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Chapter 1, Part II: Predicate Logic



Section 1.4



Section Summary
 Predicates 

 Variables

 Quantifiers

 Universal Quantifier

 Existential Quantifier

 Negating Quantifiers

 De Morgan’s Laws for Quantifiers

 Translating English to Logic

 Logic Programming (optional)



Propositional Logic Not Enough
 If we have:

“Every computer connected to the university network is 

functioning properly.”

No rules of propositional logic allow us to conclude the 
truth of the statement:

“MATH-PC2 is functioning properly.”

 Can’t  be represented in propositional logic. Need a 
language that talks about objects, their properties, and 
their relations. 



Definition of Predicate Logic
 Predicate logic: is a more powerful type of logic can

be used to express the meaning of a wide range of
statements in mathematics and computer science in
ways that permit us to reason and explore
relationships between objects.

 “x > 3,” “x = y + 3,” “x + y = z,”
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Predicate Logic
 The statement “x > 3” has two parts.

1. The first part, the variable x, is the subject of
the statement.

2. The second part, Predicate, “is greater than 3”—
refers to a property that the subject of the
statement can have.

 We can denote the statement “x is greater than 3” by 
P(x), where P denotes the predicate “is greater than 
3” and x is the variable.
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Propositional Function
 Propositional functions contain variables and a predicate, e.g., 

P(x). Variables can be replaced by elements from their domain.

 The statement P(x) is also said to be the value of the
propositional function P at x. Once a value has been
assigned to the variable x, the statement P(x) becomes
proposition and has a truth value.

 Let P(x) denote  “x > 0” and the domain be the integers. Then:

P(-3)   is false.

P(0)   is false.

P(3)  is true. 
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Universes of Discourse (U.D.s)
 E.g., let P(x)=“x+1>x”. We can then say,

“For any number x, P(x) is true” instead of
(0+1>0)  (1+1>1)  (2+1>2)  ...

 The collection of values that a variable x can take is
called x’s universe of discourse.

 We call D the Domain of discourse (universe of
discourse) of P
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Propositional Function
 Example: let P(x) denoted the statement “ x is an

even integer” what are the truth values of?

 P(5), 5 is even integer 

 P(4), 4 is even integer

 P(6), 6 is even integer

 P(7), 7 is even integer
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Propositional Function
 Example: let R(x, y, z) denote the statement “ x + y 

= z.” what are the truth values of?

 R(1, 2, 3) , the statement is

 R(0, 0, 1), the statement is



Quantifier Expressions
 Definition 1:

Let P be a propositional function with universe of 
discourse D. The universal quantification of P(x) is the 
proposition “P(x) is true for all values  of x in D”

 Notation for universal quantification: ∀𝑥 𝑃(𝑥)

 The symbol ∀ means “for all” or “for every” or “for any”.
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Quantifier Expressions
 Definition 2:

Let P be a propositional function with universe of 
discourse D. The existential quantification of P(x) is the 
proposition “There exists an element x in D such that P(x) 
is true.”

 Notation for universal quantification: ∃𝑥 𝑃(𝑥)

 The symbol∃means “exists” or “fat least one” or “for 
some”.
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Quantifier Expressions
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Quantifiers
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Quantifiers with Restricted Domains
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Precedence of Quantifiers
 The quantifiers ∀ and ∃ have higher precedence

than all logical operators from propositional
calculus.

 Example: ∀xP(x) ∨ Q(x) is the disjunction of ∀xP(x)
and Q(x). In other words, it means (∀xP(x)) ∨ Q(x).
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Free and Bound Variables
 An expression like P(x) is said to have a free variable x

(meaning, x is undefined).

 A quantifier (either  or ) operates on an expression
having one or more free variables, and binds one or
more of those variables, to produce an expression
having one or more bound variables.
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Example of Binding
 P(x,y) has 2 free variables, x and y.

 x P(x,y) has 1 free variable, and one bound
variable. [Which is which?]

 “P(x), where x=3” is another way to bind x.

 An expression with zero free variables is a bona-
fide (actual) proposition.

 An expression with one or more free variables is
still only a predicate: x P(x,y)
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Negating Quantified Expressions
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Negating Quantified Expressions
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Translating from English into Logical Expressions

 Example 23 : Express the statement “Every student
in this class has studied calculus” using predicates
and quantifiers.

 “For every student in this class, that student has studied calculus.”

 Next, we introduce a variable x so that our statement becomes

 “For every student x in this class, x has studied calculus.”

 we introduce C(x), which is the statement “x has studied calculus.”
Consequently, if the domain for x consists of the students in the class,
we can translate our statement as ∀xC(x).

 See Example 24, Page 49
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Using Quantifiers in System Specifications

 Use predicates and quantifiers to express the system

specifications “Every mail message larger than
one megabyte will be compressed”.

 Solution: Let S(m, y) be “Mail message m is larger
than y megabytes,” where the variable m has the
domain of all mail messages and the variable y is a
positive real number, and let C(m) denote “Mail
message m will be compressed.” Then the
specification “Every mail message larger than one
megabyte will be compressed” can be represented as
∀m(S(m, 1)→ C(m)).
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Using Quantifiers in System Specifications

 Use predicates and quantifiers to express the system

specifications “If a user is active, at least one
network link will be available.”

 Solution: Let A(u) represent “User u is active,” where 
the variable u has the domain of all users, let S(n, x) 
denote “Network link n is in state x,” where n has the 
domain of all network links and x has the domain of 
all possible states for a network link. Then the 
specification “If a user is active, at least one network 
link will be available” can be represented by 
∃u A(u) → ∃n S(n, available).



2020-10-03 Dr.Motaz Daadoo 25

Logic Programming

 An important type of programming language is designed to 

reason using the rules of predicate logic. 

 Prolog (from Programming in Logic), developed in the 

1970s by computer scientists working in the area of 

artificial intelligence, is an example of such a language. 

 Prolog programs include a set of declarations consisting of 

two types of statements, Prolog facts and Prolog rules. 

 Prolog facts define predicates by specifying the elements 

that satisfy these predicates.

 Prolog rules are used to define new predicates using those 

already defined by Prolog facts.
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Logic Programming

 EXAMPLE : Consider a Prolog program given facts telling it the
instructor of each class and in which classes students are
enrolled.

 Such a program could use the predicates
instructor(p, c) and enrolled(s, c) to represent that
professor p is the instructor of course c and that student
s is enrolled in course c, respectively.

 A new predicate teaches(p, s), representing that 
professor p teaches student s, can be defined using the 
Prolog rule 

teaches(P,S) :- instructor(P,C), enrolled(S,C)
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Logic Programming

 For example, the Prolog facts in such a program might
include:

1. instructor(chan,math273)

2. instructor(patel,ee222)

3. instructor(grossman,cs301)

4. enrolled(kevin,math273)

5. enrolled(juana,ee222)

6.enrolled(juana,cs301)

7. enrolled(kiko,math273)

8. enrolled(kiko,cs301)
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Logic Programming
 Prolog answers queries using the facts and rules it is given. For 

example, using the facts and rules listed, the query ?

 ?enrolled(kevin,math273) produces the response

➢ yes

 because the fact enrolled(kevin, math273) was provided as input. 
The query

 ?enrolled(X,math273) produces the response

➢ kevin

➢ Kiko

 to find all the professors who are instructors in classes being taken 
by Juana, we use the query ?teaches(X,juana)   This query returns

➢ patel

➢ grossman
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Nesting of Quantifiers
 We can have nested quantifiers on a statements such 

as

 ∀𝑥∃𝑦𝑃 𝑥, 𝑦

 “for all 𝑥, there exists a 𝑦 such that P(𝑥, 𝑦)”

 Example: ∀𝑥∃𝑦(𝑥 + 𝑦 == 0)

 ∃𝑥∀𝑦𝑃 𝑥, 𝑦

 “There exists an 𝑥 such that for all y P(𝑥, 𝑦) is true”

 Example: ∃𝑥∀𝑦(𝑥 ⋅ 𝑦 == 0)
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1.5 Nesting of Quantifiers



Translating English Sentences into Logical Expressions

 Ex: Any student either has a computer or has a friend 
that has a computer.

 “For any student 𝑥, 𝑥 has a computer or there is some 
student 𝑦 where 𝑦 has a computer and 𝑥 and 𝑦 are 
friends.” 

 ∀𝑥[𝐶 𝑥 ∨ ∃𝑦[𝐶 𝑦 ∧ 𝐹(𝑥, 𝑦)]], where

 𝐶(𝑥) is “𝑥 has a computer” and

 𝐹(𝑥, 𝑦) is “𝑥 and 𝑦 are friends”.

 Universe discourse for 𝑥 and 𝑦 is all students.
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The Order of Quantifiers

 The order of the quantifiers in the nested quantifier is 
important specially in cases like:
 Combination between Universal and Existential 

quantifiers

 ∃𝑥∀𝑦 and ∀𝑥∃𝑦 are not equivalent!

 ∃𝑥∀𝑦𝑃 𝑥, 𝑦

 𝑃 𝑥, 𝑦 = 𝑥 + 𝑦 == 0 is false

 ∀𝑥∃𝑦𝑃 𝑥, 𝑦

 𝑃 𝑥, 𝑦 = (𝑥 + 𝑦 == 0) is true
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Negating Nested Quantifiers

 Recall negation rules for single quantifiers:
 ¬∀𝑥𝑃 𝑥 = ∃𝑥¬𝑃 𝑥

 ¬∃𝑥𝑃 𝑥 = ∀𝑥¬𝑃 𝑥

 Essentially, you change the quantifier(s), and negate what it’s quantifying 

 Examples:

 ¬ ∀𝑥∃𝑦𝑃 𝑥, 𝑦

 ≡ ∃𝑥¬∃𝑦𝑃 𝑥, 𝑦

 ≡ ∃𝑥∀𝑦¬𝑃 𝑥. 𝑦

 ¬ ∀𝑥∃𝑦∀𝑧 𝑃 𝑥, 𝑦, 𝑧

 ≡ ∃𝑥¬∃𝑦∀𝑧𝑃 𝑥, 𝑦, 𝑧

 ≡ ∃𝑥∀𝑦¬∀𝑧𝑃 𝑥, 𝑦, 𝑧

 ≡ ∃𝑥∀𝑦∃𝑧¬𝑃(𝑥, 𝑦, 𝑧)
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Translation
 “The sum of two positive integers is always positive.”

 ∀𝑥∀𝑦 𝑥 > 0 ∧ 𝑦 > 0 → 𝑥 + 𝑦 > 0

 ∀𝑥∀𝑦 𝑂(𝑥) ∧ 𝑂(𝑦) → 𝑃(𝑥, 𝑦) , where

 𝑂 𝑥 = 𝑥 > 0

 𝑃 𝑥, 𝑦 = 𝑥 + 𝑦 > 0

 “There exists an additive identity for any real number.”

 ∃𝑥∀𝑦 𝑥 + 𝑦 = 𝑦
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Translation

 ∀𝑥∀𝑦 𝑥 ≥ 0 ∧ 𝑦 < 0 → 𝑥 − 𝑦 > 0

 A non-negative number minus a negative number is
greater than zero

 ∃𝑥∃𝑦 𝑥 ≤ 0 ∧ 𝑦 ≤ 0 → 𝑥 − 𝑦 > 0

 The difference between two non-positive numbers is not
necessarily non-positive (i.e. can be positive)

 ∀𝑥∀𝑦 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ↔ 𝑥𝑦 ≠ 0

 The product of two non-zero numbers is non-zero iff
both factors are non-zero
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Defining New Quantifiers
As per their name, quantifiers can be used to express 

that a predicate is true of any given quantity
(number) of objects.

Define !x P(x) to mean “P(x) is true of exactly one x
in the universe of discourse.”

!x P(x)  x (P(x)  y (P(y)  y x))
“There is an x such that P(x), where there is no y
such that P(y) and y is other than x.”
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Review: More Equivalence Laws
 x y P(x,y) y x P(x,y)
x y P(x,y)  y x P(x,y)

 x (P(x)  Q(x))  (x P(x))  (x Q(x))
x (P(x)  Q(x))  (x P(x))  (x Q(x))

 Exercise: 
See if you can prove these yourself.

 What propositional equivalences did you use?
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More to Know About Binding
 x x P(x) - x is not a free variable in 
x P(x), therefore the x binding isn’t used.

(x P(x))  Q(x) - The variable x is outside of the 

scope of the x quantifier, and is therefore free.  Not a 
proposition!

(x P(x))  (x Q(x)) – This is legal, because there 

are 2 different x’s!
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Some Number Theory Examples
 Let u.d. = the natural numbers 0, 1, 2, … 

 “A number x is even, E(x), if and only if it is equal 
to 2 times some other number.”
x (E(x)  (y  x=2y))

 “A number is prime, P(x), iff it’s greater than 1 and 
it isn’t the product of two non-unity numbers.”

x (P(x)  (x>1  yz  x=yz  y1  z1))
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Review: Predicate Logic
 Objects x, y, z, … 

 Predicates P, Q, R, … are functions mapping objects x
to propositions P(x).

 Multi-argument predicates P(x, y).

 Quantifiers: [x P(x)] :≡ “For all x’s, P(x).” 
[x P(x)] :≡ “There is an x such that P(x).”

 Universes of discourse, bound & free vars.
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Review: Natural language is ambiguous!

 “Everybody likes somebody.”

 For everybody, there is somebody they like,

 x y Likes(x,y)

 or, there is somebody (a popular person) whom 
everyone likes?

 y x Likes(x,y)

 “Somebody likes everybody.”

 Same problem: Depends on context, emphasis.

[Probably more likely.]
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Review: Quantifier Exercise
If R(x,y)=“x relies upon y,” express the following in 

unambiguous English:

x(y R(x,y))=

y(x R(x,y))=

x(y R(x,y))=

y(x R(x,y))=

x(y R(x,y))=

Everyone has someone to rely on.

There’s a poor overburdened soul whom 

everyone relies upon (including himself)!

There’s some needy person who relies 

upon everybody (including himself).

Everyone has someone who relies upon them.

Everyone relies upon everybody, 

(including themselves)!
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Review: Quantifier Equivalence Laws

 Definitions of quantifiers: If u.d.=a,b,c,… 
x P(x)  P(a)  P(b)  P(c)  … 
x P(x)  P(a)  P(b)  P(c)  …

 From those, we can prove the laws:
x P(x) x P(x)
x P(x) x P(x)

 Which propositional equivalence laws can be used 
to prove this?  
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More Notational Conventions
 Quantifiers bind as loosely as needed:

parenthesize x P(x)  Q(x)

 Consecutive quantifiers of the same type can be 
combined: x y z P(x,y,z) 
x,y,z P(x,y,z)    or even    xyz P(x,y,z)

 All quantified expressions can be reduced
to the canonical alternating form x1x2x3x4… 
P(x1, x2, x3, x4, …) 

(             )
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Proof Terms
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 Theorem

 A statement that has been proven to be true.

 Axioms, postulates, hypotheses, premises

 Assumptions (often unproven) defining the structures 
about which we are reasoning.

 Rules of inference

 Patterns of logically valid deductions from hypotheses to 
conclusions.



Inference Rules and Implications
 Each logical inference rule corresponds to an 

implication that is a tautology.

 Inference rule

 Corresponding tautology:
((ante. 1) ∧ (ante. 2) ∧ …) → consequent 
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antecedent 1
antecedent 2 …
∴ consequent



Inference Rules - General Form
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 Inference Rule-

 Pattern establishing that if we know that a set of
antecedent statements of certain forms are all true, then 
a certain related consequent statement is true.

 “∴” means “therefore”antecedent 1
antecedent 2 …
∴ consequent



Rules of Inference for Propositional Logic
 A theorem often has two parts

 Conditions (premises, hypotheses)

 Conclusion

 A correct (deductive) proof is to establish that
 If the conditions are true then the conclusion is true

 i.e., conditions → conclusion is a tautology

 Often there are missing pieces between conditions and 
conclusion. Fill it by an argument
 Using conditions and axioms

 Statements in the argument connected by proper rules of 
inference
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Rules of Inference for Propositional Logic

2020-10-03 Dr.Motaz Daadoo 55

 Rules of inference provide the justification of the steps
used in a proof.

 One important rule is called Modus Ponens or the 
law of detachment. It is based on the tautology

𝑝 ∧ 𝑝 → 𝑞 → 𝑞 We write it in the following way:

𝑃
𝑝 → 𝑞
∴ 𝑞

The two hypotheses 𝑝 and 𝑞 → 𝑞 are
written in a column, and the conclusion
𝑞 below a bar, where ∴ means “therefore”.



Rules of Inference
 The rule states that if 𝑝1 and 𝑝2 and … and 𝑝𝑛 are all 

true, then 𝑞 is true as well.

 Each rule is an established tautology of

 𝑝1 ∧ 𝑝2 ∧ ⋯ ∧ 𝑝𝑛 → 𝑞

 These rules of inference can be used in any
mathematical argument and do not require
any proof.
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𝑝1

𝑝2

.

.

.
𝑝𝑛

∴ 𝑞



Valid Arguments in Propositional 
Logic
 An argument Just like a rule of inference, it consists of 

one or more hypotheses (or premises) and a 
conclusion.

 We say that an argument is valid, if whenever all its 
hypotheses are true, its conclusion is also true.

 However, if any hypotheses is false, even a valid 
argument can lead to an incorrect conclusion.

 Proof: show that hypothesis → conclusion is true using 
rules of inference
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Argument Validity
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Argument Validity
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Argument Validity
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Argument Validity
 Show that the premises “If you send me an e-mail

message, then I will finish writing the program,” “If you do
not send me an e-mail message, then I will go to sleep
early,” and “If I go to sleep early, then I will wake up feeling
refreshed” lead to the conclusion “If I do not finish writing
the program, then I will wake up feeling refreshed.”

 Solution: Let p be the proposition “You send me an e-
mail message,” q the proposition “I will finish writing the
program,” r the proposition “I will go to sleep early,” and s
the proposition “I will wake up feeling refreshed.” Then
the premises are p→ q,￢p→ r, and r→ s.

 The desired conclusion is￢q → s. We need to give a valid
argument with premises p → q, ￢p → r, and r → s and
conclusion￢q→ s.
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Argument Validity
 Solution: This argument form shows that the premises

lead to the desired conclusion.
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Rules of Inference for Quantified Statements
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Rules of Inference for Quantified Statements

 Example:Show that the premises “Everyone in this discrete
mathematics class has taken a course in computer science” and
“Marla is a student in this class” imply the conclusion “Marla has
taken a course in computer science.”

 Solution: Let D(x) denote “x is in this discrete mathematics
class,” and let C(x) denote “x has taken a course in computer
science.” Then the premises are ∀x(D(x) → C(x)) and D(Marla).
The conclusion is C(Marla). The following steps can be used to
establish the conclusion from the premises.
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Rules of Inference for Quantified Statements

 Example:Show that the premises “A student in this class has not read the book,” and
“Everyone in this class passed the first exam” imply the conclusion “Someone who
passed the first exam has not read the book.”

 Solution: Let C(x) be “x is in this class,” B(x) be “x has read the book,” and P(x) be “x
passed the first exam.” The premises are ∃x(C(x)∧￢B(x)) and ∀x(C(x) → P(x)). The
conclusion is ∃x(P(x)∧￢B(x)). These steps can be used to establish the conclusion
from the premises.
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Rules of Inference for Quantified Statements
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Rules of Inference for Quantified Statements


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Rules of Inference for Quantified Statements


