
CMPS161 Class Notes (Chap 07) Dr. Kuo-pao Yang Page 1 /23

Chapter 7

Single-Dimensional Arrays

7.1 Introduction

• Array is a data structure that stores a fixed-size sequential collection of elements of the same

types.

7.2 Array Basics

• An array is used to store a collection of data, but it is often more useful to think of an array as

a collection of variables of the same type.

• This section introduces how to declare array variables, create arrays, and process arrays

7.2.1 Declaring Array Variables

• Here is the syntax for declaring an array variable:

dataType[] arrayRefVar;

• The following code snippets are examples of this syntax:

double [] myList;

7.2.2 Creating Arrays

• Declaration of an array variable doesn’t allocate any space in memory for the array.

• Only a storage location for the reference to an array is created.

• If a variable doesn’t reference to an array, the value of the variable is null.

• You can create an array by using the new operator with the following syntax:

arrayRefVar = new dataType[arraySize];

• This element does two things:

1) It creates an array using new dataType[arraySize];

2) It assigns the reference of the newly created array to the variable arrayRefVar.

• Declaring an array variable, creating an array, and assigning the reference of the array to the

variable can be combined in one statement, as follows:

dataType[]arrayRefVar = new dataType[arraySize];

CMPS161 Class Notes (Chap 07) Dr. Kuo-pao Yang Page 2 /23

• Here is an example of such a statement

double[] myList = new double[10];

FIGURE 7.1 The array myList has ten elements of double type and int indices from 0 to 9.

• This statement declares an array variable, myList, creates an array of ten elements of double

type, and assigns its reference to myList.

NOTE

• An array variable that appears to hold an array actually contains a reference to that array.

Strictly speaking, an array variable and an array are different.

7.2.3 Array Size and Default values

• When space for an array is allocated, the array size must be given, to specify the number of

elements that can be stored in it.

• The size of an array cannot be changed after the array is created.

• Size can be obtained using arrayRefVar.length. For example, myList.length is 10.

• When an array is created, its elements are assigned the default value of 0 for the numeric

primitive data types, ‘\u0000’ for char types, and false for Boolean types.

5.6

4.5

3.3

13.2

4

34.33

34

45.45

99.993

11123

double[] myList = new double[10];

myList reference
myList[0]

myList[1]

myList[2]

myList[3]

myList[4]

myList[5]

myList[6]

myList[7]

myList[8]

myList[9]

Element value

Array reference

variable

Array element at

index 5

CMPS161 Class Notes (Chap 07) Dr. Kuo-pao Yang Page 3 /23

7.2.4 Accessing Array Elements

• The array elements are accessed through an index.

• The array indices are 0-based, they start from 0 to arrayRefVar.length-1.

• In the example, myList holds ten double values and the indices from 0 to 9. The element

myList[9] represents the last element in the array.

• After an array is created, an indexed variable can be used in the same way as a regular

variable. For example:

myList[2] = myList[0] + myList[1]; //adds the values of the 1st and 2nd

elements into the 3rd one

for (int i = 0; i < myList.length; i++) // the loop assigns 0 to myList[0]

 myList[i] = i; // 1 to myList[1] .. and 9 to myList[9]

7.2.5 Array Initializers

• Java has a shorthand notation, known as the array initializer that combines declaring an

array, creating an array and initializing it at the same time.

double[] myList = {1.9, 2.9, 3.4, 3.5};

• This shorthand notation is equivalent to the following statements:

double[] myList = new double[4];

myList[0] = 1.9;

myList[1] = 2.9;

myList[2] = 3.4;

myList[3] = 3.5;

Caution

• Using the shorthand notation, you have to declare, create, and initialize the array all in one

statement. Splitting it would cause a syntax error. For example, the following is wrong:

double[] myList;

myList = {1.9, 2.9, 3.4, 3.5};

CMPS161 Class Notes (Chap 07) Dr. Kuo-pao Yang Page 4 /23

7.2.6 Processing Arrays

• When processing array elements, you will often use a for loop. Here are the reasons why:

1) All of the elements in an array are of the same type. They are evenly processed in the

same fashion by repeatedly using a loop.

2) Since the size of the array is known, it is natural to use a for loop.

• Here are some examples of processing arrays (Page 173):

o (Initializing arrays)

o (Printing arrays)

o (Summing all elements)

o (Finding the largest element)

o (Finding the smallest index of the largest element)

7.2.7 Foreach Loops

• JDK 1.5 introduced a new for loop that enables you to traverse the complete array

sequentially without using an index variable. For example, the following code displays all

elements in the array myList:

for (double u: myList)

 System.out.println(u);

o In general, the syntax is

for (elementType element: arrayRefVar) {

 // Process the value

}

o You still have to use an index variable if you wish to traverse the array in a different

order or change the elements in the array.

CMPS161 Class Notes (Chap 07) Dr. Kuo-pao Yang Page 5 /23

7.3 Case Study: Analyzing Numbers

• Read the numbers of user inputs, compute their average, and find out how many numbers are

above the average.

LISTING 7.1 AnalyzeNumbers.java

public class AnalyzeNumbers {

 public static void main(String[] args) {

 java.util.Scanner input = new java.util.Scanner(System.in);

 System.out.print("Enter the numbers of items: ");

 int n = input.nextInt();

 double[] numbers = new double[n];

 double sum = 0;

 System.out.print("Enter the numbers: ");

 for (int i = 0; i < n; i++) {

 numbers[i] = input.nextDouble();

 sum += numbers[i];

 }

 double average = sum / n;

 int count = 0; // The numbers of elements above average

 for (int i = 0; i < n; i++)

 if (numbers[i] > average)

 count++;

 System.out.println("Average is " + average);

 System.out.println("Number of elements above the average is "

 + count);

 }

}

Enter the numbers of items: 10

Enter the numbers: 3.4 5 6 1 6.5 7.8 3.5 8.5 6.3 9.5

Average is 5.75

Number of elements above the average is 6

CMPS161 Class Notes (Chap 07) Dr. Kuo-pao Yang Page 6 /23

7.4 Case Study: Deck of Cards

• The problem is to write a program that picks four cards randomly from a deck of 52 cards.

All the cards can be represented using an array named deck, filled with initial values 0 to 52,

as follows:

int[] deck = new int[52];

// Initialize cards

for (int i = 0; i < deck.length; i++)

 deck[i] = i;

LISTING 7.2 DeckOfCards.java

public class DeckOfCards {

 public static void main(String[] args) {

 int[] deck = new int[52];

 String[] suits = {"Spades", "Hearts", "Diamonds", "Clubs"};

 String[] ranks = {"Ace", "2", "3", "4", "5", "6", "7", "8", "9",

 "10", "Jack", "Queen", "King"};

 // Initialize cards

 for (int i = 0; i < deck.length; i++)

 deck[i] = i;

 // Shuffle the cards

 for (int i = 0; i < deck.length; i++) {

 // Generate an index randomly

 int index = (int)(Math.random() * deck.length);

 int temp = deck[i];

 deck[i] = deck[index];

 deck[index] = temp;

 }

 // Display the first four cards

 for (int i = 0; i < 4; i++) {

 String suit = suits[deck[i] / 13];

 String rank = ranks[deck[i] % 13];

 System.out.println("Card number " + deck[i] + ": "

 + rank + " of " + suit);

 }

 }

}

Card number 6: 7 of Spades

Card number 48: 10 of Clubs

Card number 11: Queen of Spades

Card number 24: Queen of Hearts

CMPS161 Class Notes (Chap 07) Dr. Kuo-pao Yang Page 7 /23

7.5 Copying Arrays

• Often, in a program, you need to duplicate an array or a part of an array. In such cases you

could attempt to use the assignment statement (=), as follows:

list2 = list1;

• This statement does not copy the contents of the array referenced by list1 to list2, but merely

copies the reference value from list1 to list2. After this statement, list1 and list2 reference to

the same array, as shown below.

FIGURE 7.4 Before the assignment, list1 and list2 point to separate memory locations. After the

assignments the reference of the list1 array is passed to list2

• The array previously referenced by list2 is no longer referenced; it becomes garbage,

which will be automatically collected by the Java Virtual Machine.

• You can use assignment statements to copy primitive data type variables, but not arrays.

• Assigning one array variable to another variable actually copies one reference to another and

makes both variables point to the same memory location.

Contents

of list1

list1

Contents

of list2

list2

Before the assignment

list2 = list1;

Contents

of list1

list1

Contents

of list2

list2

After the assignment

list2 = list1;

Garbage

CMPS161 Class Notes (Chap 07) Dr. Kuo-pao Yang Page 8 /23

• There are three ways to copy arrays:

o Use a loop to copy individual elements.

o Use the static arraycopy method in the System class.

o Use the clone method to copy arrays. “Introduced in chapter 9.”

• Using a loop:

int[] sourceArray = {2, 3, 1, 5, 10};

int[] targetArray = new int[sourceArray.length];

for (int i = 0; i < sourceArrays.length; i++)

 targetArray[i] = sourceArray[i];

• The arraycopy method:

arraycopy(sourceArray, src_pos, targetArray, tar_pos, length);

Example:

System.arraycopy(sourceArray, 0, targetArray, 0, sourceArray.length);

• The number of elements copied from sourceArray to targetArray is indicated by length.

• The arraycopy does not allocate memory space for the target array. The target array must

have already been created with its memory space allocated.

• After the copying take place, targetArray and sourceArray have the same content but

independent memory locations.

CMPS161 Class Notes (Chap 07) Dr. Kuo-pao Yang Page 9 /23

7.6 Passing Arrays to Methods

• The following method displays the elements of an int array:

public static void printArray(int[] array) {

 for (int i = 0; i < array.length; i++) {

 System.out.print(array[i] + " ");

 }

}

The following invokes the method to display 3, 1, 2, 6, 4, and 2.

int[] list = {3, 1, 2, 6, 4, 2};

printArray(list);

printArray(new int[]{3, 1, 2, 6, 4, 2});

// anonymous array; no explicit reference variable for the array

• Java uses pass by value to pass arguments to a method. There are important differences

between passing the values of variables of primitive data types and passing arrays.

• For an argument of a primitive type, the argument’s value is passed.

• For an argument of an array type, the value of an argument contains a reference to an array;

this reference is passed to the method.

public class Test {

 public static void main(String[] args) {

 int x = 1; // x represents an int value

 int[] y = new int[10]; // y represents an array of int values

 m(x, y); // Invoke m with arguments x and y

 System.out.println("x is " + x);

 System.out.println("y[0] is " + y[0]);

 }

 public static void m(int number, int[] numbers) {

 number = 1001; // Assign a new value to number

 numbers[0] = 5555; // Assign a new value to numbers[0]

 }

}

• y and numbers reference to the same array, although y and numbers are independent

variables.

• When invoking m(x, y), the values of x and y are passed to number and numbers.

• Since y contains the reference value to the array, numbers now contains the same reference

value to the same array.

x is 1

y[0] is 5555

