Hash functions

- A *hash function* is an algorithm that maps data of arbitrary length to data of afixed length.
- The values returned by a hash function are called **hash values** or **hash codes**.

For Example :

Hash function

- **Problem:** Given a large collection of records, how can we store and find a recordquickly?
- **Solution:** Use a hash function calculate the location of the record based on therecord's ID.
- **Example 1:** A common hash function is

• $h(k) = k \mod m$,

where m is the number of available storage locations.

An example of a hash function that maps integers (including verylarge ones) to a subset of integers 0, 1, .. m-1 is:

• $h(k) = k \mod m$

Example 2: Assume we have a database of employees, each with a unique ID – a social security number that consists of 8 digits. We want to store the records in a smaller table with m entries. Using h(k) function we can map a social security number in the database of employees to indexes in the table.

Assume: $h(k) = k \mod 111$

Then:

 $h(064212848) = 064212848 \mod 111 = 14$

 $h(037149212) = 037149212 \mod 111 = 65$

• Problem: two documents mapped to the same location

- Solution : move the next available location
- Method is represented by a sequence of hash functions to

Try

$$h_0(k) = k \mod m h_1(k) = (k+1) \mod m$$

•••

```
h_m(k) = (k+m) \mod m
```


There are many other ways to resolve collisions that are discussed in the references on hashing functions given at the end of the book.

Cryptology

Encryption of messages.

- Caesar cipher:
- Shift letters in the message by 3, last three letters mapped to the first 3 letters, e.g. A is shifted to D, X is shifted to A

How to represent the idea of a shift by 3?

- There are 26 letters in the alphabet. Assign each of them a number from 0,1, 2, 3, .. 25 according to the alphabetical order.
- Coding of letters:

A B C D E F G H I J K L M N O P Q R S T U Y V X W Z 0 1 2 3 4 5 6 789101112 13141516171819202122232425

Encryption of messages using a shift by 3.

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p+3) \mod 26$
- Encrypt message:
- I LIKE DISCRETE MATH

– L OLNH GLYFUHVH PDVK.

How to decode the message ?

• $f^{-1}(p) = (p-3) \mod 26$

4.2 Integer Representations and Algorithms

Representations of Integers

- In the modern world, we use *decimal*, or *base* 10, *notation* to represent integers. For example when we write 965, we mean $965=9\cdot10^2+6\cdot10^1+5\cdot10^0$.
- We can represent numbers using any base *b*, where *b* is a positive integer greater than 1.
- The bases *b* = 2 (*binary*), *b* = 8 (*octal*), and *b*= 16 (*hexadecimal*) are important for computing and communications
- The ancient Mayans used base 20 and the ancient Babylonians used base 60.

Base b Representations

• We can use positive integer b greater than 1 as a base

Theorem 1: Let *b* be a positive integer greater than 1. Then if *n* is a positive integer, it can be expressed uniquely in the form:

$$n = a b^{k} + a_{k-1}^{k-1} + \dots + a b + a_{1}^{k-1}$$

where k is a nonnegative integer, a_0, a_1, \dots, a_k are nonnegative integers less than b, and $a_k \neq 0$. The $a_j, j = 0, \dots, k$ are called the base-b digits of therepresentation.

• The representation of *n* given in **Theorem 1** is called the *base b* expansion of *n* and is denoted by $(a_k a_{k-1} \dots a_1 a_0)_b$.

We usually omit the subscript 10 for base 10 expansions.

Binary Expansions

- Most computers represent integers and do arithmetic with binary (base 2) expansions of integers.
- In these expansions, the only digits used are 0 and 1.

Example 1:

What is the decimal expansion of the integer that has(1 01011111)₂ as its binary expansion?

Solution:

 $(1\ 0101\ 1111)_2 = 1\cdot 2^8 + 0\cdot 2^7 + 1\cdot 2^6 + 0\cdot 2^5 + 1\cdot 2^4 + 1\cdot 2^3$

 $+1\cdot 2^2 + 1\cdot 2^1 + 1\cdot 2^0 = 351.$

Example 2: What is the decimal expansion of the integer that has (11011)₂ as its binary expansion?

Solution: $(11011)_2 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 27$

Octal Expansions

The octal expansion (base 8) uses the digits {0,1,2,3,4,5,6,7}.
Example 3: What is the decimal expansion of the number with octalexpansion (7016)₈?

Solution: $7 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 6 \cdot 8^0 = 3598$

Example 4: What is the decimal expansion of the number with octal expansion (111)₈?

Solution: $1 \cdot 8^2 + 1 \cdot 8^1 + 1 \cdot 8^0 = 64 + 8 + 1 = 73$

Hexadecimal Expansions

- The hexadecimal expansion uses 16 digits: $\{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$.
 - The letters A through F represent the decimal numbers 10

through 15.

Example 5: What is the decimal expansion of the number with hexadecimal expansion (2AE0B)₁₆?

Solution:

 $2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16^1 + 11 \cdot 16^0 = 175627$

Example 6: What is the decimal expansion of the number with hexadecimal expansion (E5)₁₆?

Solution: $14 \cdot 16^1 + 5 \cdot 16^0 = 224 + 5 = 229$

Base Conversion

- To construct the base *b* expansion of an integer *n*:
 - Divide *n* by *b* to obtain a quotient and remainder.

 $n = bq_0 + a_0 \qquad 0 \le a_0 \le b$

- The remainder, a_0 , is the rightmost digit in the base *b* expansion of *n*. Next, divide q_0 by $b.q_0$

 $b.q_0 = bq_1 + a_1 \qquad 0 \le a_1 \le b$

- The remainder, a_1 , is the second digit from the right in the base *b* expansion of *n*.
- Continue by successively dividing the quotients by b, obtaining the additional base b digits as the remainder.
- The process terminates when the quotient is 0.

Example 7: Find the octal expansion of $(12345)_{10}$

Solution: Successively dividing by 8 gives:

 $12345 = 8 \cdot 1543 + 1$ $1543 = 8 \cdot 192 + 7$ $192 = 8 \cdot 24 + 0$ $24 = 8 \cdot 3 + 0$ $3 = 8 \cdot 0 + 3$

- The remainders are the digits from right to left yielding $(30071)_8$.