9.3 Representing Relations using matrices

- Question: Can the relation be formed by taking the union or intersection or composition of two relations R_1 and R_2 be represented in terms of matrix operations?
- Answer: Yes

Example 1: Suppose that $A = \{1, 2, 3\}$ and $B = \{1, 2\}$. Let R be the relation from A to B containing (a, b) if $a \in A$, $b \in B$, and a > b. What is the matrix representing R if $a_1 = 1$, $a_2 = 2$, and $a_3 = 3$, and $b_1 = 1$ and $b_2 = 2$? **Solution:** Because $R = \{(2, 1), (3, 1), (3, 2)\}$, the matrix for R is

$$\mathbf{M}_R = \begin{bmatrix} 0 & 0\\ 1 & 0\\ 1 & 1 \end{bmatrix}.$$

Definition:

The **join**, denoted by \lor , of two m-by-n matrices (a_{ij}) and (b_{ij}) of 0s and 1s is an m-by-n matrix (m_{ij}) where

• $m_{ij} = a_{ij} \lor b_{ij}$ for all i,j = pairwise or (disjunction)

Example 2

Let $A = \{1,2,3\}$ and $B = \{u,v\}$ $R_1 = \{(1,u), (2,u), (2,v), (3,u)\}$ $R_2 = \{(1,v), (3,u), (3,v)\}$

$MR_1 = 1$	0	$\mathbf{MR}_2 = 0$	1	$\mathbf{M}(\mathbf{R}_1 \vee \mathbf{R}_2) = 1$	1
1	1	0	0	1	1
1	0	1	1	1	1
	MR ₁ =1 1 1	$ \begin{array}{ccc} MR_1 = 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{array} $	$\begin{array}{cccc} MR_1 = 1 & 0 & MR_2 = 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}$	$\begin{array}{ccccccc} MR_1 = 1 & 0 & MR_2 = 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Definition:

The **meet**, denoted by \wedge , of two m-by-n matrices (a_{ij}) and (b_{ij}) of 0s and 1s is an m-by-n matrix (m_{ij}) where

• $m_{ij} = a_{ij} \wedge b_{ij}$ for all i,j= pairwise and (conjunction)

Example 3:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ $R_1 = \{(1,u), (2,u), (2,v), (3,u)\}$
- $R_2 = \{(1,v),(3,u),(3,v)\}$

• $MR_1 = 1$ $\mathbf{MR}_2 = \mathbf{0}$ 0 1 $MR_1 \wedge MR_2 = 0$ 0 0 0 0 1 1 0 1 0 1 1 1 0

Definition: Composite of relations

Let R be a relation from a set A to a set B and S a relation from B to a set C. The **composite of R and S** is the relation consisting of the ordered pairs (a,c) where $a \in A$ and $c \in C$, and for which there is $a b \in B$ such that (a,b) $\in R$ and (b,c) $\in S$. We denote the composite of R and S by S o R.

Example 4:

- Let $A = \{1,2,3\}$, $B = \{0,1,2\}$ and $C = \{a,b\}$.
- $R = \{(1,0), (1,2), (3,1), (3,2)\}$
- $S = \{(0,b), (1,a), (2,b)\}$
- S o R = {(1,b),(3,a),(3,b)}

Implementation of composite

Definition:

The **Boolean product**, **denoted by** \odot , of an m-by-n matrix (a_{ij}) and n-by-p matrix (b_{ik}) of 0s and 1s is an m-by-p matrix (m_{ik}) where

 $m_{ik} = 1$, if $a_{ij} = 1$ and $b_{jk} = 1$ for some k=1,2,...,n

0, otherwise

Example 5:

- Let $A = \{1,2\}, B = \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2), (1,3), (2,1)\}$ is a relation from A to B
- $S = \{(1,a), (3,b), (3,a)\}$ is a relation from B to C.
- S o R = {(1,b),(1,a),(2,a)}

1

$$M_{R} \odot M_{S} = 1 \qquad 1 \qquad 1 \qquad 0$$

$$M_{S \odot R} = 1 \qquad 1 \qquad 0$$

$$M_{S \odot R} = 1 \qquad 1 \qquad 1 \qquad 0$$

Definition:

Let R be a relation on a set A. The **powers Rⁿ**, n =1,2,3,... is defined inductively by

• $R^1 = R$ and $R^{n+1} = R^n \bigcirc R$.

Example 6:

• $R = \{(1,2), (2,3), (2,4), (3,3)\}$ is a relation on $A = \{1,2,3,4\}$.

•
$$\mathbf{R}^{1} = \mathbf{R} = \{(1,2), (2,3), (2,4), (3,3)\}$$

• $\mathbf{R}^2 = \{(1,3), (1,4), (2,3), (3,3)\}$

•
$$\mathbf{R}^{3} = \{(1,3), (2,3), (3,3)\}$$

- $\mathbf{R}^4 = \{(1,3), (2,3), (3,3)\}$
- $R^{k} = R^{3}, k > 3.$

Theorem 1: The relation R on a set A is transitive <u>if and only if</u> $\mathbb{R}^n \subseteq \mathbb{R}$ for n = 1, 2, 3,

Number of reflexive relations

Theorem 2: The number of reflexive relations on a set A, where

$$|A| = n$$
 is: 2 n(n-1)