘ f(;) sin nt dt (n =12,.. .).
Returning to the original variable x by setting ¢ = mnx/I, we obtain
~BS X b osin™%),
f(x) > + gl(a,, cos == + b, sin 7 ) (15.2)
where

an=%“‘ilf(x)c°s1#dx (n=09192)°'°))
(15.3)
b" = -}.J..I.[ f(X) sinn-ﬁl"-‘dx n=1, 29--')'

The coefficients (15.3) are still called the Fourier coefficients of f(x), and the
series (15.2) is still called the Fourier series of f(x). If the equality holds in
(15.1), then the equality holds in (15.2), and conversely.
We could have constructed a theory of series of the form (15.2) directly,
by starting from a trigonometric system of the form
1, cos TX, sin =%, .. ., COS X, sin =%, . (15.9)
] ] /] ]
just as we did in the case of the basic trigonometric system (5.1). The
system (15.4) consists of functions with the common period 2/, and it is easily
verified that these functions are orthogonal on every interval of length 2/.
The considerations of Secs. 6, 7, 10, 12, and 14 can be repeated as applied to
the system (15.4), and the result is a formulation analogous to that given in
these sections, except that = is replaced by /. In particular, instead of a
function f(x) of period 2/, we can consider a function defined only on the
interval [—/, I] [or on any other interval of length 2/, provided we appro-
priately change the limits of integration in (15.3)]. The Fourier series of such
a function is identical with that of its periodic extension onto the whole
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x-axis. The convergence criterion of Sec. 10 continues to *“work,” if we
replace the period 2 by the period 2/.

If f(x) is even, the formulas (15.3) become

2 X
a,,=7fof(x)cos—1-dx n=0,12,...),

(15.5)
,=0 @Mm=12...),
while if f(x) is odd, they become
a,=0 @®0=0,12,..))
(15.6)

b, =%j;f(x)sin’$‘dx n=12..)

As in Sec. 12, we can use this fatt to expand a function f(x) defined only on
the interval [0, /] in cosine series or in sine series (making the even or the
odd extension of f(x) onto the interval [—/, 0]).

The complex form of the series (15.2) is

+
JO)~ D i,
where
Cn=§l-lJ:’-’ f(x)e’lmnxlldx (n=0’ il’ iz’.'.)’
or
Co=;—o, cn=an_2ibn c_"=a,,'|2'ib,, (n=l’2,.“)_

Example 1. Expand the function f(x), defined by

cosE for Osxsl,
] 2

S(x) = f
0 for §<x<1

in cosine series. Figure 23 shows the graph of f(x) and its even extension
onto the interval [—/, 0], together with its subsequent periodic extension

FiGURE 23
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(with period 2/) onto the whole x-axis. The convergence criterion can
obviously be applied everywhere.
For If2 < x < [/, we have f(x) = 0, so that
2 2 ri2 2
ay = 7J;f(x)dx = TIo cosn-—lxdx =2

a, = %J:f(x)cos"—';’fdx = %ﬂlzcosn—;ccosm—l—xdx.

Making the substitution ®x// = ¢, we obtain

2 rr/2 1 /2
a, = -tho costcosntdt = n J: [cos (n + 1)t + cos (n — 1] dt,

whence
. -
a,=11:'l:,2(cos2t+l)dt=}: 3“1221+t]:: =%’
1 [sin(n + 1)t , sin(n — 1)¢]r=n/z
" wml n+1 n—1 J,. (> 1.

Therefore, for odd n > 1
a, =0,
while, for even n

2(— 12
""=__(nr)l)’ b,=0 (m=12...).
Thus we have
X l
- o 22 (o1 P cos = for 0<x 3
38T TR 2 4p 15T = !
n=1 0 for z<x<l

2

This series converges on the whole x-axis to the function shown in Fig. 23.

Example 2. Expand the function f(x), defined by

x for 0<x<51.

fix) =

l—x for %<x<1,

in sine series. Figure 24 shows the graph of f(x) and its odd extension onto
the interval [—/, 0], together with its subsequent periodic extension (with
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period 2/) onto the whole x-axis. The convergence criterion can be applied
everywhere.

FIGURE 24

In this case, we have

a,=0 @®0=0,12,...),
2t .

b, = -I-J;f(x)sm“%xdx

2
Tl

Setting 7tx/l = t, we obtain

. TNX 2! . TNX
xsm—ldx+-l";/2(l—x)sm7dx n=12..).

2l (ri2 20 .
b"‘n—z,[: tsmntdt+;t—2J:;2 (= — Osinnt dt

=n/2
=£ _tcosm]' " +£ lzcosntdt
72 n Ji=0 72n Jo
+2—12 _(—n—t)cosm]"" —% cos nt dt
3 n t=mj2 TN Inp
_ 4 . Tn
B A
Therefore
l
< IF
ﬂ(sinﬂ_x_isin:;_"_x+ls' ﬂx_...)_ * for 0 X<2
T TR TSy = !
I—x for z<x<1l

2

This series converges on the whole x-axis to the function shown in Fig. 24.

PROBLEMS
1. Expand the following functions in Fourier series:

a) f(x) = e?* (—m < x < =), where a # 0 is a constant;
b) f(x) = cos ax (—n < x < =), where a is not an integer;
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©) f(x) =sinax (—x= < x < =), where a is not an integer;

0 for —-m<x<O,
9 f(x)={x for 0<x<m

2. Using the expansion of Prob. 1b, show that

where z is any number which is not a multiple of =.

3. Using the expansion of Prob. 1a, expand the following functions in Fourier
series:
a) The hyperbolic cosine
e + e=ox

coshx=T (-t <x<n);
b) The hyperbolic sine

. esx — e—ax

smhx=——2-— (-® < x < ).

4. Expand the following functions in Fourier cosine series:

a) f(x) =sinax (0 < x < =), where a is not an integer;

1 for 0<x<h,
b) ﬂx)={0 for h<x<mw;
x
- = f 2h,
9 f(x)={l 55 for 0<x<
0 for 2h<x<m.

5. Expand the following functions in Fourier sine series:

sin =% for 0<x<s

2
8) f() = .
0 for 5<x<
2
sinfl’-‘ for 0<x< %,
b) flx) = =x !
—sinT for 3 <x<l

6. Expand the periodic function
fx) = lcos%, l=const, />0
in Fourier series.

7. Let f(x) have period 2x and let | f(x) — f(»)] < ¢|x — y|* for some constants



