1.4 Predicates and Quantifiers

Propositional logic: the world is described in terms of elementary propositions and their logical combinations

Elementary statements:

- Typically refer to objects, their properties and relations. But these are not explicitly represented in the propositional logic
- For example:
 - "Omar is a Ptuk student."

Omar --- a Ptuk student

Objects and properties are hidden in the statement, it is not possible to reason about them.

Limitations of the propositional logic

(1) Statements that must be repeated for many objects

In propositional logic these must be exhaustively enumerated

- For example:
- If Omar is an AC Ptuk graduate then Omar has passed Calculus.

Translation:

– Omar is an AC Ptuk graduate → Omar has passed Calculus.

Similar statements can be written for other Ptuk graduates:

- Adnan is an AC Ptuk graduate → Adnan has passed Calculus
- Amal is an AC Ptuk graduate \rightarrow Amal has passed Calculus

– ...

- Solution: make statements with variables
- If x is an AC Ptuk graduate then x has passed Calculus.
- -x is an AC Ptuk graduate $\rightarrow x$ has passed Calculus.

(2) Statements that define the property of the group of objects

- For example:
- "Every computer connected to the university network is functioning properly."
- All new cars must be registered.
- "There is a computer on the university network that is under attack by an intruder."
- Some of the AC graduates graduate with honors.

• Solution: make statements with quantifiers.

Predicate logic

To understand predicate logic, we first need to introduce the concept of a predicate.

Predicates

Predicates represent properties or relations among objects.

For examples:

Statements involving variables, such as

"
$$x > 3$$
," " $x = y + 3$," " $x + y = z$,"

and

"computer *x* is under attack by an intruder,"

"computer x is functioning properly,"

- The statement "x is greater than 3" has two parts.
 - \circ The first part, the variable x, is the subject of the statement(object).
 - The second part—the **predicate**, "is greater than 3"—refers to a **property** that the subject of the statement can have.
- We can denote the statement "x is greater than 3" by P(x).
- The statement P(x) is also said to be the value of the **propositional function** P at x.

Let the following examples:

- Student(x) denotes the statement "x is a student"
- Person(x) denotes the statement "x is a person"
- University(x) denotes the statement "x is a university"
- Once a value has been assigned to the variable x, the statement P(x) becomes a proposition and has a truth value.
 - Student(John) T (if John is a student)
 - Student(Ann) T (if Ann is a student)
 - Student(Jane) F (if Jane is not a student)
 - University(Ptuk) T
 - Person(Ahmad) T

Example 1: Let P(x) denote the statement "x > 3." What are the truth values of P(4) and P(2)?

Solution:

We obtain the statement P(4) by setting x = 4 in the statement "x > 3." Hence, P(4), which is the statement "4 > 3," is true. However, P(2), which is the statement "2 > 3," is false(F).

Example 2: Assume a predicate P(x) that represents the statement: "x is a prime number"

- 1. What are the truth values of, P(x) for x=3, 4, 5, 6, and 7.
- 2. Is P(x) a proposition?

Solution:

- 1.
- P(3) T
- P(4) F
- P(5) T
- P(6) F
- P(7) T

All statements P(2), P(3), P(4), P(5), P(6), P(7) are propositions

2. No. Many possible substitutions are possible.

Predicates can have more arguments (variables) which represent the relations between objects.

- O A predicate with two arguments is denoted by Q(x, y), where x and y are variables is a **predicate**.
- Once a values has been assigned to the variable x and y, the statement Q(x, y) becomes a **proposition** and has a truth value.

For example: Let Older(x,y) denotes the statement "x is older than y"

- Older (John, Peter): "John is older than Peter"
 - this is a proposition because it is either true or false
- Older (x, y): "x is older than y"
- not a proposition, but after the substitution it becomes one.
- \circ Similarly a predicate with three arguments is denoted by R(x, y, z), where x, y and z are variables.
- Once a values has been assigned to the variable x, y, and z the statement Q(x, y, z) becomes a *proposition* and has a truth value.

For example: Let StudyAt(x,y,z) denotes the statement "x study at university y major z"

- StudyAt(Amjad,Ptuk, AC): Amjad study at Ptuk major AC "
 - this is a proposition because it is either true or false

- o **In general**, a statement involving the *n* variables x_1, x_2, \ldots, x_n can be denoted by $P(x_1, x_2, \ldots, x_n)$.
 - O When values are assigned to the variables x_1, x_2, \ldots, x_n the statement $P(x_1, x_2, \ldots, x_n)$ has a truth value.

Example 3: Let Q(x, y) denote the statement "x = y + 3." What are the truth values of the propositions Q(1, 2) and Q(3, 0)?

Solution:

- To obtain Q(1, 2), set x = 1 and y = 2 in the statement Q(x, y). Hence, Q(1, 2) is the statement "1 = 2 + 3," which is false.
- The statement Q(3, 0) is the proposition "3 = 0 + 3," which is true.

Example 4: Let Q(x,y) denote "x+5 > y"

- 1. Is Q(x,y) a proposition? No!
- 2. Is Q(3,7) a proposition? Yes. It is true.
- 3. What is the truth value of:
 - a) Q(3,7) T
 - b) Q(1,6) F
 - c) Q(2,2) T
- 4. Is Q(3,y) a proposition? No! We cannot say if it is true or false.

Solution:

- 1. No!
- 2. Yes. It is true.
- 3. the truth value of:
 - a) Q(3,7) T
 - b) Q(1,6) F
 - c) Q(2,2) T
- 4. No! We cannot say if it is true or false.

Example 5: let R(x, y, z) denote the statement "x + y = z." What are the truth values of the propositions R(1, 2, 3) and R(0, 0, 1)?

Solution:

- The proposition R(1, 2, 3) is obtained by setting x = 1, y = 2, and z = 3 in the statement R(x, y, z).
- R(1, 2, 3) is the statement "1 + 2 = 3," which is true.

• Note that R(0, 0, 1), which is the statement "0 + 0 = 1," is false.

Compound statements in predicate logic

Compound statements are obtained via logical connectives

For examples:

- Student(Ann) ∧ Student(Jane)
 - Translation: "Both Ann and Jane are students"
 - Proposition: yes.
- o Country(Sienna) V River(Sienna)
 - Translation: "Sienna is a country or a river"
 - Proposition: yes.
- \circ AC -major(x) \rightarrow Student(x)
 - Translation: "if x is an AC-major then x is a student"
 - Proposition: no.

Quantifiers

Predicate logic lets us to make statements about groups of objects by using special quantified expressions.

First we want to define the **domain of quantification**.

Definition:

The **domain of quantification**; i.e., what the quantifiers (or variables) range over. The domain must be nonempty. (The domain is sometimes also called the **universe of discourse** or the **domain of discourse**.)

The universe of discourse can be people, students, numbers, etc.

Two types of quantified statements:

- o Universal quantifier –the property is satisfied by all members of the group.
 - o For example: "all AC Ptuk graduates have to pass Calculus"
 - the statement is true for all graduates.
- o **Existential quantifier** at least one member of the group satisfy the property.
 - For example: "Some AC Ptuk students graduate with honor."
 - the statement is true for some people.

Universal quantifier

Definition:

The universal quantification of P(x) is the proposition: "P(x) is true for all values of x in the domain of discourse." The notation $\forall x P(x)$ denotes the universal quantification of P(x), and is expressed as **for every x**, P(x). An element for which P(x) is false is called a **counterexample** of $\forall x P(x)$.

Example 1: Let P(x) be the statement "x + 1 > x." What is the truth value of the quantification $\forall x P(x)$, where the domain consists of all real numbers? *Solution:*

Because P(x) is true for all real numbers x, the quantification $\forall x P(x)$ is true.

Remarks:

- 1. If the domain is empty, then $\forall x P(x)$ is true for any propositional function P(x) because there are no elements x in the domain for which P(x) is false.
- 2. Remember that the truth value of $\forall x P(x)$ depends on the domain!
- 3. Besides "for all" and "for every," universal quantification can be expressed in many other ways, including "all of," "for each," "given any," "for arbitrary," "for each," and "for any."
- 4. A statement $\forall x P(x)$ is false, where P(x) is a propositional function, if and only if P(x) is not always true when x is in the domain.

Example 2: Let Q(x) be the statement "x < 2." What is the truth value of the quantification $\forall x Q(x)$, where the domain consists of all real numbers?

Solution:

Q(x) is not true for every real number x, because, for instance, Q(3) is false. That is, x = 3 is a counterexample for the statement $\forall x Q(x)$. Thus $\forall x Q(x)$ is false.

Example 3: Suppose that P(x) is " $x^2 > 0$." Show that the statement $\forall x P(x)$ is false.

Solution:

To show that the statement $\forall x P(x)$ is false where the universe of discourse consists of all integers, we give a counterexample. We see that x = 0 is a

counterexample because $x^2 = 0$ when x = 0, so that x^2 is not greater than 0 when x = 0.

Remark: When all the elements in the domain can be listed say, x_1, x_2, \ldots, x_n it follows that the universal quantification $\forall x P(x)$ is the same as the conjunction $P(x_1) \land P(x_2) \land \cdots \land P(x_n)$, because this conjunction is true if and only if $P(x_1)$, $P(x_2), \ldots, P(x_n)$ are all true.

Example 4: What is the truth value of $\forall x P(x)$, where P(x) is the statement " $x^2 < 10$ " and the domain consists of the positive integers not exceeding 4?

Solution:

The statement $\forall x P(x)$ is the same as the conjunction

$$P(1) \wedge P(2) \wedge P(3) \wedge P(4)$$
,

because the domain consists of the integers 1, 2, 3, and 4. Because P(4), which is the statement " $4^2 < 10$," is false, it follows that $\forall x P(x)$ is false.

Example 5: What does the statement $\forall x N(x)$ mean if N(x) is "Computer x is connected to the network" and the domain consists of all computers on campus?

Solution: The statement $\forall x N(x)$ means that for every computer x on campus, that computer x is connected to the network. This statement can be expressed in English as "Every computer on campus is connected to the network."

Example 6: What is the truth value of $\forall x(x^2 \ge x)$ if the domain consists of all real numbers? What is the truth value of this statement if the domain consists of all integers?

Solution:

The universal quantification $\forall x(x^2 \ge x)$, where the domain consists of all real numbers, is false. For example, $\left(\frac{1}{2}\right)^2 < \frac{1}{2}$.

Existential quantifier

Definition:

The existential quantification of P(x) is the proposition "There exists an element in the domain (universe) of discourse such that P(x) is true." The notation $\exists x$ P(x) denotes the existential quantification of P(x), and is expressed as there is an x such that P(x) is true.

Example 7: Let P(x) denote the statement "x > 3." What is the truth value of the quantification $\exists x P(x)$, where the domain consists of all real numbers?

Solution: Because "x > 3" is sometimes true—for instance, when x = 4, the existential quantification of P(x), which is $\exists x P(x)$, is true.

Remarks:

- 1. the statement $\exists x P(x)$ is false if and only if there is no element x in the domain for which P(x) is true.
- 2. we can also express existential quantification in many other ways, such as by using the words "for some," "for at least one," or "there is."
- 3. The existential quantification $\exists x P(x)$ is read as "There is an x such that P(x),"

 "There is at least one x such that P(x),"

 or

"For some xP(x)."

Example 8: Let Q(x) denote the statement "x = x + 1." What is the truth value of the quantification $\exists x Q(x)$, where the domain consists of all real numbers?

Solution:

Because Q(x) is false for every real number x, the existential quantification of Q(x), which is $\exists x Q(x)$, is false.

Example 9: Let T(x) denote x > 5 and x is from Real numbers. What is the truth value of $\exists x \ T(x)$?

Solution:

Since 10 > 5 is true. Therefore, it is **true that \exists x T(x).**

Remark: When all elements in the domain can be listed—say, x_1 , x_2 , ..., x_n the existential quantification $\exists x P(x)$ is the same as the disjunction

$$P(x_1) \vee P(x_2) \vee \cdots \vee P(x_n)$$
,

because this disjunction is true if and only if at least one of $P(x_1)$, $P(x_2)$,..., $P(x_n)$ is true.

Example 10: What is the truth value of $\exists x P(x)$, where P(x) is the statement "x2 > 10" and the universe of discourse consists of the positive integers not exceeding 4?

Solution:

Because the domain is $\{1, 2, 3, 4\}$, the proposition $\exists x P(x)$ is the same as the disjunction

$$P(1) \vee P(2) \vee P(3) \vee P(4)$$
.

Because P(4), which is the statement " $4^2 > 10$," is true, it follows that $\exists x P(x)$ is true.

• **Recall** that **quantification** is another important way to create a proposition from a propositional function.

Example 11: Determine whether the following statements proposition or not

- 1. AC-major(x) \rightarrow Student(x)
- 2. $\forall x AC major(x) \rightarrow Student(x)$

Solution

- 1. **Translation:** "if x is an AC-major then x is a student" It is not a proposition.
- 2. **Translation:** "(For all people it holds that) if a person is an AC-major then she is a student."

 It is a proposition.

Example 12: Determine whether the following statements proposition or not

- 1. AC-Ptuk- graduate (x) ∧ Honor-student(x)
- 2. $\exists x \text{ AC-Ptuk- graduate } (x) \land \text{ Honor-student}(x)$

Solution

- 1. **Translation:** "x is a AC-Ptuk- graduate and x is an honor student" It is not a proposition.
- 2. **Translation:** "There is a person who is a AC-Ptuk- graduate and who is also an honor student."

 It is a proposition.

Summary of quantified statements

• When $\forall x P(x)$ and $\exists x P(x)$ are true and false?

Statement	When True?	When False?	
$\forall x P(x)$ $\exists x P(x)$	P(x) is true for every x . There is an x for which $P(x)$ is true.	There is an x for which $P(x)$ is false. P(x) is false for every x .	

Negating Quantified Expressions

- * Negation of a quantified expression.
 - For instance, consider the negation of the statement :
 - o "Every student in your class has taken a course in calculus."
 - This statement is a universal quantification, namely, $\forall x P(x)$,

where P(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class.

- The negation of this statement is
 - o "It is not the case that every student in your class has taken a course in calculus."
- This is equivalent to
 - "There is a student in your class who has not taken a course in calculus."
- And this is simply the existential quantification of the negation of the original propositional function, namely,
 - $\circ \exists x \neg P(x).$
- This example illustrates the following logical equivalence:
- To show that $\neg \forall x P(x)$ and $\exists x P(x)$ are logically equivalent
 - o first note that $\neg \forall x P(x)$ is true iff $\forall x P(x)$ is false.
 - Next, note that $\forall x P(x)$ is false iff there is an element x in the domain for which P(x) is false.

- This holds iff there is an element x in the domain for which $\neg P(x)$ is true.
- \circ Finally, note that there is an element x in the domain for which $\neg P(x)$ is true iff $\exists x \ \neg P(x)$ is true.
- o we can conclude that $\neg \forall x P(x)$ is true iff $\exists x \ \neg P(x)$ is true.
- \circ It follows that $\neg \forall x P(x) \equiv \exists x \ \neg P(x)$.

* Negation of an existential expression.

- For instance, consider the negation of the statement :
 - o "There is a student in this class who has taken a course in calculus."
- This statement is an existential quantification, namely,
 - \circ $\exists x Q(x),$

where Q(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class.

- The negation of this statement is
 - o "It is not the case that there is student in this who has taken a course in calculus."
- This is equivalent to
 - o "Every student in this class has not taken calculus."
- And this is simply the universal quantification of the negation of the original propositional function, namely,
 - $\circ \forall x \neg Q(x).$
- This example illustrates the following logical equivalence:
 - $\circ \neg \exists x \ Q(x) \equiv \forall x \ \neg Q(x).$
- To show that $\neg \exists x Q(x)$ and $\forall x Q(x)$ are logically equivalent
 - o first note that $\neg \exists x Q(x)$ is true iff $\exists x Q(x)$ is false.
 - \circ This holds iff no x exists in the domain for which Q(x) is true.
 - O Next, note that no x exists in the domain for which Q(x) is true if and only if Q(x) is false for every x in the domain.

- \circ Finally, note that Q(x) is false for every x in the domain if and only if $\neg Q(x)$ is true for all x in the domain,
- o we can conclude that $\neg \exists x Q(x)$ is true iff $\forall x \ \neg Q(x)$ is true.

○ It follows that $\neg \exists x Q(x) \equiv \forall x \ \neg Q(x)$.

The rules for negations for quantifiers are called **De Morgan's laws for**

quantifiers. These rules are summarized in following Table.

Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .

Example 13: What are the negations of the statements "

- 1. "There is an honest politician"
- 2. "All Americans eat cheeseburgers"?

Solution:

1. Let H(x) denote "x is honest."

Then the statement

"There is an honest politician"

is represented by

$$\exists x H(x),$$

where the domain consists of all politicians. The negation of this statement is

$$\neg \exists x H(x),$$

which is equivalent to

$$\forall x \neg H(x)$$
.

This negation can be expressed as

"Every politician is dishonest."

2. Let C(x) denote "x eats cheeseburgers."

Then the statement

"All Americans eat cheeseburgers"

is represented by

$$\forall x C(x)$$
,

where the domain consists of all Americans.

The negation of this statement is

$$\neg \forall x C(x)$$
,

which is equivalent to

$$\exists x \neg C(x).$$

This negation can be expressed in several different ways, including "Some American does not eat cheeseburgers"

and

"There is an American who does not eat cheeseburgers."

Example 14: What are the negations of the statements

- 1. $\forall x(x^2 > x)$
- 2. $\exists x(x^2 = 2)$

Solution:

1. The negation of $\forall x(x^2 > x)$ is the statement

$$\neg \forall x(x^2 > x),$$

which is equivalent to

$$\exists x \neg (x^2 > x).$$

This can be rewritten as

$$\exists x(x^2 \leq x).$$

2. The negation of $\exists x(x^2 = 2)$ is the statement

$$\neg \exists x(x^2 = 2),$$

which is equivalent to

$$\forall x \neg (x^2 = 2).$$

This can be rewritten as

$$\forall x(x^2 \neq 2).$$

The truth values of these statements depend on the domain.

Example 15: Show that $\neg \forall x (P(x) \rightarrow Q(x))$ and $\exists x (P(x) \land \neg Q(x))$ are logically equivalent.

Solution:

By De Morgan's law for universal quantifiers, we know that

$$\neg \forall x (P(x) \to Q(x)) \equiv \exists x (\, \neg (P(x) \to Q(x))) \;.$$

We know that

$$\neg (P(x) \rightarrow Q(x)) \equiv P(x) \land \neg Q(x)$$
 for every x .