Engineering Economy [3] Combining Factors Examples

General

- Most estimated cash flow series <u>do not fit exactly</u> the series for which the <u>factors</u> and equations were developed earlier
- Therefore, it is necessary to <u>combine</u> the equations
- However, there are several ways to address a particular sequence of cash flows in order to determine the present, future, or annual worth
- Different ways to address this will be explained herein through a set of solved examples

Combining Factors The Different Cases

- 1. Shifted series: Determine P, F, or A of a uniform series starting at a time other than period 1
- 2. Calculate P, F, or A of randomly placed single amounts and uniform series
- 3. Make equivalence calculations for cash flows involving shifted arithmetic or geometric gradients
- 4. Make equivalence calculations for cash flows involving decreasing arithmetic gradients (refer to section [2-3])

- When dealing with uniform series, <u>the normal situation is to have</u> the series begins at the *end of period* 1
- Or, the present worth is always located <u>one period prior</u> to the first uniform series amount when using the P/A factor
- When we have a situation that the payment does not start at the end of period 1, then the series is called "<u>shifted series</u>"

When we have shifted uniform series, then <u>P</u> can be determined by any of the following methods:

[1] Use the P/F factor to find the present worth of each disbursement at year 0 and add them up

[2] Use the F/P factor to find the future worth of each disbursement in year 13, add them, and then find the present worth of the total P=F(P/F,i,13)

[3] Use the F/A factor to find the future amount F=A(F/A,i,10)and then compute the present worth using P=F(P/F,i,13)

[4] Use the P/A factor to compute the present worth (located in year 3 not 0) and then find the present worth in year 0 by using the (P/F,i,3) factor

Assume that the interest rate is 8%

Year	F	P —	$P = F[1/(1+i)^n]$
0	0	\$0.00	$D = \Gamma(D/\Gamma; m)$
1	0	\$0.00	P = F(P/F,I,I)
2	0	\$0.00	
3	0	\$0.00	Find the present worth
4	50	\$36.75	corresponding to the future values
5	50	\$34.03	
6	50	\$31.51	
7	50	\$29.17 -	P = F(P/F, 8%, 7)
8	50	\$27.01	
9	50	\$25.01	
10	50	\$23.16	
11	50	\$21.44	
12	50	\$19.86	
13	50	\$18.38	
Total	-	\$266.33	

Year	Р	F -	
0	0	\$0.00	
1	0	\$0.00	
2	0	\$0.00	
3	0	\$0.00	
4	50	\$99.95	
5	50	\$92.55	
6	50	\$85.69	
7	50	\$79.34	
8	50	\$73.47	
9	50	\$68.02	
10	50	\$62.99	
11	50	\$58.32	
12	50	\$54.00	
13	50	\$50.00	
Total	-	\$724.33	
	Р	\$266.33	•

$$F = P(1+i)^n$$

Find the future worth corresponding to the present values, sum up these future values and convert back to find the present value

- An engineering technology group just *purchased* a software for \$5,000 now and annual payments of \$500 per year for 6 years starting 3 years from now for *annual upgrades*
- What is the *present worth* of the payments if the interest rate is 8% per year?

- Find the value of P'_A for the shifted series
 P'_A = \$500(P/A,8%,6)
- Since P'_A is located in year 2, now find P_A in year 0
 P_A = P'_A(P/F,8%,2)
- The total present worth is determined by adding P_A and the initial payment P₀ in year 0

 $P_T = P_0 + P_A = 5,000 + 500(P/A,8\%,6)(P/F,8\%,2)$

= 5,000 + 500(4.6229)(0.8573) = \$6,981.6

- Recalibration of sensitive measuring devices costs \$8,000 per year
- If the machine will be recalibrated for each of 6 years starting 3 years after purchase, calculate the 8-year equivalent uniform series at 16% per year

To solve this question, first calculate P'_A from the uniform series A, and then find the P_T value. After that, compute A' based on the value of P_T

- $P_T = P'_A(P/F, 16\%, 2) = 8,000(P/A, 16\%, 6)(P/F, 16\%, 2)$ = 8,000(3.6847)(0.7432) = \$21,907.75
- The equivalent series A' for 8 years can now be determined via the A/P factor:
 A' = P_τ(A/P,16%,8) = \$5,043.60

 An alternative way to solve this question is by finding the future worth F in year 8 based on the uniform series A.
 Then use this future worth value to find the uniform series A'

•
$$F = 8,000(F/A,16\%,6) = $71,820$$

The A/F factor is used to obtain A' over all 8 years
 A' = F(A/F,16%,8) = \$5,043.2

Uniform Series and Randomly Placed Amounts

- When cash flows include both a uniform series and randomly placed single amounts, the procedure to find the present worth value would be as follows:
 - Find the present worth for the uniform series using the P/A factor
 - Find the present worth for the single amounts using the P/F factor

Uniform Series and Randomly Placed Amounts Example

• To find the <u>present worth</u>, do the following:

[1] Find P for the 20-year uniform series = 20,000(P/A,16%,20)

[2] Find P for the \$10,000 amount = 10,000(P/F,16%,6)

[3] Find P for the \$15,000 amount = 15,000(P/F,16%,16)

Sum up the three values and this equals \$124,075

Shifted Gradients

- To find the present worth of an arithmetic gradient series, we use the relation P = G(P/G,i,n)
- Just keep in mind that the *present worth* of an arithmetic gradient <u>will always be located two periods before the</u> <u>gradient starts</u>

Shifted Gradients

- A gradient that starts at any time that is not the end of second year is called a shifted gradient
- When having shifted gradients, then we can resort to renumbering the time scale
- The period in which the gradient first appears is labeled period 2 and the value n is obtained accordingly

Shifted Gradients Example – 1

- An engineer has tracked the average inspection cost for 8 years. The cost average was steady at \$100 for the first four years but have increased consistently by \$50 for each of the last 4 years
- What is the total present worth (in year 0)?

Shifted Gradients Example – 1

To solve it, you need to decompose it as follows:

Shifted Gradients Example – 2

 Compute the *equivalent uniform* annual series in years 1 through 7

 ⁰
 ¹
 ²
 ³
 ⁴
 ⁵
 ⁶
 ⁷
 ¹
 ²
 ³
 ⁴
 ⁵
 ⁶
 ⁷
 ⁷

- Find the present worth for the arithmetic gradient series at year 2: P_G = 20(P/G,i,5)
- $P_0 = P_G(P/F,i,2)$
- Annualize the $P_0: A_G = P_0(A/P,i,7)$
- Add the base amount = 50 + A_G