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Chapter 1  The Foundations: Logic and Proofs 

1.1 Propositional Logic 

Our discussion begins with an introduction to the basic building blocks of logic-

propositions. 

 

Definition: A proposition 

 

A proposition( or a statement )  is a declarative sentence that is either true or 

false, but not both. 

 

Examples of propositions : 

1. 5 + 2 = 8.                                         (F) 

2. Beijing is the capital of China         (T) 

3. 1 + 1 = 2.                                         (T) 

4. 2 is a prime number                         (T) 

 

 But, the following are NOT propositions: 

1. It is raining today.             (either T or F) 

2. How are you?                    ( a question is not a proposition) 

3. x + 5 = 3                           ( since x is not specified, neither true nor false) 

4. She is very talented.        ( since she is not specified, neither true nor false) 

5. There are other life forms on other planets in the universe. (either T or F) 

6. Just do it !                        ( imperative command ) 

 

We use letters to denote propositional variables (or statement variables), that 

is, variables that represent propositions, just as letters are used to denote 

numerical variables. 

 

Definition: Negation  

 

Let p be a proposition. The statement "It is not the case that p." is another 

proposition, called the negation of p. The negation of p is denoted by ¬ p and 

read as "not p." 

 

Example  1: Find the negation of the proposition 

 p : “I have brown hair.” 

Solution:   The negation is  

    ¬p : “It is not the case that I have brown hair” 

 



 

 

                                                                     
                                                                          

 

Lecture Notes/ Discrete Structures for Computer Science   

3 

Chapter 1  The Foundations: Logic and Proofs 

 This negation can be more simply expressed as 

     ¬p : “I do not have brown hair.” 

 

Other examples: 

– 5 + 2 ≠ 8. 

– 10 is not a prime number. 

– It is not the case that buses stop running at 9:00pm. 

 

Example  2 : Negate the following propositions : 

1.  Today is Sunday. 

2.  5 is a prime number. 

3. “Ahmad’s smartphone has at least 32GB of memory” 

 

Solution:    

 

1.  Today is not Sunday. 

2.  It 5 is not a prime number 

3.  It is not the case that Ahmad’s smartphone has at least 32GB of memory 

      or This negation can also be expressed as  

• “Ahmad’s smartphone does not have at least 32GB of memory” 

        or even more simply as 

• “Ahmad’s smartphone has less than 32GB of memory.” 

 

• A truth table displays the relationships between truth values (T or F) of 

different propositions. 

 

Truth table for NOT: 

 

 

 

 

 

Definition:  Conjunction 

Let p and q be propositions. The proposition "p and q" denoted by p ˄ q, is  true 

when both p and q are true and is false otherwise. The proposition p ˄ q is called 

the conjunction of p and q. 

 

p p 

T F 

F T 
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Example 3 : Find the conjunction of the propositions p and q where p is the 

proposition “Khalid’s PC has more than 16 GB free hard disk space” and q is the 

proposition “The processor in Khalid’s PC runs faster than 1 GHz.” 

 

Solution: 

p ∧ q : “Khalid’s PC has more than 16 GB free hard disk space, and its processor 

runs faster than 1 GHz.” 

 

Other examples: 

• Ptuk is located in Ramallah and 5 + 2 = 8 

• It is raining today and 2 is a prime number. 

• 2 is a prime number and 5 + 2 ≠ 8. 

• 13 is a perfect square and 9 is a prime. 

 

Definition: Disjunction  

Let p and q be propositions. The proposition "p or q" denoted by p ⋁ q, is false 

when both p and q are false and is true otherwise. The proposition p ⋁ q is called 

the disjunction of p and q. 

 

Example  4 : What is the disjunction of the propositions p and q where p and q 

are the same propositions as in Example 3? 

 

Solution: 

p ⋁ q  : “Khalid’s PC has at least 16 GB free hard disk space, or the processor in 

Khalid’s PC runs faster than 1 GHz.” 

 

Other examples: 

• Ptuk is located in Ramallah or 5 + 2 = 8 

• Today is Sunday or 2 is a prime number. 

• 2 is a prime number or 5 + 2 ≠ 8. 

• 13 is a perfect square or 9 is a prime. 

Truth tables for Conjunction and disjunction 

• Four different combinations of values for p and q 
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Note: (the or is used inclusively, i.e., p ⋁ q is true when either p or q or both are 

true). 

 

Definition : Exclusive or  

Let p and q be propositions. The proposition "p exclusive or q" denoted by p ⊕ q, 

is true when exactly one of p and q is true and it is false otherwise  

Truth table for Exclusive or   

 

 

Definition:  Implication (Conditional Statement) 

 
Let p and q be propositions. The conditional statement p → q is the proposition “if p, 

then q.” 

In the conditional statement p → q, p is called the hypothesis (or antecedent or 

premise) and q is called the conclusion (or consequence). 

 

Notes :  

1. The conditional statement p → q is false when p is true and q is false, and 

true otherwise. 

2. p → q is read in a variety of equivalent ways: 

• if p then q 

• p only if q 

• p is sufficient for q 
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• q whenever p 

 

Truth table for Conditional Statement   

 
 

Example  5 :Let p be the statement “Maria learns discrete mathematics” and q 

the statement “Maria will find a good job.” Express the statement p → q as a 

statement in English. 

 

Solution: 

p→ q represents the statement  

• “If Maria learns discrete mathematics, then she will find a good job.” 

or 

•  “Maria will find a good job when she learns discrete mathematics.” 

or 

• “For Maria to get a good job, it is sufficient for Maria to learn discrete  

      mathematics.” 

or 

• “Maria will find a good job unless she does not learn discrete mathematics.” 

 

Example 6 :  What is the truth value of these conditional statements? 

1. if Steelers win the Super Bowl in 2013 then 2 is a prime. 

2. if today is Tuesday then 2 * 3 = 8. 

 

Solution: 

1. If F then T ?  T 

2. If T then F ?   F 

 

Remark 1 :  

 The mathematical concept of a conditional statement is independent of a cause-

and effect relationship between hypothesis and conclusion. 

 

For Example let the following two statements 
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1. “If Juan has a smartphone, then 2 + 3 = 5”. 

2.  “If Juan has a smartphone, then 2 + 3 = 6” 

• the first statement is true, because its conclusion is true. (The truth value of 

the hypothesis does not matter then.) 

• but the second statement is true if Juan does not have a smartphone, even 

though 2 + 3 = 6 is false. 

 

Remark 2 :  

The if-then construction used in many programming languages is different from 

that used in logic. 

 

Example 7 :   What is the value of the variable x after the statement 

                         if 2 + 2 = 4 then x := x + 1  

if x = 0 before this statement is encountered? 

 

Solution: 

 Because 2 + 2 = 4 is true, the assignment statement x := x + 1 is executed. Hence, 

x has the value 0 + 1 = 1 after this statement is encountered. 

 

Converse , Contrapositive, and Inverse  

• The converse of  p → q is q → p. 

• The contrapositive of  p → q is ¬q → ¬p 

• The inverse of  p → q is ¬p → ¬q 
 

Example 8 :    What are the contrapositive, the converse, and the inverse of the 

conditional statement  

                                      “The home team wins whenever it is raining?” 

 

Solution: 

p:” It is raining”               q:  “The home team wins” 

p → q, the original statement can be rewritten as 

“If it is raining, then the home team wins.” 

Consequently, the contrapositive of this conditional statement is 

“If the home team does not win, then it is not raining.” 

The converse is 

“If the home team wins, then it is raining.” 

The inverse is 

“If it is not raining, then the home team does not win.” 
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Only the contrapositive is equivalent to the original statement. 

 

Example 8 : What are the contrapositive, the converse, and the inverse of the 

conditional statement  

                                           “ If it snows, the traffic moves slowly” 

Solution: 

 

• p: “it snows”                     q: “traffic moves slowly”. 

– The converse: 

If the traffic moves slowly then it snows. 

• q → p 

– The contrapositive: 

• If the traffic does not move slowly then it does not snow.       

• ¬q → ¬p 

– The inverse: 

• If it does not snow the traffic moves quickly. 

• ¬p → ¬q 

 

Definition:  Implication (Conditional Statement) 

 

Let p and q be propositions. The biconditional statement p ↔ q is the proposition 

“p if and only if q”. Biconditional statements are also called bi-implications. 

 

 

Note:  The biconditional statement p ↔ q is true when p and q have the same 

truth values, and is false otherwise. 

 

Truth table for Biconditional Statement   

 
• Notes: 

1. There are some other common ways to express p ↔ q: 

• “p is necessary and sufficient for q” 

• “if p then q, and conversely” 



 

 

                                                                     
                                                                          

 

Lecture Notes/ Discrete Structures for Computer Science   

9 

Chapter 1  The Foundations: Logic and Proofs 

• “p iff q.” 

2. p  q means that p and q have the same truth value. 

3. this truth table is the exact opposite of ’s! 

– p  q means ¬(p  q) 

4. p  q does not imply p and q are true, or cause each other. 

 

Example 9: Let p be the statement “You can take the flight,” and let q be the 

statement   

                “You buy a ticket.” 

Then p ↔ q is the statement 

                 “You can take the flight if and only if you buy a ticket.” 

 

Summary of all connectives 

 

Example 10 :  

Let p: 2 is a prime ….. T              

      q: 6 is a prime ….. F 

• Determine the truth value of the following statements: 
 

1. ¬ p            F 2. p ˄  q        F    3. p ˄  ¬q       T 4. p⋁  q          T 

5. p  q        T 6. p → q       F 7. q → p        T 8. q ↔ p        F 
 

Truth Tables of Compound Propositions 

We can use these connectives to build up complicated compound propositions. 

The following Table displays the precedence levels of the logical operators, ￢, ∧, 

∨,→, and ↔ 

Precedence of 

Logical Operators. 

Operator Precedence 

￢ 1 

∧ 

∨ 

2 

3 

→ 

↔ 

4 

5 

 

Example 11: Construct the truth table of the compound proposition 

                               (p ∨￢q) → (p ∧ q). 
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Solution: 

Simpler if we decompose the sentence to elementary and intermediate 

propositions 

 

 
 

Example 12 :  Construct a truth table for 

                        (p → q) ˄ (¬p ↔ q) 

Solution: 

 

 
 

Logic and Bit Operations 

• Computers represent information using bits. A bit is a symbol with two 

possible values, namely, 0 (zero) and 1 (one). 

• Logical truth values – True and False. 

• A bit is sufficient to represent two possible values: 

     – 0 (False) or 1(True).  

 

 

 

 

 

• A variable is called a Boolean variable if its value is either 1(True) or 0 

(False). Consequently, a Boolean variable can be represented using a bit. 
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• Computer bit operations correspond to the logical connectives. By replacing 

True and False with 1 and 0 in the truth tables for the operators ∧, ∨, and ⊕. 

• We will also use the notation OR, AND, and XOR for the operators ∨,∧, and 

⊕, respectively as is done in various programming languages. 

 
 

• Information is often represented using bit strings, which are lists of zeros and 

ones. 

 

Definition: 

 

A bit string is a sequence of zero or more bits. The length of this string is the 

number of bits in the string. 

 

Example 13 :  101010011 is a bit string of length nine. 

Bitwise operations 

• We can extend bit operations to bit strings. 

• The bitwise OR( ∨ ) , bitwise AND( ∧ ), and bitwise XOR(⊕) of two strings 

of the same length are obtained by taking by taking the OR, AND, and XOR of 

the corresponding bits, respectively.  

 

Example 13:  Find the bitwise OR, bitwise AND, and bitwise XOR of the bit 

strings 01 1011 0110 and 11 0001 1101.  

 

Solution:  

        01 1011 0110         01 1011 0110      01 1011 0110 

 ∨    11 0001 1101    ∧   11 0001 1101 ⊕  11 0001 1101 

       11 1011 1111           01 0001 0100       10 1010 1011  
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1.2 Applications of Propositional Logic 

• Logic has many important applications to computer science such as:  

o Inference and reasoning  

o specification of software and hardware 

o design computer circuits 

o construct computer programs 

o verify the correctness of programs, 

o build expert systems. 

 

Translation of English sentences 

• English sentences are translated into compound statements to remove the 

ambiguity. 

• Once we have translated sentences from English into logical expressions we 

can  

o analyze these logical expressions to determine their truth values. 

o manipulate them, and use rules of inference to reason (Inference and 

reasoning) about them. 

 

Example 1:  How can this English sentence be translated into a logical 

expression? 

“You can access the Internet from campus only if you are 

  a computer science major or you are not a freshman.” 

 

Solution:  

Parse: 

• If (You can access the Internet from campus ) then (you are 

           a computer science major or you are not a freshman) 

Atomic (elementary) propositions: 

a: ” you can access the Internet from campus” 

     c:  “you are a computer science major ” 

     f: “you are a freshman” 

• Translation: a → (c ∨￢f ). 

 

Example 2:  How can this English sentence be translated into a logical 

expression? 

“You cannot ride the roller coaster if you are under 4 feet tall unless you 

are older than 16 years old.” 

Solution 
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Let q: “You can ride the roller coaster,”  

r : “You are under 4 feet tall,”  

and  

s: “You are older than 16 years old,” . 

 Then the sentence can be translated to   (r ∧￢s)→￢q. 

 

General rule for translation. 

• Look for patterns corresponding to logical connectives in the sentence and use 

them to define elementary propositions. 

 

Example 3:  How can this English sentence be translated into a logical 

expression? 

 “You can have free coffee if you are senior citizen and it is a Tuesday” 

 

Solution: 

Do the following steps: 

1.  find logical connectives 

 

   “You can have free coffee if you are senior citizen and it is a Tuesday”  

 

2. break the sentence into elementary propositions 

 

   “You can have free coffee if you are senior citizen and it is a Tuesday”  

 

                        a                                        b                                      c 

 

3. rewrite the sentence in propositional logic 

                                  b ˄ c → a 

 

Test your self  

Assume two elementary statements: 

p:” you drive over 65 mph” ;    q:” you get a speeding ticket” 

• Translate each of these sentences to logic 

1. you do not drive over 65 mph. (¬p) 

2. you drive over 65 mph, but you don't get a speeding ticket. (p ˄ ¬q) 

3. you will get a speeding ticket if you drive over 65 mph. (p → q) 

4. if you do not drive over 65 mph then you will not get a speeding ticket.    (¬p 

→ ¬q) 

5. driving over 65 mph is sufficient for getting a speeding ticket. (p → q) 
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6. you get a speeding ticket, but you do not drive over 65 mph. (q ˄ ¬p) 

 

 

1.3  Propositional Equivalences 

 

Definition: 

 

 A compound proposition that is always true, no matter what the truth values of 

the propositional variables that occur in it, is called a tautology.  

A compound proposition that is always false is called a contradiction. 

A compound proposition that is neither a tautology nor a contradiction is called a 

contingency. 

 

Example 1: 

• p ⋁ ¬p is a tautology. 

 
 

• p ˄ ¬p is a contradiction. 

 
 

Logical Equivalences 

 

Definition: 

 

 The compound propositions p and q are called logically equivalent if p ↔ q is a 

tautology. The notation p ≡ q denotes that p and q are logically equivalent. 

 

• One way to determine whether two compound propositions are equivalent is to 

use a truth table.  

• In particular, the compound propositions p and q are equivalent if and only if 

the columns giving their truth values agree. 
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De Morgan’s Laws. 

￢(p ∧ q) ≡ ￢p ∨￢q 

￢(p ∨ q) ≡ ￢p ∧￢q 

 

Example 2: (The 2nd De Morgan’s Law) Show that ￢(p ∨ q) and ￢p ∧￢q  

are logically equivalent. 

 

Solution: 

To convince us that two propositions are logically equivalent use the truth 

table 

 

Example 3:  Show that p → q and ￢p ∨ q are logically equivalent. 

Solution: 

 

Because the truth values of ￢p ∨ q and p → q agree, they are logically 

equivalent. 

Example 4: Show that p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) are logically 

equivalent. This is the distributive law of disjunction over conjunction. 

Solution: 
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Because the truth values of p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) agree, these 

compound propositions are logically equivalent. 

 

Important logical equivalences 
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Some useful equivalences for compound propositions involving conditional 

statements and biconditional statements. 

 
Logical Equivalences 

Involving Conditional Statements. 

p → q ≡ ￢p ∨ q 

p → q ≡ ￢q →￢p 

p ∨ q ≡ ￢p → q 

p ∧ q ≡ ￢(p →￢q) 

￢(p → q) ≡ p ∧￢q 

(p → q) ∧ (p → r) ≡ p → (q ∧ r) 

(p → r) ∧ (q → r) ≡ (p ∨ q) → r 

(p → q) ∨ (p → r) ≡ p → (q ∨ r) 

(p → r) ∨ (q → r) ≡ (p ∧ q) → 

 
Logical Equivalences Involving 

Biconditional Statements. 

p ↔ q ≡ (p → q) ∧ (q → p) 

p ↔ q ≡ ￢p ↔￢q 

p ↔ q ≡ (p ∧ q) ∨ (￢p ∧￢q) 

￢(p ↔ q) ≡ p ↔￢q 

 

Constructing New Logical Equivalences 

The logical equivalences can be used to construct additional logical equivalences.  

 

Example 5: Show that ￢(p → q) and p ∧￢q are logically equivalent. 

Solution: 

 

We have the following equivalences.  

￢(p → q) ≡ ￢(￢p ∨ q)    by Example 22 

≡ ￢(￢p)∧￢q                    by the second De Morgan law 

≡ p ∧￢q                            by the double negation law 
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Example 6:  Show that ￢(p ∨ (￢p ∧ q)) and ￢p ∧￢q are logically equivalent 

by developing a series of logical equivalences. 

 

Solution: 

 (Note: we could also easily establish this equivalence using a truth table.) 

We have the following equivalences. 

￢(p ∨ (￢p ∧ q)) ≡ ￢p ∧￢(￢p ∧ q)  by the second De Morgan law 

≡ ￢p ∧ [￢(￢p)∨￢q]  by the first De Morgan law 

≡ ￢p ∧ (p ∨￢q)  by the double negation law 

≡ (￢p ∧ p) ∨ (￢p ∧￢q)  by the second distributive law 

≡ F ∨ (￢p ∧￢q)  because ￢p ∧ p ≡ F 

≡ (￢p ∧￢q) ∨ F  by the commutative law for disjunction 

≡ ￢p ∧￢q  by the identity law for F 

Consequently ￢(p ∨ (￢p ∧ q)) and ￢p ∧￢q are logically equivalent. 

 

Example 7: Show that (p ∧ q) → (p ∨ q) is a tautology. 

 

Solution:  

We will use logical equivalences to demonstrate that it is logically equivalent to 

T.  

(p ∧ q) → (p ∨ q) ≡ ￢(p ∧ q) ∨ (p ∨ q) by Example 2 

≡ (￢p ∨￢q) ∨ (p ∨ q) by the first De Morgan law 

≡ (￢p ∨ p) ∨ (￢q ∨ q) by the associative and commutative laws for disjunction 

≡ T ∨ T by Example 1 and the commutative law for disjunction 

≡ T by the domination law 
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1.4  Predicates and Quantifiers 
 

 Propositional logic: the world is described in terms of elementary propositions 

and their logical combinations  

 

Elementary statements: 

• Typically refer to objects, their properties and relations. But these are not 

explicitly represented in the propositional logic 

– For example: 

     • “Omar is a Ptuk student.” 

        Omar            a Ptuk  student 

 

        object                 a property 

 

Objects and properties are hidden in the statement, it is not possible to reason 

about them. 

Limitations of the propositional logic 

(1) Statements that must be repeated for many objects 

In propositional logic these must be exhaustively enumerated 

▪ For example: 

– If Omar is an AC Ptuk graduate then Omar has passed Calculus. 

Translation: 

– Omar is an AC Ptuk graduate →  Omar has passed Calculus. 

Similar statements can be written for other Ptuk graduates: 

– Adnan is an AC Ptuk graduate → Adnan has passed Calculus 

– Amal is an AC Ptuk graduate → Amal has passed Calculus 

– … 

• Solution: make statements with variables 

– If x is an AC Ptuk graduate then x has passed Calculus. 

– x is an AC Ptuk graduate → x has passed Calculus. 
 

(2) Statements that define the property of the group of objects 

▪ For example: 

– “Every computer connected to the university network is functioning 

     properly.” 

– All new cars must be registered. 

– “There is a computer on the university network that is under attack by an  

      intruder.” 

– Some of the AC graduates graduate with honors. 
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• Solution: make statements with quantifiers. 

 

Predicate logic 

To understand predicate logic, we first need to introduce the concept of a 

predicate. 

 

Predicates 

Predicates represent properties or relations among objects. 

For examples: 

Statements involving variables, such as 

“x > 3,”  “x = y + 3,”  “x + y = z,” 

and 

“computer x is under attack by an intruder,” 

and 

“computer x is functioning properly,” 

 

▪ The statement “x is greater than 3” has two parts.  

o The first part, the variable x, is the subject of the statement(object).  

o The second part—the predicate, “is greater than 3”—refers to a 

property that the subject of the statement can have. 

▪ We can denote the statement “x is greater than 3” by P(x). 

▪ The statement P(x) is also said to be the value of the propositional function P at 

x. 

Let the following examples:  

• Student(x)  denotes the statement “x is a student” 

• Person(x)   denotes the statement “x is a person” 

• University(x) denotes the statement “x is a university” 

▪ Once a value has been assigned to the variable x, the statement P(x) becomes a 

proposition and has a truth value. 

•   Student(John) …. T (if John is a student) 

•   Student(Ann) …. T (if Ann is a student) 

•   Student(Jane) ….. F (if Jane is not a student) 

•   University(Ptuk) …. T 

• Person(Ahmad) …. T 

 

Example 1:  Let P(x) denote the statement “x > 3.” What are the truth values of 

P(4) and P(2)? 

 

Solution:  
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We obtain the statement P(4) by setting x = 4 in the statement “x > 3.” Hence, 

P(4), which is the statement “4 > 3,” is true. However, P(2), which is the 

statement “2 > 3,” is false(F). 

 

Example 2:  Assume a predicate P(x) that represents the statement: 

                      “ x is a prime number “ 

1. What are the truth values of ,  P(x) for  x= 3, 4, 5, 6, and 7 . 

2. Is P(x) a proposition?  

Solution: 

1.  

• P(3) T 

• P(4) F 

• P(5) T 

• P(6) F 

• P(7) T 

All statements P(2), P(3), P(4), P(5), P(6), P(7) are propositions 

2. No. Many possible substitutions are possible. 

 

Predicates can have more arguments (variables) which represent the relations 

between objects.  

 

o A predicate with two arguments is denoted by Q(x, y), where x and y are 

variables is a predicate.  

▪ Once a values has been assigned to the variable x and y, the statement   Q(x, y) 

becomes a proposition and has a truth value. 

    For example: Let Older(x,y) denotes the statement “x is older than y” 

• Older (John, Peter) :  “John is older than Peter” 
   – this is a proposition because it is either true or false 

• Older (x, y)  :  ” x is older than y” 

 – not a proposition, but after the substitution it becomes one. 

o Similarly a predicate with three arguments is denoted by R(x, y, z), where x, y 

and z are variables. 

 

o Once a values has been assigned to the variable x , y, and z  the statement Q(x, 

y,z) becomes a proposition and has a truth value. 

For example: Let StudyAt(x,y, z) denotes the statement “x study at 

university y major z “ 

• StudyAt(Amjad,Ptuk, AC):  Amjad study at Ptuk major AC “ 

      – this is a proposition because it is either true or false 
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o In general, a statement involving the n variables x1, x2, . . . , xn can be denoted 

by P(x1, x2, . . . , xn).  

o When values are assigned to the variables x1, x2, . . . , xn the statement P(x1, 

x2, . . . , xn) has a truth value. 

 

Example 3: Let Q(x, y) denote the statement “x = y + 3.” What are the truth 

values of the propositions Q(1, 2) and Q(3, 0)? 

 

Solution:  

• To obtain Q(1, 2), set x = 1 and y = 2 in the statement Q(x, y). Hence, Q(1, 2) is 

the statement “1 = 2 + 3,” which is false.  

• The statement Q(3, 0) is the proposition “3 = 0 + 3,” which is true. 

 

Example 4: Let Q(x,y) denote “x+5 >y” 

1. Is Q(x,y) a proposition? No! 

2. Is Q(3,7) a proposition? Yes. It is true. 

3. What is the truth value of:  

a) Q(3,7) T 

b) Q(1,6) F 

c) Q(2,2) T 

4. Is Q(3,y) a proposition? No! We cannot say if it is true or false. 

 

Solution: 

1. No! 

2. Yes. It is true. 

3. the truth value of:  

a) Q(3,7) T 

b) Q(1,6) F 

c) Q(2,2) T 

4. No! We cannot say if it is true or false. 

 

Example 5: let R(x, y, z) denote the statement ” x + y = z.” 

 What are the truth values of the propositions R(1, 2, 3) and R(0, 0, 1)? 

 

Solution: 

• The proposition R(1, 2, 3) is obtained by setting x = 1, y = 2, and z = 3 in the 

statement R(x, y, z).  

• R(1, 2, 3) is the statement “1 + 2 = 3,” which is true. 
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• Note that R(0, 0, 1), which is the statement “0 + 0 = 1,” is false. 

 

Compound statements in predicate logic 

Compound statements are obtained via logical connectives 

For examples: 

o Student(Ann) ˄ Student(Jane) 

• Translation: “Both Ann and Jane are students” 

• Proposition: yes. 

o Country(Sienna) ⋁ River(Sienna) 

• Translation: “Sienna is a country or a river” 

• Proposition: yes. 

o AC -major(x) → Student(x) 

• Translation: “if x is an AC-major then x is a student” 

• Proposition: no. 

 

Quantifiers 

 

Predicate logic lets us to make statements about groups of objects by using 

special quantified expressions.  

 

First we want to define the domain of quantification. 

 

Definition: 

  

The domain of quantification; i.e., what the quantifiers (or variables) range 

over. The domain must be nonempty. (The domain is sometimes also called the 

universe of discourse or the domain of discourse.)  

 

The universe of discourse can be people, students, numbers, etc. 

 

Two types of quantified statements: 

 

o Universal quantifier –the property is satisfied by all members of the group. 

o For example: “ all AC Ptuk graduates have to pass Calculus” 

– the statement is true for all graduates. 

o Existential quantifier – at least one member of the group satisfy the property. 

▪ For example: “Some AC Ptuk students graduate with honor.” 

           – the statement is true for some people. 
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Universal quantifier 

 

Definition: 

 

The universal quantification of P(x) is the proposition: "P(x) is true for all values 

of x in the domain of discourse." The notation  x P(x) denotes the universal 

quantification of P(x), and is expressed as for every x, P(x). An element for 

which P(x) is false is called a counterexample of ∀xP(x). 

 

 

Example 1:  Let P(x) be the statement “x + 1 > x.” What is the truth value of the 

quantification ∀xP(x), where the domain consists of all real numbers? 

Solution:  

Because P(x) is true for all real numbers x, the quantification ∀xP(x) is true. 

 
Remarks:  

1.  If the domain is empty, then ∀xP(x) is true for any propositional 

function P(x) because there are no elements x in the domain for which 

P(x) is false. 

2. Remember that the truth value of ∀xP(x) depends on the domain! 

3. Besides “for all” and “for every,” universal quantification can be 

expressed in many other ways, including “all of,” “for each,” “given 

any,” “for arbitrary,” “for each,” and “for any.” 

4. A statement ∀xP(x) is false, whereP(x) is a propositional function, if 

and only if P(x) is not always true when x is in the domain. 

 

Example 2: Let Q(x) be the statement “x < 2.” What is the truth value of the 

quantification ∀xQ(x), where the domain consists of all real numbers? 

Solution: 

 Q(x) is not true for every real number x, because, for instance, Q(3) is false. That 

is, x = 3 is a counterexample for the statement ∀xQ(x). Thus ∀xQ(x) 

is false. 

 

Example 3: Suppose that P(x) is “x2 > 0.” Show that the statement ∀xP(x) is 

false.  

Solution: 

To show that the statement ∀xP(x) is false where the universe of discourse 

consists of all integers, we give a counterexample. We see that x = 0 is a 
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counterexample because x2 = 0 when x = 0, so that x2 is not greater than 0 when x 

= 0. 

 

Remark : When all the elements in the domain can be listed say, x1, x2, . . ., xn 

it follows that the universal quantification ∀xP(x) is the same as the conjunction 

P(x1) ∧ P(x2) ∧ · · · ∧ P(xn), because this conjunction is true if and only if P(x1), 

P(x2), . . . , P (xn) are all true. 

 

Example 4: What is the truth value of ∀xP(x), where P(x) is the statement “x2 < 

10” and the domain consists of the positive integers not exceeding 4? 

Solution:  

The statement ∀xP(x) is the same as the conjunction  

                         P(1) ∧ P(2) ∧ P(3) ∧ P(4), 

because the domain consists of the integers 1, 2, 3, and 4. Because P(4), which is 

the statement “42 < 10,” is false, it follows that ∀xP(x) is false. 

 

Example 5:What does the statement ∀xN(x) mean if N(x) is “Computer x is 

connected to the network”  and the domain consists of all computers on campus? 

 

Solution: The statement ∀xN(x) means that for every computer x on campus, that 

computer x is connected to the network. This statement can be expressed in 

English as “Every computer on campus is connected to the network.” 

 

Example 6:What is the truth value of ∀x(x2 ≥ x) if the domain consists of all real 

numbers? What is the truth value of this statement if the domain consists of all 

integers? 

Solution: 

The universal quantification ∀x(x2 ≥ x), where the domain consists of all real 

numbers, is false. For example, 

2
1 1

2 2

 
 

 
. 

Existential quantifier 

 

Definition: 

 

The existential quantification of P(x) is the proposition "There exists an element 

in the domain (universe) of discourse such that P(x) is true." The notation x 

P(x) denotes the existential quantification of P(x), and is expressed as there is an 

x such that P(x) is true. 
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Example 7: Let P(x) denote the statement “x > 3.” What is the truth value of the 

quantification ∃xP(x), where the domain consists of all real numbers? 

 

Solution: Because “x > 3” is sometimes true—for instance, when x = 4 , the 

existential quantification of P(x), which is ∃xP(x), is true. 
 

Remarks : 

1. the statement ∃xP(x) is false if and only if there is no element x in the 

domain for which P(x) is true. 

2. we can also express existential quantification in many other ways, such 

as by using the words “for some,” “for at least one,” or “there is.”  

3. The existential quantification ∃xP(x) is read as  

                     “There is an x such that P(x),” 

                     “There is at least one x such that P(x),” 

             or 

                “For some xP(x).” 

 

Example 8:  Let Q(x) denote the statement “x = x + 1.”What is the truth value of 

the quantification ∃xQ(x), where the domain consists of all real numbers? 

 

Solution:  

Because Q(x) is false for every real number x, the existential quantification of 

Q(x), which is ∃xQ(x), is false. 

 

Example 9: Let T(x) denote x > 5 and x is from Real numbers. What is the truth 

value of ∃x T(x)? 

Solution:  

Since 10 > 5 is true. Therefore, it is true that ∃x T(x). 

 

Remark : When all elements in the domain can be listed—say, x1, x2, … , xn the 

existential quantification ∃xP(x) is the same as the disjunction  

                P(x1) ∨ P(x2) ∨ · · · ∨ P(xn), 

because this disjunction is true if and only if at least one of P(x1), P(x2),... ,P(xn) is 

true. 

 



 

 

                                                                     
                                                                          

 

Lecture Notes/ Discrete Structures for Computer Science   

27 

Chapter 1  The Foundations: Logic and Proofs 

Example 10: What is the truth value of ∃xP(x), where P(x) is the statement “x2 > 

10” and the universe of discourse consists of the positive integers not exceeding 

4? 

Solution: 

Because the domain is {1, 2, 3, 4}, the proposition ∃xP(x) is the same as the 

disjunction 

                 P(1) ∨ P(2) ∨ P(3) ∨ P(4). 

Because P(4), which is the statement “42 > 10,” is true, it follows that ∃xP(x) is 

true. 

 

▪ Recall that quantification is another important way to create a proposition 

from a propositional function. 

 

Example 11: Determine whether the following statements proposition or not     

1. AC-major(x) → Student(x)  

2. ∀x AC -major(x) → Student(x) 

 

Solution 

1. Translation: “if x is an AC-major then x is a student”  

It is not a proposition. 

2. Translation: “(For all people it holds that) if a person is an AC-major then 

she is a student.” 

It is a proposition. 

 

 

Example 12: Determine whether the following statements proposition or not     

1. AC-Ptuk- graduate (x) ˄  Honor-student(x) 

2. ∃x AC-Ptuk- graduate (x) ˄  Honor-student(x) 

Solution 

 

1. Translation: “x is a AC-Ptuk- graduate and x is an honor student” 

           It is not a proposition. 

2. Translation: “There is a person who is a AC-Ptuk- graduate and who is 

also an honor student.” 

           It is a proposition. 

 

Summary of quantified statements 
▪ When ∀x P(x) and ∃x P(x) are true and false? 
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Negating Quantified Expressions 

 

❖ Negation of a quantified expression. 

 

▪ For instance, consider the negation of the statement : 

 

o “Every student in your class has taken a course in calculus.” 

 

▪ This statement is a universal quantification, namely,  

o ∀xP(x), 

 

where P(x) is the statement “x has taken a course in calculus” 

 and the domain consists of the students in your class. 

 

▪ The negation of this statement is  

o “It is not the case that every student in your class has taken a course in 

calculus.” 

▪ This is equivalent to 

o “There is a student in your class who has not taken a course in 

calculus.”  

▪ And this is simply the existential quantification of the negation of the 

original propositional function, namely, 

o ∃x ￢P(x). 

▪ This example illustrates the following logical equivalence: 

o ￢∀xP(x) ≡ ∃x ￢P(x). 
 

▪ To show that ￢∀xP(x) and ∃xP(x) are logically equivalent  

o first note that ￢∀xP(x) is true iff ∀xP(x) is false.  

o Next, note that ∀xP(x) is false iff  there is an element x in the domain for 

which P(x) is false. 
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o This holds iff there is an element x in the domain for which ￢P(x) is 

true.  

o Finally, note that there is an element x in the domain for which ￢P(x) is 

true iff ∃x ￢P(x) is true.  

o we can conclude that ￢∀xP(x) is true iff  ∃x ￢P(x) is true. 

o  It follows that ￢∀xP(x) ≡ ∃x ￢P(x). 
 

❖ Negation of an existential expression. 

 

▪ For instance, consider the negation of the statement : 

 

o “There is a student in this class who has taken a course in calculus.” 

 

▪ This statement is an existential quantification, namely,  

o ∃xQ(x), 

 

where Q(x) is the statement “x has taken a course in calculus” 

 and the domain consists of the students in your class. 

 

▪ The negation of this statement is  

o “It is not the case that there is student in this who has taken a course in 

calculus.” 

▪ This is equivalent to 

o “Every student in this class has not taken calculus.”  

▪ And this is simply the universal quantification of the negation of the original 

propositional function, namely, 

o ∀x ￢Q(x). 

▪ This example illustrates the following logical equivalence: 

o ￢∃x Q(x) ≡ ∀x ￢Q(x). 

 

▪ To show that ￢∃xQ(x) and ∀xQ(x) are logically equivalent  

o first note that ￢∃xQ(x) is true iff ∃xQ(x) is false.  

o This holds iff no x exists in the domain for which Q(x) is true.  

o Next, note that no x exists in the domain for which Q(x) is true if and 

only if Q(x) is false for every x in the domain. 



 

 

                                                                     
                                                                          

 

Lecture Notes/ Discrete Structures for Computer Science   

30 

Chapter 1  The Foundations: Logic and Proofs 

o Finally, note that Q(x) is false for every x in the domain if and only if ￢

Q(x) is true for all x in the domain,  

o we can conclude that ￢∃xQ(x) is true iff  ∀x ￢Q(x) is true. 

o  It follows that ￢∃xQ(x) ≡ ∀x ￢Q(x). 
 

 

The rules for negations for quantifiers are called De Morgan’s laws for 

quantifiers.  These rules are summarized in following Table. 

 
 

Example 13:  What are the negations of the statements “ 

1. “There is an honest politician” 

2. “All Americans eat cheeseburgers”? 

Solution: 

1. Let H(x) denote “x is honest.”  

      Then the statement  

                              “There is an honest politician” 

      is represented by  

                              ∃xH(x),  

     where the domain consists of all politicians. The negation of this statement    

      is 

                        ￢∃xH(x),  

     which is equivalent to 

                         ∀x￢H(x).  

     This negation can be expressed as  

                          “Every politician is dishonest.”  

 

2. Let C(x) denote “x eats cheeseburgers.”  

      Then the statement  

                           “All Americans eat cheeseburgers” 

   is represented by 

                           ∀xC(x),  

   where the domain consists of all Americans.  
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   The negation of this statement is  

                                       ￢∀xC(x), 

    which is equivalent to  

                                         ∃x￢C(x).  

    This negation can be expressed in several different ways, including 

                       “Some American does not eat cheeseburgers” 

     and  

                       “There is an American who does not eat cheeseburgers.” 

 

Example 14: What are the negations of the statements  

1. ∀x(x2 > x)  

2. ∃x(x2 = 2) 

Solution:  

1. The negation of ∀x(x2 > x) is the statement  

￢∀x(x2 > x),  

     which is equivalent to 

∃x￢(x2 > x).  

    This can be rewritten as  

∃x(x2 ≤ x).  

2. The negation of ∃x(x2 = 2) is the statement 

￢∃x(x2 = 2),  

    which is equivalent to 

 ∀x￢(x2 = 2).  

    This can be rewritten as 

 ∀x(x2 ≠ 2).  

    The truth values of these statements depend on the domain. 

 

Example 15: Show that ￢∀x(P(x) → Q(x)) and ∃x(P(x)∧￢Q(x)) are logically 

equivalent. 

Solution:  

By De Morgan’s law for universal quantifiers, we know that  

￢∀x(P(x) → Q(x)) ≡ ∃x(￢(P (x) → Q(x))) .  

We know that 

 ￢(P (x) → Q(x)) ≡ P(x)∧￢Q(x)  for every x.  
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It follows that  

            ￢∀x(P(x) → Q(x)) ≡ ∃x(P(x)∧￢Q(x))  

 

Translating from English into Logical Expressions 

 

Translating from English to logical expressions becomes even more complex 

when quantifiers are needed.  

 

 

Example 16: Express the statement   

                      “Every student in this class has studied calculus”  

using predicates and quantifiers. 

 

Solution:  

▪ Assume: the domain of discourse are all students in this class.  

     we rewrite the statement to obtain: 

 

      “For every student in this class, that student has studied calculus.” 

           Next, we introduce a variable x so that our statement becomes 

 

            “For every student x in this class, x has studied calculus.” 

 

          Then C(x) is the statement “x has studied calculus.”  

      • Translation: 

                ∀xC(x). 

 

▪ Assume: the domain of discourse consists of all people.  

          we will need to express our statement as 
           “For every person x, if person x is a student in this class, then x has studied 

           calculus.” 

          If S(x) represents the statement that person x is in this class. 

   • Translation: 

                          ∀x(S(x) → C(x)). 

   [Caution! Our statement cannot be expressed as ∀x(S(x) ∧ C(x)) !] 

 

Assume: we are interested in the background of people in subjects besides 

calculus.  
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Then we would replace C(x) by Q(x, calculus) in both approaches to obtain 

 

∀xQ(x, calculus) 

 or 

∀x(S(x) → Q(x, calculus)). 

 

where Q(x, y) is two-variable quantifier for the statement “student x has studied 

subject y.” 

 

Example 17: Express the statements: 

1. “Some student in this class has visited Mexico”  

2. “Every student in this class has visited either Canada or Mexico” 

 using predicates and quantifiers. 

 

Solution:  

 

1. The statement “Some student in this class has visited Mexico” 

 means that 

             “There is a student in this class with the property that the student has  

                visited Mexico.” 

 

When introducing a variable x the statement becomes  

               “There is a student x in this class having the property that x has 

                visited Mexico.” 

 

Let M(x):  “x has visited Mexico.” 

▪ Assume: the domain for x consists of the students in this class.  

▪ Translation: we rewrite the statement to obtain: 

∃xM(x). 

 

▪ Assume: the domain of discourse consists of all people. The statement can be 

expressed as: 

        “There is a person x having the properties that x is a student in this class 

          and x has visited Mexico.” 

 Let S(x) be  “x is a student in this class.” 

Our solution becomes ∃x(S(x) ∧ M(x))  

 

2. the second statement can be expressed as 
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“For every x in this class, x has the property that x has visited Mexico or x 

has visited Canada.” 

Let C(x) be “x has visited Canada.”  

 

▪ Assume: the domain for x consists of the students in this class.  

Translation: this second statement can be expressed as: 

∀x(C(x) ∨ M(x)). 

 

▪ Assume: the domain of discourse consists of all people. The statement can be 

expressed as: 

“For every person x, if x is a student in this class, then x has visited  

  Mexico or x has visited Canada.” 

 

In this case, the statement can be expressed as 

 

            ∀x(S(x) → (C(x) ∨ M(x))). 

 

❖ We can use, V (x, Mexico) and V (x, Canada) as the same meaning as M(x) 

and C(x),  

 where V (x, y) is a two-place predicate represent “x has visited country y.” 

 

 

Additional examples 

 Write the following informal statements in a formal language: 

1. “All Ptuk students are smart.” 

2. “Someone at Ptuk is smart.” 

3. “All triangles have three sides” 

4. “No dogs have wings” 

5. “Some programs are structured” 

6. “If a real number is an integer, then it is a rational number” 

7. “All bytes have eight bits” 

8. “No fire trucks are green” 

9. “People who like Homos are smart” 

10.  “If a number is an integer, then it is a rational number” 

11.   “All Palestinian like Jerusalem “  

 

Solution:  

1. Sentence:  “All Ptuk students are smart”. 
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• Assume: the domain of discourse of x are Ptuk students 

• Translation: 

• ∀x Smart(x) 

     • Assume: the universe of discourse are students (all students): 

     • Translation: 

• ∀x at(x,Ptuk) → Smart(x) 

 

     • Assume: the universe of discourse are people: 

     • Translation: 

 

• ∀x student(x) ˄ at(x,Ptuk) → Smart(x)  

2. Sentence: “ Someone at Ptuk is smart.” 
 

• Assume: the domain of discourse are all Ptuk students 

• Translation: 

 

 ∃x  Smart(x) 

    • Assume: the universe of discourse are people: 

 

 ∃x  at(x,Ptuk) → Smart(x) 

3. Sentence: “All triangles have three sides” 

   • Assume: the domain of discourse are all triangles 

   • Translation: 

 ∀x ThreeSided(x) or ∀x∈Triangle ∙ ThreeSided(x) 

 

4. Sentence: “No dogs have wings” 

     • Translation: 

  ∀d∈Dog ∙ ¬ HasWings(d) 

5. Sentence: “Some programs are structured” 

• Translation: 

 ∃p∈Program ∙ structured(p) 

6. Sentence: “If a real number is an integer, then it is a rational number” 

     • Translation: 

∀n∈RealNumber ∙ Integer(n) → Rational(n) 

7. “All bytes have eight bits” 

∀b∈Byte ∙ EightBits(b) 

8. “No fire trucks are green” 

∀t ∈FireTruck ∙ ¬ Green(t) 
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9. “People who like Homos are smart” 

∀x∈Person ∙ Like(x, Homos) → Smart(x) 

∀x∈Person ∙ LikeHomos(x) → Smart(x) 

10.  “If a number is an integer, then it is a rational number” 

  ∀n  Integer(n) → Rational(n) 

 

11.    “All Palestinian like Jerusalem “ 

   • Assume: the domain of discourse are all Palestinian 

        • Translation: 

           ∀p∈Palestinian . Likes(p, Jerusalem) 

   • Assume: the domain of discourse are all person 

        • Translation: 

             ∀p . Palestinian(p) ∧ Likes(p, Jerusalem) 

 

1.5  Nested quantifiers 

 

More than one quantifier may be necessary to capture the meaning of a statement 

in the predicate logic. 

 

For Examples: Assume that the domain for the variables x and y consists of all 

real numbers.  

• The statement  

                                         ∀x∀y(x + y = y + x) 

 

says that x + y = y + x for all real numbers x and y. This is the commutative law 

for addition of real numbers. 

• Likewise, the statement 

∀x∃y(x + y = 0) 

 

says that for every real number x there is a real number y such that x + y = 0. This 

states that every real number has an additive inverse. 

 

• Similarly, the statement  

∀x∀y∀z(x + (y + z) = (x + y) + z) 

  

 is the associative law for addition of real numbers. 

 

Example 1:  Translate this statement into a logical expression 
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              “Every real number has its corresponding negative.” 

Solution  

• Translation: 

– Assume: 

• a real number is denoted as x and its negative as y 

• A predicate P(x,y) denotes: “x + y =0” 

• Then we can write: 

∀x∃yP(x,y) 

Example 2: Translate this statement into a logical expression 

       “ There is a person who loves everybody. “” 

• Translation:  
– Assume: 

• Variables x and y denote people 

• A predicate L(x,y) denotes: “x loves y” 

• Then we can write in the predicate logic: 

∃x ∀y L(x,y) 

 

Example 3:  Translate into English the statement 

                            ∀x∀y((x > 0) ∧ (y < 0) → (xy < 0)), 

where the domain for both variables consists of all real numbers. 

 

Solution: 

• This statement says that for every real number x and for every real number y, 

if x > 0 and y < 0, then xy < 0.  

• That is, this statement says that for real numbers x and y, if x is positive and y 

is negative, then xy is negative.  

• In the summary this statement says that  

                 “The product of a positive real number and a negative real  

                    number is always a negative real number.” 

 

Order of quantifiers 

 

▪ The order of nested quantifiers matters if quantifiers are of different type 

• ∀x∃y L(x,y) is not the same as ∃y ∀x L(x,y) 

For Example: 

• Assume: 

o L(x,y) denotes “x loves y” 
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• Then: ∀x∃y L(x,y)  

• Translates to: Everybody loves somebody. 

• And: ∃y ∀x L(x,y) 

• Translates to: There is someone who is loved by everyone. 

 The meaning of the two is different. 

▪ The order of nested quantifiers does not matter if quantifiers are of the 

same type 

For Example: 

                   “ For all x and y, if x is a parent of y then y is a child of x” 

• Assume: 

o Parent(x,y) denotes “x is a parent of y” 

o Child(x,y) denotes “x is a child of y” 

• Two equivalent ways to represent the statement: 

– ∀x ∀y Parent(x,y) → Child(y,x) 

– ∀y ∀x Parent(x,y) → Child(y,x)    

Example 4 :  Let P(x, y) be the statement “x + y = y + x.” What are the truth 

values of the quantifications  ∀x∀yP(x, y) and ∀y∀xP(x, y)  

where the domain for all variables consists of all real numbers? 

 

Solution: 

The quantification 

∀x∀yP(x, y) 

denotes the proposition 

“For all real numbers x, for all real numbers y, x + y = y + x.” 

 

Because P(x, y) is true for all real numbers x and y (it is the commutative law for 

addition, which is an axiom for the real numbers , the proposition  

                                    ∀x∀yP(x, y) is true. 

 

Note that the statement  

                                             ∀y∀xP(x, y)    says  

                          “For all real numbers y, for all real numbers x, x + y = y + x.”  

 

This has the same meaning as the statement  

                          “For all real numbers x, for all real numbers y, x + y = y + x.”  

 

That is, ∀x∀yP(x, y) and ∀y∀xP(x, y) have the same meaning, and both are true.  
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Example 5 :  Let Q(x, y) denote “x + y = 0.” What are the truth values of the 

quantifications ∃y∀xQ(x, y) and ∀x∃yQ(x, y), where the domain for all variables 

consists of all real numbers? 

 

Solution:  

The quantification ∃y∀xQ(x, y)  denotes the proposition  

            “There is a real number y such that for every real number x, Q(x, y).” 

I.e., no matter what value of y is chosen, there is only one value of x for which x + 

y = 0.  

Because there is no real number y such that x + y = 0 for all real numbers x, the 

statement ∃y∀xQ(x, y) is false. 

 

The quantification ∀x∃yQ(x, y) 

denotes the proposition 

             “For every real number x there is a real number y such that Q(x, y).” 

Given a real number x, there is a real number y such that x + y = 0; namely, y = 

−x.  

Hence, the statement ∀x∃yQ(x, y) is true. 

 

Translating Mathematical Statements into Statements Involving Nested 

Quantifiers 
 

Example 6 : Translate the statement “The sum of two positive integers is always 

positive” into a logical expression. 

 

Solution: 

• Assume:  

– the domain for both variables consists of all integers.   

– we first rewrite it so that the implied quantifiers as  

“For every two integers, if these integers are both positive, then the sum  of 

these integers is positive.” 

– Next, we introduce the variables x and y to obtain 

     “For all positive integers x and y, x + y is positive.”  

 

• Translation:  
– we can express this statement as  

                                                     ∀x∀y((x > 0) ∧ (y > 0) → (x +y > 0)), 

 

• Assume:  
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– the domain for both variables consists of all positive integers.   

– Then the statement becomes  

         “For every two positive integers, the sum of these integers is positive.” 

– We can express this as 

∀x∀y(x +y > 0), 

 

However, we avoided sentences whose translation into logical expressions 

required the use of nested quantifiers. 

 

Example 7:   Express the statement  

    “If a person is female and is a parent, then this person is someone’s mother”  

as a logical expression involving predicates, quantifiers with a domain consisting 

of all people, and logical connectives. 

 

Solution: 

• Assume:  

– the domain consisting of all people.   

– variables x and y denote people 

– We introduce the propositional functions  

F(x) to represent “x is female,”  

P(x) to represent “x is a parent,” 

 and  

M(x, y) to represent “x is the mother of y.”  

– The statement can be expressed as 

        “For every person x, if person x is female and person x is a parent, then  

          there exists a person y such that person x is the mother of person y.” 

– Then the original statement can represented as  

 
∀x((F (x) ∧ P(x)) → ∃yM(x, y)). 

– We can move ∃y to the left so that it appears just after ∀x, because y does not 

appear in F(x) ∧ P(x).  

– We obtain the logically equivalent expression 

                                          ∀x∃y((F (x) ∧ P(x)) → M(x, y)). 

Translation exercise 

Suppose: 

– Variables x,y denote people 

– L(x,y) denotes “x loves y”. 

Translate: 

• Everybody loves Raymond.    ∀x L(x,Raymond) 
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• Everybody loves somebody. ∀x∃ y L(x,y) 

• There is somebody whom everybody loves. ∃y∀x L(x,y) 

• There is somebody who Raymond doesn't love.  ∃y ¬L(Raymond,y) 

• There is somebody whom no one loves.   ∃y ∀x ¬L(x,y) 

 

Translating from Nested Quantifiers into English  

 

Example 8:   Translate the statement  ∀x(C(x) ∨ ∃y(C(y) ∧ F(x, y)))  into English, 

where  

C(x) is “x has a computer,” 

F(x, y) is “x and y are friends,”  

and the domain for both x and y consists of all students in your school. 

 

Solution:  

The statement says that for every student x in your school, x has a computer or 

there is a student y such that y has a computer and x and y are friends. 

In other words,  

                 “every student in your school has a computer or has a friend  

                   who has a computer.” 

 

Negating Nested Quantifiers 

 

Example 9:   Express the negation of the statement ∀x∃y(xy = 1) so that no 

negation precedes a quantifier. 

Solution: 

We find that  

                        ∀x∃y(xy = 1) 

 is equivalent to  

                       ∃x￢∃y(xy = 1),  

which is equivalent to 

                     ∃x∀y￢(xy = 1). 

Because ￢(xy = 1) can be expressed more simply as xy ≠ 1, we conclude that our 

negated statement can be expressed as 

                     ∃x∀y(xy ≠ 1). 
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1.6 Rules of Inference 

 

Valid Arguments in Propositional Logic 

 

Consider the following argument involving propositions:  

“If you have a current password, then you can log onto the network.” 

 “You have a current password.”  

Therefore,  

“You can log onto the network.”  

 

We would like to determine whether the conclusion “You can log onto the network” 

must be true when the premises “If you have a current password, then you can log 

onto the network” and “You have a current password” are both true.  

 

Use p to represent “You have a current password”  

and  

q to represent “You can log onto the network.”  

Then, the argument has the form 

p → q  
p 
____ 

 ∴ q 
 

 where ∴ is the symbol that denotes “therefore.” 

 

We want to show that the statement ((p → q) ∧ p) → q is a tautology.   

 

Definition: 

An argument in propositional logic is a sequence of propositions. All but the final 

proposition in the argument are called premises and the final proposition is called 

the conclusion. 

An argument is valid if the truth of all its premises implies that the conclusion is 

true  
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2.1 Sets   

 

▪ In Discrete math we study the discrete structures used to represent discrete 

objects . 

▪ Many discrete structures are built using sets  

o Sets = collection of objects  

 

Examples of discrete structures built with the help of sets: 

 • Combinations 

 • Relations  

 • Graphs 

 

Definition: A set 

 

A set is a (unordered) collection of objects. These objects are sometimes 

called elements or members of the set. We write a ∈ A to denote that a is an 

element of the set A. The notation a ∈ A denotes that a is not an element of the 

set A.  

  

For examples: 

• Vowels in the English alphabet  

    V = { a, e, i, o, u } 

– The set O of odd positive integers less than 10  

    O = {1, 3, 5, 7, 9} 

– First seven prime numbers.  

         X = { 2, 3, 5, 7, 11, 13, 17 } 

 

Representing a set by: 

 

 1) Listing (enumerating) the members of the set.  

2) Definition by property, using the set builder notation  

                     {x| x has property P}. 

 

For Example: 

 • Even integers between 50 and 63.  

     1)  E = {50, 52, 54, 56, 58, 60, 62}  
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     2) E = {x| 50 <= x < 63, x is an even integer} 

 

 If enumeration of the members is hard we often use ellipses.  

For example: a set of integers between 1 and 100  

         • A= {1,2,3 …, 100} 

 

Important sets in discrete math  

o Natural numbers:  

    N = {0,1,2,3, …}  

o Integers 

     Z = {…, -2,-1,0,1,2, …}  

o Positive integers 

     Z+ = {1,2, 3.…} 

o Rational numbers  

Q = {p/q | p  Z, q  Z, q  0} 

o Real numbers R 

 

Definition:  Equal sets. 

 

 Two sets are equal if and only if they have the same elements. Therefore, if A and 

B are sets, then A and B are equal if and only if ∀x(x ∈ A ↔ x ∈ B). We write A 

= B if A and B are equal sets. 

 

For example   

The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the same elements.  

 

Example 1:  Are {1,2,3,4} and {1,2,2,4} equal?  

                     No! 

 

Special sets:  

– The universal set is denoted by U: the set of all objects under the         

consideration.  

– The empty set is denoted as  or { }. 

 

Venn diagrams  

 

• A set can be visualized using Venn Diagrams: 

   V={ A, B, C } 
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Definition:  A Subset 

 

  A set A is said to be a subset of B if and only if every element of A is also an 

element of B. We use A  B to indicate A is a subset of B. 

  

 

• Alternate way to define A is a subset of B: 

    x (x  A) → (x  B) 

Empty set properties  

Theorem   S  

• Empty set is a subset of any set.  

Proof: 

• Recall the definition of a subset: all elements of a set A must be also elements 

of B: x (x  A → x  B).  
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• We must show the following implication holds for any S 

 x (x → x  S) 

• Since the empty set does not contain any element, x   is always False  

• Then the implication is always True.  

• End of proof 

Subset properties 

Theorem: S  S  

• Any set S is a subset of itself  

Proof:  

• the definition of a subset says: all elements of a set A must be also elements of 

B: x (x  A → x  B).  

• Applying this to S we get:  

• x (x  S → x  S) which is trivially True  

• End of proof  

Note on equivalence: 

 • Two sets are equal if each is a subset of the other set. 

Definition:  A proper subset  

 

 A set A is said to be a proper subset of B if and only if A  B and A  B. We 

denote that A is a proper subset of B with the notation A  B. 
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Example 2:   A={1,2,3}   B ={1,2,3,4,5}  

Is: A  B ? Yes. 

Cardinality  

Definition:  Cardinality 

  

Let S be a set. If there are exactly n distinct elements in S, where n is a 

nonnegative integer, we say S is a finite set and that n is the cardinality of S. The 

cardinality of S is denoted by | S |.  

Example  3 Let A be the set of odd positive integers less than 10.   

 Then |A| = 5. 

 Example  4 Let S be the set of letters in the English alphabet.  

  Then |S| = 26.  

Example  5  Because the null set has no elements, it follows that |∅| = 0 

Example 6 :  Let  V={1, 2, 3 ,4, 5} 

Then    | V | = 5  

Example 7   A={1,2,3,4, …, 20} 

Then   |A| =20  

Definition:  Infinite set  

A set is infinite if it is not finite.  
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For examples:  

• The set of natural numbers is an infinite set. 

    N = {1, 2, 3, ... } 

• The set of reals is an infinite set. 

Power sets 

Definition:  Power set 

Given a set S, the power set of S is the set of all subsets of S. The power set is 

denoted by P(S).  

For Examples: 

• Assume an empty set   

• What is the power set of  ? P() = {  } 

 • What is the cardinality of P() ? | P() | = 1. 

 • Assume set {1}  

• P( {1} ) = { , {1} } 

 • |P({1})| = 2 

Assume {1,2}  

• P( {1,2} ) = { , {1}, {2}, {1,2} }  

• |P({1,2} )| =4 

• Assume {1,2,3} 

• P({1,2,3}) = {, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} }  

• |P({1,2,3} | = 8  
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• If S is a set with |S| = n then | P(S) | = 2n  

N-tuple 

 • Sets are used to represent unordered collections.  

• Ordered-n tuples are used to represent an ordered collection.  

 

Definition:  An ordered n-tuple  

An ordered n-tuple (x1, x2, ..., xN) is the ordered collection that has x1 as its first 

element, x2 as its second element, ..., and xN as its N-th element, N  2.  

Example: 

 

Coordinates of a point in the 2-D plane (12, 16) 

 

Cartesian product 

Definition:   Cartesian product 

Let S and T be sets. The Cartesian product of S and T, denoted by S x T, is the set 

of all ordered pairs (s,t), where s  S and t  T.  

Hence,   S x T = { (s,t) | s  S  t  T} 

 

Example 8 :  What is the Cartesian product of A = {1, 2} and B = {a, b, c}?  

Solution:  
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The Cartesian product   

          A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}. 

  • Note:  B × A = { (a,1), (a, 2), (b,1), (b,2), (c,1), (c,2) } 

                 B × A  A × B !!!! 

 

Cardinality of the Cartesian product  

• |A x B| = |A| * |B|.  

Example   9 :  Assume the following sets:  

     A= {John, Peter, Mike} 

     B ={Jane, Ann, Laura} 

What is the Cartesian product of A x B 

Solution:  

A x B= {(John, Jane),(John, Ann) , (John, Laura), (Peter, Jane), (Peter, Ann) , 

(Peter, Laura) , (Mike, Jane) , (Mike, Ann) , (Mike, Laura)} 

 |A x B| = 9  

|A|=3, |B|=3 → |A| |B|= 9  

Definition:    

A subset of the Cartesian product A x B is called a relation from the set A to the 

set B. 

2.2  Set operations  

Definition:  The union 

Let A and B be sets. The union of A and B, denoted by A  B, is the set that 

contains those elements that are either in A or in B, or in both.  
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• Alternate: A B = { x | x  A  x  B }. 

 

Example 1: 

 • A = {1,2,3,6}    B = { 2,4,6,9}  

• A B = { 1,2,3,4,6,9 }  

Definition:  The intersection 

Let A and B be sets. The intersection of A and B, denoted by A  B, is the set that 

contains those elements that are in both A and B.  

• Alternate: A  B = { x | x  A  x  B }. 

 

Example  2: 

 • A = {1,2,3,6}       B = { 2,4,6,9}  

• A B = { 2,6 }  
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Definition:  Disjoint set 

Two sets are called disjoint if their intersection is empty.  

• Alternate: A and B are disjoint if and only if A B = . 

Example  3 :  

• A={1,2,3,6} B={4,7,8} Are these disjoint?  

• Yes.  Because  A B =  

Cardinality of the set union 

• |A  B| = |A| + |B| - |A B| 

– Correct for an over-count. 

 • More general rule:  

– The principle of inclusion and exclusion. 

Definition:  Set difference  

Let A and B be sets. The difference of A and B, denoted by A - B, is the set 

containing those elements that are in A but not in B. The difference of A and B is 

also called the complement of B with respect to A.  

• Alternate: A - B = { x | x  A  x  B }. 

 

Example  4 :  

A= {1,2,3,5,7}       B = {1,5,6,8} 
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The complement of the set A, denoted by A , is the complement of A with 

respect to U.  Therefore, the complement of the set A is U − A. 

• Alternate: A  = { x | x  A } 

 

 • A - B ={2,3,7} 

Definition:  Complement of a set 

 

  

 

 

Example  5 :  Let   U={1,2,3,4,5,6,7,8}     ,     A ={1,3,5,7} 

 Then  A  = {2,4,6,8} 

 

Set identities  

Set Identities (analogous to logical equivalences)  

• Identity 

  A   = A  

  A  U = A  

• Domination  

  A U = U 

    A   =  

 • Idempotent  

   A  A = A 
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   A A = A 

• Double complement  

  A  = A 

• Commutative  

 A  B = B  A  

 A B = B  A  

• Associative  

   A (B  C) = (A B)  C 

   A  (B  C) = (A B) C 

 • Distributive  

  A (B C) = (A B) (A C)  

– A (B C) = (A B) (A  C) 

• DeMorgan  

  (𝐴 ∩  𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = A B   

  (𝐴 ∪  𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = A B   

• Absorbtion Laws 

 A  (A  B) = A  

A  (A  B) = A 

• Complement Laws  

A  A= U  

A  A  =  
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• Set identities can be proved using membership tables.  

• List each combination of sets that an element can belong to. Then show that for 

each such a combination the element either belongs or does not belong to both 

sets in the identity.  

• Prove  (𝐴 ∩  𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = A B   

 

Example 6 : Let A, B, and C be sets. Show that 𝐴 ∪ (𝐵 ∩  𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)= (𝐶̅ ∪ 𝐵̅) ∩ 𝐴̅.  

Solution: We have 

 𝐴 ∪ (𝐵 ∩  𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)= 𝐴̅ ∩ (𝐵 ∩  𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅)    by the first De Morgan law  

                          = 𝐴̅ ∩ (𝐵̅ ∪ 𝐶̅) by the second De Morgan law 

                          = (𝐵̅ ∪ 𝐶̅) ∩ 𝐴̅  by the commutative law for intersection 

                          = ( 𝐶̅  ∪ 𝐵̅) ∩ 𝐴̅  by the commutative law for unions 

Generalized Unions and Intersections 

Definition:   

The union of a collection of sets is the set that contains those elements that are 

members of at least one set in the collection.  

• We use the notation A1 ∪ A2 ∪···∪ An = 
1

n

i

i

A
=

 

Example 7 :  
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 •  Let Ai = {1,2,...,i}    i =1,2,...,n  

•  
1

n

i

i

A
=

 =  {1 , 2 ,..., n} 

Definition:   

The intersection of a collection of sets is the set that contains those elements that 

are members of all sets in the collection.  

• We use the notation A1  A2 ··· An = 
1

n

i

i

A
=

 

Example 8 :  

 •  Let Ai = {1,2,...,i}    i =1,2,...,n  

•  
1

n

i

i

A
=

 =  {1 } 

Computer representation of sets 

• How to represent sets in the computer?  

• One solution: Data structures like a list  

• A better solution: 

• Assign a bit in a bit string to each element in the universal set and set the bit to 

1 if the element is present otherwise use 0  

Example 9 :  

 All possible elements: U={1 2 3 4 5} 

 • Assume A={2,5}  

   – Computer representation: A = 01001  

• Assume B={1,5}  
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   – Computer representation: B = 10001 

Solution:  

• A = 01001 

• B = 10001  

• The union is modeled with a bitwise or  

• A  B = 11001  

• The intersection is modeled with a bitwise and  

• A  B = 00001 

 • The complement is modeled with a bitwise negation 

 • A =10110 

 

2.3  Functions 

Definition:   

Let A and B be two sets. A function from A to B, denoted f : A → B , is an 

assignment of exactly one element of B to each element of A. We write f(a) = b to 

denote the assignment of b to an element a of A by the function f. 

 

Representing functions  

1. Explicitly state the assignments in between elements of the two sets  

2. Compactly by a formula. (using ‘standard’ functions)  
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Example 1 :  Let A = {1,2,3} and B = {a,b,c} 

Assume f is defined as:  

• 1 → c  

• 2 → a  

• 3 → c  

• Is f a function ?  

• Yes. since f(1)=c, f(2)=a, f(3)=c. each element of A is assigned an element from 

B. 

Example 2: Let A = {1,2,3} and B = {a,b,c}  

Assume g is defined as  

• 1 → c  

• 1 → b  

• 2 → a 

 • 3 → c  

• Is g a function?  

• No. g(1) = is assigned both c and b. 

Example 3:  Let A = {0,1,2,3,4,5,6,7,8,9}, B = {0,1,2} 

Define h: A → B as:  

h(x) = x mod 3.  (the result is the remainder after the division by 3)  

 Assignments:  

• 0 → 0                         • 3 → 0         • 6 → 0   

• 1 → 1                         • 4 → 1         • 7 → 0   
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• 2 → 2                        • 5 → 2              ….. 

Important sets 

Definition:   

Let f be a function from A to B.  We say that A is the domain of f and B is the 

codomain of f.   

• If f(a) = b, b is the image of a and a is a pre-image of b.  

• The range of f is the set of all images of elements of A. Also, if f is a function 

from A to B, we say f maps A to B.  

Example 4:  Let A = {1,2,3} and B = {a,b,c}  

 Assume f is defined as: 1 → c, 2 → a, 3 → c  

• What is the image of 1?  

• 1 → c    c is the image of 1  

• What is the pre-image of a? 

 • 2 → a    2 is a pre-image of a. 

 • Domain of f ? {1,2,3} 

 • Codomain of f ? {a,b,c}  

• Range of f ? {a,c} 

Definition:  Image of a subset 

Let f be a function from set A to set B and let S be a subset of A. The image of S 

is a subset of B that consists of the images of the elements of S. We denote the 

image of S by f(S), so that f(S) = { f(s) | s  S }. 
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Example 5:  Let A = {1,2,3} and B = {a,b,c} and f: 1 → c, 2 → a, 3 → c  

• Let S = {1,3} then image f(S) = {c}. 

Definition: Injective function  

function f is said to be one-to-one, or injective, if and only if f(x) = f(y) implies x 

= y for all x, y in the domain of f. A function is said to be an injection if it is one-

to-one. Alternate: A function is one-to-one if and only if f(x)  f(y), whenever x  

y. This is the contrapositive of the definition. 

 

Example 6:  Let A = {1,2,3} and B = {a,b,c}  

Define f as  

• 1 → c  

• 2 → a  

• 3 → c  

▪ Is f one to one?  

▪ No, it is not one-to-one since f(1) = f(3) = c, and 1  3. 

Example 7: Let g : Z → Z, where g(x) = 2x - 1. 
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• Is g is one-to-one (why?)  

• Yes.  

• Suppose g(a) = g(b), i.e., 2a - 1 = 2b - 1 => 2a = 2b => a = b. 

Surjective function 

Definition:  

 A function f from A to B is called onto, or surjective, if and only if for every b  

B there is an element a  A such that f(a) = b. Alternative: all co-domain elements 

are covered 

 

Example 8: Let A = {1,2,3} and B = {a,b,c}  

Define f as • 1 → c   • 2 → a   • 3 → c  

• Is f an onto?  

• No. f is not onto, since b  B has no pre-image.  

Example 9: A = {0,1,2,3,4,5,6,7,8,9}, B = {0,1,2} 

Define h: A → B as h(x) = x mod 3.  

• Is h an onto function?  

• Yes. h is onto since a pre-image of 0 is 6, a pre-image of 1 is 4, a pre-image of 2 

is 8. 

Definition: Bijective functions  

A function f is called a bijection if it is both one-to-one and onto. 
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Example 10:  Let A = {1,2,3} and B = {a,b,c}  

Define f as • 1 → c   • 2 → a   • 3 → b  

• Is f is a bijection?  

• Yes. It is both one-to-one and onto. 

• Note: Let f be a function from a set A to itself, where A is finite. f is one-to-

one if and only if f is onto.  

• This is not true for A an infinite set.  Define f : Z → Z, where f(z) = 2 * z.  

• f is one-to-one but not onto (3 has no pre-image). 

Example 11:  Define g : W → W (whole numbers), where g(n) = [n/2] (floor 

function).    

• 0 → [0/2] = [0] = 0 

 • 1 → [1/2] = [1/2] = 0 

 • 2 → [2/2] = [1] = 1 

 • 3 → [3/2] = [3/2] = 1 

 •                            ... 

 • Is g a bijection?  

– No. g is onto but not 1-1 (g(0) = g(1) = 0 however 0  1. 
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Theorem: Let f be a function f: A →A from a set A to itself, where A is finite. 

Then f is one-to-one if and only if f is onto.  

Proof:  

• A is finite and f is one-to-one (injective) 

• Is f an onto function (surjection)? 

• Yes. Every element points to exactly one element. Injection assures they are 

different. So we have |A| different elements A points to.  

•  Since f: A → A the co-domain is covered thus the function is also a surjection 

(and a bijection)  

•  A is finite and f is an onto function  

• Is the function one-to-one? 

• Yes. Every element maps to exactly one element and all elements in A are 

covered. Thus the mapping must be one-to-one 

Please note the above is not true when A is an infinite set. 

Example 12 :  f : Z → Z, where f(z) = 2 * z.  

– f is one-to-one but not onto. 

 • 1 → 2  

• 2 → 4 

 • 3 → 6  

– 3 has no pre-image. 

Functions on real numbers  

Definition: Let f1 and f2 be functions from A to R (reals). Then f1 + f2 and 

f1 * f2 are also functions from A to R defined by 
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 • (f1 + f2)(x) = f1(x) + f2(x)  

• (f1 * f2)(x) = f1(x) * f2(x). 

 Examples: 

 • Assume • f1(x) = x - 1  

• f2(x) = x3 + 1 then 

 • (f1 + f2)(x) = x3 + x  

• (f1 * f2)(x) = x4 - x3 + x - 1. 

Increasing and decreasing functions  

Definition: A function f whose domain and codomain are subsets of real numbers 

is strictly increasing if f(x) > f(y) whenever x > y and x and y are in the domain 

of f. Similarly, f is called strictly decreasing if f(x) < f(y) whenever x > y and x 

and y are in the domain of f. 

Example 13:  Let g : R → R, where g(x) = 2x - 1. Is it increasing ? 

Proof . For x>y holds 2x > 2y and subsequently 2x-1 > 2y-1  

Thus g is strictly increasing. 

Note: Strictly increasing and strictly decreasing functions are oneto-one. Why? 

One-to-one function: A function is one-to-one if and only if f(x)  f(y), whenever 

x  y 

Identity function  

Definition: Let A be a set. The identity function on A is the function  

iA: A → A where iA (x) = x. 

Example 14:   Let A = {1,2,3} Then: 

 • iA (1) =  1  
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• iA (2) = 2 

 • iA (3) = 3. 

Inverse functions  

Definition: 

Let f be a bijection from set A to set B. The inverse function of f is the function 

that assigns to an element b from B the unique element a in A such that f(a) = b. 

The inverse function of  f is denoted by f-1. Hence, f-1 (b) = a, when f(a) = b. If the 

inverse function of f exists, f is called invertible. 

 

Note: if f is not a bijection then it is not possible to define the inverse function of 

f. Why?  

Assume f is not one-to-one:  

Inverse is not a function. One element of B is mapped to two different elements. 

 

Assume f is not onto:  

Inverse is not a function. One element of B is not assigned any value in B. 
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Example 15:  Let A = {1,2,3} and i A be the identity function 

 • iA(1) = 1                  iA -1 (1) = 1  

• iA(2) = 2                  iA -1 (2) = 2 

• iA(3) = 3                 iA -1 (3) = 3  

• Therefore, the inverse function of iA is iA. 

 

Example 16:  Let g : R → R, where g(x) = 2x - 1.  

• What is the inverse function g-1 ? 

Approach to determine the inverse:  

y = 2x - 1 => y + 1 = 2x => (y+1)/2 = x  

• Define g-1(y) = x= (y+1)/2 

Test the correctness of inverse:  

• g(3) = 2*3 - 1 = 5 

 • g-1 (5) = (5+1)/2 = 3  

• g(10) = 2*10 - 1 = 19 

• g-1 (19) = (19+1)/2 = 10. 
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Composition of functions  

Definition:  

 Let f be a function from set A to set B and let g be a function from set B to set C. 

The composition of the functions g and f, denoted by g  f is defined by 

 • (g  f)(a) = g(f(a)). 

 

 

Example 17:  :  Let A = {1,2,3} and B = {a,b,c,d}  

g : A → A,                      f: A → B 

1 → 3                              1 → b 

2 → 1                              2 → a  

3 → 2                              3 → d  

f  g : A → B:  

• 1 → d  

• 2 → b  

• 3 → a 

Example 18:   Let f and g be two functions from Z to Z, where 

• f(x) = 2x and g(x) = x2.  

• f  g : Z → Z  
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• (f  g)(x) = f(g(x))  

                   = f( x2 )  

                  = 2(x2) 

• g  f : Z → Z  

• (g  f)(x) = g(f(x))  

                   = g(2x) = (2x) 2 = 4x2 

Example 19:  (f  f -1)(x) = x and (f -1  f)(x) = x, for all x.  

• Let f : R → R, where f(x) = 2x – 1 and f -1 (x) = (x+1)/2.  

• (f  f -1 )(x)= f(f -1 (x)) = f( (x+1)/2 ) = 2( (x+1)/2 ) - 1 = (x+1) - 1 = x 

• (f -1  f)(x) = f -1 (f(x)) = f -1 ( 2x - 1 ) = (2x)/2 = x 

Some functions 

Definition:  

 The floor function is denoted by  x .  

• The ceiling function assigns to the real number x the smallest integer that is 

greater than or equal to x. The ceiling function is denoted by  x .  

Other important functions:  

• Factorials: n! = n(n-1) such that 1! = 1 

2.4 Sequences and summations 

Definition:  

  A sequence is a function from a subset of the set of integers (typically the set 

{0,1,2,...} or the set {1,2,3,...} to a set S. We use the notation an to denote the 

image of the integer n. We call an a term of the sequence.  
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Notation: {an} is used to represent the sequence (note {} is the same notation used 

for sets, so be careful). {an} represents the ordered list a1, a2, a3, ... . 

 

Examples:  

(1)  an = n2, where n = 1,2,3...   

 What are the elements of the sequence?     1, 4, 9, 16, 25, ...  

 (2) an = (-1) n, where n=0,1,2,3,...  

What are the elements of the sequence?    1, -1, 1, -1, 1, ...  

 (3) an = 2n, where n=0,1,2,3,...  

(4) an = 1/ n . What are the elements of the sequence?    1, 1/2 , 1/3 , 1/4 , . … 

What are the elements of the sequence?    1, 2, 4, 8, 16, 32, ... 

 

Arithmetic progression  

Definition:  

  An arithmetic progression is a sequence of the form a, a+d,a+2d, …, a+nd 

where a is the initial term and d is common difference, such that both belong to R.  

Remark: An arithmetic progression is a discrete analogue of the linear function 

f(x) = dx + a. 

Example 1:  sn= -1+4n for n=0,1,2,3, …  

• members: -1, 3, 7, 11, … 
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Definition:  

  A geometric progression is a sequence of the form: a, ar, ar2, ..., ark, where a is 

the initial term, and r is the common ratio. Both a and r belong to R.  

Remark: A geometric progression is a discrete analogue of the exponential 

function f(x) = arx. 

Example 2:  an = ( ½ )n for n = 0,1,2,3, … 

• members: 1,½, ¼, 1/8, ….. 

Given a sequence finding a rule for generating the sequence is not always 

straightforward. 

Example 3:  Assume the sequence: 1,3,5,7,9, ….  

• What is the formula for the sequence?  

• Each term is obtained by adding 2 to the previous term.  

1, 1+2=3, 3+2=5, 5+2=7  

• What type of progression this suggest? 

• It suggests an arithmetic progression:  

a+nd      with a=1 and d=2          an=1+2n 

Example 4:  Assume the sequence: 1, 1/3, 1/9, 1/27, …  

• What is the sequence?  

• The denominators are powers of 3 

  (1/3)0, (1/3)1, (1/3)2, (1/3)3, ….(1/3 )k 

• This suggests a geometric progression: ark with a=1 and r=1/3  

Recursively defined sequences  

• The n-th element of the sequence {an} is defined recursively in terms of the 

previous elements of the sequence and the initial elements of the sequence. 

Example 5:  an = an-1 + 2 assuming a0 = 1;  
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a1 = 3, a2 = 5, a3 = 7 

 • Can you write an non-recursively using n?  

    an = 1 + 2n 

Fibonacci sequence  

• Recursively defined sequence, where f0 = 0; f1 = 1; fn = fn-1 + fn-2 for n = 2,3, …   

f2 = 1       f3 = 2      f4 = 3     f5 = 5 

Summations  

Summation of the terms of a sequence:  

 

The variable j is referred to as the index of summation. 

 • m is the lower limit and 

• n is the upper limit of the summation 

Example: 

• Sum the first 7 terms of {n2} where n=1,2,3, ... . 

 

• 2) What is the value of 
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Arithmetic series 

Definition:  

 The sum of the terms of the arithmetic progression a, a+d,a+2d, …, a+nd is called 

an arithmetic series.  

Theorem: The sum of the terms of the arithmetic progression a, a+d,a+2d, …,        

a+nd is 

 

Proof 

 

 

Example 1:  
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Example 2: 

 

 

 

 

 

Double summations 

Example 3: 

 

 

 

 

 

 

 

 

Geometric series 

Definition:  

 The sum of the terms of a geometric progression a, ar, ar2, ..., ark is called a 

geometric series.  

Theorem: The sum of the terms of a geometric progression a, ar, ar2, ..., arn is 
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Proof: 

 

 

 

      

Example 4: 

 

General formula: 

 

 

Infinite geometric series  

• Infinite geometric series can be computed in the closed form for x <1 
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• How? 

 

• Thus: 

 

 

Formulae for commonly occurring sums 

Table 2 provides a small table of formulae for commonly occurring sums. 

 

Example 5:   
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2.5  Cardinality of Sets 

Recall: The cardinality of a finite set is defined by the number of elements in the 

set. 

Definition:  

The sets A and B have the same cardinality if and only if there is a one-to-one 

correspondence from A to B. When A and B have the same cardinality, we write 

|A|=|B|. In other words if there is a bijection from A to B. 

Example 1: Assume A = {a,b,c} and B = {α,β,γ} and function f defined as: 

 • a → α 

• b →β 

• c → γ  

f defines a bijection. Therefore A and B have the same cardinality,  

i.e. | A | = | B | = 3. 

Countable Sets 

Definition:  

A set that is either finite or has the same cardinality as the set of positive integers 

Z+ is called countable. A set that is not countable is called uncountable. 

Example 2:  Assume A = {0, 2, 4, 6, ... } set of even numbers. Is it countable?  

• Using the definition:  Is there a bijective function f: Z+ → A  
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• Define a function f: x → 2x - 2 (an arithmetic progression)  

• 1 → 2(1)-2 = 0 

• 2 → 2(2)-2 = 2  

• 3 → 2(3)-2 = 4 ...  

• one-to-one (why?) 2x-2 = 2y-2 => 2x = 2y =>x = y.  

• onto (why?) a  A, (a+2) / 2 is the pre-image in Z+.  

• Therefore | A | = | Z+ |. 

Tet yourself:   Show that the set of odd positive integers is a countable. 

Example 3:  Show that the set of all integers is countable.  

Solution: 

• We can list all integers in a sequence by starting with 0 and alternating 

between positive and negative integers: 0, 1, −1, 2, −2,... .  

• Alternatively, we could find a one-to-one correspondence between the set of 

positive integers and the set of all integers (a bijection from Z+ to Z):  

- f (n) = n/2 when n is even  

- f (n) = −(n − 1)/2 when n is odd  

• Consequently, the set of all integers is countable.  

Example 4:  Show that the set of positive rational numbers is countable 

Solution:  

The positive rational numbers are countable since they can be arranged in a 

sequence: 

                r1 , r2 , r3 ,… 
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