
Anas Melhem
Palestine Technical University

Precedence of Logical Operators
Operator Precedence

 1





2
3

→



4
5

p q → r is equivalent to (p q)→ r
If the intended meaning is p (q → r)
then parentheses must be used.

Boolean Operations Summary

p q p pq pq pq p→q pq

F F T F F F T T

F T T F T T T F

T F F F T T F F

T T F T T F T T

Some Alternative Notations

Name: not and or xor implies iff
Propositional logic:     → 
Boolean algebra: p pq + 
C/C++/Java (wordwise): ! && || != ==
C/C++/Java (bitwise): ~ & | ^
Logic gates:

Bits and Bit Operations
 A bit is a binary (base 2) digit: 0 or 1.

 Bits may be used to represent truth values.

 By convention:
0 represents “false”; 1 represents “true”.

 Boolean algebra is like ordinary algebra except that
variables stand for bits, + means “or”, and
multiplication means “and”.

Bit Strings
 A Bit string of length n is an ordered series or sequence

of n0 bits.

 By convention, bit strings are written left to right: e.g.
the first bit of “1001101010” is 1.

 When a bit string represents a base-2 number, by
convention the first bit is the most significant bit. Ex.
11012=8+4+1=13.

Bitwise Operations
 Boolean operations can be extended to operate on bit

strings as well as single bits.

 E.g.:

Section 1.2

Applications of Propositional Logic:
Summary
 Translating English to Propositional Logic

 System Specifications

 Boolean Searching

 Logic Puzzles

 Logic Circuits

 AI Diagnosis Method (Optional)

Translating English Sentences
 Steps to convert an English sentence to a statement in

propositional logic

 Identify atomic propositions and represent using
propositional variables.

 Determine appropriate logical connectives

 “If I go to Harry’s or to the country, I will not go
shopping.”

 p: I go to Harry’s

 q: I go to the country.

 r: I will go shopping.

If p or q then not r.

Example
Problem: Translate the following sentence into
propositional logic:

“You can access the Internet from campus only if you are
a computer science major or you are not a freshman.”

One Solution: Let a, c, and f represent respectively
“You can access the internet from campus,” “You are a
computer science major,” and “You are a freshman.”

a→ (c ∨ ¬ f)

Example
 You can not ride the roller coaster if you are under 4

feet tall unless you are older that 16 years old.

 Solution:

 Let p is You can ride the roller coaster

 q is You are under 4 feet tall

 r is You are older than 16 years old

 (q and not r) unless not p

 (q∧ ¬r)→ ¬p

System Specifications
 System and Software engineers take requirements in

English and express them in a precise specification
language based on logic.

Example: Express in propositional logic:

“The automated reply cannot be sent when the file
system is full”

Solution: One possible solution: Let p denote “The
automated reply can be sent” and q denote “The file
system is full.”

q→ ¬ p

Consistent System Specifications
Definition: A list of propositions is consistent if it is
possible to assign truth values to the proposition variables
so that each proposition is true.

Exercise: Are these specifications consistent?
 “The diagnostic message is stored in the buffer or it is retransmitted.”

 “The diagnostic message is not stored in the buffer.”

 “If the diagnostic message is stored in the buffer, then it is retransmitted.”

Solution: Let p denote “The diagnostic message is stored in the buffer.” Let
q denote “The diagnostic message is retransmitted” The specification can
be written as: p ∨ q, ¬p, p → q. When p is false and q is true all three
statements are true. So the specification is consistent.
 What if “The diagnostic message is not retransmitted is added.”

Solution: Now we are adding ¬q and there is no satisfying assignment. So
the specification is not consistent.

Boolean Searches
 Logical connectives are used extensively in

searches of large collections of information,
suchvas indexes of Web pages. Because these
searches employ techniques from propositional
logic, they are called Boolean searches.

Logic Circuits
(Studied in depth in Chapter 12)
 Electronic circuits; each input/output signal can be viewed as a 0 or 1.

 0 represents False

 1 represents True

 Complicated circuits are constructed from three basic circuits called gates.

 The inverter (NOT gate)takes an input bit and produces the negation of that bit.

 The OR gate takes two input bits and produces the value equivalent to the disjunction of the two
bits.

 The AND gate takes two input bits and produces the value equivalent to the conjunction of the
two bits.

 More complicated digital circuits can be constructed by combining these basic circuits to
produce the desired output given the input signals by building a circuit for each piece of
the output expression and then combining them. For example:

Section 1.3

Section Summary
 Tautologies, Contradictions, and Contingencies.

 Logical Equivalence

 Important Logical Equivalences

 Showing Logical Equivalence

 Normal Forms (optional, covered in exercises in text)

 Disjunctive Normal Form

 Conjunctive Normal Form

 Propositional Satisfiability

 Sudoku Example

Propositional Equivalence
 Two syntactically (i.e., textually) different compound

propositions may be the semantically identical (i.e.,
have the same meaning). We call them equivalent.

Learn:

 Various equivalence rules or laws.

 How to prove equivalences using symbolic derivations.

Tautologies, Contradictions, and
Contingencies
 A tautology is a proposition which is always true.

 Example: p ∨¬p

 A contradiction is a proposition which is always false.

 Example: p ∧¬p

 A contingency is a proposition which is neither a
tautology nor a contradiction, such as p

P ¬p p ∨¬p p ∧¬p

T F T F

F T T F

Logically Equivalent
 Two compound propositions p and q are logically equivalent if p↔q

is a tautology.

 We write this as p⇔q or as p≡q where p and q are compound
propositions.

 Two compound propositions p and q are equivalent if and only if the
columns in a truth table giving their truth values agree.

 This truth table shows that ¬p ∨ q is equivalent to p → q.

p q ¬p ¬p ∨ q p→ q

T T F T T

T F F F F

F T T T T

F F T T T

Proving Equivalence via Truth Tables

Ex. Prove that pq(p  q).

p q ppqq pp qq pp  qq ((pp  qq))

F F

F T

T F

T T

F
T

T
T

T

T

T

T
T

T

F
F

F

F

F
F

F
F

T
T

Example of Tautology and Contradiction
 (p q)↔(p)(q)

 ((p q)↔(p)(q))

p q ppqq ((pp  qq)) pp qq ((pp))((qq))

F F F T T T T

F T F T T F T

T F F T F T T

T T T F F F F

Key Logical Equivalences
 Identity Laws: ,

 Domination Laws: ,

 Idempotent laws: ,

 Double Negation Law:

 Negation Laws: ,

Key Logical Equivalences (cont)
 Commutative Laws: ,

 Associative Laws:

 Distributive Laws:

 Absorption Laws:

De Morgan’s Laws

p q ¬p ¬q (p∨q) ¬(p∨q) ¬p∧¬q

T T F F T F F

T F F T T F F

F T T F T F F

F F T T F T T

This truth table shows that De Morgan’s Second Law holds.

Augustus De Morgan

1806-1871

Defining Operators via Equivalences
Using equivalences, we can define operators in terms of

other operators.

 Exclusive or: pq (pq)(pq)
pq (pq)(qp)

 Implies: p→qp  q

 Biconditional: pq (p→q)  (q→p)
pq(pq)

More Logical Equivalences
 Involving Implication

 Involving Biconditional

An Example Problem

Propositional Satisfiability

Questions on Propositional Satisfiability
Example: Determine the satisfiability of the following
compound propositions:







