7.5.3 Checkers

As a final example for this chapter, we'll look at a more substantial example of using a
2D array. This is the longest program that we have encountered so far, with 745 lines
of code. The program lets two users play checkers against each other. The checkers
game is played on an eight-by-eight board, which is based on an example

from Subsection 6.5.1. The players are called "red" and "black," after the color of
their checkers. I'm not going to explain the rules of checkers here; possibly you can
learn them by trying out the program.

In the program, a player moves by clicking on the piece that they want to move, and
then clicking on the empty square to which it is to be moved. As an aid to the players,
any square that the current player can legally click at a given time is highlighted with
a brightly colored border. The square containing a piece that has been selected to be
moved, if any, is surrounded by a yellow border. Other pieces that can legally be
moved are surrounded by a cyan-colored border. If a piece has already been selected
to be moved, each empty square that it can legally move to is highlighted with a green
border. The game enforces the rule that if the current player can jump one of the
opponent's pieces, then the player must jump. When a player's piece becomes a king,
by reaching the opposite end of the board, a big white "K" is drawn on the piece. Here
is a picture of the program early in a game. It is black's turn to move. Black has
selected the piece in the yellow-outlined square to be moved. Black can click one of
the squares outlined in green to complete the move, or can click one of the squares
outlined in cyan to select a different piece to be moved.

BLACK: Make your move.

I will only cover a part of the programming for this example. I encourage you to read
the complete source code, Checkers.java. It's long and complex, but with some study,
you should understand all the techniques that it uses. The program is a good example
of state-based, event-driven, object-oriented programming.

The data about the pieces on the board are stored in a two-dimensional array. Because
of the complexity of the program, I wanted to divide it into several classes. In addition
to the main class, there are several nested classes. One of these classes

is CheckersData, which handles the data for the board. It is not directly responsible
for any part of the graphics or event-handling, but it provides methods that can be
called by other classes that handle graphics and events. It is mainly this class that I
want to talk about.

The CheckersData class has an instance variable named board of type int [] [].
The value of board is set to "new int [8] [8]", an 8-by-8 grid of integers. The
values stored in the grid are defined as constants representing the possible contents of
a square on a checkerboard:

static final int

EMPTY = O, // Value representing an empty square.
RED = 1, // A regular red piece.

RED KING = 2, // A red king.

BLACK = 3, // A regular black piece.

BLACK KING = 4; // A black king.

The constants RED and BLACK are also used in my program (or, perhaps, misused) to
represent the two players in the game. When a game is started, the values in the array
are set to represent the initial state of the board. The grid of values looks like

0 1 2 3 4 5 6 7

BLACK EMFIY BLACK EMFPFTY BLACK EMPTY BLACK EMFPTY
EMPTY BLACK EMPTY BLACK EMPTY BLACK EMPTY BLACK
BLACK EMPTY BLACK EMPTY BLACK EMPTY BLACK EMPTY

EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY

=] @ U = W R =D

EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMFPTY EMPTY
EMPTY RED EMFTY RED EMFPTY RED EMFTY RED
RED EMFIY RED EMPFTY RED EMPTY RED EMPTY
EMPTY RED EMPTY RED EMPTY RED EMPTY RED

A regular black piece can only move "down" the grid. That is, the row number of the
square it moves to must be greater than the row number of the square it comes from.
A regular red piece can only move up the grid. Kings of either color can move in both
directions.

One function of the CheckersData class is to take care of changes to the data
structures that need to be made when one of the users moves a checker. An instance
method named makeMove () is provided to do this. When a player moves a piece
from one square to another, the values of two elements in the array are changed. But
that's not all. If the move is a jump, then the piece that was jumped is removed from
the board. (The method checks whether the move is a jump by checking if the square
to which the piece is moving is two rows away from the square where it starts.)
Furthermore, a RED piece that moves to row 0 or a BLACK piece that moves to row 7
becomes a king. Putting all that into a subroutine is good programming: the rest of the
program doesn't have to worry about any of these details. It just calls

this makeMove () method:

*

* Make the move from (fromRow,fromCol) to (toRow,toCol). It is
* ASSUMED that this move is legal! If the move is a jump, the
* Jumped piece is removed from the board. If a piece moves

* to the last row on the opponent's side of the board, the

* piece becomes a king.

Yy

void makeMove (int fromRow, int fromCol, int toRow, int toCol) {

board[toRow] [toCol] = board[fromRow] [fromCol]; // Move the piece.
board[fromRow] [fromCol] = EMPTY; // The square it moved from is now
empty.
if (fromRow - toRow == 2 || fromRow - toRow == -2) {
// The move is a jump. Remove the jumped piece from the
board.
int jumpRow = (fromRow + toRow) / 2; // Row of the jumped piece.
int jumpCol = (fromCol + toCol) / 2; // Column of the jumped
piece.
board[jumpRow] [jumpCol] = EMPTY;
}
if (toRow == 0 && board|[toRow] [toCol] == RED)
board[toRow] [toCol] = RED KING; // Red piece becomes a king.
if (toRow == 7 && board|[toRow] [toCol] == BLACK)

board|[toRow] [toCol]
king.

BLACK KING; // Black piece becomes a

} // end makeMove ()

An even more important function of the CheckersData class is to find legal moves on
the board. In my program, a move in a Checkers game is represented by an object
belonging to the following class:

*

/
A CheckersMove object represents a move in the game of
Checkers. It holds the row and column of the piece that is
to be moved and the row and column of the square to which
it is to be moved. (This class makes no guarantee that

* the move is legal.)

*/

private static class CheckersMove {

X % ok X ot

int fromRow, fromCol;
int toRow, toCol;

// Position of piece to be moved.
// Square it is to move to.

CheckersMove (int rl,
// Constructor.
fromRow = rl;
fromCol el
toRow = r2;
toCol = c2;

int cl, int r2, int c2) {
Set the values of the instance variables.

}

boolean

//

isJump () |

Test whether this move is a jump. It is assumed that

// the move is legal. In a jump, the piece moves two
// rows. (In a regular move, it only moves one row.)
return (fromRow - toRow == 2 || fromRow - toRow == -2);

}

} // end class CheckersMove.

The CheckersData class has an instance method which finds all the legal moves that
are currently available for a specified player. This method is a function that returns an
array of type CheckersMove []. The array contains all the legal moves, represented
as CheckersMove objects. The specification for this method reads

*

/

Return an array containing all the legal CheckersMoves

for the specified player on the current board.

If the player

has no legal moves,

null is returned.

The value of player

should be one of the constants RED or BLACK;

if not, null

is returned.

If the returned value is non-null,

it consists

b S R S S

entirely of jump moves or entirely of regular moves, since
* if the player can jump, only jumps are legal moves.
*/

CheckersMove[] getlLegalMoves (int player)

A brief pseudocode algorithm for the method 1s

Start with an empty list of moves

Find any legal jumps and add them to the list
if there are no jumps:
Find any other legal moves and add them to the list
if the list is empty:
return null
else:
return the list

Now, what is this "list"? We have to return the legal moves in an array. But since an
array has a fixed size, we can't create the array until we know how many moves there
are, and we don't know that until near the end of the method, after we've already made
the list! A neat solution is to use an ArrayList instead of an array to hold the moves as
we find them. In fact, I use an object defined by the parameterized

type ArrayList<CheckersMove> so that the list is restricted to holding objects
of type CheckersMove. As we add moves to the list, it will grow just as large as
necessary. At the end of the method, we can create the array that we really want and
copy the data into it:

Let "moves" be an empty ArrayList<CheckersMove>
Find any legal jumps and add them to moves

if moves.size() is 0: // There are no legal jumps!
Find any other legal moves and add them to moves

if moves.size() is 0: // There are no legal moves at all!
return null

else:

Let moveArray be an array of CheckersMoves of length moves.size ()
Copy the contents of moves into moveArray
return moveArray

Now, how do we find the legal jumps or the legal moves? The information we need is
in the board array, but it takes some work to extract it. We have to look through all
the positions in the array and find the pieces that belong to the current player. For
each piece, we have to check each square that it could conceivably move to, and
check whether that would be a legal move. If we are looking for legal jumps, we want
to look at squares that are two rows and two columns away from the piece. There are
four squares to consider. Thus, the line in the algorithm that says "Find any legal
jumps and add them to moves" expands to:

For each row of the board:
For each column of the board:
if one of the player's pieces is at this location:

if it is legal to jump to row + 2, column + 2
add this move to moves

if it is legal to jump to row - 2, column + 2
add this move to moves

if it is legal to jump to row + 2, column - 2
add this move to moves

if it is legal to jump to row - 2, column - 2
add this move to moves

The line that says "Find any other legal moves and add them to moves" expands to
something similar, except that we have to look at the four squares that are one column
and one row away from the piece. Testing whether a player can legally move from
one given square to another given square is itself non-trivial. The square the player is
moving to must actually be on the board, and it must be empty. Furthermore, regular
red and black pieces can only move in one direction. I wrote the following utility
method to check whether a player can make a given non-jump move:

/**

* This is called by the getlLegalMoves () method to determine

* whether the player can legally move from (rl,cl) to (r2,c2).
* It is ASSUMED that (rl,cl) contains one of the player's

* pieces and that (r2,c2) is a neighboring square.

=/

private boolean canMove (int player, int rl, int cl, int r2, int c2) {

if (r2 < 0 || r2 > 8 || c2 < 0 || c2 >= 8)
return false; // (r2,c2) is off the board.

if (board[r2] [c2] != EMPTY)
return false; // (r2,c2) already contains a piece.
if (player == RED) {
if (board[rl][cl] == RED && r2 > rl)
return false; // Regular red piece can only move down.
return true; // The move is legal.
}
else {
if (board[rl][cl] == BLACK && r2 < rl)
return false; // Regular black piece can only move up.
return true; // The move is legal.

}

} // end canMove ()

This method is called by my getLegalMoves () method to check whether one of
the possible moves that it has found is actually legal. I have a similar method that is
called to check whether a jump is legal. In this case, I pass to the method the square
containing the player's piece, the square that the player might move to, and the square
between those two, which the player would be jumping over. The square that is being
jumped must contain one of the opponent's pieces. This method has the specification:

/**

* This is called by other methods to check whether

* the player can legally jump from (rl,cl) to (r3,c3).

* It is assumed that the player has a piece at (rl,cl), that
* (r3,c3) is a position that is 2 rows and 2 columns distant
* from (rl,cl) and that (r2,c2) is the square between (rl,cl)
* and (r3,c3).

*

~

private boolean canJump (int player, int rl, int cl,

int r2, int c2, int r3, int c3) {

Given all this, you should be in a position to understand the
complete getLegalMoves () method. It's a nice way to finish off this chapter,

since it combines several topics that we've looked at: one-dimensional
arrays, ArrayLists, and two-dimensional arrays:

CheckersMove[] getLegalMoves (int player) {

if (player != RED && player != BLACK)
return null; // (This will not happen in a correct program.)

int playerKing; // The constant for a King belonging to the

player.
if (player == RED)
playerKing = RED KING;
else

playerKing = BLACK KING;

ArrayList<CheckersMove> moves = new ArrayList<CheckersMove> () ;
// Moves will be stored in this list.

/* First, check for any possible jumps. Look at each square on
the board. If that square contains one of the player's pieces,
look at a possible jump in each of the four directions from

that
square. If there is a legal jump in that direction, put it in
the moves ArraylList.
Yy
ow < 8; rowt+) {

for (int row = 0;
for (int col =
if (board[row
playerKing) {
if (canJump (player, row, col, row+l, col+l, row+2, col+2))
moves.add (new CheckersMove (row, col, row+2, col+2));
if (candump (player, row, col, row-1, col+l, row-2, col+2))
moves.add (new CheckersMove (row, col, row-2, col+2));
if (canJump (player, row, col, row+l, col-1, row+2, col-2))
moves.add (new CheckersMove (row, col, row+2, col-2));
if (candump (player, row, col, row-1, col-1, row-2, col-2))
moves.add (new CheckersMove (row, col, row-2, col-2));

col < 8; col++) {

r
0;
][col] == player || board[row] [col] ==

/* If any jump moves were found, then the user must jump, so we
don't add any regular moves. However, if no jumps were found,
check for any legal regular moves. Look at each square on
the board. If that square contains one of the player's pieces,
look at a possible move in each of the four directions from
that square. If there is a legal move in that direction,
put it in the moves ArraylList.

*/

if (moves.size() == 0) {
for (int row = 0; row < 8; row++) {
for (int col = 0; col < 8; col++) {
if (board[row] [col] == player || board[row] [col] ==
playerKing) {
if (canMove (player,row,col, row+l,col+l))
moves.add (new CheckersMove (row,col, row+1l,col+1));
if (canMove (player,row,col,row-1,col+l))
moves.add (new CheckersMove (row,col, row-1,col+1l));
if (canMove (player,row,col, row+l,col-1))
moves.add (new CheckersMove (row,col, row+l,col-1));
if (canMove (player,row,col,row-1,col-1))
moves.add (new CheckersMove (row,col, row-1,col-1));

}

/* If no legal moves have been found, return null. Otherwise,
create
an array just big enough to hold all the legal moves, copy the
legal moves from the Arraylist into the array, and return the
array.

*/

if (moves.size() == 0)
return null;

else {
CheckersMove[] moveArray = new CheckersMove[moves.size()];
for (int 1 = 0; 1 < moves.size(); 1i++)
moveArray[i] = moves.get (i)

return moveArray;

}

} // end getlegalMoves

