
If a and b are integers with a ≠ 0, we say that a divides b if there is an integer c
such that b = ac (or equivalently, if b is an integer). When a divides b we say
that a is a factor or divisor of b, and that b is a multiple of a. The notation a ∣ b
denotes that a divides b. We write a | b when a does not divide b.
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4.1.2 Division

 When one integer is divided by a second nonzero integer, the quotient
mayor may not be an integer.

 For example, 12∕3 = 4 is an integer, whereas 11∕4 = 2.75 is not.

Definition:

 Remark: We can express a ∣ b using quantifiers as ∃c(ac = b),
where the universe of discourse is the set of integers.

Example: Determine whether 3 ∣ 7 and whether 3 ∣ 12.
Solution:
 3| 7, because 7∕3 is not an integer.
 On the other hand, 3 ∣ 12 because 12∕3 = 4

Properties of Divisibility

Theorem 1: Let a, b, and c be integers, where a ≠ 0. Then

(i) if a | b and a | c, then a | (b + c);

(ii) if a | b, then a | bc for all integers c;

(iii) if a | b and b | c, then a | c

Proof

i. : if a | b and a | c then a | (b +c)

• from the definition of divisibility we get:
• b=au and c=av where u,v are two integers. Then(b+c) = au +av = a(u+v)
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A positive integer that is greater than 1 and is not a prime is called a composite

• Thus a divides b+c.

ii. : if a | b then a | bc for all integers c

• If a | b, then there is some integer u such that b = au.

• Multiplying both sides by c gives us bc = auc, so by definition, a | bc.

• Thus a divides bc.

Corollary 1: If a, b, and c are integers, where a ≠ 0, such that a | b and a | c, then

a| mb + nc whenever m and n are integers.

Proof:

We will give a direct proof. By part (ii) of Theorem 1 we see that a | mb and
a | nc whenever m and n are integers. By part (i) of Theorem 1 it follows
that a | mb + nc
Primes

Definition:

Examples: 2, 3, 5, 7,…

1 | 2 and 2 | 2, 1 |3 and 3 | 3, etc

Definition:

Examples : 4, 6, 8, 9, …Why?

2 | 4

3 | 6 or 2 | 6

2 | 8 or 4 | 8

3 | 9

A positive integer p that is greater than 1 and that is divisible only by 1 and
byitself (p) is called a prime.



Any positive integer greater than 1 can be expressed as a product of prime
numbers.

Fundamental theorem of Arithmetic:

Examples:

o 12 = 2*2*3
o 21 = 3*7

 Process of finding out factors of the product:

factorization.Factorization of composites to

primes:

• 100 = 2*2*5*5 = 22*52

• 99 = 3*3*11 = 32 *11

• How to determine whether the number is a prime or a composite?

• Simple approach (1):

• Let n be a number. To determine whether it is a prime we can test if
any number x < n divides it. If yes it is a composite. If we test all
numbers x < n and do not find the proper divisor then n is a prime.

Example 1:
• Assume we want to check if 17 is a prime?
• The approach would require us to check:
• 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

• Is this the best we can do?
• No. The problem here is that we try to test all the numbers. But
this is not necessary.

• Idea: Every composite factorizes to a product of primes. So it is
sufficient to test only the primes x < n to determine the primality of n.

Approach 2:

• Let n be a number. To determine whether it is a prime we can test if
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any prime number x < n divides it. If yes it is a composite.
If we test all primes x < n and do not find a proper divisor then n is a prime.

Example 2: Is 31 a prime?
• Check if 2,3,5,7,11,13,17,23,29 divide it
• It is a prime !!
Example 3: Check if Is 91 a prime number?
• Easy primes 2,3,5,7,11,13,17,19…
• But how many primes are there that are smaller than 91?

Caveat:

• If n is relatively small the test is good because we can
enumerate(memorize) all small primes
But if n is large there can be larger not obvious primes

Theorem 2: If n is a composite then n has a prime divisor less than or equal
to √n
Approach 3:

• Let n be a number. To determine whether it is a prime we can test if
any prime number x  √n divides it.

Example 4: Is 101 a prime?
Primes smaller than or equal to √101 ≈ 10.04987 are: 2,3,5,7
• 101 is not divisible by any of them
• Thus 101 is a prime

• Question:How many primes are there?

Theorem 3: There are infinitely many primes.

The Division Algorithm

Theorem 4: [The Division Algorithm] Let a be an integer and d a positive
integer. Then there are unique integers, q and r, with 0  r < d, such that

a = dq + r.
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In the equality given in the division algorithm, d is called the divisor, a is called
the dividend, q is called the quotient, and r is called the remainder. This notation
is used to express the quotient and remainder: q = a div d, r = a mod d.

Definition:

Example 5:
a= 14, d = 3

14 = 3*4 + 2

14/3=3.666

14 div 3 = 4

14 mod 3 = 2

Greatest common divisor

Definition:

Let a and b are integers, not both 0. Then the largest integer d such that d | a and
d | b is called the greatest common divisor of a and b. The greatest common
divisor is denoted as gcd(a,b).

Examples:
• gcd(24,36) = ?
• Check 2,3,4,6,12 gcd(24,36) = 12
• gcd(11,23) = ?

A systematic way to find the gcd using factorization:

• Let =p1a1 p2a2 p3a3 …kak and =
• gcd(a,b)= p1

min(a1,b1) p2
min(a2,b2) p3

min(a3,b3) …pk
min(ak,bk)

Example 6 :

• gcd(24,36) = ?
• 24 = 2*2*2*3=23*3
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• 36= 2*2*3*3=22 * 32

• gcd(24,36) =22 * 3 = 12
Least commonmultiple

Definition:

Example 7:

• What is lcm(12,9) =?
• Give me a common multiple: … 12*9= 108
• Can we find a smaller number?
• Yes. Try 36. Both 12 and 9 cleanly divide 36

A systematic way to find the lcm using factorization:

• Let =p1a1 p2a2 p3a3 …kak and =
• lcm(a,b)= p1

max(a1,b1) p2
max(a2,b2) p3

max(a3,b3) …pk
max(ak,bk)

Example 8:

• What is lcm(12,9) =?
• 12 = 2*2*3=22*3
• 9=3*3 =32

• lcm(12,9) = 22 * 32 = 4 * 9 = 36

Euclid algorithm

Finding the greatest common divisor requires factorization

Factorization can be cumbersome and time consuming since we need to
find all factors the two integers that can be very large.

• Luckily a more efficient method for computing the gcd is theEuclid’s algorithm.

Let a and b are two positive integers. The least common multiple of a and b is the
smallest positive integer thatis divisible by both a and b. The least common
multiple is denoted as lcm(a,b).



Example 9:

• Find the greatest common divisor of 666 and 558
Solution

gcd(666,558) 666=1*558 + 108
= gcd(558,108) 558=5*108 + 18
= gcd(108,18) 108=6*18 + 0
= 18

Example 10:

• Find the greatest common divisor of 286 and 503:

Solution

Modular arithmetic
In computer science we often care about the remainder of an integer when
it is divided by some positive integer.

Problem:Assume that it is a midnight. What is the time on the 24hour
clock after 50 hours?

Answer: the result is 2 am

• gcd(503,286) 503=1*286 + 217
=gcd(286, 217) 286=1*217 + 69
=gcd(217, 69) 217 = 3*69 + 10
= gcd(69,10) 69 = 6*10 + 9
=gcd(10,9)

= gcd(9,1) =1
10=1*9 + 1
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If a and b are integers and m is a positive integer, then a is congruent to b
modulo n if m divides a-b. We use the notation a = b (mod m) to denote the
congruency. If a and b are not congruent we write a ≠ b (mod m).

How did we arrive to the result:

• Divide 50 with 24. The reminder is the time on the 24 hour
clock.50= 2*24 + 2

so the result is 2 am.

Congruency

Definition:

Theorem 5. If a and b are integers and m a positive integer. Then a=b (mod m) if
and only if a modm = b modm.

Example 11: Determine if 17 is congruent to 5 modulo 6?

Solution:

17 mod 6 = 5
5 mod 6 = 5
Thus 17 is congruent to 5 modulo 6.

Theorem 6. Letm be a positive integer. The integers a and b are congruent
modulo m if and only if there exists an integer k such that a=b+mk.

Theorem 7. Letm be a positive integer. If a=b (modm) and c=d(modm) then:

a+c = b+d (modm) and ac=bd (modm).

Modular arithmetic in Computer Science

Modular arithmetic and congruencies are used in Science:

– Pseudorandomnumber generators
– Hash functions
– Cryptology



Pseudorandom number generators

• Some problems we want to program need to simulate a random choice.
• Examples: flip of a coin, roll of a dice
• We need a way to generate random Outcomes
• Basic problem:

– assume outcomes: 0, 1, .. N
• generate the random sequences of outcomes
• Pseudorandom number generators let us generate sequences that look random
• Next: linear congruential method

Linear congruential method

• We choose 4 numbers:
• themodulus ,
• multiplier ,
• increment , and
• seed ,
such that 2 ≤ a < m, 0 ≤ c < m, 0 ≤ x0 < m.

• We generate a sequence of numbers x1, x2 x3 ... xn ... such that 0 ≤ xn <m for all n by
successively using the congruence:

• xn+1 = (a.xn + c) mod m

Example 12:

• Assume : m=9,a=7,c=4, x0 = 3

• x1= 7*3+4 mod 9= 25 mod 9 =7
• x2 = 53 mod 9 = 8
• x3 = 60 mod 9 = 6
• x4= 46 mod 9 =1
• x5 = 11 mod 9 =2
• x6 = 18 mod 9 =0
• ....

Chapter 4 Number Theory and Cryptography



Hash functions

• A hash function is an algorithm that maps data of arbitrary length to data of
afixed length.

• The values returned by a hash function are called hash values or hash codes.

For Example :

John

Mary

Peter

Ann

Charles

Hash function

00

01

02

03

04

..
19

• Problem: Given a large collection of records, how can we store and find a
recordquickly?

• Solution: Use a hash function calculate the location of the record based on
therecord’s ID.

• Example 1: A common hash function is
• h(k) = kmod m,

where m is the number of available storage locations.

An example of a hash function that maps integers (including verylarge ones) to a
subset of integers 0, 1, .. m-1 is:

 h(k) = k mod m



Example 2: Assume we have a database of employees, each with a unique ID – a
social security number that consists of 8 digits. We want to store the records in a
smaller table with m entries. Using h(k) function we can map a social security
number in the database of employees to indexes in the table.

Assume: h(k) = k mod 111

Then:

h(064212848) = 064212848 mod 111 = 14

h(037149212) = 037149212 mod 111 = 65

• Problem: two documents mapped to the same location

• Solution : move the next available location

– Method is represented by a sequence of hash functions to

Try
h0(k) = kmod m h1(k) = (k+1)mod m
…
hm(k) = (k+m)mod m

There are many other ways to resolve collisions that are discussed in the references
on hashing functions given at the end of the book.

Cryptology

Encryption of messages.



• Caesar cipher:
• Shift letters in the message by 3, last three letters mapped to the first 3 letters,
e.g. A is shifted to D, X is shifted to A

How to represent the idea of a shift by 3?

• There are 26 letters in the alphabet. Assign each of them a number from 0,1, 2,
3, .. 25 according to the alphabetical order.

• Coding of letters:

A B C D E F G H I J K L M N O P Q R S T U Y V X W Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Encryption of messages using a shift by 3.

• The encryption of the letter with an index p is represented as:
• f(p) = (p + 3) mod 26

• Encrypt message:
– I LIKE DISCRETE MATH

– L 0LNH GLYFUHVH PDVK.

How to decode the message ?

• f-1(p) = (p-3) mod 26



4.2 Integer Representations and Algorithms

Representations of Integers

• In the modern world, we use decimal, or base 10, notation to represent
integers. For example when we write 965, we mean
965= 9·102 + 6·101 + 5·100 .

• We can represent numbers using any base b, where b is a positive
integer greater than 1.

• The bases b = 2 (binary), b = 8 (octal), and b= 16 (hexadecimal)
are important for computing and communications

• The ancient Mayans used base 20 and the ancient Babylonians used base 60.

Base b Representations

• We can use positive integer b greater than 1 as a base

Theorem 1: Let b be a positive integer greater than 1. Then if n isa positive
integer, it can be expressed uniquely in the form:

n = a bk + a k-1+ …. + a b + a
k k-1b 1 0

where k is a nonnegative integer, a0,a1,…. ak are nonnegative integers
less than b, and ak≠ 0. The aj, j = 0,…,k are called the base-b digits of
therepresentation.

• The representation of n given in Theorem 1 is called the base b
expansionof n and is denoted by (akak-1….a1a0)b.

We usually omit the subscript 10 for base 10 expansions.

Binary Expansions

• Most computers represent integers and do arithmetic with binary (base 2)
expansions of integers.

• In these expansions,the only digits used are 0 and 1.
Example 1:
What is the decimal expansion of the integer that has(1 01011111)2 as its
binary expansion?

Solution:



(1 0101 1111)2 = 1∙28 + 0∙27 + 1∙26 + 0∙25 + 1∙24 + 1∙23

+ 1∙22 + 1∙21 + 1∙20 =351.

Example 2: What is the decimal expansion of the integer that has
(11011)2 as its binary expansion?

Solution: (11011)2 = 1 ∙24 + 1∙23 + 0∙22 + 1∙21 + 1∙20 =27

Octal Expansions

• The octal expansion (base 8) uses the digits {0,1,2,3,4,5,6,7}.
Example 3: What is the decimal expansion of the number with
octalexpansion (7016)8 ?
Solution: 7∙83 + 0∙82 + 1∙81 + 6∙80 =3598

Example 4: What is the decimal expansion of the number with octal
expansion (111)8 ?
Solution: 1∙82 + 1∙81 + 1∙80 = 64 + 8 + 1 = 73

Hexadecimal Expansions

• The hexadecimal expansion uses 16 digits:
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}.

- The letters A through F represent the decimal numbers 10
through 15.

Example 5: What is the decimal expansion of the number with
hexadecimal expansion (2AE0B)16 ?

Solution:

2∙164 + 10∙163 + 14∙162 + 0∙161 + 11∙160 =175627

Example 6: What is the decimal expansion of the number with
hexadecimal expansion (E5)16 ?
Solution: 14∙161 + 5∙160 = 224 + 5 = 229



Base Conversion

• To construct the base b expansion of an integer n:
– Divide n by b to obtain a quotient and remainder.
n = bq0 + a0 0 ≤ a0 ≤ b

– The remainder, a0 , is the rightmost digit in the base b
expansion of n. Next, divide q0 by b.q0

b.q0 = bq1 + a1 0 ≤ a1 ≤ b

– The remainder, a1, is the second digit from the right in the
base b expansion of n.

– Continue by successively dividing the quotients by b, obtaining the
additional base b digits as the remainder.

– The process terminates when the quotient is 0.

Example 7: Find the octal expansion of (12345)10

Solution: Successively dividing by 8 gives:
12345 = 8 · 1543 + 1
1543 = 8 · 192 + 7
192 = 8 · 24 + 0
24 = 8 · 3 + 0
3 = 8 · 0 + 3

– The remainders are the digits from right to left yielding(30071)8.
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9.1 Relations and Their Properties 

 

Definition: Binary relation 

 Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian 

product A x B. 

• Let R  A x B means R is a set of ordered pairs of the form (a,b) where a  A 
and b  B. 

• We use the notation a R b to denote (a,b)  R and a R b to denote (a,b)  R. If 

a R b, we say a is related to b by R 

Example 1: Let A={a,b,c} and B={1,2,3}. 

• Is R={(a,1),(b,2),(c,2)} a relation from A to B? Yes. 

• Is Q={(1,a),(2,b)} a relation from A to B? No. 

• Is P={(a,a),(b,c),(b,a)} a relation from A to A? Yes 

 

Representing binary relations 

• We can graphically represent a binary relation R as follows: 

• if a R b then draw an arrow from a to b. 

a → b 

Example 2: 

• Let A = {0, 1, 2}, B = {a,b}  

     and R = { (0,a), (0,b), (1,a), (2,b) }  is a relation from A to B. 

• Graph: 

 

• We can represent a binary relation R by a table showing (marking) the ordered 

pairs of R. 
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Example 3: 

• Let A = {0, 1, 2}, B = {u,v} and R = { (0,u), (0,v), (1,v), (2,u) } 

• Table: 

    R | u v or 
R | u v 

0 | x x 0 | 1 1 

1 |  x 1 | 0 1 

2 | x  2 | 1 0 

       

Functions as Relations 

• Relations represent one to many relationships between elements in A and B. 
• For example: 

 
• What is the difference between a relation and a function from A to B? 
• A function defined on sets A, B  

    A → B assigns to each element in the domain set  A exactly one element from B.  

• So it is a special relation. 

 
Relation on the set 

Definition: 

 A relation on the set A is a relation from A to itself. 

 

 

Example 4: 
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• Let A = {1,2,3,4} and Rdiv = {(a,b)| a divides b} 

• What does Rdiv consist of? 

Rdiv = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)} 

 

Example 5: 

• Let A = {1,2,3,4}. 

• Define a R≠ b if and only if a ≠ b. 

R≠ ={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)} 

 

Theorem: The number of binary relations on a set A, where | A | = n is : 2n2 

Proof 

If | A | = n  then the cardinality of the Cartesian product 

| A x A | = n2. 

• R is a binary relation on A if R  A x A (that is, R is a subset of A x A). 

• The number of subsets of a set with k elements :   2k 

• The number of subsets of A x A is : 2| AxA| =  2n2 

Example 6:  Let A = {1,2} 

• What is A x A ? 



 

                                                                     

                                                                 

Chapter 9  

          Relations 

 

   A x A = {(1,1),(1,2),(2,1),(2,2)} 

• List of possible relations (subsets of A x A): 

•  

• {(1,1)} {(1,2)} {(2,1)} {(2,2)} 

• {(1,1), (1,2)} {(1,1),(2,1)} 

                     {(1,1),(2,2)}  {(1,2),(2,1)} 

{(1,2),(2,2)} {(2,1),(2,2)} 

• {(1,1),(1,2),(2,1)} 

{(1,1),(1,2),(2,2)} 

{(1,1),(2,1),(2,2)} 

{(1,2),(2,1),(2,2)} 

• {(1,1),(1,2),(2,1),(2,2)} 

 

• Use formula: 24 = 16 

 

Properties of relations 

Definition:(reflexive relation) :  

A relation R on a set A is called reflexive if (a,a)  R for  every element a  A. 

 

Example 7: 

• Assume relation Rdiv ={(a b), if a |b} on A = {1,2,3,4} 

• Is Rdiv reflexive? 

• Rdiv = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)} 

• Answer: Yes. (1,1), (2,2), (3,3), and (4,4)  Rdiv . 

 

 

  1 1 1 1 
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• A relation R is reflexive if and only if MR has 1 in every position on its main 

diagonal. 

 
Example 8: 

• Relation Rfun on A = {1,2,3,4} defined as: 

• Rfun = {(1,2),(2,2),(3,3)}. 

• Is Rfun reflexive? 

No. It is not reflexive since (1,1)  Rfun. 

 

Definition:(irreflexive relation) :  

A relation R on a set A is called irreflexive if (a,a)  R for every a  A. 

 
Example 9: 

• Assume relation R≠ on A={1,2,3,4}, such that a R≠ b if and only if a ≠ b. 

• Is R≠ irreflexive? 

• R≠={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)} 

• Answer: Yes. Because (1,1),(2,2),(3,3) and (4,4)  R≠ 
• A relation R is irreflexive if and only if MR has 0 in every position on its main 

diagonal. 
 0 1 1 1 

1 0 1 1 

MR = 1 1 0 1 

  1 1 1 0 

 

 

MRdiv =              0 1 0 1 

 0 0 1 0 

 0 0 0 1 
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Example 10: 

• Rfun on A = {1,2,3,4} defined as: 

• Rfun = {(1,2),(2,2),(3,3)}. 

• Is Rfun irreflexive? 

• Answer: No. Because (2,2) and (3,3)  Rfun 
 

Definition:(symmetric relation): 

 A relation R on a set A is called symmetric if  a, b  A (a,b) R → (b,a)  R. 

 

Example 11:  

• Rdiv ={(a b), if a |b} on A = {1,2,3,4} 

• Is Rdiv symmetric? 

• Rdiv = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)} 

• Answer: No. It is not symmetric since (1,2)  Rdiv but (2,1)  Rdiv. 

 
Example 12:  

• R≠ on A={1,2,3,4}, such that a R≠ b if and only if a ≠ b. 

• Is R≠ symmetric ? 

• R≠={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)} 

• Answer: Yes. If (a,b)  R≠ → (b,a)  R≠ 
 

• A relation R is symmetric if and only if mij = mji for all i,j. 
 

 0 1 1 1 

1 0 1 1 

MR = 1 1 0 1 

  1 1 1 0 
Example 13:  

• Relation Rfun on A = {1,2,3,4} defined as:  

• Rfun = {(1,2),(2,2),(3,3)}. 
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• Is Rfun symmetric? 

Answer: No. For (1,2)  Rfun there is no (2,1)  Rfun 

 

Definition:(anti-symmetric relation):  

A relation on a set A is called anti-symmetric if  

• [(a,b)  R and (b,a)  R] → a = b where a, b  A. 
 

• Example 14:  

• Relation Rfun on A = {1,2,3,4} defined as: 

• Rfun = {(1,2),(2,2),(3,3)}. 

• Is Rfun  anti-symmetric? 

• Answer: Yes. It is anti-symmetric 
 

 0 1 0 0 

0 1 0 0 
MRfun 

= 
0 0 1 0 

 0 0 0 0 

 

 

    

• A relation is antisymmetric if and only if mij = 1 → mji = 0 for  i≠ j. 

Definition:(transitive relation): 

 A relation R on a set A is called transitive if 

• [(a,b)  R and (b,c)  R]  → (a,c)  R for all a, b, c  A. 
 

Example 15:  

• Rdiv ={(a b), if a |b} on A = {1,2,3,4} 

• Rdiv = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)} 

• Is Rdiv transitive? 

• Answer: Yes  
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Example 16:  

• R≠ on A={1,2,3,4}, such that a R≠ b if and only if a ≠ b. 

• R≠={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)} 

• Is R≠ transitive? 

• Answer: No. It is not transitive since (1,2)  R and (2,1)  R but (1,1) is not an 

element of R. 

 
• Example 17:  

• Relation Rfun on A = {1,2,3,4} defined as:  

• Rfun = {(1,2),(2,2),(3,3)}. 

• Is Rfun transitive? 

• Answer: Yes. It is transitive. 

 

Properties of relations on A: 

 
• Reflexive 

• Irreflexive 

• Symmetric 

• Anti-symmetric 

• Transitive 
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Combining relations 

Definition: Let A and B be sets. A binary relation from A to B is a subset of a 

Cartesian product A x B. 

• Let R  A x B means R is a set of ordered pairs of the form (a,b) where a  A 
and b  B. 
 

Combining Relations 

• Relations are sets → combinations via set operations 

• Set operations of: union, intersection, difference and         symmetric difference. 

Example: 

• Let A = {1,2,3} and B = {u,v} and 

• R1 = {(1,u), (2,u), (2,v), (3,u)} 

• R2 = {(1,v),(3,u),(3,v)} 
What is: 

• R1  R2 = {(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)} 

• R1  R2 = {(3,u)} 

• R1 - R2 = {(1,u),(2,u),(2,v)} 

• R2 - R1 = {(1,v),(3,v)} 
 

 



 

 

9. 3  Representing Relations using matrices  

• Question: Can the relation be formed by taking the union or      intersection 

or composition of two relations R1 and R2 be represented in terms of 

matrix operations? 

• Answer: Yes 

Example 1: Suppose that A = {1, 2, 3} and B = {1, 2}. Let R be the 

relation from A to B containing (a, b) if a ∈ A, b ∈ B, and a > b. What is the 

matrix representing R if a1 = 1, a2 = 2, and a3 = 3, and b1 = 1 and b2 = 2?  

Solution: Because R = {(2, 1), (3, 1), (3, 2)}, the matrix for R is 

 

Definition: 

 The join, denoted by , of two m-by-n matrices (aij) and (bij) of 0s and 1s is 

an m-by-n matrix (mij) where 

• mij = aij  bij for all i,j      
         = pairwise or (disjunction) 

 

Example 2  

Let A = {1,2,3} and B = {u,v} and 

R1 = {(1,u), (2,u), (2,v), (3,u)} 
R2 = {(1,v),(3,u),(3,v)} 
 

• MR1 =1 0 MR2 = 0 1 M(R1  R2)= 1 1 

1 1 0 0 1 1 

1 0 1 1 1 1 

Definition: 

 The meet, denoted by  , of two m-by-n matrices (aij) and (bij) of 0s and 1s is 

an m-by-n matrix (mij) where 

• mij = aij  bij for all i,j 
= pairwise and (conjunction) 

 

 

 
Example 3: 

• Let A = {1,2,3} and B = {u,v} and 
 R1 = {(1,u), (2,u), (2,v), (3,u)} 
• R2 = {(1,v),(3,u),(3,v)} 



 

 

 
• MR1 =1 0 MR2 = 0 1 MR1  MR2=   0 0 

1 1 0 0 0 0 

1 0 1 1 1 0 

 

Definition: Composite of relations   

Let R be a relation from a set A to a set B and S a relation from B to a set C. 

The composite of R and S is the relation consisting of the ordered pairs 

(a,c) where  a  A and c  C, and for which there is a b  B such that 

(a,b)  R and (b,c)  S. We denote the composite of R and S by S o R. 
 

 

Example 4: 

• Let A = {1,2,3}, B = {0,1,2} and C = {a,b}. 

• R = {(1,0), (1,2), (3,1),(3,2)} 

• S = {(0,b),(1,a),(2,b)} 
• S o R = {(1,b),(3,a),(3,b)} 

 
Implementation of composite 

Definition:  

 The Boolean product, denoted by , of an m-by-n          matrix (aij) and n-by-p 

matrix (bjk) of 0s and 1s is an m-by-p matrix (mik) where 

         mik    =      1, if aij = 1 and bjk = 1 for some k=1,2,...,n 

                            0, otherwise 

Example 5: 

• Let A = {1,2}, B= {1,2,3} C = {a,b} 

• R = {(1,2),(1,3),(2,1)} is a relation from A to B 

• S = {(1,a),(3,b),(3,a)} is a relation from B to C. 

• S o R = {(1,b),(1,a),(2,a)} 

 

0 1 1   1 0 

MR  = 1 0 0 MS = 0 0 

     1 1 

       



 

MR  MS = 1 1    

  1 0    

 
MS  R = 

 
1 

 
1 

 1 0 

Definition: 

Let R be a relation on a set A. The powers Rn, n = 1,2,3,... is defined 

inductively by 

• R1 = R   and Rn+1 = Rn  R. 

 
Example 6: 

• R = {(1,2),(2,3),(2,4), (3,3)} is a relation on A = {1,2,3,4}. 

• R 
1 = R = {(1,2),(2,3),(2,4), (3,3)} 

• R 
2 = {(1,3), (1,4), (2,3), (3,3)} 

• R 
3 = {(1,3), (2,3), (3,3)} 

• R 
4 = {(1,3), (2,3), (3,3)} 

• R 
k = R 3, k > 3. 

Theorem 1: The relation R on a set A is transitive if and only if  Rn  R for 

n = 1,2,3,... . 

Number of reflexive relations 

Theorem 2: The number of reflexive relations on a set A, where 

| A | = n is: 2 n(n-1) . 



 

Representing binary relations Using graphs 

• We have shown that a relation can be represented by listing all of its 

ordered pairs or by using a zero–one matrix. 

• We use such pictorial representations when we think of relations on a 

finite set as directed graphs, or digraphs. 

Definition: 

 A directed graph or digraph consists of a set V of vertices (or nodes) 

together with a set E of ordered pairs of elements of V called edges (or arcs). 

The vertex a is called the initial vertex of the edge (a,b) and vertex b is the 

terminal vertex of this edge.  

An edge of the form (a, a) is represented using an arc from the vertex a back to 

itself. Such an edge is called a loop. 

Example : The directed graph with vertices a, b, c, and d, and edges (a, b), (a, d), 

(b, b), (b, d), (c, a), (c, b), and (d, b) is displayed in Figure down . 

 

Example :  Assume the relation R = {(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 

2), (4, 1)} on the set {1, 2, 3, 4}  

The directed graph of is shown in down. 
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9.4 Closures of relations 

• Relations can have different properties: 

• reflexive, 

• symmetric 

• transitive 

 
• Because of that we define: 

• symmetric closures. 

• reflexive closures.  

• transitive   closures. 

Definition:  

Let R be a relation on a set A. A relation S on A with property P is called the 

closure of R with respect to P if S is a subset of every relation Q (S  Q) with 

property P that contains R (R  Q). 

 

Example : Let R={(1,1),(1,2),(2,1),(3,2)} on A ={1 2 3}. 

• Is this relation reflexive? 

• Answer: No. Why? 

• (2,2) and (3,3) is not in R. 

 

• The question is what is the minimal relation S  R that is  reflexive? 

• How to make R reflexive with minimum number of additions? 

• Answer: Add (2,2) and (3,3) 

• Then S= {(1,1),(1,2),(2,1),(3,2),(2,2),(3,3)} 

• R  S 

• The minimal set S  R is called the reflexive closure of R 
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Definition: Reflexive closure 

The set S is called the reflexive closure of R if it: 

– contains R 

– has reflexive property 

– is contained in every reflexive relation Q that contains R (R 
 Q) , that is S   Q 

 

Definition: Symmetric closure 

The set S is called the reflexive closure of R if it can be constructed by taking 

 the union of a relation with its inverse        S = R ∪ R−1 

 
Example (a symmetric closure): 

• Assume R={(1,2),(1,3), (2,2)} on A={1,2,3}. 

• What is the symmetric closure S of R? 

• S = {(1,2),(1,3), (2,2)}  {(2,1), (3,1)}  

= {(1,2),(1,3), (2,2),(2,1), (3,1)} 

 

Transitive closure 

Theorem: The relation R on a set A is transitive if and only if     Rn  R for n = 

1,2,3,... . 

Example (a transitive closure): 

• Assume R={(1,2), (2,2), (2,3)} on A={1,2,3}. 

• Is R transitive? No. 

• How to make it transitive? 

• S = {(1,2), (2,2), (2,3)}  {(1,3)} 

= {(1,2), (2,2), (2,3),(1,3)} 

    Thus S is the transitive closure of R 
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• We can represent the relation on the graph. Finding a transitive  closure 

corresponds to finding all pairs of elements that are connected with a directed 

path (or digraph). 

 
Example: 

• Assume R={(1,2), (2,2), (2,3)} on A={1,2,3}. 

• Transitive closure S = {(1,2), (2,2), (2,3),(1,3)}. 

 

Paths in Directed Graphs 

• Constructing the transitive closure of a relation is more complicated than 

constructing either the reflexive or symmetric closure.  

• We now introduce some terminology that we will use for this purpose. 

Definition: Paths in Directed Graphs 

 A path from a to b in the directed graph G is a sequence of edges (x0, x1), (x1, x2), 

(x2, x3), . . . , (xn−1, xn) in G, where n is a nonnegative integer, and x0 = a and xn = b, 

that is, a sequence of edges where the terminal vertex of an edge is the same as the 

initial vertex in the next edge in the path. This path is denoted by x0, x1, x2,...,xn−1, 

xn and has length n. We view the empty set of edges as a path of length zero from a 

to a. A path of length n ≥ 1 that begins and ends at the same vertex is called a 

circuit or cycle. 

Note:  A path in a directed graph can pass through a vertex more than once. 

Moreover, an edge in a directed graph can occur more than once in a path. 
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Example:  Which of the following are paths in the directed graph shown in the 

Figure down: a, b, e, d; a, e, c, d, b; b, a, c, b, a, a, b; d,c; c, b, a; e, b, a, b, a, b, e? 

What are the lengths of those that are paths? Which of the paths in this list are 

circuits? 

 

Solution:  

• Because each of (a, b), (b, e), and (e, d) is an edge, a, b, e, d is a path of length 

three. 

• Because (c, d) is not an edge, a, e, c, d, b is not a path.  

• Also, b, a, c, b, a, a, b is a path of length six because (b, a), (a, c), (c, b), (b, a), 

(a, a), and (a, b) are all edges.  

• We see that d,c is a path of length one, because (d, c) is an edge. 

•  Also c, b, a is a path of length two, because (c, b) and (b, a) are edges. 

•  All of (e, b), (b, a), (a, b), (b, a), (a, b), and (b, e) are edges, so e, b, a, b, a, b, e 

is a path of length six.  

• The two paths b, a, c, b, a, a, b and e, b, a, b, a, b, e are circuits because they 

begin and end at the same vertex.  

• The paths a, b, e, d; c, b, a; and d,c are not circuits. 

Theorem (Path length)  : Let R be a relation on a set A. There is a path of length 

n from a to b if and only if (a,b)  Rn 
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Example: 

R = {(1,2),(2,3),(2,4), (3,3)} is a relation on A = {1,2,3,4}. 

R 1 = R = {(1,2),(2,3),(2,4), (3,3)} 

R 2 = {(1,3), (1,4), (2,3), (3,3)} 

What does R 2 represent?   Paths of length 2 

R 3 = {(1,3), (2,3), (3,3)} Paths of length 3 

 

Definition: Connectivity relation 

Let R be a relation on a set A. The connectivity relation R* consists of the pairs 

(a, b) such that there is a path of length at least one from a to b in R.    

 

 

  Example: 

A = {1,2,3,4} 

R = {(1,2),(1,4),(2,3),(3,4)} 

R2 = {(1,3),(2,4)} 

R3 = {(1,4)}                      

R4 =  

... 

R* = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)} 

Theorem: The transitive closure of a relation R equals the  connectivity relation R*. 
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Theorem: Let MR be the zero–one matrix of the relation R on a set with n 

elements. Then the zero–one matrix of the transitive closure R∗ is MR∗ = MR ∨ 

M[2]
R ∨ M[3]

R ∨···∨ M[n]
R . 

Example:  Find the zero–one matrix of the transitive closure of the relation R 

where 

 

Solution: By Theorem, it follows that the zero–one matrix of R∗ is MR∗ = MR ∨ 

M[2]
R ∨ M[3]

R . Because 

 

it follows that 
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Definition: Equivalence relation 

A relation R on a set A is called an equivalence relation if it is 

reflexive, symmetric and transitive. 

 

Example: Let A = {0,1,2,3,4,5,6} and   

R= {(a,b)| a,b  A, a  b mod 3} (a is congruent to b modulo 3) 

Congruencies: 

 
Is R reflexive? Yes. 

Is R symmetric? Yes. 

Is R transitive. Yes. 

Then 

R is an equivalence relation. 

 

 

 

 

 
 

• 0 mod 3 = 0 

• 4 mod 3 = 1 
1 mod 3 = 1 

5 mod 3 = 2 

2 mod 3 = 2      3 mod 3 = 0 

6 mod 3 = 0 

 

Relation R has the following pairs: 

• (0,0) (0,3), (3,0), (0,6), (6,0) 

• (3,3), (3,6) (6,3),  (1,1),(1,4), (4,1), (4,4) ,(6,6)   
• (2,2), (2,5), (5,2), (5,5)  
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Ch10  Graphs 

10.1 Graphs and Graph Models 

Definition: 

 A graph G = (V, E) consists of a nonempty set V of vertices (or nodes) 

and a set E of edges. Each edge has either one or two vertices associated 

with it, called its endpoints. An edge is said to connect its endpoints. 

 

Remark:  

The set of vertices V of a graph G may be infinite. A graph with an 

infinite vertex set or an infinite number of edges is called an infinite 

graph, and in comparison, a graph with a finite vertex set and a finite 

edge set is called a finite graph. 

 

Example: 

 

Basic types of graphs: 

• Directed graphs 

Undirected graphs  

o Graphs where the end points of an edge are not ordered  
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Terminology 

•  In a simple graph each edge connects two different vertices and  no 

two edges connect the same pair of vertices. 

• Multigraphs may have multiple edges connecting the same two 

vertices. When m different edges connect the vertices u and v, we say 

that {u,v} is an edge of multiplicity m. 

• An edge that connects a vertex to itself is called a loop. 

• A pseudograph may include loops, as well as multiple edges 

connecting the same pair of vertices. 

 
 

Directed graph 

• A simple directed graph has no loops and no multiple    edges. 
 

Example: 

• multiplicity of (a,b) is ?   1 
• and the multiplicity of (b,c) is 2 

 

 

• Graphs and graph theory can be used to model: 

– Computer networks 

– Social networks 

– Communications networks 

– Information networks 

– Software design 

– Transportation networks 

– Biological networks 
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Graph models 

• Computer networks: 

– Nodes – computers 

– Edges - connections 

 

 

• Social networks: 

• Graphs can be used to model social structures based on different 

kinds of relationships between people or groups. 

• Social network, vertices represent individuals or organizations and 

edges represent relationships between them. 

• Useful graph models of social networks include: 

– friendship graphs - undirected graphs where two people are 

connected if they are friends (in the real world, on Facebook, or  in a 

particular virtual world, and so on.) 

 

 

• Useful graph models of social networks include: 

– influence graphs - directed graphs where there is an edge from  one 

person to another if the first person can influence the second person 
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Graph characteristics: Undirected graphs 

Definition 1. Two vertices u, v in an undirected graph G are called 

adjacent (or neighbors) in G if there is an edge e between u and v. Such 

an edge e is called incident with the vertices u and v and e is said to 

connect u and v. 

Definition 2. The set of all neighbors of a vertex v of G = (V, E), denoted 

by N(v), is called the neighborhood of v. If A is a subset of V, we denote 

by N(A) the set of all vertices in G that are adjacent   to at least one vertex 

in A.  

Definition 3. The degree of a vertex in a undirected graph is the 

number of edges incident with it, except that a loop at a vertex 

contributes two to the degree of that vertex. The degree of the vertex v 

is denoted by deg(v). 

 

Example: What are the degrees and neighborhoods of the  vertices in the 

graphs G? 

 

Solution: 

G: deg(a) = 2, deg(b) = deg(c) = deg(f ) = 4, deg(d ) = 1, 

deg(e) = 3, deg(g) = 0. 

N(a) = {b, f }, N(b) = {a, c, e, f }, N(c) = {b, d, e, f }, 

N(d) = {c}, N(e) = {b, c , f }, N(f) = {a, b, c, e}, N(g) =  . 
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Example: What are the degrees and neighborhoods of the vertices in the 

graphs H? 

 

Solution: 

H: deg(a) = 4, deg(b) = deg(e) = 6, deg(c) = 1, deg(d) = 5. 

    N(a) = {b, d, e}, N(b) = {a, b, c, d, e}, N(c) = {b}, 

    N(d) = {a, b, e}, N(e) = {a, b ,d} 

Theorem 1 (Handshaking Theorem): If G = (V,E) is an undirected 

graph with m edges, then 

2m = Σ deg(v) 

                                     v∈V 

Proof: 

Each edge contributes twice to the degree count of all vertices. Hence, both 

the left-hand and right-hand sides of this equation   equal twice the number 

of edges. 

Theorem 2: An undirected graph has an even number of vertices of odd 

degree. 

Proof: Let V1 be the vertices of even degree and V2 be the vertices of odd 

degree in an undirected graph G = (V, E) with m edges. 

Then 
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Graph characteristics: Directed graphs 

Definition: An directed graph G = (V, E) consists of V, a nonempty set 

of vertices (or nodes), and E, a set of directed edges or arcs. Each edge is 

an ordered pair of vertices. The directed edge (u,v) is said to start at u and 

end at v. 

Definition: Let (u,v) be an edge in G. Then u is the initial vertex of this 

edge and is adjacent to v and v is the terminal (or end) vertex of this edge 

and is adjacent from u. The initial and terminal vertices of a loop are the 

same. 

Definition: The in-degree of a vertex v, denoted deg -(v), is the number 

of edges which terminate at v. The out-degree of v, denoted deg+(v), is 

the number of edges with v as their initial vertex. Note that a loop at a 

vertex contributes 1 to both the in- degree and the out-degree of the 

vertex. 

Example: Assume graph G: 

 

 

   What are in-degrees of vertices: ? 

 

Deg -(a) = 2, deg -(b) = 2,  

deg -(c) = 3, 

Deg -(d) = 2, deg -(e) = 3, 

deg -(f) = 0. 

 

What are out-degrees of vertices: ? 

deg+(a) = 4, deg+(b) = 1, 

deg+(c) = 2, 

deg+(d) = 2, deg+ (e) = 3, 

deg+(f) = 0. 
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Theorem: Let G = (V, E) be a graph with directed edges. Then: 

 

 

Some Special Simple Graphs 

Complete graphs 

A complete graph on n vertices, denoted by Kn, is the simple graph that 

contains exactly one edge between each pair of distinct vertices. 

 

A cycle 

A cycle Cn for n ≥ 3 consists of n vertices v1, v2 ,⋯ , vn, and edges  

{v1, v2}, {v2, v3} ,⋯ , {vn-1, vn}, {vn, v1}. 

 

N-dimensional hypercube 

An n-dimensional hypercube, or n-cube, Qn, is a graph with 2n vertices 

representing all bit strings of length n, where there is an edge between two 
vertices that differ in exactly one bit position. 
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Bipartite graphs 

Definition: A simple graph G is bipartite if V can be partitioned into two 

disjoint subsets V1 and V2 such that every edge connects a vertex in V1 and 

a vertex in V2. In other words, there are no edges which connect two 

vertices in V1 or in V2. 

 

Note: An equivalent definition of a bipartite graph is a graph where it is 

possible to color the vertices red or blue so that no two adjacent vertices 

are the same color. 

 
 

Example: Show that C6 is bipartite. 

 

Solution: 

• We can partition the vertex set into 

V1 = {v1, v3, v5} and  

V2 = {v2, v4, v6}  

so that every edge of C6 connects a vertex in V1 and V2 . 
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Example: Show that C3 is not bipartite. 

Solution: 

If we divide the vertex set of C3 into two nonempty sets, one of the   two 

must contain two vertices. But in C3 every vertex is connected to every 

other vertex. Therefore, the two vertices in the same partition are 

connected. Hence, C3 is not bipartite. 

 

Bipartite graphs and matching 

Bipartite graphs are used to model applications that involve matching 

the elements of one set to elements in another, for example: 

Example: Job assignments - vertices represent the jobs and the 

employees, edges link employees with those jobs they have been trained 

to do. A common goal is to match jobs to employees so that the most jobs 

are done. 
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