Ch10 Graphs

10.1 Graphs and Graph Models

Definition:

A graph G = (V, E) consists of a nonempty set V of vertices (or nodes) and a set E of edges. Each edge has either one or two vertices associated with it, called its *endpoints*. An edge issaid to *connect* its endpoints.

Remark:

The set of vertices V of a graph G may be **infinite**. A graph with an infinite vertex set or an infinite number of edges is called an **infinite graph**, and in comparison, a graph with a **finite** vertex set and a finite edge set is called **a finite graph**.

Example:

Basic types of graphs:

• Directed graphs Undirected graphs

• Graphs where the end points of an edge are not ordered

Terminology

- In a *simple graph* each edge connects two different vertices and no two edges connect the same pair of vertices.
- *Multigraphs* may have multiple edges connecting the same two vertices. When *m* different edges connect the vertices *u* and *v*, we say that {*u*,*v*} is an edge of *multiplicity m*.
- An edge that connects a vertex to itself is called a *loop*.
- A *pseudograph* may include loops, as well as multiple edges connecting the same pair of vertices.

Directed graph

• A simple directed graph has no loops and no multiple edges.

Example:

- multiplicity of (*a*,*b*) is ? 1
- and the multiplicity of (b,c) is 2

- Graphs and graph theory can be used to model:
 - Computer networks
 - Social networks
 - Communications networks
 - Information networks
 - Software design
 - Transportation networks
 - Biological networks

Graph models

- Computer networks:
 - Nodes computers
 - Edges connections

- Social networks:
- Graphs can be used to model social structures based on different kinds of relationships between people or groups.
- *Social network*, vertices represent individuals or organizations and edges represent relationships between them.
- Useful graph models of social networks include:
 - friendship graphs undirected graphs where two people are connected if they are friends (in the real world, on Facebook, or in a particular virtual world, and so on.)

- Useful graph models of social networks include:
 - *influence graphs* directed graphs where there is an edge from one person to another if the first person can influence the second person

Graphs

Graph characteristics: Undirected graphs

Definition 1. Two vertices u, v in an undirected graph G are called *adjacent* (or *neighbors*) in G if there is an edge e between u and v. Such an edge e is called *incident with* the vertices u and v and e is said to *connect* u and v.

Definition 2. The set of all neighbors of a vertex v of G = (V, E), denoted by N(v), is called **the** *neighborhood* of v. If A is a subset of V, we denote by N(A) the set of all vertices in G that are adjacent to at least one vertex in A.

Definition 3. The *degree of a vertex in a undirected graph* is the number of edges incident with it, except that a loop at a vertex contributes two to the degree of that vertex. The degree of the vertex v is denoted by deg(v).

Example: What are the degrees and neighborhoods of the vertices in the graphs *G*?

Solution:

G:
$$\deg(a) = 2$$
, $\deg(b) = \deg(c) = \deg(f) = 4$, $\deg(d) = 1$,

deg(e) = 3, deg(g) = 0. $N(a) = \{b, f\}, N(b) = \{a, c, e, f\}, N(c) = \{b, d, e, f\},$ $N(d) = \{c\}, N(e) = \{b, c, f\}, N(f) = \{a, b, c, e\}, N(g) = \emptyset.$

Example: What are the degrees and neighborhoods of the vertices in the graphs *H*?

Solution:

Chapter 10

H:
$$\deg(a) = 4$$
, $\deg(b) = \deg(e) = 6$, $\deg(c) = 1$, $\deg(d) = 5$.

$$N(a) = \{b, d, e\}, N(b) = \{a, b, c, d, e\}, N(c) = \{b\},\$$

 $N(d) = \{a, b, e\}, N(e) = \{a, b, d\}$

Theorem 1 (*Handshaking Theorem*): If G = (V,E) is an undirected graph with *m* edges, then

$$2m = \sum_{v \in V} \deg(v)$$

Proof:

Each edge contributes twice to the degree count of all vertices. Hence, both the left-hand and right-hand sides of this equation equal twice the number of edges.

Theorem 2: An undirected graph has an even number of vertices of odd degree.

Proof: Let V_1 be the vertices of even degree and V_2 be the vertices of odd degree in an undirected graph G = (V, E) with *m* edges.

Then

$$2m = \sum_{v \in V} \deg(v) = \sum_{v \in V_1} \deg(v) + \sum_{v \in V_2} \deg(v).$$

Graph characteristics: Directed graphs

Definition: An *directed graph* G = (V, E) consists of V, a nonempty set of *vertices* (or *nodes*), and E, a set of *directed edges* or *arcs*. Each edge is an ordered pair of vertices. The directed edge (u,v) is said to start at u and end at v.

Definition: Let (u, v) be an edge in *G*. Then *u* is the *initial vertex* of this edge and is *adjacent to v* and *v* is the *terminal* (or *end*) *vertex* of this edge and is *adjacent from u*. The initial and terminalvertices of a loop are the same.

Definition: The *in-degree of a vertex v*, denoted $deg^{-}(v)$, is the number of edges which terminate at *v*. The *out-degree of v*, denoted $deg^{+}(v)$, is the number of edges with *v* as their initial vertex. Note that a loop at a vertex contributes 1 to both the in- degree and the out-degree of the vertex.

Example: Assume graph *G*:

What are in-degrees of vertices: ?

Deg (a) = 2, deg (b) = 2, deg (c) = 3, Deg (d) = 2, deg (e) = 3, deg (f) = 0.

What are out-degrees of vertices: ?

$$deg^+(a) = 4, deg^+(b) = 1,$$

 $deg^+(c) = 2,$
 $deg^+(d) = 2, deg^+(e) = 3,$
 $deg^+(f) = 0.$

Theorem: Let G = (V, E) be a graph with directed edges. Then:

$$|E| = \sum_{v \in V} deg^-(v) = \sum_{v \in V} deg^+(v).$$

Some Special Simple Graphs

Complete graphs

A complete graph on n vertices, denoted by K_n , is the simple graph that contains exactly one edge between each pair of distinct vertices.

A cycle

A cycle C_n for $n \ge 3$ consists of *n* vertices v_1, v_2, \dots, v_n , and edges

 $\{v_1, v_2\}, \{v_2, v_3\}, \cdots, \{v_{n-1}, v_n\}, \{v_n, v_1\}.$

N-dimensional hypercube

An *n*-dimensional hypercube, or *n*-cube, Q_n , is a graph with 2^n vertices representing all bit strings of length *n*, where there is an dge between two vertices that differ in exactly one bit position.

Bipartite graphs

Definition: A simple graph *G* is **bipartite** if *V* can be partitioned into two disjoint subsets V_1 and V_2 such that every edge connects avertex in V_1 and a vertex in V_2 . In other words, there are no edges which connect two vertices in V_1 or in V_2 .

Note: An equivalent definition of a bipartite graph is a graph where it is possible to color the vertices red or blue so that no twoadjacent vertices are the same color.

Example: Show that C_6 is bipartite.

Solution:

• We can partition the vertex set into

$$V_1 = \{v_1, v_3, v_5\}$$
 and

$$V_2 = \{v_2, v_4, v_6\}$$

so that every edge of C_6 connects a vertex in V_1 and V_2 .

Example: Show that C_3 is not bipartite.

Solution:

If we divide the vertex set of C_3 into two nonempty sets, one of the two must contain two vertices. But in C_3 every vertex is connected to every other vertex. Therefore, the two vertices in the same partition are connected. Hence, C_3 is not bipartite.

Bipartite graphs and matching

Bipartite graphs are used to model applications that involve matching

the elements of one set to elements in another, for example:

Example: Job assignments - vertices represent the jobs and the employees, edges link employees with those jobs they have been trained to do. A common goal is to match jobs to employees so that the most jobs are done.

