Signals and systems

Chapter 1



Introduction

* Signals: represent some independent variables that contain some
information about the behavior of some natural phenomenon.

* When these signals are operated on some objects, they give out
signals in the same or modified form. These objects are called
systems.



Definitions :

* Signal: A signal is defined as a physical phenomenon that carries some
information or data.

* The signhals are usually functions of independent variable time.
* There are some cases where the signals are not functions of time.

* The electrical charge distributed in a body is a signal which is a
function of space and not time.



e System: A system is defined as the set of interconnected objects with
a definite relationship between objects and attributes.

* The inter-connected components provide desired function.

) SYSTEM VR(?)
(R, L, C)

>

Input signal
or excitation

Output signal




Signals are broadly classified as follows:

e 1. Continuous Time signal (CT signal).
e 2. Discrete Time signal (DT signal).



Continuous time signal

* The signal that is specified for every value of time t is called

continuous time signal

* denoted by x(t)

e

A x(1)

N




Discreet time signal

* The discrete time signal is represented as

e a sequence of numbers and is denoted by x[n] where n is an integer.
Here time t is divided into n discrete time intervals.

t x[n]

ol.5 ol.5

0.5 0.5 0.5




A discrete time signal x[n] 1s represented by the following two methods:

1.
_ @) nz0
*nl = {0 n<0 (1.1

Substituting various values of n where n > 0 in Eq. (1.1) the sequence for x[n]
which 1s denoted by x{n} 1s written as follows:

| 1

..
a? a"

{ 1
X[n]: 13_a
a
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2. The sequence is also represented as given below.

x[n] =1{3,2, 5,4,6,8, 2]
)

The arrow indicates the value of x[n] at n = O which1s 5 in this case. The numbers
to the left of the arrow indicate to the negative sequence n = —1, —2, efc. The
numbers to the right of the arrow correspond to n = 1, 2, 3, 4, efc. Thus, for the
above sequence, x[—1] = 2; x[—-2] = 3; x[0] = 5; x[1] = 4; x[2] = 6; x[3] = 8
and x[4] = 2. If no arrow 1s marked for a sequence, the sequence starts from the
first term 1n the extreme left. Consider the sequence

x[n] = {5, 3, 4, 2}.

Here, x[0] = 5; x[1] = 3; x[2] = 4 and x[3] = 2. There is no negative sequence
here.



B Example 1.1

Graphically represent the following sequence:

x[n] = {1, 0, —1, 1}

¢ —1
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B Example 1.2

Graphically represent the following sequence:

I[H] — {_25 15 Oa 13 23 03 1}
)
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Basic Continuous Time Signals

* Unit Impulse Function

The unit impulse function is also known as Dirac delta function which is repre-
sented in Fig. 1.6. The unit impulse function is denoted as 4 (¢) and its mathematical
description is given below.

0 t#0
3(t) = 1.2
O=1 .7, (1.2)
ka(t)
Aa(r)
it 0 L‘L
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Importance of Impulse Function

* 1. By applying impulse signal to a system, one can get the impulse
response of the system. From impulse response, it is possible to get
the transfer function of the system.

e 2. For alinear time invariant system, if the area under the impulse
response curve is finite, then the system is said to be stable.

* 3. From the impulse response of the system, one can easily get the
step response and ramp response by integrating it once and twice,
respectively.

* 4. Impulse signal is easy to generate and apply to any system.



Properties of Impulse Function

7/24/2024

1.
. 0(—1) = 6(1)

. x(0)6(t) = x(0)6(1)

. x(8)o(t — 19) = x(to)d(t — 1o)

© NN AW

§(at) = 25(1)

[22 8(dt =1

. t6(t) =0

dé(t
20 — —§(t)

x() x6(t —ty) = x(t — 1p)
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Unit Step Function s uth

1 >0 1

[) =
“W=19 120

The step function 1s denoted by u(7). Any causal signal which begins at t = 0 (which
has a value of zero for# < 0) 1s multiplied by the signal by u(#). For example, a causal
exponentially decaying signal e~% (¢ > 0) is represented as x(¢) = e~ u(t).
Similarly e~ (¢ < 0) is represented as x (¢) = e~ “u(—t).
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Importance of Step Function

e 1-Step function is easy to generate and apply to the system.

2. By differentiating the step response, the impulse response can be
obtained. By integrating the step response, the ramp response can be
obtained.

3. Step signal is considered as a white noise which is drastic. If the
system response is satisfactory for a step signal, it is likely to give a
satisfactory response to other types of signals.

* 4. Application of step signal is equivalent to the application of
numerous sinusoidal signals with a wide range of frequencies



Unit Ramp Function

t t >0

[) =
W= <0

For a causal signal (¢ > 0), the ramp function can also be expressed as

4 (1)

r(t) = tu(t)
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Relationships between Impulse, Step and
Ramp Signals

d’r(t)  du(t)
fu(;)d;:fd;:; = = 5(1)
du(t
L:f(r) =0 r(f) = ffcﬁ(r)dr

integrate integrate
5() — u(t) — r(1)

differentiate differentiate

r(t) — u(t) — (1)
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4+ x(2)
Unit Parabolic Function
2 _________________
x(t)==t"| t>0 ST .
; i
d“;(;):t t > 0.

Step, ramp and parabolic functions are called singularity functions.
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Unit Rectangular Pulse (or Gate) Function

1 for|t| <%

x(t) =

0 otherwise

The above equation is also written in the following form:

4 x(t) = rect(H)

T

< _
-2 T

(1) =1 <t
x(t) = — =
2

The function is written as x(¢) = rec[(%).

|
—~
I
ol
o
(ST
—~
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4 x(1) = tri(r)

Unit Area Triangular Function |

hp —1 0 1 :

The unit area triangular function 1s represented in Fig. 1.11. Itis symbolically written
as x(t) = tri(z). It 1s defined as

o=l =1
tri(t) = 0 > 1 (1.13)

The above equation can be written in the following form also:

tri(¢) = [1 + 1]

—1<tr<0
= [1—1] 0<r<l1
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b

b x(f) = sgn(?)

Unit Signum Function

A

The signum function is written in the abbreviated form as sgn(7). It represents the
characteristics of an ideal relay. This is shown in Fig. 1.12. It is defined by the
following equations:

1 t >0
sgn(t) = {0 t=0 (1.14)
| —1 t <0
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Unit Sinc Function | /1\

The unit sinc function is represented in Fig. 1.13. It is defined as

Sin 7rt
— 00 <t < 0.

sinc(?) =
Tt
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Sinusoidal Signal

The sinusoidal signal is represented in Fig. 1.14. It is defined as
x(t) = Asin(wt — ¢)
where A = Peak amplitude, @ =radian frequency and ¢ = phase shift.

4 x(¢) = Asin(ot—d)

ANVARIANYA

VARV IRV
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Real Exponential Signal

x(t) = e”

where s = o + jw 1s acomplex number. The signal x(¢) in Eq. (1.17) is called general
complex exponential. Equation (1.17) 1s written in the following form:

x(1) = e(cr—|—jm)r
— ecrrejwf

= ¢°'(cos wt + j sin wt) (1.18)

Ifw=0,
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x(t) = €7

(a) (b)

4 x(r) = €91 4 x(r) = €97

o<0
/ \.

—t A =t A t

4l
-

Fig. 1.15 Representation of real exponential signals. a Growing exponential; b Decaying
exponential

Equation (1.19) is real exponential. The plot of x(¢) with respect to # for o > 0 and
o < OisshowninFig. 1.15aand b, respectively. Foro > 0, the signal is exponentially
growing and for o < 0, it 1s exponentially decaying.
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Complex Exponential Signal

(a)

-

x(t) = e %" (cos wt + j sin wt)

 x(1)

o)

NN
EARVAY

RV

ag>0

(b)

-
oL

o<(

>
4

Fig. 1.16 Complex exponential signals. a Exponentially growing (o > 0); b Exponentially

decaying (o < 0)
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Basic Discrete Time Signals



The Unit Impulse Sequence

A 6[”]

The basic impulse sequence is shown in Fig. 1.17. The unit impulse sequence also
called sample is defined as

1 n=20
S[n] = 1.2
[n] 0 n#0 (1.20)

5[n] is also called Kronicker delta function.
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The Basic Unit Step Sequence

The basic unit step sequence is represented in Fig. 1.18. It is denoted by u(n). It is
defined as
I n>0
uln] = - 1.21
] 0 n<0O (12D

Any discrete sequences x[n] for n > 0 is expressed as x[n]u[n]. For n < 0, it is
expressed as x[n]u[—n]. It is be noted that at n = 0, the value of u[n] = 1.

4 uln]

—n 0 1 2 3 4 5

7/24/2024 Dr . Mahmoud Sawalha

S v

30



The Basic Unit Ramp Sequence

n n 2 0 4 rn]

0 n<0O

rln] =




Unit Rectangular Sequence

(a)

il

| n| <N
rect|n| =
O |n|>N
(b)
1 —N<n<N
rect[n] = _
{0 otherwise

-N -3 -2 -1 o 1 2 3 N

il
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(@) .
b x[n] = Asin(wgn)

Sinusoidal Sequence
< M {h M M

x[n] = Ae™*" sin(won + ¢)

®) b x[n] = Ae™ M sin(wgn+¢)
. s a>0
e A purely sinusoidal sequence (¢ = 0). ‘ |
e Decaying sinusoidal sequence (o > 0). . : [ el
e Growing sinusoidal sequence (o < 0).
(©)

R

Fig. 1.21 Discrete time sinusoidal signal. a Purely sinusoidal; b Decaying sinusoidal; ¢ Growing
sinusoidal
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Discrete Time Real Exnonential Sequence

The general complex exponential sequence 1s defined as
x[n] = Ad”

where A and « are in general complex numbers.

if A and « are real, the sequence is called real exponential.

1. Exponentially growing signal (¢ > 1, Fig. 1.22a).

2. Exponentially decaying signal (0 < @ < 1, Fig. 1.22b).

3. Exponentially growing for alternate value of n (¢ < —1, Fig. 1.22c¢).

4. Exponentially decaying for alternate value of n (—1 < a < 0, Fig. 1.22d).
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(a) (b)
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Fig. 1.22 Discrete time real exponential sequences. a a>1; b O<a<l;
ca<-—1l;d-1<a<0
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Basic Operations on Continuous
Time Signals



Addition of CT Signals

(b) .
(a) %0
“.x](f)
3 -
2
______ 1
-—1
: « 4 2 >
< 1 o > —t -3 =2 -1 0 1 2 t
-t —2 -1 0 1 2 t
-2
x(t) = x1 (1) + x2(1)
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t -3 -2 —1 0 1 2
x1(1) 0 1 2 2 0 0
x2(1) 1 -2 -2 1 3 0
x(1) = 1 —1 0 3 3 0
x1(t) +
x2(1)
()
4 x(1) = x1 (1) +x5(2)
3
20
________ 1 —
X 3 2 -1 o0 1 2 {
et B |
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Multiplications of CT Signals

x(1) = x1(t) X x2(1)

(a)

7/24/2024

oK |

(b)

-t -3 =2

Dr . Mahmoud Sawalha
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Table 1.2 Multiplication of two CT signals

t —3 -2 —1 0 1 2
x1(1) 0 | 2 2 0 0
X (1) 1 -2 2 1 3 0
x(f) = 0 2 —4 2 0 0
x1(t) x
x2(1)
+ x(1)=x(t) Xx,(1)
2
) -2 -1
—t i 0 1 t
] -2
—4
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Time Scaling of CT Signals

* The compression or expansion of a signal in time is known as time
scaling
(b)

4t
@ ) p x(41)

>
[

< o > < *
—t —3 0 2 t —¢ _3/4 02/4

x(at) is time compressed by a factor @ and x() is time expanded by a factor a.

7/24/2024 Dr . Mahmoud Sawalha
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Amplitude Scaling of CT Signals
b)

(

+ 3.)C(f) (C) @
(a) * x(1) 2
6
2 1
Z_11
| | T 0.5
__.3
< - * >
—t 0 1 2 t
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© s x(y)

<
—t —12

o
oo
~ v

Fig. 1.26 Time scaling of CT signals
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Time Shifting of CT Signals

DN

7/24/2024

Summary of Shifting of CT signal

. It x(¢) is given, then x (¢ + ¢;) is plotted by shifting x (¢) to the left by #,.
. It x(¢) is given, then x (¢ — £y) is plotted by shifting x (¢) to the right by #,.
. It x(—1t) is given, then x(—¢ — ¢y) is plotted by shifting x(—¢) to the left

by ly.

. It x(—1) is given, then x (—¢ + ) is plotted by shifting x (—¢) to the right by

lo.

. In general for x(¢ + #) and x(—¢ — £y) the time shift is made to the left of

x(t) and x(—t), respectively, by . For x(¢t — ty) and x(—¢ + £y) the time
shift is made to the right of x (¢) and x(—¢), respectively, by #,.
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(a)

4 u(r)
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(c)
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d (e)
@ u(—1) tu(—r—ty)
1 ———— 1
+ * 4 2
t 0 t —t —1y 0 t
(f)
tu(—r+1,)
]
-+ L
—1 U' fﬂ 1
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Signal Reflection or Folding

(a) (b)

*x(—1)

—t —3 0 2 t —t
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Inverted CT Signal

* The inverted signal —x(t) is obtained by inverting its amplitude. By this
the signal above the horizontal axis (time axis) comes below the axis

and vice versa.

(a)

(b)

A —x(t)

2




Multiple Transformation

Consider the following signal:

y(1) =Ax(_t_m)
a

The following sequence of transformation is followed:

1. y(¢) 1s written in the following form:

7/24/2024 Dr . Mahmoud Sawalha
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Plot x(7).

Plot Ax(¢) using amplitude scaling.

Plot Ax(—t) using time reversal.

Plot Ax(—t — %) by shifting Ax(—1) to the left by © (time shifting).
Plot Ax(—~ — ) by time expansion.

A

(a)

4 x(0)

—

-t =2 0 1
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B Example 1.3

Consider the signal y(t) = 5x(—3¢ + 1) where x(¢) 1s shown in Fig. 1.30a. Plot y(7)
and —y(7).

(a)
4 x(1)

-t =2 0 1 ¢

7/24/2024 Dr . Mahmoud Sawalha 51



Solution:
y(t) = 5x(—3t+ 1)

1. The given signal x(7) is represented in Fig. 1.30a.
2. The signal x(7) is amplitude scaled and plotted in Fig. 1.30b.

(b)

4 5x(t)

107
) / .
—t =2 0 1 t

Amplitude scaling
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3. 5x(—t) 1s obtained by folding 5x(r) in Fig. 1.30b and is plotted in

Fig. 1.30c.

7/24/2024

©) 4 5x(—1)
1 o

Time reversal
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4. S5x(—t) 1s time shifted by one unit to the right and Sx(—¢ + 1) is obtained and

shown in Fig. 1.30d.

(d)
4 5x(—t+1)

10

0 3
Time shifting

7/24/2024 Dr . Mahmoud Sawalha
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Sx(—t + 1) 1s time compressed by a factor 3 and Sx(—3¢ 4 1) is obtained. This
is shown in Fig. 1.30e.

€) 4 y(t) = Sx(—3t+1)

10

0 1 t

Time scaling
(compression)
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6. Sx(—3t+ 1) amplitude inverted to get —S5x(—3¢+ 1). This is shown in
Fig. 1.30f.

()

—10

v V(1) = —5x(—3t+1)

Amplitude inverted

7/24/2024 Dr . Mahmoud Sawalha
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B Example 1.4

Consider the signal
x(t) = rect(t)

!
Plot y(#) = Srect(52).

Solution:

X(1) = Otect =)

1. x(r) can be written as x(r) = Srect (§ — 2). The plot of rect(r) is shown in
Fig. 1.31a.
2. The time delayed (zyp = 3/4) signal 1s right shifted by 3/4 and with its amplitude
multiplied by 5 1s shown in Fig. 1.31b.
. The time shifted signal represented in step 2 is to be time expanded by a factor

4. This is shown in Fig. 1.31c as y(#) = Srect ‘3.

(OS]
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(a) t x()=rect(?) (b) 1 Srect(1—3/4)
1
hip 0 % : 5 0 % % e
. 3 —3
() Srect (% — T) =Srect (IT)
_______ 1
ir 0 1 5 r=
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B Example 1.5
For the signal shown in Fig. 1.32a, sketch

2

Solution:

x(t) 1s sketched as shown in Fig. 1.32a.

By time reversal x(—t) is obtained and sketched as shown in Fig. 1.32b.

By amplitude scaling and inversion —3x(#) is obtained and is shown in Fig. 1.32c.
The signal obtained in step 3 is right shifted by r = 1.5 and —3x(—¢ 4+ 1.5) is
shown in Fig. 1.32e.

5. By time scaling expanded by 3/2, we get —3x(—(2/3)t + 1.5) which is shown
in Fig. 1.32f.

BN =
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(a) (b)
+x() tx(=1
4 4
1
< —1 > « >
-t 0 3 t -t -3 0 1 t
-2
-2
(c) 4 —3x(— d
3= @ 4 —3x(—1+1.5)
6
6 _____
hPE— T e ,
o3 o 1 ha 15 0 15 257
-12
| —12
c
© 4 y(=—3x(=%1+1.5)
6 _____
hip 225 0 225 3751
\7_12

Fig. 1.32 Sketch of y(f) = —3x (-3¢ + 1.5)
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