
Recursive Methods
and Problem Solving

Chris Kiekintveld
CS 2401 (Fall 2010)

Elementary Data Structures and Algorithms

Review: Calling Methods

Java Programming: Program Design Including Data Structures 2

int x(int n) {
 int m = 0;
 n = n + m + 1;
 return n;

}

int y(int n) {
 int m = 1;
 n = x(n);
 return m + n;

}
What does y(3) return?

Calling Methods

  Methods can call other methods
  Can a method call itself?
  Yes! This is called a recursive method (function)
  “A method within a method”

Java Programming: Program Design Including Data Structures 3

Java Programming: Program Design Including Data Structures 4

Example

Java Programming: Program Design Including Data Structures 5

void test(int n) {
 if (n > 0) {
 System.out.println(n);
 test(n-1);
 System.out.println(n);
 }
}

Trace the execution of test(4)

Example (pt 2)

Java Programming: Program Design Including Data Structures 6

void test(int n) {
 if (n > 0) {
 System.out.println(n);
 test(n-1);
 System.out.println(n);
 }
}

Trace the execution of test(-4)

Java Programming: Program Design Including Data Structures 7

Terminology

  A recursive method is any method that calls itself

  Base case
  VERY IMPORTANT
  Stops the recursion (prevents infinite loops)
  Solved directly to return a value without calling the

same method again

Java Programming: Program Design Including Data Structures 8

Recursive Definitions

  Directly recursive: method that calls itself

  Indirectly recursive: method that calls another
method and eventually results in the original method
call

  Tail recursive method: recursive method in which
the last statement executed is the recursive call

  Infinite recursion: case where every recursive call
results in another recursive call

Tracing a Recursive Method

  As always, go line by line
  Recursive methods may have many copies
  Every method call creates a new copy and transfers

flow of control to the new copy
  Each copy has its own:

  code
  parameters
  local variables

Java Programming: Program Design Including Data Structures 9

Java Programming: Program Design Including Data Structures 10

Tracing a Recursive Method

  After completing a recursive call:

  Control goes back to the calling environment

  Recursive call must execute completely before
control goes back to previous call

  Execution in previous call begins from point
immediately following recursive call

Factorial Numbers

  Factorial numbers (i.e., n!) defined recursively:
  factorial(0) = 1
  factorial(n+1) = factorial(n) * n+1

  Examples
  0! = 1
  1! = 1 * 1 = 1
  2! = 2 * 1 * 1 = 2
  3! = 3 * 2 * 1 * 1 = 6
  4! = 4 * 3 * 2 * 1 * 1 = 24

Java Programming: Program Design Including Data Structures 11

Java Programming: Program Design Including Data Structures 12

Iterative Factorial Method

public static int fact(int num) {
 int tmp = 1;
 for (int i = 1; i <= num; i++) {
 tmp *= i;
 }
 return tmp;
}

Trace fact(5)

Java Programming: Program Design Including Data Structures 13

Recursive Factorial Method

public static int fact(int num)
{
 if (num == 0)
 return 1;
 else
 return num * fact(num – 1);
}

Trace fact(5)

Java Programming: Program Design Including Data Structures 14

Recursive Factorial Trace

Java Programming: Program Design Including Data Structures 15

Recursion or Iteration?

  Moral: There is usually more than one way to solve
a problem!
  Iteration (loops to repeat code)
  Recursion (nested function calls to repeat code)

  Tradeoffs between two options:
  Sometimes recursive solution is easier
  Recursive solution is often slower

Today’s Topic:
Recursion (Continued)

Java Programming: Program Design Including Data Structures 16

Facts about Recursion

  Recursive methods call themselves
  Each call solves an identical problem

  The code is the same!
  Successive calls solve smaller/simpler instances

  Every recursive algorithm has at least one base case
  A known/easy to solve case
  Often, when we reach 1 or 0

Java Programming: Program Design Including Data Structures 17

Designing Recursive Algorithms

  General strategy: “Divide and Conquer”
  Questions to ask yourself

  How can we reduce the problem to smaller version of
the same problem?

  How does each call make the problem smaller?
  What is the base case?
  Will you always reach the base case?

Java Programming: Program Design Including Data Structures 18

Similarities

  Closely related to recursive definitions in math
  Also closely related to proof by induction

  Inductive proofs work in “reverse”
  Start by proving a base case
  Then show that if it is true for case n, it must also be

true for case n+1

Java Programming: Program Design Including Data Structures 19

Exercise

Write a recursive function that prints the numbers 1…n
in descending order:

Java Programming: Program Design Including Data Structures 20

public void descending(int n) {

}

Exercise

Write a recursive function that prints the numbers 1…n
in descending order:

Java Programming: Program Design Including Data Structures 21

public void descending(int n) {
 if (n <= 0) return;
 System.out.println(n);
 descending(n-1);
}

Exercise

Write a recursive function to perform exponentiation
 return xm, assuming m >= 0

Java Programming: Program Design Including Data Structures 22

public int exp(int x, int m) {

}

Exercise

Write a recursive function to perform exponentiation
 return xm, assuming m >= 0

Java Programming: Program Design Including Data Structures 23

public int exp(int x, int m) {
 if (m == 0) { return 1; }
 if (m == 1) { return x; }
 return x * exp(x, m-1);
}

Java Programming: Program Design Including Data Structures 24

public static boolean p(string s, int i, int f)
 if (i < f) {
 if (s[i] == s[f]) {
 return p(s, i+1, f-1);
 } else {
 return false;
 }
 } else {
 return true;
 }
}

What does p(s,0,s.length-1) return
a) if s ="UTEP'
b) if s ="SAMS'
c) if s ="kayak"
d) if s= "ABBA"

Towers of Hanoi

  The legend of the temple of Brahma
  64 golden disks on 3 pegs
  The universe will end when the priest move all disks

from the first peg to the last

Java Programming: Program Design Including Data Structures 25

The Rules

  Only move one disk at a time
  A move is taking one disk from a peg and putting it

on another peg (on top of any other disks)
  Cannot put a larger disk on top of a smaller disk
  With 64 disks, at 1 second per disk, this would take

roughly 585 billion years

Java Programming: Program Design Including Data Structures 26

Java Programming: Program Design Including Data Structures 27

Towers of Hanoi: Three Disk
Problem

Java Programming: Program Design Including Data Structures 28

Towers of Hanoi: Three Disk
Solution

Java Programming: Program Design Including Data Structures 29

Towers of Hanoi: Three Disk
Solution

Four disk solution
(courtesy wikipedia)

Java Programming: Program Design Including Data Structures 30

Recursive algorithm idea

  Final step is to move the bottom disk from peg 1 to
peg 3

  To do this, the other n-1 disks must be on peg 2
  So, we need an way to move n-1 disks from peg 1 to

peg 2
  Base case: moving the smallest disk is easy (you can

always move it to any peg in one step)

Java Programming: Program Design Including Data Structures 31

Pseudocode
solveTowers (count, source, destination, spare) {
 if (count == 1) {
 move directly
 }
 else {
 solveTowers(count-1, source, spare, destination)
 solveTowers(1, source, destination, spare)
 solveTowers(count-1, spare, destination, source)
 }
}

Java Programming: Program Design Including Data Structures 32

Today’s Topic:
Recursion (Continued)

Java Programming: Program Design Including Data Structures 33

Java Programming: Program Design Including Data Structures 34

Recursive Fibonacci

Java Programming: Program Design Including Data Structures 35

Recursive Fibonacci (continued)

public static int fib(int n) {
 if (n <= 2) {
 return 1;
 }
 return fib(n - 1) + fib(n – 2)
}

Java Programming: Program Design Including Data Structures 36

Recursive Fibonacci (continued)

Iterative Solution
  Recursive solution repeats many computations, so it

is very inefficient. An iterative approach:

Java Programming: Program Design Including Data Structures 37

public static int fib(int n) {
 if (n <= 2) return 1;
 int f1 = f2 = 1;
 for (int i = 3; i <= n; i++) {
 int tmp = f1 + f2;
 f1 = f2;
 f2 = tmp;
 }
 return f2;
}

Improved Recursion

Java Programming: Program Design Including Data Structures 38

int[] cache = new int[n];
public static int fib(int n) {

 if (cache[n] <= 0) {
 cache[n] = fib(n-2) + fib(n-1);
 }
 return cache[n];
}

Bugs?

Improved Recursion (debugged)

Java Programming: Program Design Including Data Structures 39

int[] cache = new int[n+1];
public static int fib(int n) {
 if (n <= 2) return 1;
 if (cache[n] <= 0) {
 cache[n] = fib(n-2) + fib(n-1);
 }
 return cache[n];
}

Search

  Design a method that returns true if element n is a
member of array x[] and false if not

  Iterative approach:

Java Programming: Program Design Including Data Structures 40

public boolean search(int[] x, int n) {
 for(int i = 0; i < x.length, i++) {
 if (x[i] == n]) return true;
 }
 return false;
}

Recursive Search

  A recursive variant:

Java Programming: Program Design Including Data Structures 41

boolean search(int[] x, int size, int n) {
 if (size > 0) {
 if (x[size-1] == n) {
 return true;
 } else {
 return search(x, size-1, n);
 }
 }
 return false;
}

Faster Search

  The problem: these methods are slow
  Recall the phone book example
  “Linear search” – need to look at every element
  “Binary search” is much faster on sorted data

Java Programming: Program Design Including Data Structures 42

Binary Search Pseudocode

search(phonebook, name) {
 if only one page, scan for the name
 else
 open to the middle
 determine if name is before or after this page
 if before
 search (first half of phonebook, name)
 else
 search (second half of phonebook, name)

Java Programming: Program Design Including Data Structures 43

boolean binarySearch(int[] x, int start, int end, int n) {
 if (end < start) return false;
 int mid = (start+end) / 2;
 if (x[mid] == n) {
 return true;
 } else {
 if (x[mid] < n) {
 return search(x, mid+1, end, n);
 } else {
 return search(x, start, mid-1, n);
 }
 }
 }

Java Programming: Program Design Including Data Structures 44

Java Programming: Program Design Including Data Structures 45

Programming Example
int test(String s, int last) {
 if (last < 0) {
 return 0;
 }
 if (s.charAt(last) == “0”) {
 return 2 * test(s, last-1);
 }
 return 1 + 2 * test(s, last-1);
}

Trace test(“01101”, 4)
What does method test do?

Exercise

Write a recursive function convert a decimal number
into a binary number, printing the binary number

public static void decToBin(int num){

}

Java Programming: Program Design Including Data Structures 46

Java Programming: Program Design Including Data Structures 47

Exercise
Decimal to Binary

public static void decToBin(int num)
{
 if (num > 0)
 {
 decToBin(num / 2);
 System.out.print(num % 2);
 }
}

