e The JVM stores the array in an area of memory called heap, which is used by dynamic
memory allocation where blocks of memory are allocated and freed in an arbitrary order.

Stack

Space required for
method m

int[] numbersireference

int number: 1 ¢ - = =

Space required for the
main method

int] y: feference™-

iNtX: 1 ccceeeas

/

\

Heap

The arrays are
stored in a
heap.

FIGURE 7.5 The primitive type value in x is passed to number, and the reference value iny is

CMPS161 Class Notes (Chap 07)

passed to numbers

Page 10 /23

Dr. Kuo-pao Yang

LISTING 7.3 TestPassArray: Passing Arrays as Arguments

e For a parameter of an array type, the value of the parameter contains a reference to an array;
this reference is passed to the method. Any changes to the array that occur inside the method

body will affect the original array that was passed as the argument.

e Example: write two methods for swapping elements in an array. The first method, named
swap, fails to swap two int arguments. The second method, named swapFirstTwolnArray,

successfully swaps the first two elements in the array argument.

public class TestPassArray {
/** Main method */
public static void main(String[] args) {
int[] a = {1, 2};

// Swap elements using the swap method
System.out.println ("Before invoking swap");

System.out.println("array is {" + a[0] + ", " + a[l] + "}");

swap (a[0], afll]);
System.out.println ("After invoking swap");

System.out.println("array is {" + a[0] + ", " 4+ af[l] + "}");

// Swap elements using the swapFirstTwoInArray method

System.out.println ("Before invoking swapFirstTwoInArray");
System.out.println("array is {" + a[0] + ", " + a[l] + "}");

swapFirstTwoInArray (a) ;

System.out.println ("After invoking swapFirstTwoInArray");
System.out.println("array is {" + a[0] + ", " + af[l] + "}");

}

/** Swap two variables */

public static void swap(int nl, int n2) {
int temp = nl;
nl = n2;
nz2 = temp;

}

/** Swap the first two elements in the array */

public static void swapFirstTwoInArray (int[] array) {
int temp = array[0];
array[0] = array[l];
array[l] = temp;

}

Before invoking swap

array is {1, 2}

After invoking swap

array is {1, 2}

Before invoking swapFirstTwoInArray
array is {1, 2}

After invoking swapFirstTwoInArray
array is {2, 1}

CMPS161 Class Notes (Chap 07) Page 11 /23

Dr. Kuo-pao Yang

e The first method doesn’t work. The two elements are not swapped using the swap method.

e The second method works. The two elements are actually swapped using the
swapFirstTwolnArray method.

e Since the arguments in the first method are primitive type, the values of a[0] and a[1] are
passed to n1 and n2 inside the method when invoking swap(a[0], a[1]).

e The memory locations for nl and n2 are independent of the ones for a[0] and a[1].

e The contents of the array are not affected by this call.

Stack Heap Stack
_ Space required for the
Space required for the swapFirstTwolnArray
swap method method
n2:2 i int[] array [reference |-~
ni: -4 !
i e :
Space required for the Lo Space required for the |
main method Vo main method l
int[] a freference F———Prrrr o€ int[] a [reference } -{--!
N -a[0]: 1 l
Invoke swap(int n1, int n2). Invoke swapFirstTwolnArray(int[] array).
The primitive type values in The arrays are The reference value in a is passed to the
a[0] and a[1] are passed to the stored ina swapFirstTwolnArray method.
swap method. heap.

FIGURE 7.6 When passing an array to a method, the reference of the array is passed
to the method.

= The parameter in the swapFirstTwoInArray method is an array.

= Asshown above, the reference of the array is passed to the method.

= Thus the variables a (outside the method) and array (inside the method) both refer to the
same array in the same memory location.

e Therefore, swapping array[0] with array[1] inside the method swapFirstTwoInArray IS the
same as swapping a[0] with a[1] outside of the method.

CMPS161 Class Notes (Chap 07) Page 12 /23 Dr. Kuo-pao Yang

7.7 Returning an Array from a Method

e You can pass arrays to invoke a method. A method may also return an array.
e For example, the method below returns an array that is the reversal of another array:

public static int[] reverse(int[] list) {
int[] result = new int[list.length]; // creates new array result
for (int i = 0, j = result.length - 1; // copies elements from array
i < list.length; i++, j--) { // list to array result

result([j] = list[i];
}

return result;

}

e The following statement returns a new array list2 with elements 6, 5, 4, 3, 2, 1:

int[] listl = new int[]{1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl):;

CMPS161 Class Notes (Chap 07) Page 13 /23 Dr. Kuo-pao Yang

7.8 Case Study: Counting the Occurrences of Each Letters

e Generate 100 lowercase letters randomly and assign to an array of characters.
e Count the occurrence of each letter in the array.

LISTING 7.4 CountLettersinArray.java

/* Output
The lowercase letters are:
envevns fwxiubxwvwmyvVv
hocjddytbecpwwghewdu
vtgpcdkgmvijoknuxwfchb
ppnztxfemoggnoyylDbshb
hfahteifahfxlevyvuiwvg
The occurrences of each letter are:
2ab5bdciddTe6f3 gb5h3i2j
2k213mb5n404p3g0r2sidct
4 u’l7v8wbHxbylz

*/

public class CountLettersInArray {

public static void main(String argsl[]) {

char[] chars = createArray()

System.out.println ("The lowercase letters are:");
displayArray (chars) ;

int[] counts = countLetters (chars);

System.out.println();
System.out.println ("The occurrences of each letter are:");
displayCounts (counts) ;

public static char[] createArray () {

char[] chars = new char[100];

for (int i 0; 1 < chars.length; i++)
chars[i] = RandomCharacter.getRandomLowerCaseletter () ;

return chars;

CMPS161 Class Notes (Chap 07) Page 14 /23 Dr. Kuo-pao Yang

public static wvoid displayArray(char[] chars) {

for (int 1 = 0; 1 < chars.length; i++) {

if ((1 + 1) % 20 == 0)
System.out.println(chars([i] + " ");
else

System.out.print (chars[i] + " "),

public static int[] countLetters (char[] chars) {
int[] counts = new int[26];
for (int 1 = 0; 1 < chars.length; i++)
counts[chars[i] - 'a']++;

return counts;

}

public static void displayCounts (int[] counts) {
for (int i = 0; i1 < counts.length; i++) {
if ((1 + 1) % 10 == 0)
System.out.println(counts[i] + " " + (char) (i + 'a'"));
else
System.out.print (counts[i] + " " + (char) (i + 'a') + " ");
}
}
}
(A) Executing (B) After exiting
createArray in Line 5 createArray in Line 5
Stack Heap Stack Heap

Space required for the
createArray method / Array of 100 ﬁArray of 100

char[] chars: ref characters characters
Space required for the Space required for the
main method main method

char[] chars: ref char[] chars: ref

FIGURE 7.8 (a) An array of 100 characters is created when executing createArray. (b) This array
is returned and assigned to the variable chars in the main method

CMPS161 Class Notes (Chap 07) Page 15 /23 Dr. Kuo-pao Yang

7.9 Variable-Length Argument Lists

e A variable number of arguments of the same type can be passed to a method and treated as
an array.

TypeName.. parameterName

LISTING 7.5 VarArgsDemo.java

public class VarArgsDemo {
public static void main(String argsl[]) {
printMax (34, 3, 3, 2, 56.5);
printMax (new double[]{1l, 2, 3}):;
}

public static void printMax (double... numbers) {
if (numbers.length == 0) {
System.out.println ("No argument passed");
return;
}
double result = numbers[0];
for (int 1 = 1; i1 < numbers.length; i++)

if (numbers([i] > result)
result = numbers[i];

System.out.println ("The max value is " + result);

The max value is 56.5
The max value is 3.0

CMPS161 Class Notes (Chap 07) Page 16 /23 Dr. Kuo-pao Yang

7.10 Searching Arrays

e Searching is the process of looking for a specific element in an array; for example,
discovering whether a certain score is included in a list of scores. Searching is a common
task in computer programming.

e There are many algorithms and data structures devoted to searching. In this section, two
commonly used approaches are discussed, linear search and binary search.

7.10.1 The Linear Search Approach

e The linear search approach compares the key element, key, sequentially with each element in
the array list. The method continues to do so until the key matches an element in the list or
the list is exhausted without a match being found.

e If a match is made, the linear search returns the index of the element in the array that matches
the key. If no match is found, the search returns -1.

[0] [1] [2] ...
list [| | | | 1 |

key Compare key with list[i] fori=0, 1, ...

public class LinearSearch {
/** The method for finding a key in the list */

public static int linearSearch(int[] list, int key) {
for (int i = 0; i1 < list.length; i++)
if (key == list[i])

return 1i;
return -1;
}
}

e The linear search method compares the key with each element in the array.
int[] list = {1, 4, 4, 2, 5, -3, 6, 2};
int i = LinearSearch.linearSearch(list, 4)
int j LinearSearch.linearSearch(list, -4
int k LinearSearch.linearSearch(list, -3);

; // Returns 1
y; // Returns -1
y; // Returns 5

CMPS161 Class Notes (Chap 07) Page 17 /23 Dr. Kuo-pao Yang

7.10.2 The Binary Search Approach

For binary search to work, the elements in the array must already be ordered. Without loss of
generality, assume that the array is in ascending order.

2471011455059 606669 7079

The binary search first compares the key with the element in the middle of the array.

o If the key is less than the middle element, you only need to search the key in the first half
of the array.

o If the key is equal to the middle element, the search ends with a match.

o If the key is greater than the middle element, you only need to search the key in the
second half of the array.

The binarySearch method returns the index of the element in the list that matches the search

key if it is contained in the list. Otherwise, it returns

-insertion point - 1.

o The insertion point is the point at which the key would be inserted into the list.

keyis 11 Tow mid high
Y Y Y
key <50 (0] (11 [21 [3] [41 [5] [6] [7] [8] [o] [10] [t1] [12]
list 2 4 7 10 11 45 50 59 60 66 69 70 79]
Tow mid high
Y Y Y
(0] 11 21 [B] [41 [5]
key > 7 list [2 4 7 10 11 45
Tow mid high
A
31 4] [5]
key ==11 list | 10 11 45 |

FIGURE 7.9 Binary search eliminates half of the list from further consideration after each
comparison.

CMPS161 Class Notes (Chap 07) Page 18 /23 Dr. Kuo-pao Yang

LISTING 7.7 BinarySearch.java

public class BinarySearch ({
/** Use binary search to find the key in the list */
public static int binarySearch(int[] list, int key) {
int low = 0;
int high = list.length - 1;

while (high >= low) ({
int mid = (low + high) / 2;
if (key < list[mid])
high = mid - 1;

else if (key == list[mid])
return mid;
else

low = mid + 1;

}

return -low - 1; // Now high < low

e To better understand this method, trace it with the following statements and identify low and
high when the method returns.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};
int 1 = BinarySearch.binarySearch(list, 2); // Returns 0

int j = BinarySearch.binarySearch(list, 11); // Returns 4

int k = BinarySearch.binarySearch(list, 12); // Returns -6

int 1 = BinarySearch.binarySearch(list, 1); // Returns -1

int m = BinarySearch.binarySearch (list, 3); // Returns -2
Method High Value Returned

binarySearch(list, 11) 5 4
binarySearch(list, 12) 4 -6
binarySearch(list, 1) -1 -1

Low
binarySearch(list, 2) 0 1 0

3

5

0
binarySearch(list, 3) 1 0 -2

CMPS161 Class Notes (Chap 07) Page 19 /23 Dr. Kuo-pao Yang

7.11 Sorting Arrays

e Sorting, like searching, is also a common task in computer programming. Many different
algorithms have been developed for sorting. This section introduces a simple, intuitive

sorting algorithms: selection sort.

e Selection sort finds the smallest number in the list and places it first. It then finds the
smallest number remaining and places it second, and so on until the list contains only a single

number.

Select 1 (the smallest) and swap it
with 2 (the first) in the list.

The number 1 is now in the
correct position and thus no
longer needs to be considered.

The number 2 is now in the
correct position and thus no
longer needs to be considered.

The number 4 is now in the
correct position and thus no
longer needs to be considered.

The number 5 is now in the
correct position and thus no
longer needs to be considered.

The number 6 is now in the
correct position and thus no
longer needs to be considered.

The number 8 is now in the
correct position and thus no
longer needs to be considered.

swap

1)

9 5 4 8 1 6
swap
t 5 4 8 g 6
swap

Select 2 (the smallest) and swap it
with 9 (the first) in the remaining
list.

Select 4 (the smallest) and swap it
with 5 (the first) in the remaining
list.

5 is the smallest and in the right
position. No swap is necessary.

Select 6 (the smallest) and swap it
with 8 (the first) in the remaining
list.

Select 8 (the smallest) and swap it
with 9 (the first) in the remaining
list.

Since there is only one element
remaining in the list, the sort is
completed.

FIGURE 7.11 Selection sort repeatedly selects the smallest number and swaps it with the first

CMPS161 Class Notes (Chap 07)

number in the list.

Page 20 /23

Dr. Kuo-pao Yang

LISTING 7.8 SelectionSort.java

public class SelectionSort {
/** The method for sorting the numbers */
public static void selectionSort (double[] list) {
for (int i = 0; i1 < list.length - 1; i++) {
// Find the minimum in the list[i..list.length-1]
double currentMin = list[i];
int currentMinIndex = i;

for (int j =41 + 1; j < list.length; j++) {
if (currentMin > list[j]) {
currentMin = list[j];
currentMinIndex = j;
}
}

// Swap list[i] with list[currentMinIndex] if necessary;

if (currentMinIndex != 1) {
list[currentMinIndex] = list[i];
list[i] = currentMin;

}

e To understand this method better, trace it with the following statements:

double[] list = {1, 9, 4.5, 6.6, 5.7, -4.5};
SelectionSort.selectionSort (list);

-4.5 1.0 4.5 5.7 6.6 9.0

CMPS161 Class Notes (Chap 07) Page 21 /23 Dr. Kuo-pao Yang

7.12 The Array Class

e The Arrays.binarySearch Method: Since binary search is frequently used in programming,
Java provides several overloaded binarySearch methods for searching a key in an array of int,
double, char, short, long, and float in the java.util.Arrays class. For example, the following
code searches the keys in an array of numbers and an array of characters.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};

System.out.println("Index is " +
java.util.Arrays.binarySearch (list, 11)); // Return is 4
Index is 4

char[] chars = {'a', 'c¢', 'g', 'x', 'y', 'z'};

System.out.println("Index is " +

java.util.Arrays.binarySearch (chars, 't'));
// Return is -4 insertion point is 3, so return is -3-1)

Index is -4

o For the binarySearch method to work, the array must be pre-sorted in increasing order.

e The Arrays.sort Method: Since sorting is frequently used in programming, Java provides
several overloaded sort methods for sorting an array of int, double, char, short, long, and float
in the java.util.Arrays class. For example, the following code sorts an array of numbers and
an array of characters.

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};
jJava.util.Arrays.sort (numbers) ;

1.9 2.9 3.4 3.5 4.4 6.0

char[] chars = {'a', 'A', '4', 'F', 'D', 'P'};
java.util.Arrays.sort (chars) ;

4 ADFPa

CMPS161 Class Notes (Chap 07) Page 22 /23 Dr. Kuo-pao Yang

7.13 Command-Line Arguments

e The main method can receive string arguments from the command line.
e In the main method, get the arguments from args[0], args[1], ..., args[n], which corresponds
to arg0, argl, ..., argn in the command line.

java Calculator 2 + 3

LISTING 7.9 Calculator.java

e Problem: Write a program that will perform binary operations on integers. The program
receives three parameters: an operator and two integers.

public class Calculator {
public static void main(Stringl[] args) {

if (args.length != 3) {
System.out.println (
"Usage: java Calculator operandl operator operand2");
System.exit (0);
}

int result = 0;

switch (args[l].charAt(0)) {
case '"+': result = Integer.parselnt(args[0]) +
Integer.parselnt (args([2]);

break;
case '-': result = Integer.parselnt(args[0]) -
Integer.parselnt (args([2]);
break;
case '".': result = Integer.parselnt(args[0]) *
Integer.parselnt (args([2]);
break;
case '/': result = Integer.parselnt(args([0]) /
Integer.parselnt (args([2]);
}
System.out.println(args[0] + ' ' + args[l] + ' ' + args[2]
+ " " 4+ result);
} } BN CA\Windows\system32homd.exe |ﬂlﬂ—hj

C-~book>java Calculator 445
8

45 + 56 = 181

BC=“~book>java Calculator 45 ||
45 — S6 = —11

C-~book>java Calculator 45
45 . 56 = 2528

C:\hook)_jaga Calculator <45

CMPS161 Class Notes (Chap 07) Page 23 /23 Dr. Kuo-pao Yang

