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Review: Calling Methods 
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int x(int n) { 
 int m = 0; 
 n = n + m + 1; 
 return n; 

} 

int y(int n) { 
 int m = 1; 
 n = x(n); 
 return m + n; 

} 
What does y(3) return? 



Calling Methods 

  Methods can call other methods 
  Can a method call itself? 
  Yes! This is called a recursive method (function) 
  “A method within a method” 
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Example 
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void test(int n) { 
  if (n > 0) { 
    System.out.println(n); 
    test(n-1); 
    System.out.println(n); 
  } 
} 

Trace the execution of test(4) 



Example (pt 2) 
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void test(int n) { 
  if (n > 0) { 
    System.out.println(n); 
    test(n-1); 
    System.out.println(n); 
  } 
} 

Trace the execution of test(-4) 
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Terminology 

  A recursive method is any method that calls itself 

  Base case 
  VERY IMPORTANT 
  Stops the recursion (prevents infinite loops) 
  Solved directly to return a value without calling the 

same method again 
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Recursive Definitions 

  Directly recursive: method that calls itself 

  Indirectly recursive: method that calls another 
method and eventually results in the original method 
call 

  Tail recursive method: recursive method in which 
the last statement executed is the recursive call 

  Infinite recursion: case where every recursive call 
results in another recursive call 



Tracing a Recursive Method 

  As always, go line by line 
  Recursive methods may have many copies 
  Every method call creates a new copy and transfers 

flow of control to the new copy 
  Each copy has its own: 

  code 
  parameters 
  local variables 
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Tracing a Recursive Method 

  After completing a recursive call: 

  Control goes back to the calling environment 

  Recursive call must execute completely before 
control goes back to previous call 

  Execution in previous call begins from point 
immediately following recursive call 



Factorial Numbers 

  Factorial numbers (i.e., n!) defined recursively: 
  factorial(0) = 1 
  factorial(n+1) = factorial(n) * n+1 

  Examples 
  0! = 1 
  1! = 1 * 1 = 1 
  2! = 2 * 1 * 1 = 2 
  3! = 3 * 2 * 1 * 1 = 6 
  4! = 4 * 3 * 2 * 1 * 1 = 24 
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Iterative Factorial Method 

public static int fact(int num) { 
  int tmp = 1; 
  for (int i = 1; i <= num; i++) { 
     tmp *= i;  
  } 
  return tmp;     
} 

Trace fact(5)  
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Recursive Factorial Method 

public static int fact(int num) 
{ 
    if (num == 0) 
        return 1; 
    else 
        return num * fact(num – 1); 
} 

Trace fact(5)  
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Recursive Factorial Trace 
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Recursion or Iteration? 

  Moral: There is usually more than one way to solve 
a problem! 
  Iteration (loops to repeat code) 
  Recursion (nested function calls to repeat code) 

  Tradeoffs between two options: 
  Sometimes recursive solution is easier 
  Recursive solution is often slower 



Today’s Topic: 
Recursion (Continued) 
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Facts about Recursion 

  Recursive methods call themselves 
  Each call solves an identical problem 

  The code is the same! 
  Successive calls solve smaller/simpler instances 

  Every recursive algorithm has at least one base case 
  A known/easy to solve case 
  Often, when we reach 1 or 0 
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Designing Recursive Algorithms 

  General strategy: “Divide and Conquer” 
  Questions to ask yourself 

  How can we reduce the problem to smaller version of 
the same problem? 

  How does each call make the problem smaller? 
  What is the base case? 
  Will you always reach the base case? 
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Similarities 

  Closely related to recursive definitions in math 
  Also closely related to proof by induction 

  Inductive proofs work in “reverse” 
  Start by proving a base case 
  Then show that if it is true for case n, it must also be 

true for case n+1 
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Exercise 

Write a recursive function that prints the numbers 1…n 
in descending order: 
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public void descending(int n) { 

} 



Exercise 

Write a recursive function that prints the numbers 1…n 
in descending order: 

Java Programming: Program Design Including Data Structures 21 

public void descending(int n) { 
  if (n <= 0) return; 
  System.out.println(n); 
  descending(n-1); 
} 



Exercise 

Write a recursive function to perform exponentiation           
  return xm, assuming m >= 0 
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public int exp(int x, int m) { 

} 



Exercise 

Write a recursive function to perform exponentiation                  
   return xm, assuming m >= 0 
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public int exp(int x, int m) { 
  if (m == 0) { return 1; } 
  if (m == 1) { return x; } 
  return x * exp(x, m-1);   
} 
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public static boolean  p(string s, int i, int f) 
  if (i < f) { 
    if (s[i] == s[f]) { 
      return p(s, i+1, f-1); 
    } else { 
      return false; 
    } 
  } else { 
    return true; 
  } 
} 

What does  p(s,0,s.length-1) return  
a) if s ="UTEP' 
b) if s ="SAMS' 
c) if s ="kayak" 
d) if s= "ABBA" 



Towers of Hanoi 

  The legend of the temple of Brahma 
  64 golden disks on 3 pegs 
  The universe will end when the priest move all disks 

from the first peg to the last 
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The Rules 

  Only move one disk at a time 
  A move is taking one disk from a peg and putting it 

on another peg (on top of any other disks) 
  Cannot put a larger disk on top of a smaller disk 
  With 64 disks, at 1 second per disk, this would take 

roughly 585 billion years 
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Towers of Hanoi: Three Disk 
Problem 
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Towers of Hanoi: Three Disk 
Solution 
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Towers of Hanoi: Three Disk 
Solution 



Four disk solution 
(courtesy wikipedia) 
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Recursive algorithm idea 

  Final step is to move the bottom disk from peg 1 to 
peg 3 

  To do this, the other n-1 disks must be on peg 2 
  So, we need an way to move n-1 disks from peg 1 to 

peg 2 
  Base case: moving the smallest disk is easy (you can 

always move it to any peg in one step)  

Java Programming: Program Design Including Data Structures 31 



Pseudocode 
solveTowers (count, source, destination, spare) { 
  if (count == 1) { 
    move directly  
  } 
  else { 
    solveTowers(count-1, source, spare, destination) 
    solveTowers(1, source, destination, spare) 
    solveTowers(count-1, spare, destination, source) 
  } 
} 
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Today’s Topic: 
Recursion (Continued) 
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Recursive Fibonacci 
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Recursive Fibonacci (continued) 

public static int fib(int n) { 
    if (n <= 2) { 
        return 1; 
    }  
    return fib(n - 1) + fib(n – 2) 
} 
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Recursive Fibonacci (continued) 



Iterative Solution 
  Recursive solution repeats many computations, so it 

is very inefficient. An iterative approach: 
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public static int fib(int n) { 
   if (n <= 2) return 1;  
   int f1 = f2 = 1;  
   for (int i = 3; i <= n; i++) { 
       int tmp = f1 + f2; 
       f1 = f2; 
       f2 = tmp; 
   } 
   return f2;    
} 



Improved Recursion 
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int[] cache = new int[n]; 
public static int fib(int n) { 

    if (cache[n] <= 0) { 
        cache[n] = fib(n-2) + fib(n-1);     
    } 
    return cache[n]; 
} 

Bugs? 



Improved Recursion (debugged) 
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int[] cache = new int[n+1]; 
public static int fib(int n) { 
    if (n <= 2) return 1;  
    if (cache[n] <= 0) { 
        cache[n] = fib(n-2) + fib(n-1);     
    } 
    return cache[n]; 
} 



Search 

  Design a method that returns true if element n is a 
member of array x[] and false if not 

  Iterative approach: 
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public boolean search(int[] x, int n) { 
   for(int i = 0; i < x.length, i++) { 
      if (x[i] == n]) return true;   
   } 
   return false; 
} 



Recursive Search 

  A recursive variant: 
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boolean search(int[] x, int size, int n) { 
   if (size > 0) { 
      if (x[size-1] == n) { 
         return true; 
      } else { 
         return search(x, size-1, n); 
      } 
   } 
   return false;  
} 



Faster Search 

  The problem: these methods are slow 
  Recall the phone book example 
  “Linear search” – need to look at every element 
  “Binary search” is much faster on sorted data 
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Binary Search Pseudocode 

search(phonebook, name) { 
   if only one page, scan for the name 
   else 
      open to the middle 
      determine if name is before or after this page 
      if before  
          search (first half of phonebook, name) 
     else  
          search (second half of phonebook, name) 
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boolean binarySearch(int[] x, int start, int end, int n) { 
   if (end < start) return false; 
   int mid = (start+end) / 2; 
   if (x[mid] == n) { 
        return true; 
    } else {  
        if (x[mid] < n) {  
           return search(x, mid+1, end, n); 
        } else { 
           return search(x, start, mid-1, n); 
       }   
    } 
 } 
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Programming Example 
int test(String s, int last) { 
  if (last < 0) { 
    return 0; 
  }  
  if (s.charAt(last) == “0”) { 
    return 2 * test(s, last-1); 
  } 
  return 1 + 2 * test(s, last-1); 
} 

Trace test(“01101”, 4) 
What does method test do? 



Exercise 

Write a recursive function convert a decimal number 
into a binary number, printing the binary number 

public static void decToBin(int num){ 

} 
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Exercise 
Decimal to Binary 

public static void decToBin(int num) 
{ 
    if (num > 0) 
    { 
        decToBin(num / 2); 
        System.out.print(num % 2); 
    } 
} 


