Discrete Combutational

L LTV VET

Section Summary
Predicates
Variables
Quantifiers

e Universal Quantifier
e Existential Quantifier

Negating Quantifiers
e De Morgan’s Laws for Quantifiers

Translating English to Logic
Logic Programming (optional)

/

Propositional Logic Not Enough
[f we have:

“Every computer connected to the university network is
functioning properly.”

No rules of propositional logic allow us to conclude the
truth of the statement:

“MATH-PC2 is functioning properly.”
Can't be represented in propositional logic. Need a

language that talks about objects, their properties, and
their relations.

/

=t .//

/ e
Definition of Predicate Logic

Predicate logic: is a more powerful type of logic can
be used to express the meaning of a wide range of
statements in mathematics and computer science in
ways that permit us to reason and explore
relationships between objects.

« » « » €«)
X X=Yy+3, X+Yy=2z,

/ ——

=

Predicate Logic

The statement “x > 3” has two parts.

The first part, the variable x, is the subject of
the statement.

The second part, Predicate, “is greater than 3°—
refers to a property that the subject of the
statement can have.

We can denote the statement “x is greater than 3” by
P(x), where P denotes the predicate “is greater than
3” and x is the variable.

i _

/

Propositional Function

Propositional functions contain variables and a predicate, e.g.,
P(x). Variables can be replaced by elements from their domain.

The statement P(x) is also said to be the value of the
propositional function P at x. Once a value has been
assigned to the variable x, the statement P(x) becomes
proposition and has a truth value.

Let P(x) denote “x > 0” and the domain be the integers. Then:
P(-3) is false.

P(0) is false.

P(3) is true.

/

g
Universes of Discourse (U.D.s)

E.g., let P(x)="x+1>x". We can then say,
“For any number x, P(x) is true” instead of

(0+1>0) A (1+1>1) A (2+1>2) A ...

The collection of values that a variable x can take is
called x’s universe of discourse.

We call D the Domain of discourse (universe of
discourse) of P

/‘-

/ e
Propositional Function

Example: let P(x) denoted the statement “ x is an
even integer” what are the truth values of?

P(5), 5 is even integer
P(4), 4 is even integer
P(6), 6 is even integer
P(7), 7 is even integer

Propositional Function

Example: let R(x, y, z) denote the statement “ x + y
= z.” what are the truth values of?

R(1, 2, 3), the statement is
R(o, 0, 1), the statement is

/ e e G
Quantifier Expressions

Definition 1:

Let P be a propositional function with universe of
discourse D. The universal quantification of P(x) is the
proposition “P(x) is true for all values of x in D”

Notation for universal quantification: Vx P(x)

The symbol V means “for all” or “for every” or “for any.

/

Quantifier Expressions

Definition 2:

Let P be a propositional function with universe of
discourse D. The existential quantification of P(x) is the
proposition “There exists an element x in D such that P(x)

is true.”

Notation for universal quantification: 3x P(x)

The symbol3dmeans “exists” or “fat least one” or “for
some’.

Quantifier Expressions

TABLE 1 Quantifiers.

Statement When True? When False?
YxP(x) P(x) 1s true for every x. There 1s an x for which P(x) 1s false.
Jdx Pix) There 1s an x for which P(x) 1s true. P(x) 1s false for every x.

/X/

Quantifiers

+Example: Let P(x) denote the statement “x > 3", and let the
universe of discourse be the set of real numbers. What is
the truth value of the quantification 3xP(x) and YxP(x)?

*Solution

* 3xP(x) is true since there exists at least one value in the real
numbers set.
* E.g.: x =4 which can fulfill the statement " x> 37,

* ¥xP(x) is false since not all values in the real numbers set can fulfill
the statement “x > 3"
* E.g: x = 1 which can not fulfill the statement x> 37

Quantifiers with Restricted Domains

What do the statements ¥x < 0 (x? > 0), Yy # 0 (y° # 0), and 3z > 0 (z* = 2) mean, where
the domain in each case consists of the real numbers?

Solution: The statementVx < 0 (x* > 0) states that for every real number x withx < 0, x2 > 0.
That is, it states “The square of a negative real number is positive.” This statement is the same
asVx(x <0 — x2 > 0).

The statement ¥Vy £ 0 (y3 # 0) states that for every real number y with y 3£ 0, we have
y? # 0. That is, it states “The cube of every nonzero real number is nonzero.” Note that this
statement is equivalent to Yy(y # 0 — y°> # 0).

Finally, the statement 3z > 0 (z? = 2) states that there exists a real number z with z > 0
such that zZ = 2. That is, it states “There is a positive square root of 2 This statement is
equivalent to 3z(z > 0 A 72 =2). 4

Precedence of Quantifiers

The quantifiers V and 3 have higher precedence

than all logical operators from propositional
calculus.

Example: VxP(x) vV Q(x) is the disjunction of VxP(x)
and Q(x). In other words, it means (VxP(x)) V Q(x).

*¥x(P(x) A Q(x)) = ¥xP(x) A ¥xQ(x)

e
Free and Bound Variables

An expression like P(x) is said to have a free variable x
(meaning, x is undefined).

A quantifier (either V or 3) operates on an expression
having one or more free variables, and binds one or
more of those variables, to produce an expression
having one or more bound variables.

» iy

Example of Binding

P(x,y) has 2 free variables, x and y.

Vx P(x,y) has 1 free variable, and one bound
variable. [Which is which?]

“P(x), where x=3” is another way to bind x.

An expression with zero free variables is a bona-
fide (actual) proposition.

An expression with one or more free variables is
still only a predicate: Vx P(x,y)

Negating Quantified Expressions

TABLE 2 De Morgan’s Laws for Quantifiers.

Negation Equivalent Statement When Is Negation True? When False?

—3x P(x) Yx—P(x) For every x, P(x) is false. There is an x for which
P(x) is true.

—VxP(x) dx—=P(x) There is an x for which P (x) is true for every x.

P(x) is false.

| Negating Quantified Expressions

What are the negations of the statements ¥x (x* > x) and 3x (x* = 2)?

Solution: The negation of ¥x(x* > x) is the statement —=¥x(x* > x), which is equivalent to
Jx—(x* > x). This can be rewnitten as Ix (x* < x). The negation of Ix (x* = 2) is the statement

—3x(x* = 2), which is equivalent to Vx=(x* = 2). This can be rewritten as Vx(x* # 2). The
truth values of these statements depend on the domain. <

/ ——

=

Translating from English into Logical Expressions

Example 23 : Express the statement “Every student
in this class has studied calculus” using predicates
and quantifiers.

“For every student in this class, that student has studied calculus.”
Next, we introduce a variable x so that our statement becomes
“For every student x in this class, x has studied calculus.”

we introduce C(x), which is the statement “x has studied calculus.’
Consequently, if the domain for x consists of the students in the class,
we can translate our statement as VxC(x).

See Example 24, Page 49

—a

e e

Using Quantifiers in System Specifications

Use predicates and quantifiers to express the system
specifications “Every mail message larger than
one megabyte will be compressed”

Solution: Let S(m, y) be “Mail message m is larger
than y megabytes,” where the variable m has the
domain of all mail messages and the variable y is a
positive real number, and let C(m) denote “Mail
message m will be compressed” Then the
specification “Every mail message larger than one
megabyte will be compressed” can be represented as

vm(S(m, 1) — C(m)).

e e

—a

Using Quantifiers in System Specifications

Use predicates and quantifiers to express the system
specifications “If a user is active, at least one
network link will be available”

Solution: Let A(u) represent “User u is active,” where
the variable u has the domain of all users, let S(n, x)
denote “Network link n is in state x,” where n has the
domain of all network links and x has the domain of
all possible states for a network link. Then the
specification “If a user is active, at least one network
link will be available” can be represented by

Ju A(u) — 3n S(n, available).

X/'

Logic Programming

An important type of programming language 1s designed to
reason using the rules of predicate logic.

Prolog (from Programming in Logic), developed in the
1970s by computer scientists working in the area of
artificial intelligence, 1s an example of such a language.

Prolog programs include a set of declarations consisting of
two types of statements, Prolog facts and Prolog rules.

Prolog facts define predicates by specifying the elements
that satisfy these predicates.

Prolog rules are used to define new predicates using those
already defined by Prolog facts.

—a

e e

Logic Programming

EXAMPLE : Consider a Prolog program given facts telling it the
instructor of each class and in which classes students are
enrolled.

Such a program could wuse the predicates
instructor(p, c) and enrolled(s, c) to represent that
professor p is the instructor of course c and that student
s is enrolled in course c, respectively.

A new predicate teaches(p, s), representing that
professor p teaches student s, can be defined using the
Prolog rule

teaches(P,S) :- instructor(P,C), enrolled(S,C)

/ P

Logic Programming

For example, the Prolog facts in such a program might
include:

instructor(chan,math273)
instructor(patel,ee222)
instructor(grossman,cs301)
enrolled(kevin,math273)
enrolled(juana,ee222)
enrolled(juana,cs3o1)
enrolled(kiko,math273)
enrolled(kiko,cs301)

/

Logic Programming

Prolog answers queries using the facts and rules it is given. For
example, using the facts and rules listed, the query ?

?enrolled (kevin,math273) produces the response
yes

because the fact enrolled(kevin, math273) was provided as input.
The query

?enrolled(X,math273) produces the response
kevin
Kiko

to find all the professors who are instructors in classes being taken
by Juana, we use the query ?teaches(X,juana) This query returns

patel
grossman

Nesting of Quantifiers

We can have nested quantifiers on a statements such
as
e Vx3IyP(x,y)
» “forall x, there exists a y such that P(x, y)”
« Example: Vx3y(x + y == 0)

e AxVyP(x,y)
» “There exists an x such that forall y P(x, y) is true”
« Example: 3xVy(x - y == 0)

—

1.5 Nesting of Quantifiers

TABLE 1 Quantifications of Two Variables.
Statement When True? When False?
VxVyP(x,y) P(x, y) is true for every pair x, y. There is a pair x, y for
VyVxP(x,y) which P(x, y) is false.
Vx3dyP(x,y) For every x there is a y for There is an x such that
which P(x, y) is true. P(x,) is false for every y.
AxVyP(x, y) There is an x for which P(x, y) For every x there is a y for
is true for every y. which P(x, y) is false.
dx3dyP(x,y) There is a pair x, y for which P(x, y) is false for every
dydx P(x,v) P(x, y) is true. pair x, v.

/

/

Translating English Sentences into Logical Expressions

Ex: Any student either has a computer or has a friend
that has a computer.

“For any student x, x has a computer or there is some
student y where y has a computer and x and y are
friends.”
Vx[C(x) VvV Iy[C(y) A F(x,y)]], where

e C(x) is “x has a computer” and

e F(x,y) is “x and y are friends”.

e Universe discourse for x and y is all students.

/‘-

/ e)

The Order of Quantifiers

The order of the quantifiers in the nested quantifier is
important specially in cases like:

e Combination between Universal and Existential
quantifiers

e 3xVy and Vx3y are not equivalent!

o AxVyP(x,y)
P(x,y) = (x +y == 0) is false

o Vx3yP(x,y)
P(x,y) = (x +y == 0) is true

Negating Nested Quantifiers

Recall negation rules for single quantifiers:
e VxP(x) = Ix—P(x)
e —3xP(x) = Vx—=P(x)
» Essentially, you change the quantifier(s), and negate what it’s quantifying
Examples:
e —(Vx3yP(x,y))
= Ax-3yP(x,y)
= AxVy-P(x.y)

—|(Vx3y\7’z Pl Z))
= Ax—-3yvzP(x,y,z)

= AxVy-VzP(x,y,z)

= dxVy3z—-P(x,y, z)

/‘-

/ e)

Translation

“The sum of two positive integers is always positive.”
e VxVy(x >0Ay>0->x+y>0)

e VxVy(0O(x) AO(y) = P(x,y)), where
e O(x)=x>0
e P(x,y) =x+y>0

“There exists an additive identity for any real number.”
s

/ e

=

Translation

vavy (((x20) A(y <0)) > (x—y > 0))

e A non-negative number minus a negative number is
greater than zero

323y (k<A <0) > (x—y>0))

e The difference between two non-positive numbers is not
necessarily non-positive (i.e. can be positive)

vxvy (((x # 0) A (y # 0)) © (xy # 0))

e The product of two non-zero numbers is non-zero iff
both factors are non-zero

/

Defining New Quantifiers

As per their name, quantifiers can be used to express
that a predicate is true of any given quantity
(number) of objects.

Define 3!x P(x) to mean “P(x) is true of exactly one x
in the universe of discourse.”

lx P(x) < 3x (P(x) A —dy (P(y) A y¢x))
“There is an x such that P(x), where there is no y
such that P(y) and y is other than x.”

Review: More Equivalence Laws
Vx Vy P(x,y) < Vy Vx P(x,y)

dx 3 < Jy Ix P(x,y)
x (PiC) A Q(x)) < (Vx P(x)) A (V@))
Ix (P(x) v Q(x)) < (3x P(x)) v (3x Q(x))

Exercise:
See if you can prove these yoursellf.

e What propositional equivalences did you use?

I\/IoFejto Know About Binding

Vx dx P(x) - x is not a free variable in
dx P(x), therefore the Vx binding isn’t used.

(X P(x)) A Q(x) - The variable x is outside of the
scope of the Vx quantifier, and is therefore free. Nota

pr(}p_o,ﬁ\ition!
(Vx P(x)) A (Elx Q(x)) — This is legal, because there
are 2 different x’s!

/

Some Number Theory Examples

Let u.d. = the natural numbers o, 1, 2, ...

“A number x is even, E(x), if and only if it is equal
to 2 times some other number.”

Vx (E(x) < (Fy x=2y))

“A number is prime, P(x), iff it’s greater than 1 and
it isn’t the product of two non-unity numbers.”

Vx (P(x) © (x>1 A —3yz x=yz A y#1 A z#1))

/ o

Review: Predicate Logic

Objects x, vy, z, ...

Predicates P, Q, R, ... are functions mapping objects x
to propositions P(x).

Multi-argument predicates P(x, y).

Quantifiers: [Vx P(x)] := “Forall x’s, P(x).”
[3x P(x)] = “There is an x such that P(x).”

Universes of discourse, bound & free vars.

/ .

Review: Natural language is ambiguous!

“Everybody likes somebody.”
e For everybody, there is somebody they like,

[Probably more likely.]

e or, there 1s somebody (a popular person) whom
everyone likes?

« dy Vx Likes(x,y)
“Somebody likes everybody.”

e Same problem: Depends on context, emphasis.

Review: Quantifier Exercise

If R(x,y)="x relies upon y,” express the following in
unambiguous English:

Vx(Jy R(xy))= Everyone has someone to rely on.
Fy(Vx R(xy))= There’s a poor overburdened soul whom
Ax(Vy R(x,y))= everyone relies upon (including himself)!

Vy(3x R(x,y))= There’s sonl;e C?ee(:_dy Ipedr_son r\]/yho rlil)ies
upon everybody (including himself).
Vx(Vy R(xy))= o J

Everyone has someone who relies upon them.

Everyone relies upon everybody,
(including themselves)!

Review: Quantifier Equivalence Laws

Detfinitions of quantifiers: If u.d.=a,b,c,...
Vx P(x) © P(a) A P(b) A P(c) A ...

dx P(x) < P(a) v P(b) v P(c) v ...

From those, we can prove the laws:

Vx P(x) & —3x —P(x)

dx P(x) < —Vx —P(x)

Which propositional equivalence laws can be used

to prove this? DeM ;an's

More Notational Conventions

Quantifiers bind as loosely as needed:
parenthesize Vx (P(x) A Q(x))

Consecutive quantifiers of the same type can be
combined: Vx Vy Vz P(x,y,z) <

Vx,y,z P(x,y,z) oreven Vxyz P(x,y,z)

All quantified expressions can be reduced
to the canonical alternating form Vx 3x,Vx,3x,...

Plx x x . x

Proof Terms
Theorem

e A statement that has been proven to be true.

Axioms, postulates, hypotheses, premises

e Assumptions (often unproven) defining the structures
about which we are reasoning.

Rules of inference

e Patterns of logically valid deductions from hypotheses to
conclusions.

Inference Rules and Implications

P —

Each logical inference rule corresponds to an
implication that is a tautology.

antecedent 1 Inference rule
antecedent 2 ...

Consequent

Corresponding tautology:
((ante. 1) A (ante. 2) A ...) = consequent

Inference Rules - General Form

Inference Rule-

e Pattern establishing that if we know that a set of
antecedent statements of certain forms are all true, then
a certain related consequent statement is true.

antecedent1 1 “~” means “therefore”
antecedent 2 ...

consequent

/

Rules of Inference for Propositional Logic

A theorem often has two parts
e Conditions (premises, hypotheses)
e Conclusion
A correct (deductive) proof is to establish that
e [f the conditions are true then the conclusion is true
* i.e., conditions — conclusion is a tautology

Often there are missing pieces between conditions and
conclusion. Fill it by an argument
e Using conditions and axioms

e Statements in the argument connected by proper rules of
inference

/

Rules of Inference for Propositional Logic

Rules of inference provide the justification of the steps
used in a proof.

One important rule is called Modus Ponens or the
law of detachment. It is based on the tautology
(p A(p— q)) — g We write it in the following way:

The two hypotheses p and q — q are
- q written in a column, and the conclusion
q q below a bar, where .. means “therefore”.

salSiy

Rules of Inference

The rule states that if p; and p, and ... and p,, are all

true, then q is true as well.

Each rule is an established tautology of g;
pl/\pz/\"'/\pn—)q .

These rules of inference can be used in any

mathematical argument and do not require C
any proof.

/
Valid Arguments in Propositional
Logic

An argument Just like a rule of inference, it consists of
one or more hypotheses (or premises) and a
conclusion.

e We say that an argument is valid, if whenever all its
hypotheses are true, its conclusion is also true.

e However, if any hypotheses is false, even a valid
argument can lead to an incorrect conclusion.

e Proof: show that hypothesis — conclusion is true using
rules of inference

Example on Argument Validity

rla
o a S5 ¥
*Check the validity of the r T E
following arguments
o
P = 9
P T F F
ey E B ¥
W
FE B
F FF

T ———
! -

........... /

* Check the validity of the following arguments

* “If | like DM, | will study it. Either | study DM or | fail the course. Therefore, If |
fail the course, then | do not like DM™.

P q

p =1 like DM I ke A T . £
q =1 study it -

r =1 fail the course % T F F T | T

g sl s | F F T F

p - q g | B b F F T
qVvr)

s ol T 1

= =3 ¥ T T T

It is an invalid argument B R EaY T F T

TABLIL 1 Rules of Inference.

Rule of Inference

Tanderlogy

F
F— g
A

(PP —9g)) =g

Modus ponens

—g
F— g
A

(—g ~{(p— glh — —p

Modus tollens

=g
q —r
.=

p — glaig — rl) — (p —r)

Hypothetical syllogism

Fr g
-

p~wghs—pl—g

Disjunctive syllogism

oo g

P {pvg)

rooeg

(Prg)—p

Simplification

oo mEag

(L) ~ g1y — (P g

Conjunction

FF g
—pwr
o

lp~wghal—prriy —gwr)

p p—(pVvyg) Addition

pvg

pAg (pAg)—p Simplification
S P

P ((p)A(g)) = (pAg) Conjunction

q

Rule of Inference

Tautology

Name

p
P—q

(pA(p—=ql)—4q

Modus ponens

Kl
P4
Soop

(g A(p—q))——p

Modus tollens

P+ (p=q)Alg=n)=(p—=r) | Hypothetical syllogism
§=1

Y

pv{g ((pvg ATD) =g Disjunctive syllogism
7

Ment \/a

E‘"! ------- 1 l'l l‘\
/‘ ol

nnnnnnn

* “If it rains today, then we will not have a barbeque today. If we
do not have a barbeque today, then we will have a barbeque
tomorrow. Therefore, if it rains today, then we will have a
barbeque tomorrow.”

* p: “Itis raining today.”
* g: “We will not have a barbecue today.”
* r: “We will have a barbecue tomorrow.”

p=q

q—r Hypothetical syllogism (chaining)
rule of inference

Jp-r

* |tis a valid argument.

* Gary is either intelligent or a good actor.
* If Gary is intelligent, then he can count from 1 to 10.

* Gary can only count from 1 to 3. '
Hypothesis: pVv Qg

Hypothesis: p—r
Hypothesis: —r

* Therefore, Gary is a good actor.
* p: “Gary is intelligent.”

* q: “Gary is a good actor.” Conclusion : q
*r: “Gary can count from 1to 10

Step1: Hypothesis

Step 2: p—r Hypothesis

Step3: —p Modus tollens 1&2

Step4: qVp Hypothesis

Step 5: q Disjunctive Syllogism 3&4

Argument Validity= ==

Show that the premises “If you send me an e-mail
message, then I will finish writing the program,” “If you do
not send me an e-mail message, then I will go to sleep
early,” and “If I go to sleep early, then I will wake up feeling
refreshed” lead to the conclusion “If [do not finish writing
the program, then I will wake up feeling refreshed.”

Solution: let p be the proposition “You send me an e-
mail message,” g the proposition “I will finish writing the
program,” r the proposition “I will go to sleep early,” and s
the proposition “I will wake up feeling refreshed.” Then
the premisesarep — q, 7 p —»>r,and r — s.

The desired conclusion is g — s. We need to give a valid
argument with premises p — g, 7p — r, and r — s and
conclusion —q — s.

~~ Argument Validity

* Solution: This argument form shows that the premises
lead to the desired conclusion.

Step Reason

. p—=gq Premise

2, =g = =p Contrapositive of (1)

J=p—=r remise

1 =qg—r Hypothetical syllogism using (2) and (3)
). F =S remise

6. =g — 5 Jypothetical syllogism using (4) and (3)

I e aigmngr
SsOT Inference 1or Quantifiea Statements—

TABLLE 2 Rules of Inference for (Quantified Statements.

Rule of Inference MName

Yx P

x Pix) Universal instantiation
S Pie)

Pic) fo arbitrary
: () far an £ Universal generalization
S vx X

dx P(x) : . .

Existential instantiati

. Pic) for some clement © . o
;j;}{ﬁf some clement © Existential generalization

Rules of Inference for Quantified Statements //

Example:Show that the premises “Everyone in this discrete
mathematics class has taken a course in computer science” and
“Marla is a student in this class” imply the conclusion “Marla has
taken a course in computer science.”

Solution: Let D(x) denote “x is in this discrete mathematics
class,” and let C(x) denote “x has taken a course in computer
science.” Then the premises are Vx(D(x) — C(x)) and D(Marla).
The conclusion is C(Marla). The following steps can be used to
establish the conclusion from the premises.

Step Reason
. ¥x({iMx) — C(x}) Premise
2. DMMarla)y — Ci{Marla) Universal instantiation from (1)
3. DiMarla) Premise
4. C(Marla) Modus ponens from (2) and (3)

Rules of Inference for Quantified Statements

_*—Example:Show that the premises “A student in this class has not read the book,” and

/ “Everyone in this class passed the first exam” imply the conclusion “Someone who
passed the first exam has not read the book.”

Solution: Let C(x) be “x is in this class,” B(x) be “x has read the book,” and P(x) be “x
passed the first exam.” The premises are Ix(C(x)A—B(x)) and Vx(C(x) — P(x)). The
conclusion is Ix(P(x)A—B(x)). These steps can be used to establish the conclusion
from the premises.

Step Reason

. 2x(C(x) A Bix)) Premise

2. Cla) A Bla) Existential instantiation from (1)
3. Cla) sSimplification from (2)

4. ¥x(Cix) — Pix)) Premise

5. Cla) = Pla) Universal instantiation from (4)
6. Pia) Modus ponens from (3) and (3)

7. 2 Bia) sSimplification from (2)

8. Pla) ~B(a) Conjunction from (6) and (7)

Q. Ix(Pix) A B(x)) Existential generalization from (8)

.................................
WA

—’/——\

Rules of Inference for Quantified Sta

* Suppose we have the following premuses:
*Itis not sunny and it is cold.”
“We will swim only if it is sunny.”
“If we do not swim, then we will play volley.”
“If we play volley, then we will be home early.”

* prove the theorem
“We will be home early” using inference rules.

Rules-of Inference for Quantified Statements

Solution :
* Sunny = it is sunny
» Cold =it is cold
* Swim = we will swim
* Volley = we will play volley
*» Early = we will be home early

» Then the premises can be written as:
1. ~Sunny A Cold
2. Swim — Sunny
3. ~Swim — Volley
4. Volley — Early

nference for Quantifi

Proved by

Premise #1.
Simplification of 1.
Premise #2.

Modus tollens on 2.3.

icp
. —sunny A cold

. —sunny

Premise #3.
Modus ponens on 4.5.
Premise #4.
Modus ponens on 6,7.

