Signals and systems

Chapter 1

Introduction

- Signals: represent some independent variables that contain some information about the behavior of some natural phenomenon.
- When these signals are operated on some objects, they give out signals in the same or modified form. These objects are called systems.

Definitions :

- Signal: A signal is defined as a physical phenomenon that carries some information or data.
- The signals are usually functions of independent variable time.
- There are some cases where the signals are not functions of time.
- The electrical charge distributed in a body is a signal which is a function of space and not time.
- System: A system is defined as the set of interconnected objects with a definite relationship between objects and attributes.
- The inter-connected components provide desired function.

Signals are broadly classified as follows:

- 1. Continuous Time signal (CT signal).
- 2. Discrete Time signal (DT signal).

Continuous time signal

- The signal that is specified for every value of time t is called continuous time signal
- denoted by x(t)

Discreet time signal

- The discrete time signal is represented as
- a sequence of numbers and is denoted by x[n] where n is an integer. Here time t is divided into n discrete time intervals.

A discrete time signal $x[n]$ is represented by the following two methods:

$$
x[n] = \begin{cases} \left(\frac{1}{a}\right)^n & n \ge 0\\ 0 & n < 0 \end{cases} \tag{1.1}
$$

Substituting various values of *n* where $n \ge 0$ in Eq. (1.1) the sequence for $x[n]$ which is denoted by $x\{n\}$ is written as follows:

$$
x[n] = \left\{1, \frac{1}{a}, \frac{1}{a^2}, \dots, \frac{1}{a^n}\right\}
$$

1.

2. The sequence is also represented as given below.

$$
x[n] = \{3, 2, 5, 4, 6, 8, 2\}
$$

The arrow indicates the value of $x[n]$ at $n = 0$ which is 5 in this case. The numbers to the left of the arrow indicate to the negative sequence $n = -1, -2$, etc. The numbers to the right of the arrow correspond to $n = 1, 2, 3, 4$, *etc.* Thus, for the above sequence, $x[-1] = 2$; $x[-2] = 3$; $x[0] = 5$; $x[1] = 4$; $x[2] = 6$; $x[3] = 8$ and $x[4] = 2$. If no arrow is marked for a sequence, the sequence starts from the first term in the extreme left. Consider the sequence

$$
x[n] = \{5, 3, 4, 2\}.
$$

Here, $x[0] = 5$; $x[1] = 3$; $x[2] = 4$ and $x[3] = 2$. There is no negative sequence here.

Example 1.1

Graphically represent the following sequence:

Example 1.2

Graphically represent the following sequence:

Basic Continuous Time Signals

• Unit Impulse Function

The unit impulse function is also known as **Dirac delta** function which is represented in Fig. 1.6. The unit impulse function is denoted as $\delta(t)$ and its mathematical description is given below. ϵ

$$
\delta(t) = \begin{cases} 0 & t \neq 0 \\ 1 & t = 0 \end{cases}
$$
 (1.2)

Importance of Impulse Function

- 1. By applying impulse signal to a system, one can get the impulse response of the system. From impulse response, it is possible to get the transfer function of the system.
- 2. For a linear time invariant system, if the area under the impulse response curve is finite, then the system is said to be stable.
- 3. From the impulse response of the system, one can easily get the step response and ramp response by integrating it once and twice, respectively.
- 4. Impulse signal is easy to generate and apply to any system.

Properties of Impulse Function

1.
$$
\delta(at) = \frac{1}{a}\delta(t)
$$

\n2.
$$
\delta(-t) = \delta(t)
$$

\n3.
$$
x(t)\delta(t) = x(0)\delta(t)
$$

\n4.
$$
x(t)\delta(t - t_0) = x(t_0)\delta(t - t_0)
$$

\n5.
$$
\int_{-\infty}^{\infty} \delta(t)dt = 1
$$

\n6.
$$
t\delta(t) = 0
$$

\n7.
$$
t \frac{d\delta(t)}{dt} = -\delta(t)
$$

\n8.
$$
x(t) * \delta(t - t_0) = x(t - t_0)
$$

The step function is denoted by $u(t)$. Any causal signal which begins at $t = 0$ (which has a value of zero for $t < 0$) is multiplied by the signal by $u(t)$. For example, a causal exponentially decaying signal e^{-at} $(t \ge 0)$ is represented as $x(t) = e^{-at}u(t)$. Similarly e^{-at} $(t < 0)$ is represented as $x(t) = e^{-at}u(-t)$.

Importance of Step Function

- 1-Step function is easy to generate and apply to the system.
- 2. By differentiating the step response, the impulse response can be obtained. By integrating the step response, the ramp response can be obtained.
- 3. Step signal is considered as a white noise which is drastic. If the system response is satisfactory for a step signal, it is likely to give a satisfactory response to other types of signals.
- 4. Application of step signal is equivalent to the application of numerous sinusoidal signals with a wide range of frequencies

Unit Ramp Function $r(t) = \begin{cases} t & t \geq 0 \\ 0 & t < 0 \end{cases}$

For a causal signal ($t \ge 0$), the ramp function can also be expressed as

Relationships between Impulse, Step and Ramp Signals

$$
\int u(t)dt = \int dt = t
$$

$$
\frac{du(t)}{dt} = \delta(t)
$$

$$
\frac{d^2r(t)}{dt^2} = \frac{du(t)}{dt} = \delta(t)
$$

$$
r(t) = \iint \delta(t) dt
$$

$$
\delta(t) \stackrel{\text{integrate}}{\longrightarrow} u(t) \stackrel{\text{integrate}}{\longrightarrow} r(t)
$$

$$
r(t) \xrightarrow{\text{differentiate}} u(t) \xrightarrow{\text{differentiate}} \delta(t)
$$

$$
\frac{dx(t)}{dt} = t \qquad t \ge 0.
$$

Step, ramp and parabolic functions are called singularity functions.

Unit Rectangular Pulse (or Gate) Function

$$
x(t) = \begin{cases} 1 & \text{for } |t| \leq \frac{T}{2} \\ 0 & \text{otherwise} \end{cases}
$$

The above equation is also written in the following form:

$$
x(t) = 1 \qquad -\frac{T}{2} \le t \le \frac{T}{2}
$$

The function is written as $x(t) = \text{rect}(\frac{t}{T})$.

The unit area triangular function is represented in Fig. 1.11. It is symbolically written as $x(t) = \text{tri}(t)$. It is defined as

$$
tri(t) = \begin{cases} [1 - |t|] & |t| \le 1 \\ 0 & |t| > 1 \end{cases}
$$
 (1.13)

The above equation can be written in the following form also:

 $\overline{}$

tri(t) = [1 + t]
$$
-1 \le t \le 0
$$

= [1 - t] $0 \le t \le 1$

The signum function is written in the abbreviated form as $sgn(t)$. It represents the characteristics of an ideal relay. This is shown in Fig. 1.12. It is defined by the following equations:

$$
sgn(t) = \begin{cases} 1 & t > 0 \\ 0 & t = 0 \\ -1 & t < 0 \end{cases}
$$
 (1.14)

Unit Sinc Function

The unit sinc function is represented in Fig. 1.13. It is defined as

$$
\operatorname{sinc}(t) = \frac{\sin \pi t}{\pi t} \qquad -\infty < t < \infty.
$$

Sinusoidal Signal

The sinusoidal signal is represented in Fig. 1.14. It is defined as

$$
x(t) = A\sin(\omega t - \phi)
$$

where $A =$ Peak amplitude, $\omega =$ radian frequency and $\phi =$ phase shift.

Real Exponential Signal

$$
x(t)=e^{st}
$$

where $s = \sigma + j\omega$ is a complex number. The signal $x(t)$ in Eq. (1.17) is called general complex exponential. Equation (1.17) is written in the following form:

$$
x(t) = e^{(\sigma + j\omega)t}
$$

= $e^{\sigma t} e^{j\omega t}$
= $e^{\sigma t} (\cos \omega t + j \sin \omega t)$ (1.18)

If $\omega = 0$,

Fig. 1.15 Representation of real exponential signals. a Growing exponential; b Decaying exponential

Equation (1.19) is real exponential. The plot of $x(t)$ with respect to t for $\sigma > 0$ and σ < 0 is shown in Fig. 1.15a and b, respectively. For $\sigma > 0$, the signal is exponentially growing and for $\sigma < 0$, it is exponentially decaying.

Complex Exponential Signal

 $x(t) = e^{-\sigma t}(\cos \omega t + j \sin \omega t)$

Fig. 1.16 Complex exponential signals. a Exponentially growing ($\sigma > 0$); b Exponentially decaying (σ < 0)

Basic Discrete Time Signals

The basic impulse sequence is shown in Fig. 1.17 . The unit impulse sequence also called sample is defined as

$$
\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases} \tag{1.20}
$$

 $\delta[n]$ is also called Kronicker delta function.

The Basic Unit Step Sequence

The basic unit step sequence is represented in Fig. 1.18. It is denoted by $u(n)$. It is defined as ϵ

$$
u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}
$$
 (1.21)

Any discrete sequences $x[n]$ for $n \ge 0$ is expressed as $x[n]u[n]$. For $n < 0$, it is expressed as $x[n]u[-n]$. It is be noted that at $n = 0$, the value of $u[n] = 1$.

The Basic Unit Ramp Sequence

Unit Rectangular Sequence

$$
rect[n] = \begin{cases} 1 & |n| \le N \\ 0 & |n| > N \end{cases}
$$

Sinusoidal Sequence

 $x[n] = Ae^{-\alpha n} \sin(\omega_0 n + \phi)$

- A purely sinusoidal sequence $(\alpha = 0)$.
- Decaying sinusoidal sequence $(\alpha > 0)$.
- Growing sinusoidal sequence $(\alpha < 0)$.

Fig. 1.21 Discrete time sinusoidal signal. a Purely sinusoidal; b Decaying sinusoidal; c Growing sinusoidal

Discrete Time Real Exponential Sequence

The general complex exponential sequence is defined as

$$
x[n] = A\alpha^n
$$

where A and α are in general complex numbers.

if A and α are real, the sequence is called real exponential.

- 1. Exponentially growing signal ($\alpha > 1$, Fig. 1.22a).
- 2. Exponentially decaying signal $(0 < \alpha < 1$, Fig. 1.22b).
- 3. Exponentially growing for alternate value of $n (\alpha < -1$, Fig. 1.22c).
- 4. Exponentially decaying for alternate value of $n(-1 < \alpha < 0$, Fig. 1.22d).

Basic Operations on Continuous Time Signals

Addition of CT Signals

Multiplications of CT Signals

 $x(t) = x_1(t) \times x_2(t)$

Table 1.2 Multiplication of two CT signals

Time Scaling of CT Signals

• The compression or expansion of a signal in time is known as time scaling

 $x(at)$ is time compressed by a factor a and $x(\frac{t}{a})$ is time expanded by a factor a.

Amplitude Scaling of CT Signals

Fig. 1.26 Time scaling of CT signals

Time Shifting of CT Signals

Summary of Shifting of CT signal

- 1. It $x(t)$ is given, then $x(t + t_0)$ is plotted by shifting $x(t)$ to the left by t_0 .
- 2. It $x(t)$ is given, then $x(t t_0)$ is plotted by shifting $x(t)$ to the right by t_0 .
- 3. It $x(-t)$ is given, then $x(-t t_0)$ is plotted by shifting $x(-t)$ to the left by t_0 .
- 4. It $x(-t)$ is given, then $x(-t + t_0)$ is plotted by shifting $x(-t)$ to the right by t_0 .
- 5. In general for $x(t + t_0)$ and $x(-t t_0)$ the time shift is made to the left of $x(t)$ and $x(-t)$, respectively, by t_0 . For $x(t - t_0)$ and $x(-t + t_0)$ the time shift is made to the right of $x(t)$ and $x(-t)$, respectively, by t_0 .

Signal Reflection or Folding

Inverted CT Signal

• The inverted signal −x(t) is obtained by inverting its amplitude. By this the signal above the horizontal axis (time axis) comes below the axis and vice versa.

Multiple Transformation

Consider the following signal:

$$
y(t) = Ax \left(\frac{-t - t_0}{a} \right)
$$

The following sequence of transformation is followed:

1. $y(t)$ is written in the following form:

$$
y(t) = Ax \left(-\frac{t}{a} - \frac{t_0}{a} \right)
$$

2. Plot $x(t)$.

- 3. Plot $Ax(t)$ using amplitude scaling.
- 4. Plot $Ax(-t)$ using time reversal.
- 5. Plot $Ax(-t \frac{t_0}{a})$ by shifting $Ax(-t)$ to the left by $\frac{t_0}{a}$ (time shifting).
- 6. Plot $Ax(-\frac{t}{a}-\frac{t_0}{a})$ by time expansion.

■ Example 1.3

Consider the signal $y(t) = 5x(-3t + 1)$ where $x(t)$ is shown in Fig. 1.30a. Plot $y(t)$ and $-y(t)$.

Solution:

$$
y(t) = 5x(-3t+1)
$$

- 1. The given signal $x(t)$ is represented in Fig. 1.30a.
- 2. The signal $x(t)$ is amplitude scaled and plotted in Fig. 1.30b.

3. $5x(-t)$ is obtained by folding $5x(t)$ in Fig. 1.30b and is plotted in Fig. 1.30c.

4. $5x(-t)$ is time shifted by one unit to the right and $5x(-t+1)$ is obtained and shown in Fig. 1.30d.

 $5x(-t+1)$ is time compressed by a factor 3 and $5x(-3t+1)$ is obtained. This is shown in Fig. 1.30e.

6. $5x(-3t+1)$ amplitude inverted to get $-5x(-3t+1)$. This is shown in Fig. 1.30f.

■ Example 1.4

Consider the signal

 $x(t) = \text{rect}(t)$

Plot $y(t) = 5 \text{rect}(\frac{t-3}{4})$.

Solution:

$$
x(t) = 5\text{rect}\frac{(t-3)}{4}
$$

- 1. $x(t)$ can be written as $x(t) = 5$ rect $(\frac{t}{3} \frac{3}{4})$. The plot of rect(*t*) is shown in Fig. 1.31a.
- 2. The time delayed ($t_0 = 3/4$) signal is right shifted by 3/4 and with its amplitude multiplied by 5 is shown in Fig. 1.31b.
- 3. The time shifted signal represented in step 2 is to be time expanded by a factor
- 4. This is shown in Fig. 1.31c as $y(t) = 5 \text{rect} \frac{(t-3)}{4}$.

■ Example 1.5

For the signal shown in Fig. $1.32a$, sketch

$$
y(t) = -3x\left(-\frac{2}{3}t + 1.5\right)
$$

Solution:

- 1. $x(t)$ is sketched as shown in Fig. 1.32a.
- 2. By time reversal $x(-t)$ is obtained and sketched as shown in Fig. 1.32b.
- 3. By amplitude scaling and inversion $-3x(t)$ is obtained and is shown in Fig. 1.32c.
- 4. The signal obtained in step 3 is right shifted by $t = 1.5$ and $-3x(-t + 1.5)$ is shown in Fig. $1.32e$.
- 5. By time scaling expanded by 3/2, we get $-3x(-(2/3)t + 1.5)$ which is shown in Fig. 1.32f.

