Chapter 1 \

/ <The Foundations: Logic and Proofs

1.4 Predicates and Quantifiers

Propositional logic: the world is described in terms of elementary propositions
and their logical combinations

Elementary statements:
* Typically refer to objects, their properties and relations. But these are not
explicitly represented in the propositional logic
— For example:
* “Omar is a Ptuk student.”
Omar —> a Ptuk student

(@biect) —> a froperty )

Objects and properties are hidden in the statement, it is not possible to reason
about them.

Limitations of the propositional logic

(1) Statements that must be repeated for many objects

In propositional logic these must be exhaustively enumerated

= For example:

— If Omar is an AC Ptuk graduate then Omar has passed Calculus.
Translation:

— Omar 1s an AC Ptuk graduate — Omar has passed Calculus.
Similar statements can be written for other Ptuk graduates:

— Adnan is an AC Ptuk graduate — Adnan has passed Calculus

— Amal is an AC Ptuk graduate — Amal has passed Calculus

* Solution: make statements with variables

— If x 1s an AC Ptuk graduate then x has passed Calculus.

—x is an AC Ptuk graduate — x has passed Calculus.

(2) Statements that define the property of the group of objects

= For example:

— “Every computer connected to the university network is functioning
properly.”

— All new cars must be registered.

— “There 1s a computer on the university network that is under attack by an

intruder.”
— Some of the AC graduates graduate with honors.
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* Solution: make statements with quantifiers.

Predicate logic
To understand predicate logic, we first need to introduce the concept of a
predicate.

Predicates

Predicates represent properties or relations among objects.
For examples:

Statements involving variables, such as

GCx > 3,’7 [13 — y + 3,7’ L(.x + y — Z’”
and
“computer x is under attack by an intruder,”

and
“computer x is functioning properly,”

The statement “x is greater than 3” has two parts.
o The first part, the variable x, is the subject of the statement(object).
o The second part—the predicate, “is greater than 3”—refers to a
property that the subject of the statement can have.
We can denote the statement “x is greater than 3” by P(x).
The statement P(x) is also said to be the value of the propositional function P at
X.
Let the following examples:
» Student(x) denotes the statement “X is a student”
* Person(x) denotes the statement “x is a person”
» University(x) denotes the statement “x is a university”
Once a value has been assigned to the variable x, the statement P(x) becomes a
proposition and has a truth value.
* Student(John) .... T (if John is a student)
* Student(Ann) .... T (if Ann is a student)
* Student(Jane) ..... F (if Jane is not a student)
* University(Ptuk) .... T
* Person(Ahmad) .... T

Example 1: Let P(x) denote the statement “x > 3.” What are the truth values of
P(4) and P(2)?

Solution:
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We obtain the statement P(4) by setting x = 4 in the statement “x > 3.” Hence,

P(4), which is the statement “4 > 3,” is true. However, P(2), which is the
statement “2 > 3, is false(F).

Example 2: Assume a predicate P(x) that represents the statement:
“ X 1s a prime number “
1. What are the truth values of , P(x) for x=3,4,5,6,and 7 .
2. Is P(x) a proposition?
Solution:
1.
*P3)T
*P(4)F
*P(5)T
*P(6) F
*P(7T
All statements P(2), P(3), P(4), P(5), P(6), P(7) are propositions
2. No. Many possible substitutions are possible.

Predicates can have more arguments (variables) which represent the relations
between objects.

o A predicate with two arguments is denoted by Q(x, y), where x and y are
variables is a predicate.
* Once a values has been assigned to the variable x and y, the statement Q(x, )
becomes a proposition and has a truth value.
For example: Let Older(x,y) denotes the statement “x is older than y”
* Older (John, Peter) : “John is older than Peter”
— this is a proposition because it is either true or false
* Older (x,y) : ”x1s older than y”
— not a proposition, but after the substitution it becomes one.
o Similarly a predicate with three arguments is denoted by R(x, y, z), where x, y
and z are variables.

o Once a values has been assigned to the variable x, y, and z the statement Q(x,
¥,z) becomes a proposition and has a truth value.
For example: Let StudyAt(x,y, z) denotes the statement “x study at
university y major z
* StudyAt(Amjad,Ptuk, AC): Amjad study at Ptuk major AC *
— this is a proposition because it is either true or false
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o In general, a statement involving the n variables xj, x», . . ., x, can be denoted

by P(x1, X2, . . ., Xy).

o When values are assigned to the variables xj, x, . . ., x, the statement P(x;,

Xa, ..., Xy) has a truth value.

Example 3: Let O(x, y) denote the statement “x = y + 3.” What are the truth

values of the propositions Q(1, 2) and Q(3, 0)?

Solution:

* To obtain O(1, 2), set x =1 and y = 2 in the statement Q(x, y). Hence, O(1, 2) is

the statement “1 = 2 + 3,” which is false.
* The statement Q(3, 0) is the proposition “3 = 0 + 3,” which is true.

Example 4: Let Q(x,y) denote “x+5 >y”
1. Is Q(x,y) a proposition? No!
2. 1s Q(3,7) a proposition? Yes. It is true.
3. What is the truth value of:
a) Q37T
b) Q(1,6) F
c) Q2,2) T

4. 1s Q(3,y) a proposition? No! We cannot say if it is true or false.

Solution:
1. No!
2. Yes. It is true.
3. the truth value of:
a) Q3,7 T
b) Q(1,6) F
c) Q2.2)T

4. No! We cannot say if it is true or false.

Example 5: let R(x, y, z) denote the statement ” x +y =2z.”

What are the truth values of the propositions R(1, 2, 3) and R(0, 0, 1)?

Solution:

* The proposition R(1, 2, 3) is obtained by setting x =1, y =2, and z = 3 in the

statement R(X, y, z).
* R(1, 2, 3) is the statement “1 + 2 = 3,” which is true.

Lecture Notes/ Discrete Structures for Computer Science \

]

/

22

g



Chapter 1 \ / The Foundations: Logic and Proofs

/ AN

* Note that R(0, 0, 1), which is the statement “0 + 0 = 1,” 1s false.

Compound statements in predicate logic
Compound statements are obtained via logical connectives
For examples:
o Student(Ann) A Student(Jane)
* Translation: “Both Ann and Jane are students”
* Proposition: yes.
o Country(Sienna) V River(Sienna)
* Translation: “Sienna is a country or a river”
* Proposition: yes.
o AC -major(x) — Student(x)
* Translation: “if x is an AC-major then x is a student”
* Proposition: no.

Quantifiers

Predicate logic lets us to make statements about groups of objects by using
special quantified expressions.

First we want to define the domain of quantification.

Definition:

The domain of quantification; 1.e., what the quantifiers (or variables) range
over. The domain must be nonempty. (The domain is sometimes also called the
universe of discourse or the domain of discourse.)

The universe of discourse can be people, students, numbers, etc.
Two types of quantified statements:
o Universal quantifier —the property is satisfied by all members of the group.

o For example: “ all AC Ptuk graduates have to pass Calculus”
— the statement is true for all graduates.

o Existential quantifier — at least one member of the group satisfy the property.

* For example: “Some AC Ptuk students graduate with honor.”
— the statement is true for some people.
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Universal quantifier

Definition:

The universal quantification of P(x) is the proposition: "P(x) is true for all values
of x in the domain of discourse." The notation V x P(x) denotes the universal
quantification of P(x), and is expressed as for every x, P(x). An element for
which P(x) is false is called a counterexample of VxP(x).

Example 1: Let P(x) be the statement “x + 1 > x.” What is the truth value of the
quantification VxP(x), where the domain consists of all real numbers?

Solution:

Because P(x) is true for all real numbers x, the quantification VxP(x) is true.

Remarks:

1. Ifthe domain is empty, then VxP(x) is true for any propositional
function P(x) because there are no elements x in the domain for which
P(x) is false.

2. Remember that the truth value of VxP(x) depends on the domain!

3. Besides “for all” and “for every,” universal quantification can be
expressed in many other ways, including “all of,” “for each,” “given
any,” “for arbitrary,” “for each,” and “for any.”

4. A statement VxP(x) is false, whereP(x) is a propositional function, if
and only if P(x) is not always true when x is in the domain.

Example 2: Let O(x) be the statement “x < 2.” What is the truth value of the

quantification VxQ(x), where the domain consists of all real numbers?

Solution:

O(x) is not true for every real number x, because, for instance, Q(3) is false. That
is, x = 3 is a counterexample for the statement VxQ(x). Thus VxQ(x)

is false.

Example 3: Suppose that P(x) is “x* > 0.” Show that the statement VxP(x) is
false.

Solution:

To show that the statement VxP(x) is false where the universe of discourse
consists of all integers, we give a counterexample. We see that x=01is a
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counterexample because x> = 0 when x = 0, so that x? is not greater than 0 when x
=0.

Remark : When all the elements in the domain can be listed say, xi, xa, . . ., x,

it follows that the universal quantification VxP(x) is the same as the conjunction

P(x1) A P(xy) A - -+ A P(x,), because this conjunction is true if and only if P(x),
P(x), ..., P (x,) are all true.

Example 4: What is the truth value of VxP(x), where P(x) is the statement “x* <
10” and the domain consists of the positive integers not exceeding 4?
Solution:
The statement VxP(x) is the same as the conjunction

P(1) AP(2) ANP3) AP@A),
because the domain consists of the integers 1, 2, 3, and 4. Because P(4), which is
the statement “4% < 10,” is false, it follows that VxP(x) is false.

Example 5:What does the statement VxN(x) mean if N(x) is “Computer x is
connected to the network™ and the domain consists of all computers on campus?

Solution: The statement VxN(x) means that for every computer x on campus, that
computer x is connected to the network. This statement can be expressed in
English as “Every computer on campus is connected to the network.”

Example 6:What is the truth value of Vx(x? > x) if the domain consists of all real
numbers? What is the truth value of this statement if the domain consists of all
integers?

Solution:

The universal quantification Vx(x*> x), where the domain consists of all real

2
numbers, is false. For example, (Ej < %

Existential quantifier

Definition:

The existential quantification of P(x) is the proposition "There exists an element
in the domain (universe) of discourse such that P(x) is true." The notation 3x
P(x) denotes the existential quantification of P(x), and is expressed as there is an
x such that P(x) is true.
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Example 7: Let P(x) denote the statement “x > 3.” What is the truth value of the
quantification IxP(x), where the domain consists of all real numbers?

Solution: Because “x > 3” is sometimes true—for instance, when x =4 , the
existential quantification of P(x), which is IxP(x), is true.

Remarks :
1. the statement AxP(x) is false if and only if there is no element x in the
domain for which P(x) is true.
2. we can also express existential quantification in many other ways, such
as by using the words “for some,” “for at least one,” or “there is.”
3. The existential quantification 3xP(x) is read as
“There is an x such that P(x),”
“There is at least one x such that P(x),”
or
“For some xP(x).”

Example 8: Let O(x) denote the statement “x = x + 1.”What is the truth value of
the quantification AxQ(x), where the domain consists of all real numbers?

Solution:
Because Q(x) is false for every real number x, the existential quantification of
O(x), which is 3xQ(x), is false.

Example 9: Let T(x) denote x > 5 and x is from Real numbers. What is the truth
value of Ax T(x)?

Solution:

Since 10 > 5 is true. Therefore, it is true that Ix T(x).

Remark : When all elements in the domain can be listed—say, xi, X2, ..., x, the
existential quantification IxP(x) is the same as the disjunction

Pxy) VPV -V P,
because this disjunction is true if and only if at least one of P(x;), P(x2),... ,P(xy) is
true.
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Example 10: What is the truth value of AxP(x), where P(x) is the statement “x2 >
10” and the universe of discourse consists of the positive integers not exceeding
47
Solution:
Because the domain is {1, 2, 3, 4}, the proposition IxP(x) is the same as the
disjunction

P1)v P2)Vv P3)V P@A).
Because P(4), which is the statement “4> > 10,” is true, it follows that IxP(x) is
true.

= Recall that quantification is another important way to create a proposition
from a propositional function.

Example 11: Determine whether the following statements proposition or not
1. AC-major(x) — Student(x)
2. Vx AC -major(x) — Student(x)

Solution
1. Translation: “if x is an AC-major then x is a student”
It is not a proposition.
2. Translation: “(For all people it holds that) if a person is an AC-major then
she is a student.”
It is a proposition.

Example 12: Determine whether the following statements proposition or not
1. AC-Ptuk- graduate (x) A Honor-student(x)
2. 3dx AC-Ptuk- graduate (x) A Honor-student(x)

Solution

1. Translation: “x is a AC-Ptuk- graduate and x is an honor student”
It is not a proposition.

2. Translation: “There is a person who is a AC-Ptuk- graduate and who is
also an honor student.”
It is a proposition.

Summary of quantified statements
»  When Vx P(x) and 3x P(x) are true and false?
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Statement When True? When False?
YxP(x) P(x) is true for every x. There is an x for which P(x) is false.
dxP(x) There is an x for which P(x) is true. P(x) is false for every x.

Negating Quantified Expressions

X Negation of a quantified expression.

= For instance, consider the negation of the statement :

o “Every student in your class has taken a course in calculus.”

= This statement is a universal quantification, namely,

o VxP(x),

where P(x) is the statement “x has taken a course in calculus”
and the domain consists of the students in your class.

= The negation of this statement is

o “Itis not the case that every student in your class has taken a course in
calculus.”

* This is equivalent to

o “There is a student in your class who has not taken a course in

calculus.”

* And this is simply the existential quantification of the negation of the

original propositional function, namely,

o Ix —P(x).
= This example illustrates the following logical equivalence:
o —VxP(x) =3x —P(x).

» To show that =VxP(x) and dxP(x) are logically equivalent
o first note that —VxP(x) is true iff VxP(x) is false.

o Next, note that VxP(x) is false iff there is an element x in the domain for
which P(x) 1s false.

Lecture Notes/ Discrete Structures for Computer Science

:

N
/

28

:



Chapter 1 \ / T

/ \ he Foundations: Logic and Proofs

o This holds iff there is an element x in the domain for which —P(x) is
true.

o Finally, note that there is an element x in the domain for which —P(x) is
true iff dx —P(x) is true.
o we can conclude that —=VxP(x) is true iff dx —P(x) is true.

o It follows that =VxP(x) = dx —P(x).

/ . o o .
*%* Negation of an existential expression.
* For instance, consider the negation of the statement :
o “There is a student in this class who has taken a course in calculus.”

= This statement is an existential quantification, namely,

o AxOx),

where Q(x) is the statement “x has taken a course in calculus”
and the domain consists of the students in your class.

= The negation of this statement is
o “lItis not the case that there is student in this who has taken a course in
calculus.”
= This is equivalent to
o “Every student in this class has not taken calculus.”
* And this is simply the universal quantification of the negation of the original
propositional function, namely,

o Vx —Q(x).

= This example illustrates the following logical equivalence:

o —Ix Q) =Vx Q).

» To show that —3xQ(x) and VxQ(x) are logically equivalent

o first note that —dxQ(x) is true iff AxO(x) is false.

o This holds iff no x exists in the domain for which Q(x) is true.
o Next, note that no x exists in the domain for which Q(x) is true if and
only if Q(x) is false for every x in the domain.

Lecture Notes/ Discrete Structures for Computer Science \

/

:

:



Chapter 1 \ /

/ \The Foundations: Logic and Proofs

o Finally, note that Q(x) is false for every x in the domain if and only if —
O(x) is true for all x in the domain,

o we can conclude that —3xQ(x) is true iff Vx —Q(x) is true.

o It follows that —3dxQ(x) = Vx —Q(x).

The rules for negations for quantifiers are called De Morgan’s laws for
quantifiers. These rules are summarized in following Table.

Negation Equivalent Statement When Is Negation True? When False?
—3Jx P(x) Vx—=P(x) For every x, P(x) is false. There is an x for which
P(x) is true.
=¥YxP(x) dx—P(x) There is an x for which P(x) is true for every x.
P(x) is false.

Example 13: What are the negations of the statements “
1. “There is an honest politician”
2. “All Americans eat cheeseburgers™?
Solution:
1. Let H(x) denote “x is honest.”
Then the statement
“There is an honest politician”
is represented by
AxH(x),
where the domain consists of all politicians. The negation of this statement
is

—3xH(x),
which is equivalent to
Vx —H(x).
This negation can be expressed as
“Every politician is dishonest.”

2. Let C(x) denote “x eats cheeseburgers.”
Then the statement
“All Americans eat cheeseburgers”
is represented by
vxC(x),
where the domain consists of all Americans.
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The negation of this statement is
—VxC(x),
which is equivalent to
Ax —C(x).
This negation can be expressed in several different ways, including

“Some American does not eat cheeseburgers”
and

b

“There is an American who does not eat cheeseburgers.’

Example 14: What are the negations of the statements
1. Vx(x*>x)

2. Ix(x*=2)
Solution:
1. The negation of Vx(x* > x) is the statement
—Vx(x? > x),
which is equivalent to
Ix —(x* > x).
This can be rewritten as
Ax(x* <x).
2. The negation of 3x(x° = 2) is the statement
—3Ax(x?=2),
which is equivalent to
Vx —(x*=2).
This can be rewritten as
Vx (x> £ 2).
The truth values of these statements depend on the domain.

Example 15: Show that —=Vx(P(x) — O(x)) and dx(P(x) » —=Q(x)) are logically

equivalent.
Solution:
By De Morgan’s law for universal quantifiers, we know that

—Vx(P(x) — Q(x)) =3x(—(P (x) = O(x))) .
We know that

—(P (x) — O(x)) = P(x)A —=Q(x) for every x.
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