- Computer representation: B = 10001

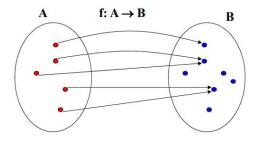
Solution:

- A = 01001
- B = 10001
- The union is modeled with a bitwise or
- $A \lor B = 11001$
- The intersection is modeled with a bitwise and
- $A \wedge B = 00001$
- The **complement** is modeled with a bitwise **negation**
- $\bar{A} = 10110$

2.3 Functions

Definition:

Let A and B be two sets. A function from A to B, denoted $f: A \to B$, is an assignment of exactly one element of B to each element of A. We write f(a) = b to denote the assignment of b to an element a of A by the function f.



Representing functions

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 1 : Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

Assume f is defined as:

- $1 \rightarrow c$
- $2 \rightarrow a$
- $3 \rightarrow c$
- Is f a function?
- Yes. since f(1)=c, f(2)=a, f(3)=c. each element of A is assigned an element from В.

Example 2: Let
$$A = \{1,2,3\}$$
 and $B = \{a,b,c\}$

Assume g is defined as

- $1 \rightarrow c$
- $1 \rightarrow b$
- $2 \rightarrow a$
- $3 \rightarrow c$
- Is g a function?
- No. g(1) = is assigned both c and b.

Example 3: Let
$$A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$$

Define h: $A \rightarrow B$ as:

 $h(x) = x \mod 3$. (the result is the remainder after the division by 3)

Assignments:

• $0 \rightarrow 0$

- $3 \rightarrow 0$ $6 \rightarrow 0$

• $1 \rightarrow 1$

- $4 \rightarrow 1$ $7 \rightarrow 0$

•
$$2 \rightarrow 2$$

•
$$5 \rightarrow 2$$

.

Important sets

Definition:

Let f be a function from A to B. We say that A is the domain of f and B is the codomain of f.

- If f(a) = b, b is the image of a and a is a pre-image of b.
- The range of f is the set of all images of elements of A. Also, if f is a function from A to B, we say f maps A to B.

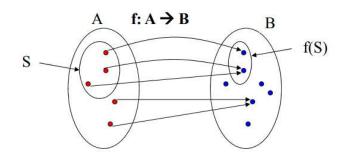
Example 4: Let
$$A = \{1,2,3\}$$
 and $B = \{a,b,c\}$

Assume f is defined as: $1 \rightarrow c$, $2 \rightarrow a$, $3 \rightarrow c$

- What is the image of 1?
- $1 \rightarrow c$ c is the image of 1
- What is the pre-image of a?
- $2 \rightarrow a$ 2 is a pre-image of a.
- Domain of f? {1,2,3}
- Codomain of f? {a,b,c}
- Range of f? {a,c}

Definition: Image of a subset

Let f be a function from set A to set B and let S be a subset of A. The image of S is a subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so that $f(S) = \{ f(s) \mid s \in S \}$.

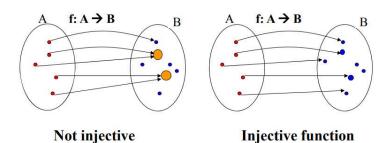


Example 5: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$ and $f: 1 \rightarrow c, 2 \rightarrow a, 3 \rightarrow c$

• Let $S = \{1,3\}$ then image $f(S) = \{c\}$.

Definition: Injective function

function f is said to be one-to-one, or injective, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. A function is said to be an injection if it is one-to-one. Alternate: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $x \neq y$. This is the contrapositive of the definition.



Example 6: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

Define f as

- $1 \rightarrow c$
- $2 \rightarrow a$
- $3 \rightarrow c$
- Is f one to one?
- No, it is not one-to-one since f(1) = f(3) = c, and $1 \ne 3$.

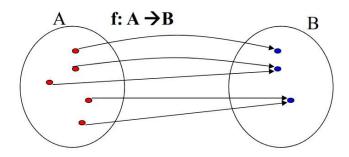
Example 7: Let $g: Z \to Z$, where g(x) = 2x - 1.

- Is g is one-to-one (why?)
- Yes.
- Suppose g(a) = g(b), i.e., $2a 1 = 2b 1 \Rightarrow 2a = 2b \Rightarrow a = b$.

Surjective function

Definition:

A function f from A to B is called onto, or surjective, if and only if for every $b \in B$ there is an element $a \in A$ such that f(a) = b. Alternative: all co-domain elements are covered



Example 8: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

Define f as • 1 \rightarrow c • 2 \rightarrow a • 3 \rightarrow c

- Is f an onto?
- No. f is not onto, since $b \in B$ has no pre-image.

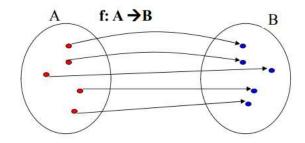
Example 9: $A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$

Define h: $A \rightarrow B$ as $h(x) = x \mod 3$.

- Is h an onto function?
- Yes. h is onto since a pre-image of 0 is 6, a pre-image of 1 is 4, a pre-image of 2 is 8.

Definition: Bijective functions

A function f is called a bijection if it is both one-to-one and onto.



Example 10: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

Define f as • 1
$$\rightarrow$$
 c • 2 \rightarrow a • 3 \rightarrow b

- Is f is a bijection?
- Yes. It is both one-to-one and onto.
- Note: Let f be a function from a set A to itself, where A is finite. f is one-to-one if and only if f is onto.
- This is not true for A an infinite set. Define $f: Z \to Z$, where f(z) = 2 * z.
- f is one-to-one but not onto (3 has no pre-image).

Example 11: Define $g: W \to W$ (whole numbers), where $g(n) = \lfloor n/2 \rfloor$ (floor function).

•
$$0 \rightarrow [0/2] = [0] = 0$$

•
$$1 \to [1/2] = [1/2] = 0$$

•
$$2 \rightarrow [2/2] = [1] = 1$$

•
$$3 \rightarrow [3/2] = [3/2] = 1$$

- ...
- Is g a bijection?
- No. g is onto but not 1-1 (g(0) = g(1) = 0 however $0 \ne 1$.

Theorem: Let f be a function f: $A \rightarrow A$ from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

Proof:

- \Rightarrow A is finite and f is one-to-one (injective)
- Is f an onto function (surjection)?
- Yes. Every element points to exactly one element. Injection assures they are different. So we have |A| different elements A points to.
- Since f: A → A the co-domain is covered thus the function is also a surjection (and a bijection)
- \Leftarrow A is finite and f is an onto function
- Is the function one-to-one?
- Yes. Every element maps to exactly one element and all elements in A are covered. Thus the mapping must be one-to-one

Please note the above is not true when A is an infinite set.

Example 12: $f: Z \rightarrow Z$, where f(z) = 2 * z.

- f is one-to-one but not onto.
- $1 \rightarrow 2$
- $2 \rightarrow 4$
- $3 \rightarrow 6$
- -3 has no pre-image.

Functions on real numbers

Definition: Let f_1 and f_2 be functions from A to R (reals). Then $f_1 + f_2$ and

f₁ * f₂ are also functions from A to R defined by

•
$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

•
$$(f_1 * f_2)(x) = f_1(x) * f_2(x)$$
.

Examples:

- Assume $f_1(x) = x 1$
- $f_2(x) = x^3 + 1$ then
- $(f_1 + f_2)(x) = x^3 + x$
- $(f_1 * f_2)(x) = x^4 x^3 + x 1$.

Increasing and decreasing functions

Definition: A function f whose domain and codomain are subsets of real numbers is **strictly increasing** if f(x) > f(y) whenever x > y and x and y are in the domain of f. Similarly, f is called **strictly decreasing** if f(x) < f(y) whenever x > y and x and y are in the domain of f.

Example 13: Let $g: R \to R$, where g(x) = 2x - 1. Is it increasing?

Proof . For x>y holds 2x > 2y and subsequently 2x-1 > 2y-1

Thus g is strictly increasing.

Note: Strictly increasing and strictly decreasing functions are oneto-one. Why?

One-to-one function: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $x \neq y$

Identity function

Definition: Let A be a set. The identity function on A is the function

 $i_A: A \rightarrow A$ where $i_A(x) = x$.

Example 14: Let $A = \{1,2,3\}$ **Then**:

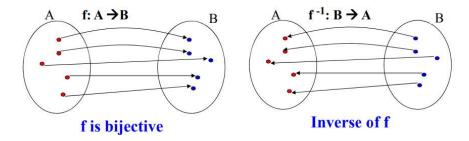
• $i_A(1) = 1$

- $i_A(2) = 2$
- $i_A(3) = 3$.

Inverse functions

Definition:

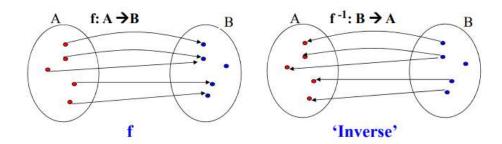
Let f be a bijection from set A to set B. The **inverse** function of f is the function that assigns to an element b from B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$, when f(a) = b. If the inverse function of f exists, f is called **invertible**.



Note: if f is not a bijection then it is not possible to define the inverse function of f. **Why?**

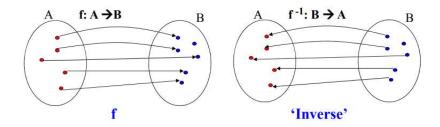
Assume f is not one-to-one:

Inverse is not a function. One element of B is mapped to two different elements.



Assume f is not onto:

Inverse is not a function. One element of B is not assigned any value in B.



Example 15: Let $A = \{1,2,3\}$ and i A be the identity function

•
$$i_A(1) = 1$$

$$i_A^{-1}(1) = 1$$

•
$$i_A(2) = 2$$

•
$$i_A(2) = 2$$
 $i_A^{-1}(2) = 2$

•
$$i_A(3) = 3$$

$$i_A^{-1}(3) = 3$$

• Therefore, the inverse function of i_A is i_A.

Example 16: Let $g: R \to R$, where g(x) = 2x - 1.

• What is the inverse function g⁻¹?

Approach to determine the inverse:

$$y = 2x - 1 \Rightarrow y + 1 = 2x \Rightarrow (y+1)/2 = x$$

• Define
$$g^{-1}(y) = x = (y+1)/2$$

Test the correctness of inverse:

•
$$g(3) = 2*3 - 1 = 5$$

•
$$g^{-1}(5) = (5+1)/2 = 3$$

•
$$g(10) = 2*10 - 1 = 19$$

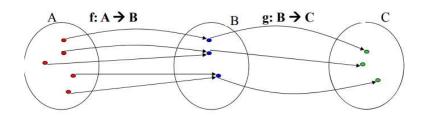
•
$$g^{-1}(19) = (19+1)/2 = 10$$
.

Composition of functions

Definition:

Let f be a function from set A to set B and let g be a function from set B to set C. The composition of the functions g and f, denoted by $g \Upsilon f$ is defined by

• $(g \circ f)(a) = g(f(a))$.



Example 17: : Let $A = \{1,2,3\}$ and $B = \{a,b,c,d\}$

$$g: A \rightarrow A$$
,

$$f: A \rightarrow B$$

$$1 \rightarrow 3$$

$$1 \rightarrow b$$

$$2 \rightarrow 1$$

$$2 \rightarrow a$$

$$3 \rightarrow 2$$

$$3 \rightarrow d$$

 $f \circ g : A \rightarrow B$:

- $1 \rightarrow d$
- $2 \rightarrow b$
- $3 \rightarrow a$

Example 18: Let f and g be two functions from Z to Z, where

- f(x) = 2x and $g(x) = x^2$.
- f o $g: Z \rightarrow Z$

- g o f: $Z \rightarrow Z$
- $(g \circ f)(x) = g(f(x))$ = $g(2x) = (2x)^2 = 4x^2$

Example 19: $(f \circ f^{-1})(x) = x$ and $(f^{-1} \circ f)(x) = x$, for all x.

- Let $f : \mathbf{R} \to \mathbf{R}$, where f(x) = 2x 1 and $f^{-1}(x) = (x+1)/2$.
- $(f \circ f^{-1})(x) = f(f^{-1}(x)) = f((x+1)/2) = 2((x+1)/2) 1 = (x+1) 1 = x$
- $(f^{-1} \circ f)(x) = f^{-1} (f(x)) = f^{-1} (2x 1) = (2x)/2 = x$

Some functions

Definition:

The **floor function** is denoted by $\lfloor x \rfloor$.

• The **ceiling function** assigns to the real number x the smallest integer that is greater than or equal to x. The ceiling function is denoted by $\lceil x \rceil$.

Other important functions:

• Factorials: n! = n(n-1) such that 1! = 1

2.4 Sequences and summations

Definition:

A sequence is a function from a subset of the set of integers (typically the set $\{0,1,2,...\}$ or the set $\{1,2,3,...\}$ to a set S. We use the notation a_n to denote the image of the integer n. We call a_n a term of the sequence.