Representing binary relations Using graphs

- We have shown that a relation can be represented by listing all of its ordered pairs or by using a zero–one matrix.
- We use such pictorial representations when we think of relations on a finite set as directed graphs, or digraphs.

Definition:

A **directed graph or digraph** consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a,b) and vertex b is the terminal vertexof this edge.

An edge of the form (a, a) is represented using an arc from the vertex a back to itself. Such an edge is called a **loop.**

Example : The directed graph with vertices a, b, c, and d, and edges (a, b), (a, d), $(b, b), (b, d), (c, a), (c, b), and (d, b)$ is displayed in Figure down.

Example : Assume the relation R = { $(1, 1)$, $(1, 3)$, $(2, 1)$, $(2, 3)$, $(2, 4)$, $(3, 1)$, $(3, 1)$ 2), (4, 1)} on the set {1, 2, 3, 4}

The directed graph of is shown in down.

Relations

9.4 Closures of relations

- **Relations can have different properties:**
	- **reflexive,**
	- **symmetric**
	- **transitive**
- Because of that we define:
	- **symmetric closures.**
	- **reflexive closures.**
	- **transitive closures.**

Definition:

Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is asubset of every relation Q (S \subseteq Q) with property P that contains R ($R \subseteq Q$).

Example : Let R={ $(1,1)$, $(1,2)$, $(2,1)$, $(3,2)$ } on A ={1 2 3}.

- Is this relation reflexive?
- Answer: **No.** Why?
- **(2,2) and (3,3) is not in R.**
- The question is what is **the minimal relation** $S \supseteq R$ that is reflexive?
- How to make R reflexive with minimum number of additions?
- **Answer:** Add (2,2) and (3,3)
	- Then $S = \{(1,1), (1,2), (2,1), (3,2), (2,2), (3,3)\}\$
	- \cdot R \subset S
	- The minimal set $S \supseteq R$ is called the **reflexive closure of R**

Definition: Reflexive closure

The set S is called **the reflexive closure of R** if it:

- contains R
- has reflexive property
- is contained in every reflexive relation Q that contains R (R
- \subseteq Q), that is $S \subseteq \overline{Q}$

Definition: Symmetric closure

The set S is called **the reflexive closure of R** if it can be constructed by taking

the union of a relation with its inverse $S = R \cup R^{-1}$

Example (a symmetric closure):

- Assume R= $\{(1,2),(1,3),(2,2)\}\$ on A= $\{1,2,3\}$.
- What is the symmetric closure S of R?
- \bullet **S** = {(1,2),(1,3), (2,2)} \cup {(2,1), (3,1)} **= {(1,2),(1,3), (2,2),(2,1), (3,1)}**

Transitive closure

Theorem: The relation R on a set A is transitive if and only if $\mathbb{R}^n \subseteq \mathbb{R}$ for $n =$ $1,2,3,...$.

Example (a transitive closure):

- Assume R= $\{(1,2), (2,2), (2,3)\}$ on A= $\{1,2,3\}$.
- **Is R transitive? No.**
- **How to make it transitive?**
- \bullet **S** = {(1,2), (2,2), (2,3)} \cup {(1,3)} **= {(1,2), (2,2), (2,3),(1,3)}**

Thus S is the transitive closure of R

• We can represent the relation on the graph. Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path (or digraph).

Example:

- Assume R= $\{(1,2), (2,2), (2,3)\}\$ on A= $\{1,2,3\}$.
- Transitive closure $S = \{(1,2), (2,2), (2,3), (1,3)\}.$

Paths in Directed Graphs

- Constructing the transitive closure of a relation is more complicated than constructing either the reflexive or symmetric closure.
- We now introduce some terminology that we will use for this purpose.

Definition: **Paths in Directed Graphs**

A path from a to b in the directed graph G is a sequence of edges (x_0, x_1) , (x_1, x_2) , $(x_2, x_3), \ldots, (x_{n-1}, x_n)$ in G, where n is a nonnegative integer, and $x_0 = \mathbf{a}$ and $x_n = \mathbf{b}$, that is, a sequence of edges where the terminal vertex of an edge is the same as the initial vertex in the next edge in the path. This path is denoted by $x_0, x_1, x_2,...,x_{n-1}$, xⁿ and has length n. We view the empty set of edges as a path of length zero from **a to a**. A path of length $n \ge 1$ that begins and ends at the same vertex is called a circuit or **cycle.**

Note: A path in a directed graph can pass through a vertex more than once. Moreover, an edge in a directed graph can occur more than once in a path.

Example: Which of the following are paths in the directed graph shown in the Figure down: a, b, e, d, a, e, c, d, b, b, a, c, b, a, a, b; d,c; c, b, a; e, b, a, b, a, b, e? What are the lengths of those that are paths? Which of the paths in this list are circuits?

Solution:

- Because each of (a, b) , (b, e) , and (e, d) is an edge, a, b, e, d is a path of length three.
- Because (c, d) is not an edge, a, e, c, d , b is not a path.
- Also, b, a, c, b, a, a, b is a path of length six because (b, a) , (a, c) , (c, b) , (b, a) , (a, a), and (a, b) are all edges.
- We see that d,c is a path of length one, because (d, c) is an edge.
- Also c, b, a is a path of length two, because (c, b) and (b, a) are edges.
- All of (e, b) , (b, a) , (a, b) , (b, a) , (a, b) , and (b, e) are edges, so e, b, a, b, a, b, e is a path of length six.
- The two paths b, a, c, b, a, a, b and e, b, a, b, a, b, e are circuits because they begin and end at the same vertex.
- The paths a, b, e, d; c, b, a; and d, c are not circuits.

Theorem (Path length) : Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in R^n$

Relations

Example:

 $R = \{(1,2),(2,3),(2,4),(3,3)\}\$ is a relation on A = {1,2,3,4}. $R^{-1} = R = \{(1,2),(2,3),(2,4),(3,3)\}\$ $R^2 = \{(1,3), (1,4), (2,3), (3,3)\}\$ What does R 2 represent? **Paths of length 2** $R^3 = \{(1,3), (2,3), (3,3)\}$ **Paths of length 3**

Definition: **Connectivity relation**

Let R be a relation on a set A. The **connectivity relation** R* consists of the pairs (a, b) such that there is a path of length at least one from a to b in R.

$$
R^* = \bigcup_{k=1}^\infty R^k
$$

Example:

 $A = \{1,2,3,4\}$ $R = \{(1,2),(1,4),(2,3),(3,4)\}\$ $R^2 = \{(1,3),(2,4)\}\$ $R^3 = \{(1,4)\}\$ $R^4 = \emptyset$...

 $R^* = \{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$

Theorem: The transitive closure of a relation R **equals** the connectivity relation R*.

Theorem: Let M_R be the zero–one matrix of the relation R on a set with n elements. Then the zero–one matrix of the transitive closure R^* is $M_{R*} = M_R V$ $\rm\,M^{[2]}_R$ V $\rm\,M^{[3]}_R$ V \cdots V $\rm\,M^{[n]}_R$.

Example: Find the zero–one matrix of the transitive closure of the relation R where

$$
\mathbf{M}_R = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}
$$

Solution: By Theorem, it follows that the zero–one matrix of R^* is $M_R^* = M_R V$ $M^{[2]}_R \vee M^{[3]}_R$. Because

$$
\mathbf{M}_{R}^{[2]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{M}_{R}^{[3]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix},
$$

it follows that

$$
\mathbf{M}_{R^*} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.
$$

Definition: **Equivalence relation**

A relation R on a set A is called an **equivalencerelation** if it is **reflexive, symmetric and transitive.**

Example: Let $A = \{0, 1, 2, 3, 4, 5, 6\}$ and

 $R = \{(a,b) | a,b \in A, a \equiv b \mod 3\}$ (a is congruent to b modulo 3)

Congruencies:

- 0 mod $3 = 0$ 1 mod $3 = 1$ $2 \mod 3 = 2$ 3 mod $3 = 0$
- $4 \mod 3 = 1$ 5 mod $3 = 2$ 6 mod $3 = 0$

Relation R has the following pairs:

-
- (0,0) $(0,3), (3,0), (0,6), (6,0)$
- $(3,3), (3,6), (6,3),$ $(1,1),(1,4), (4,1), (4,4), (6,6)$
	- $(2,2), (2,5), (5,2), (5,5)$

Is R reflexive? **Yes.**

Is R symmetric? **Yes.**

Is R transitive. **Yes.**

Then

R is an equivalence relation.

