
Anas Melhem
Palestine Technical University

Chapter 1, Part II: Predicate Logic

Section 1.4

Section Summary
 Predicates

 Variables

 Quantifiers

 Universal Quantifier

 Existential Quantifier

 Negating Quantifiers

 De Morgan’s Laws for Quantifiers

 Translating English to Logic

 Logic Programming (optional)

Propositional Logic Not Enough
 If we have:

“Every computer connected to the university network is

functioning properly.”

No rules of propositional logic allow us to conclude the
truth of the statement:

“MATH-PC2 is functioning properly.”

 Can’t be represented in propositional logic. Need a
language that talks about objects, their properties, and
their relations.

Definition of Predicate Logic
 Predicate logic: is a more powerful type of logic can

be used to express the meaning of a wide range of
statements in mathematics and computer science in
ways that permit us to reason and explore
relationships between objects.

 “x > 3,” “x = y + 3,” “x + y = z,”

2020-10-03 Dr.Motaz Daadoo 7

Predicate Logic
 The statement “x > 3” has two parts.

1. The first part, the variable x, is the subject of
the statement.

2. The second part, Predicate, “is greater than 3”—
refers to a property that the subject of the
statement can have.

 We can denote the statement “x is greater than 3” by
P(x), where P denotes the predicate “is greater than
3” and x is the variable.

2020-10-03 Dr.Motaz Daadoo 8

Propositional Function
 Propositional functions contain variables and a predicate, e.g.,

P(x). Variables can be replaced by elements from their domain.

 The statement P(x) is also said to be the value of the
propositional function P at x. Once a value has been
assigned to the variable x, the statement P(x) becomes
proposition and has a truth value.

 Let P(x) denote “x > 0” and the domain be the integers. Then:

P(-3) is false.

P(0) is false.

P(3) is true.

2020-10-03 Dr.Motaz Daadoo 9

Universes of Discourse (U.D.s)
 E.g., let P(x)=“x+1>x”. We can then say,

“For any number x, P(x) is true” instead of
(0+1>0)  (1+1>1)  (2+1>2)  ...

 The collection of values that a variable x can take is
called x’s universe of discourse.

 We call D the Domain of discourse (universe of
discourse) of P

2020-10-03 Dr.Motaz Daadoo 10

Propositional Function
 Example: let P(x) denoted the statement “ x is an

even integer” what are the truth values of?

 P(5), 5 is even integer

 P(4), 4 is even integer

 P(6), 6 is even integer

 P(7), 7 is even integer

2020-10-03 Dr.Motaz Daadoo 11

Propositional Function
 Example: let R(x, y, z) denote the statement “ x + y

= z.” what are the truth values of?

 R(1, 2, 3) , the statement is

 R(0, 0, 1), the statement is

Quantifier Expressions
 Definition 1:

Let P be a propositional function with universe of
discourse D. The universal quantification of P(x) is the
proposition “P(x) is true for all values of x in D”

 Notation for universal quantification: ∀𝑥 𝑃(𝑥)

 The symbol ∀ means “for all” or “for every” or “for any”.

2020-10-03 Dr.Motaz Daadoo 12

Quantifier Expressions
 Definition 2:

Let P be a propositional function with universe of
discourse D. The existential quantification of P(x) is the
proposition “There exists an element x in D such that P(x)
is true.”

 Notation for universal quantification: ∃𝑥 𝑃(𝑥)

 The symbol∃means “exists” or “fat least one” or “for
some”.

2020-10-03 Dr.Motaz Daadoo 13

2020-10-03 Dr.Motaz Daadoo 14

Quantifier Expressions

2020-10-03 Dr.Motaz Daadoo 15

Quantifiers

2020-10-03 Dr.Motaz Daadoo 16

Quantifiers with Restricted Domains

2020-10-03 Dr.Motaz Daadoo 17

Precedence of Quantifiers
 The quantifiers ∀ and ∃ have higher precedence

than all logical operators from propositional
calculus.

 Example: ∀xP(x) ∨ Q(x) is the disjunction of ∀xP(x)
and Q(x). In other words, it means (∀xP(x)) ∨ Q(x).

2020-10-03 Dr.Motaz Daadoo 18

Free and Bound Variables
 An expression like P(x) is said to have a free variable x

(meaning, x is undefined).

 A quantifier (either  or ) operates on an expression
having one or more free variables, and binds one or
more of those variables, to produce an expression
having one or more bound variables.

2020-10-03 Dr.Motaz Daadoo 19

Example of Binding
 P(x,y) has 2 free variables, x and y.

 x P(x,y) has 1 free variable, and one bound
variable. [Which is which?]

 “P(x), where x=3” is another way to bind x.

 An expression with zero free variables is a bona-
fide (actual) proposition.

 An expression with one or more free variables is
still only a predicate: x P(x,y)

2020-10-03 Dr.Motaz Daadoo 20

Negating Quantified Expressions

2020-10-03 Dr.Motaz Daadoo 21

Negating Quantified Expressions

2020-10-03 Dr.Motaz Daadoo 22

Translating from English into Logical Expressions

 Example 23 : Express the statement “Every student
in this class has studied calculus” using predicates
and quantifiers.

 “For every student in this class, that student has studied calculus.”

 Next, we introduce a variable x so that our statement becomes

 “For every student x in this class, x has studied calculus.”

 we introduce C(x), which is the statement “x has studied calculus.”
Consequently, if the domain for x consists of the students in the class,
we can translate our statement as ∀xC(x).

 See Example 24, Page 49

2020-10-03 Dr.Motaz Daadoo 23

Using Quantifiers in System Specifications

 Use predicates and quantifiers to express the system

specifications “Every mail message larger than
one megabyte will be compressed”.

 Solution: Let S(m, y) be “Mail message m is larger
than y megabytes,” where the variable m has the
domain of all mail messages and the variable y is a
positive real number, and let C(m) denote “Mail
message m will be compressed.” Then the
specification “Every mail message larger than one
megabyte will be compressed” can be represented as
∀m(S(m, 1)→ C(m)).

2020-10-03 Dr.Motaz Daadoo 24

Using Quantifiers in System Specifications

 Use predicates and quantifiers to express the system

specifications “If a user is active, at least one
network link will be available.”

 Solution: Let A(u) represent “User u is active,” where
the variable u has the domain of all users, let S(n, x)
denote “Network link n is in state x,” where n has the
domain of all network links and x has the domain of
all possible states for a network link. Then the
specification “If a user is active, at least one network
link will be available” can be represented by
∃u A(u) → ∃n S(n, available).

2020-10-03 Dr.Motaz Daadoo 25

Logic Programming

 An important type of programming language is designed to

reason using the rules of predicate logic.

 Prolog (from Programming in Logic), developed in the

1970s by computer scientists working in the area of

artificial intelligence, is an example of such a language.

 Prolog programs include a set of declarations consisting of

two types of statements, Prolog facts and Prolog rules.

 Prolog facts define predicates by specifying the elements

that satisfy these predicates.

 Prolog rules are used to define new predicates using those

already defined by Prolog facts.

2020-10-03 Dr.Motaz Daadoo 26

Logic Programming

 EXAMPLE : Consider a Prolog program given facts telling it the
instructor of each class and in which classes students are
enrolled.

 Such a program could use the predicates
instructor(p, c) and enrolled(s, c) to represent that
professor p is the instructor of course c and that student
s is enrolled in course c, respectively.

 A new predicate teaches(p, s), representing that
professor p teaches student s, can be defined using the
Prolog rule

teaches(P,S) :- instructor(P,C), enrolled(S,C)

2020-10-03 Dr.Motaz Daadoo 27

Logic Programming

 For example, the Prolog facts in such a program might
include:

1. instructor(chan,math273)

2. instructor(patel,ee222)

3. instructor(grossman,cs301)

4. enrolled(kevin,math273)

5. enrolled(juana,ee222)

6.enrolled(juana,cs301)

7. enrolled(kiko,math273)

8. enrolled(kiko,cs301)

2020-10-03 Dr.Motaz Daadoo 28

Logic Programming
 Prolog answers queries using the facts and rules it is given. For

example, using the facts and rules listed, the query ?

 ?enrolled(kevin,math273) produces the response

➢ yes

 because the fact enrolled(kevin, math273) was provided as input.
The query

 ?enrolled(X,math273) produces the response

➢ kevin

➢ Kiko

 to find all the professors who are instructors in classes being taken
by Juana, we use the query ?teaches(X,juana) This query returns

➢ patel

➢ grossman

Section 1.5

Nesting of Quantifiers
 We can have nested quantifiers on a statements such

as

 ∀𝑥∃𝑦𝑃 𝑥, 𝑦

 “for all 𝑥, there exists a 𝑦 such that P(𝑥, 𝑦)”

 Example: ∀𝑥∃𝑦(𝑥 + 𝑦 == 0)

 ∃𝑥∀𝑦𝑃 𝑥, 𝑦

 “There exists an 𝑥 such that for all y P(𝑥, 𝑦) is true”

 Example: ∃𝑥∀𝑦(𝑥 ⋅ 𝑦 == 0)

2020-10-03 Dr.Motaz Daadoo 30

2020-10-03 Dr.Motaz Daadoo 31

1.5 Nesting of Quantifiers

Translating English Sentences into Logical Expressions

 Ex: Any student either has a computer or has a friend
that has a computer.

 “For any student 𝑥, 𝑥 has a computer or there is some
student 𝑦 where 𝑦 has a computer and 𝑥 and 𝑦 are
friends.”

 ∀𝑥[𝐶 𝑥 ∨ ∃𝑦[𝐶 𝑦 ∧ 𝐹(𝑥, 𝑦)]], where

 𝐶(𝑥) is “𝑥 has a computer” and

 𝐹(𝑥, 𝑦) is “𝑥 and 𝑦 are friends”.

 Universe discourse for 𝑥 and 𝑦 is all students.

2020-10-03 Dr.Motaz Daadoo 32

The Order of Quantifiers

 The order of the quantifiers in the nested quantifier is
important specially in cases like:
 Combination between Universal and Existential

quantifiers

 ∃𝑥∀𝑦 and ∀𝑥∃𝑦 are not equivalent!

 ∃𝑥∀𝑦𝑃 𝑥, 𝑦

 𝑃 𝑥, 𝑦 = 𝑥 + 𝑦 == 0 is false

 ∀𝑥∃𝑦𝑃 𝑥, 𝑦

 𝑃 𝑥, 𝑦 = (𝑥 + 𝑦 == 0) is true

2020-10-03 Dr.Motaz Daadoo 33

Negating Nested Quantifiers

 Recall negation rules for single quantifiers:
 ¬∀𝑥𝑃 𝑥 = ∃𝑥¬𝑃 𝑥

 ¬∃𝑥𝑃 𝑥 = ∀𝑥¬𝑃 𝑥

 Essentially, you change the quantifier(s), and negate what it’s quantifying

 Examples:

 ¬ ∀𝑥∃𝑦𝑃 𝑥, 𝑦

 ≡ ∃𝑥¬∃𝑦𝑃 𝑥, 𝑦

 ≡ ∃𝑥∀𝑦¬𝑃 𝑥. 𝑦

 ¬ ∀𝑥∃𝑦∀𝑧 𝑃 𝑥, 𝑦, 𝑧

 ≡ ∃𝑥¬∃𝑦∀𝑧𝑃 𝑥, 𝑦, 𝑧

 ≡ ∃𝑥∀𝑦¬∀𝑧𝑃 𝑥, 𝑦, 𝑧

 ≡ ∃𝑥∀𝑦∃𝑧¬𝑃(𝑥, 𝑦, 𝑧)

Dr.Motaz Daadoo 34

Translation
 “The sum of two positive integers is always positive.”

 ∀𝑥∀𝑦 𝑥 > 0 ∧ 𝑦 > 0 → 𝑥 + 𝑦 > 0

 ∀𝑥∀𝑦 𝑂(𝑥) ∧ 𝑂(𝑦) → 𝑃(𝑥, 𝑦) , where

 𝑂 𝑥 = 𝑥 > 0

 𝑃 𝑥, 𝑦 = 𝑥 + 𝑦 > 0

 “There exists an additive identity for any real number.”

 ∃𝑥∀𝑦 𝑥 + 𝑦 = 𝑦

2020-10-03 Dr.Motaz Daadoo 35

Translation

 ∀𝑥∀𝑦 𝑥 ≥ 0 ∧ 𝑦 < 0 → 𝑥 − 𝑦 > 0

 A non-negative number minus a negative number is
greater than zero

 ∃𝑥∃𝑦 𝑥 ≤ 0 ∧ 𝑦 ≤ 0 → 𝑥 − 𝑦 > 0

 The difference between two non-positive numbers is not
necessarily non-positive (i.e. can be positive)

 ∀𝑥∀𝑦 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ↔ 𝑥𝑦 ≠ 0

 The product of two non-zero numbers is non-zero iff
both factors are non-zero

2020-10-03 Dr.Motaz Daadoo 36

2020-10-03 Dr.Motaz Daadoo 37

Defining New Quantifiers
As per their name, quantifiers can be used to express

that a predicate is true of any given quantity
(number) of objects.

Define !x P(x) to mean “P(x) is true of exactly one x
in the universe of discourse.”

!x P(x)  x (P(x)  y (P(y)  y x))
“There is an x such that P(x), where there is no y
such that P(y) and y is other than x.”

2020-10-03 Dr.Motaz Daadoo 38

Review: More Equivalence Laws
 x y P(x,y) y x P(x,y)
x y P(x,y)  y x P(x,y)

 x (P(x)  Q(x))  (x P(x))  (x Q(x))
x (P(x)  Q(x))  (x P(x))  (x Q(x))

 Exercise:
See if you can prove these yourself.

 What propositional equivalences did you use?

2020-10-03 Dr.Motaz Daadoo 39

More to Know About Binding
 x x P(x) - x is not a free variable in
x P(x), therefore the x binding isn’t used.

(x P(x))  Q(x) - The variable x is outside of the

scope of the x quantifier, and is therefore free. Not a
proposition!

(x P(x))  (x Q(x)) – This is legal, because there

are 2 different x’s!

2020-10-03 Dr.Motaz Daadoo 40

Some Number Theory Examples
 Let u.d. = the natural numbers 0, 1, 2, …

 “A number x is even, E(x), if and only if it is equal
to 2 times some other number.”
x (E(x)  (y x=2y))

 “A number is prime, P(x), iff it’s greater than 1 and
it isn’t the product of two non-unity numbers.”

x (P(x)  (x>1  yz x=yz  y1  z1))

2020-10-03 Dr.Motaz Daadoo 41

Review: Predicate Logic
 Objects x, y, z, …

 Predicates P, Q, R, … are functions mapping objects x
to propositions P(x).

 Multi-argument predicates P(x, y).

 Quantifiers: [x P(x)] :≡ “For all x’s, P(x).”
[x P(x)] :≡ “There is an x such that P(x).”

 Universes of discourse, bound & free vars.

2020-10-03 Dr.Motaz Daadoo 42

Review: Natural language is ambiguous!

 “Everybody likes somebody.”

 For everybody, there is somebody they like,

 x y Likes(x,y)

 or, there is somebody (a popular person) whom
everyone likes?

 y x Likes(x,y)

 “Somebody likes everybody.”

 Same problem: Depends on context, emphasis.

[Probably more likely.]

2020-10-03 Dr.Motaz Daadoo 43

Review: Quantifier Exercise
If R(x,y)=“x relies upon y,” express the following in

unambiguous English:

x(y R(x,y))=

y(x R(x,y))=

x(y R(x,y))=

y(x R(x,y))=

x(y R(x,y))=

Everyone has someone to rely on.

There’s a poor overburdened soul whom

everyone relies upon (including himself)!

There’s some needy person who relies

upon everybody (including himself).

Everyone has someone who relies upon them.

Everyone relies upon everybody,

(including themselves)!

2020-10-03 Dr.Motaz Daadoo 47

Review: Quantifier Equivalence Laws

 Definitions of quantifiers: If u.d.=a,b,c,…
x P(x)  P(a)  P(b)  P(c)  …
x P(x)  P(a)  P(b)  P(c)  …

 From those, we can prove the laws:
x P(x) x P(x)
x P(x) x P(x)

 Which propositional equivalence laws can be used
to prove this?

2020-10-03 Dr.Motaz Daadoo 48

More Notational Conventions
 Quantifiers bind as loosely as needed:

parenthesize x P(x)  Q(x)

 Consecutive quantifiers of the same type can be
combined: x y z P(x,y,z) 
x,y,z P(x,y,z) or even xyz P(x,y,z)

 All quantified expressions can be reduced
to the canonical alternating form x1x2x3x4…
P(x1, x2, x3, x4, …)

()

Section 1.6

Proof Terms

2020-10-03 Dr.Motaz Daadoo 51

 Theorem

 A statement that has been proven to be true.

 Axioms, postulates, hypotheses, premises

 Assumptions (often unproven) defining the structures
about which we are reasoning.

 Rules of inference

 Patterns of logically valid deductions from hypotheses to
conclusions.

Inference Rules and Implications
 Each logical inference rule corresponds to an

implication that is a tautology.

 Inference rule

 Corresponding tautology:
((ante. 1) ∧ (ante. 2) ∧ …) → consequent

2020-10-03 Dr.Motaz Daadoo 52

antecedent 1
antecedent 2 …
∴ consequent

Inference Rules - General Form

2020-10-03 Dr.Motaz Daadoo 53

 Inference Rule-

 Pattern establishing that if we know that a set of
antecedent statements of certain forms are all true, then
a certain related consequent statement is true.

 “∴” means “therefore”antecedent 1
antecedent 2 …
∴ consequent

Rules of Inference for Propositional Logic
 A theorem often has two parts

 Conditions (premises, hypotheses)

 Conclusion

 A correct (deductive) proof is to establish that
 If the conditions are true then the conclusion is true

 i.e., conditions → conclusion is a tautology

 Often there are missing pieces between conditions and
conclusion. Fill it by an argument
 Using conditions and axioms

 Statements in the argument connected by proper rules of
inference

2020-10-03 Dr.Motaz Daadoo 54

Rules of Inference for Propositional Logic

2020-10-03 Dr.Motaz Daadoo 55

 Rules of inference provide the justification of the steps
used in a proof.

 One important rule is called Modus Ponens or the
law of detachment. It is based on the tautology

𝑝 ∧ 𝑝 → 𝑞 → 𝑞 We write it in the following way:

𝑃
𝑝 → 𝑞
∴ 𝑞

The two hypotheses 𝑝 and 𝑞 → 𝑞 are
written in a column, and the conclusion
𝑞 below a bar, where ∴ means “therefore”.

Rules of Inference
 The rule states that if 𝑝1 and 𝑝2 and … and 𝑝𝑛 are all

true, then 𝑞 is true as well.

 Each rule is an established tautology of

 𝑝1 ∧ 𝑝2 ∧ ⋯ ∧ 𝑝𝑛 → 𝑞

 These rules of inference can be used in any
mathematical argument and do not require
any proof.

2020-10-03 Dr.Motaz Daadoo 56

𝑝1

𝑝2

.

.

.
𝑝𝑛

∴ 𝑞

Valid Arguments in Propositional
Logic
 An argument Just like a rule of inference, it consists of

one or more hypotheses (or premises) and a
conclusion.

 We say that an argument is valid, if whenever all its
hypotheses are true, its conclusion is also true.

 However, if any hypotheses is false, even a valid
argument can lead to an incorrect conclusion.

 Proof: show that hypothesis → conclusion is true using
rules of inference

2020-10-03 Dr.Motaz Daadoo 58

2020-10-03 Dr.Motaz Daadoo 59

Argument Validity

2020-10-03 Dr.Motaz Daadoo 60

2020-10-03 Dr.Motaz Daadoo 61

2020-10-03 Dr.Motaz Daadoo 62

2020-10-03 Dr.Motaz Daadoo 63

2020-10-03 Dr.Motaz Daadoo 64

Argument Validity

2020-10-03 Dr.Motaz Daadoo 65

Argument Validity

2020-10-03 Dr.Motaz Daadoo 66

Argument Validity
 Show that the premises “If you send me an e-mail

message, then I will finish writing the program,” “If you do
not send me an e-mail message, then I will go to sleep
early,” and “If I go to sleep early, then I will wake up feeling
refreshed” lead to the conclusion “If I do not finish writing
the program, then I will wake up feeling refreshed.”

 Solution: Let p be the proposition “You send me an e-
mail message,” q the proposition “I will finish writing the
program,” r the proposition “I will go to sleep early,” and s
the proposition “I will wake up feeling refreshed.” Then
the premises are p→ q,￢p→ r, and r→ s.

 The desired conclusion is￢q → s. We need to give a valid
argument with premises p → q, ￢p → r, and r → s and
conclusion￢q→ s.

2020-10-03 Dr.Motaz Daadoo 67

Argument Validity
 Solution: This argument form shows that the premises

lead to the desired conclusion.

2020-10-03 Dr.Motaz Daadoo 68

Rules of Inference for Quantified Statements

2020-10-03 Dr.Motaz Daadoo 69

Rules of Inference for Quantified Statements

 Example:Show that the premises “Everyone in this discrete
mathematics class has taken a course in computer science” and
“Marla is a student in this class” imply the conclusion “Marla has
taken a course in computer science.”

 Solution: Let D(x) denote “x is in this discrete mathematics
class,” and let C(x) denote “x has taken a course in computer
science.” Then the premises are ∀x(D(x) → C(x)) and D(Marla).
The conclusion is C(Marla). The following steps can be used to
establish the conclusion from the premises.

2020-10-03 Dr.Motaz Daadoo 70

Rules of Inference for Quantified Statements

 Example:Show that the premises “A student in this class has not read the book,” and
“Everyone in this class passed the first exam” imply the conclusion “Someone who
passed the first exam has not read the book.”

 Solution: Let C(x) be “x is in this class,” B(x) be “x has read the book,” and P(x) be “x
passed the first exam.” The premises are ∃x(C(x)∧￢B(x)) and ∀x(C(x) → P(x)). The
conclusion is ∃x(P(x)∧￢B(x)). These steps can be used to establish the conclusion
from the premises.

2020-10-03 Dr.Motaz Daadoo 71

Rules of Inference for Quantified Statements

2020-10-03 Dr.Motaz Daadoo 72

Rules of Inference for Quantified Statements



2020-10-03 Dr.Motaz Daadoo 73

Rules of Inference for Quantified Statements

