Logic Gate

20

Eng. : Eman Abu Hani

fppt.com

Logic Gate

A gate is an digital circuit which operates on one or more signals and produce single output.

Gates are digital circuits because the input and output signals are denoted by either 1(high voltage) or 0(low voltage).

There are three basic gates and are:

1. AND gate

3. NOT gate

AND gate

S

AND gate

The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are high.

AND gate takes two or more input signals and produce only one output signal.

Input	Input	Output
A	B	AB
0	0	0
0	1	0
1	0	0
1	1	1

OR gate

C

OR gate

The OR gate is an electronic circuit that gives a high output (1) if one or more of its inputs are high.

OR gate also takes two or more input signals and produce only one output signal.

A+B	
OR	

Input	Input	Output
Α	B	A+B
0	0	0
0	1	1
1	0	1
1	1	1

NOT gate

NOT gate

- The NOT gate is an electronic circuit that gives a high output (1) if its input is low .
- NOT gate takes only one input signal and produce only one output signal.
- The output of NOT gate is complement of its input.

Input A	Output A
0	1
1	0

It is also called inverter.

NAND, NOR XOR, XNOR GATES

6

NAND Gate

Known as a "universal" gate because ANY digital circuit can be implemented with NAND gates alone.

fppt.com

NOR Gate

6

fppt.com

Exclusive-OR Gate

3

Exclusive-OR Gate

XOR

Z= x⊕y

Exclusive-NOR Gate

3

<mark>Z =</mark> х⊕ч

T1: Properties of 0

(a) 0 + A = A
(b) 0 A = 0

T2: Properties of 1

(a) 1 + A = 1
(b) 1 A = A

T3 : Commutative Law (a) A + B = B + A(b) A B = B A**T4 : Associate Law** (a) (A + B) + C = A + (B + C)(b) (A B) C = A (B C)**T5 : Distributive Law** (a) A (B + C) = A B + A C(b) A + (B C) = (A + B) (A + C)(c) A+A'B = A+B

T6 : Indempotence (Identity) Law(a) A + A = A
(b) A A = A

T7 : Absorption (Redundance) Law (a) A + A B = A
(b) A (A + B) = A

T8 : Complementary Law (a) X+X'=1 (b) X.X'=0**T9: Involution** (a) x'' = x**T10 : De Morgan's Theorem** (a) (X+Y)'=X'.Y' (b) (X.Y)'=X'+Y'

C

Theorem 1 $\overline{A \cdot B} = \overline{A} + \overline{B}$

$\overline{A.B} = \overline{A} + \overline{B}$ NAND = Bubbled OR

Theorem 1 $\overline{A \cdot B} = \overline{A} + \overline{B}$

Theorem 1 $\overline{A \cdot B} = \overline{A} + \overline{B}$

A	В	AB	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	0	0	0

Theorem 1 $\overline{A + B} = \overline{A \cdot B}$

Theorem 2 $\overline{A + B} = \overline{A} \cdot \overline{B}$

$\overline{A + B} = \overline{A} \cdot \overline{B}$

NOR = Bubbled AND

Theorem 2 $\overline{A + B} = \overline{A} \cdot \overline{B}$

Theorem 2 $\overline{A + B} = \overline{A \cdot B}$

A	В	A+B	Ā	B	Ā.B
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	0