Ch10 Graphs

10.1 Graphs and Graph Models

Definition:

A *graph G =* (*V, E*) consists of a nonempty set *V* of *vertices* (or *nodes*) and a set *E* of *edges.* Each edge has either one or two vertices associated with it, called its *endpoints*. An edge issaid to *connect* its endpoints.

Remark:

The set of vertices V of a graph G may be **infinite**. A graph with an infinite vertex set or an infinite number of edges is called an **infinite graph**, and in comparison, a graph with **a finite** vertex set and a finite edge set is called **a finite graph.**

Example:

Basic types of graphs:

• **Directed graphs Undirected graphs**

o Graphs where the end points of an edge are not ordered

Terminology

- In a *simple graph* each edge connects two different vertices and no two edges connect the same pair of vertices.
- *Multigraphs* may have multiple edges connecting the same two vertices. When *m* different edges connect the vertices *u* and *v*, wesay that $\{u, v\}$ is an edge of *multiplicity m*.
- An edge that connects a vertex to itself is called a *loop*.
- A *pseudograph* may include loops, as well as multiple edges connecting the same pair of vertices.

Directed graph

• A *simple directed graph* has no loops and no multiple edges.

Example:

- multiplicity of (a,b) is ? 1
- \cdot and the multiplicity of (b,c) is 2

- **Graphs and graph theory can be used to model:**
	- Computer networks
	- Social networks
	- Communications networks
	- Information networks
	- Software design
	- Transportation networks
	- Biological networks

Graph models

- **Computer networks:**
	- **Nodes – computers**
	- **Edges - connections**

- **Social networks:**
- Graphs can be used to model social structures based on different kinds of relationships between people or groups.
- *Social network*, vertices represent individuals or organizations and edges represent relationships between them.
- Useful graph models of social networks include:
	- *friendship graphs* undirected graphs where two people are connected if they are friends (in the real world, on Facebook, or in a particular virtual world, and so on.)

- Useful graph models of social networks include:
	- *influence graphs* directed graphs where there is an edge fromone person to another if the first person can influence the second person

Graph characteristics: Undirected graphs

Definition 1. Two vertices *u*, *v* in an undirected graph *G* are called *adjacent* **(or** *neighbors***)** in *G* if there is an edge *e* between *u*and *v*. Such an edge *e* is called *incident with* the vertices *u* and *v* and *e* is said to *connect u* and *v*.

Definition 2. The set of all neighbors of a vertex *v* of $G = (V, E)$, denoted by $N(v)$, is called **the** *neighborhood* of v . If A is a subset of V, we denote by *N*(*A*) the set of all vertices in *G* that are adjacent to at least one vertex in *A*.

Definition 3. The *degree of a vertex in a undirected graph* is the number of edges incident with it, except that a loop at a vertex contributes two to the degree of that vertex. The degree of the vertex *v* is denoted by $deg(v)$.

Example: What are the degrees and neighborhoods of the vertices in the graphs *G*?

Solution:

G: deg(*a*) = 2, deg(*b*) = deg(*c*) = deg(*f*) = 4, deg(*d*) = 1,

$$
deg(e) = 3, deg(g) = 0.
$$

$$
N(a) = \{b, f\}, N(b) = \{a, c, e, f\}, N(c) = \{b, d, e, f\},
$$

$$
N(d) = \{c\}, N(e) = \{b, c, f\}, N(f) = \{a, b, c, e\}, N(g) = \emptyset.
$$

Example: What are the degrees and neighborhoods of the vertices in the graphs *H*?

Solution:

H: deg(*a*) = 4, deg(*b*) = deg(*e*) = 6, deg(*c*) = 1, deg(*d*) = 5.

$$
N(a) = \{b, d, e\}, N(b) = \{a, b, c, d, e\}, N(c) = \{b\},
$$

 $N(d) = \{a, b, e\}, N(e) = \{a, b, d\}$

Theorem 1 (*Handshaking Theorem*): If $G = (V,E)$ is anundirected graph with *m* edges, then

$$
2m = \sum \deg(v)
$$

_{veV}

Proof:

Each edge contributes twice to the degree count of all vertices.Hence, both the left-hand and right-hand sides of this equation equal twice the number of edges.

Theorem 2: An undirected graph has an even number of vertices of odd degree.

Proof: Let V_1 be the vertices of even degree and V_2 be the vertices of odd degree in an undirected graph $G = (V, E)$ with *m* edges.

Then

$$
2m = \sum_{v \in V} \deg(v) = \sum_{v \in V_1} \deg(v) + \sum_{v \in V_2} \deg(v).
$$

Graph characteristics: Directed graphs

Definition: An *directed graph* $G = (V, E)$ consists of *V*, a nonempty set of *vertices* (or *nodes*), and *E,* a set of *directed edges*or *arcs.* Each edge is an ordered pair of vertices. The directed edge (*u*,*v*) is said to start at *u* and end at *v*.

Definition: Let (*u,v*) be an edge in *G*. Then *u* is the *initial vertex* of this edge and is *adjacent to v* and *v* is the *terminal* (or *end*) *vertex* of this edge and is *adjacent from u*. The initial and terminalvertices of a loop are the same.

Definition: The *in-degree of a vertex* v , denoted *deg* (v) , is the number of edges which terminate at *v*. The *out-degree of v*, denoted $deg^+(v)$, is the number of edges with *v* as their initial vertex. Note that a loop at a vertex contributes 1 to both the in- degree and the out-degree of the vertex.

Example: Assume graph *G:*

What are in-degrees of vertices: ?

Deg -(*a*) = 2, deg -(*b*) = 2, deg -(*c*) = 3, Deg -(*d*) = 2, deg -(*e*) = 3, deg -(*f*) = 0.

What are out-degrees of vertices: ?

$$
deg^{+}(a) = 4, deg^{+}(b) = 1,
$$

\n
$$
deg^{+}(c) = 2,
$$

\n
$$
deg^{+}(d) = 2, deg^{+}(e) = 3,
$$

\n
$$
deg^{+}(f) = 0.
$$

Theorem: Let *G =* (*V, E*) be a graph with directed edges. Then:

$$
|E| = \sum_{v \in V} deg^-(v) = \sum_{v \in V} deg^+(v).
$$

Some Special Simple Graphs

Complete graphs

A *complete graph on n vertices*, denoted by K_n , is the simple graph that contains exactly one edge between each pair of distinctvertices.

A cycle

A *cycle* C_n for $n \ge 3$ consists of *n* vertices v_1, v_2, \dots, v_n , and edges

 $\{v_1, v_2\}, \{v_2, v_3\}, \cdots, \{v_{n-1}, v_n\}, \{v_n, v_1\}.$

N-dimensional hypercube

An *n*-dimensional hypercube, or *n*-cube, Q_n , is a graph with 2^n vertices representing all bit strings of length *n*, where there is anedge between two vertices that differ in exactly one bit position.

Bipartite graphs

Definition: A simple graph *G* is **bipartite** if *V* can be partitioned into two disjoint subsets V_1 and V_2 such that every edge connects avertex in V_1 and a vertex in *V2*. In other words, there are no edges which connect two vertices in *V1* or in *V2*.

Note: An equivalent definition of a bipartite graph is a graph where it is possible to color the vertices red or blue so that no twoadjacent vertices are the same color.

Example: Show that C_6 is bipartite.

Solution:

• We can partition the vertex set into

$$
V_1 = \{v_1, v_3, v_5\}
$$
 and

$$
V_2 = \{v_2, v_4, v_6\}
$$

so that every edge of C_6 connects a vertex in V_1 and V_2 .

Example: Show that C_3 is not bipartite.

Solution:

If we divide the vertex set of C_3 into two nonempty sets, one of the two must contain two vertices. But in C_3 every vertex is connected to every other vertex. Therefore, the two vertices in the same partition are connected. Hence, C_3 is not bipartite.

Bipartite graphs and matching

Bipartite graphs are used to model applications that involve **matching**

the elements of one set to elements in another, for example:

Example: *Job assignments* - vertices represent the jobs and the employees, edges link employees with those jobs they have been trained to do. A common goal is to match jobs to employees so thatthe most jobs are done.

