
SIGNIFICANT FIGURES

Two kinds of numbers are used in science:

- Exact or Defined: exact numbers; no uncertainty
- **Measured**: are subject to error; have **uncertainty**

- 1. Sig. Figs. all digits obtained as the result of a correct measurement (3 SF)

 Include: one uncertain digit (the last one); this is your guess (5)

 all certain digits (1.2)
- 2. Any digit farther to the right of the uncertain digit is unknown
- 3. The more Sig Figs in a measurement, the greater the precision of the measurement (the smaller the uncertainty).

	Decigram Balance 3.1 g	Centigram Balance 3.12 g	Milligram Balance 3.121 g	Analytical Balance 3.1213 g
Sig. Figs	2	3	4	5
Certain Digits	1	2	3	4
Accuracy	1 g	0.1 g	0.01 g	0.001 g
Uncertainty	± 0.1 g	± 0.01 g	± 0.001 g	± 0.001 g

LEAST	PRECISION INCREASES	<u>M</u> OST
PRECISE		PRECISE

ZERO AS SIGNIFICANT FIGURE

1. SIGNIFICANT ZEROS:

A) Sandwich, or captive zeros: 1.001 g 13.02 cm

B) Terminal Zeros: - to the right of the decimal point:

6.3<u>0</u> cm 90.<u>0</u> cm

- to the left of the decimal point:

39,8<u>00</u>. m

2. **NONSIGNIFICANT ZEROS:**

Decimal markers: (to the left or to the right of decimal point: 0.0912 g

3. AMBIGUOUS (DOUBTFUL) ZEROS:

Terminal zeros in a number without a decimal point: 530 m

It is not known if the number has 2 or 3 SF's

EXAMPLES:

Determine the number of significant figures in each of the following measurements:

9.9099 g 9090. kg

0.9090 g $9x10^3 g$

0.0909 g $9.0 x 10^3 g$

9090 g

Chemistry 101

SCIENTIFIC NOTATION

 $\mathbf{A} \times 10^{\mathrm{n}}$

A must satisfy strict conditions:

 $1 \le A < 10$

Consider: 51,200,000,000,000 mi

Several exponential notations are possible. Which is correctly written?

 51.2×10^{12}

mi

 512×10^{11}

mi

 5.12×10^{13}

mi

 0.512×10^{14}

mi

Consider: 0.0839 g

Several exponential notations are possible. Which is correctly written?

839 x 10⁻⁴ g

83.9 x 10⁻³ g

 $8.39 \times 10^{-2} \text{ g}$

 $0.839 \times 10^{-1} g$

• In scientific work, very large and very small numbers are commonly expressed in SCIENTIFIC NOTATION

SIGNIFICANT FIGURES IN CALCULATIONS

• THE ANSWER TO A CALCULATION CAN HAVE NO MORE SIG FIGS THAN THE LEAST ACCURATE NUMBER (LAN)

Multiplication and Division

LAN = number with the fewest SIG FIGS

Example 1:

Calculate the volume of a cylinder, given:

Radius
$$(r) = 0.63$$
 cm
Height $(h) = 6.14$ cm

$$V=\pi \ r^2 \ h=\pi \ (0.63 \ cm)^2 \ (6.14 \ cm)=\ 7.655954 \ cm^3$$

$$2 \ SF \qquad \ \ calculator \ answer$$

$$LAN$$

- Note: The answer can have no more than 2 SF
- The correct answer is: 7.7 cm³

Example 2:

Calculate the density of a liquid, given:

Mass (m) =
$$10.9387$$
 g
Volume (V) = 10.00 mL

$$d = \frac{10.9837 \text{ g}}{10.00 \text{ mL}} = 1.09387 \text{ g/mL} \qquad \text{(calculator answer)}$$

$$4 \text{ SF (LAN)}$$

- Note: The answer can have no more than 4 SF
- The correct answer is: 1.094 g/mL

Addition and Subtraction

LAN = number with the fewest decimals

Example 3:

Add the following measurements:

- Note: The answer can have no more decimals than the LAN (0 decimals)
- The correct answer is: 216 g

Example 4:

Subtract the following measurements:

- Note: The answer can have no more decimals than the LAN (3 decimals)
- The correct answer is: 0.002 g

Combined Calculations

Example 5:

Given the following values, calculate the percent error in this measurement:

Theoretical Value = 1.0943 g Experimental Value = 1.0947 g % Error = $\frac{\text{Exp - Th}}{\text{Th}} \times 100 = \frac{1.0947 - 1.0943}{1.0943} \times 100 = \frac{0.0004 \text{ g}}{1.0943 \text{ g}} \times 100 = 0.036553 \% \text{ (calculater answer)}$

(5 SF)

- Note: The correct answer cannot have more than 1 SF
- THE CORRECT ANSWER IS: 0.04 %

Example 6:

Given the following values, calculate the percent error in this measurement:

% Error =
$$\frac{\text{Exp - Th}}{\text{Th}} \times 100 = ---- \times 100 =$$

- Note: The correct answer cannot have more than
- THE CORRECT ANSWER IS:

ROUNDING OFF

• If the rounded digit is <5, the digit is simply dropped.

 $51.234 \rightarrow 51.2$

• If the rounded digit is ≥ 5 , the digit is increased. 51.38, 51.359, 51.3503 \rightarrow 51.4

Example 1:

rounded off to 3 SF
7.7776 g
$$\longrightarrow$$
 7.78 g $(7 > 5)$

rounded off to 2 SF
$$124 g \longrightarrow 120 g \qquad (4 < 5)$$

rounded off to 2 SF
$$0.02317 \text{ g} \longrightarrow 0.023 \text{ g}$$
 (1 < 5)

When performing calculations with multiple steps, it is often better to carry extra digits and round in the final step.

Example 2:

Calculate the volume of a cylinder, given diameter = 1.27 cm and height = 6.14 cm.

$$V = \frac{\pi d^2 h}{4} = \frac{\pi (1.27)^2 (6.14)}{4} = 7.7779598 \text{ cm}^3 \xrightarrow{\text{Round to 3 SF}} 7.78 \text{ cm}^3$$

SI UNITS

- International System of units adopted in 1960
- Is an improved metric system
- Has the major advantage of being a decimal system (all conversion factors are multiples of 10)

SI units consist of:

1. <u>SEVEN BASE UNITS</u>

	Quantity	<u>Unit</u>	Abbreviation
1.	Length	meter	m
2.	Mass	kilogram	kg
3.	Time se	cond	S
4.	Temperature	Kelvin	K
5.	Amount of substance	mole	mol
6.	Electric current	ampere	A
7.	Luminous intensity	candela	cd

2. MANY DERIVED UNITS

	Quantity	<u>Unit</u>	Abbreviation
1.	Speed = Length/Time	meter/second	m/s
2.	Volume = $(Length)^3$	$(meter)^3$	m^3
3.	Density = Mass/Volume	kg/m ³	kg/m ³
4.	Acceleration = speed/time	m/s^2	m/s^2
5.	Force = Mass x Acc	$kg m/s^2$	N (Newton)
6.	Pressure = Force/Area	kg/m s ²	Pa (Pascal)
7.	Energy = Force x Length	$kg m^2/s^2$	J (Joule)

μ

SI BASE UNITS AND PREFIXES

SMALLER UNITS LARGER UNITS **BASE** 10^{-12} 10^{-9} 10^{-6} 10^{-3} 10^{9} 10^{3} 10^{6} **UNIT** milli centi deci kilo pico micro mega giga nano

m

cm dm

k

M

G

MEANING:

p

$$1m = 1,000 \text{ mm} = 10^3 \text{ mm}$$
 OR $1mm = 0.001 \text{ m} = 10^{-3} \text{ m}$

n

$$1 \text{mm} = 1,000 \ \mu\text{m} = 10^3 \ \mu\text{m}$$
 OR $1 \ \mu\text{m} = 0.001 \ \text{mm} = 10^{-3} \ \text{mm}$

$$1m = 10^6 \mu m$$
 OR $1 \mu m = 10^{-6} m$

$$1m = 10^{-6} \mu m \longrightarrow IS FALSE$$

Always think : - Which unit is larger ? (m)
$$1m = 10^6 \mu m$$
 ———— IS CORRECT

- Which unit is smaller? (
$$\mu m$$
) 1 μm = 1 x 10⁻⁶ m ------> IS Also Correct

Chemistry 101

I. BASE UNITS

1. Measurement of Length

Base unit: The meter = m

Also commonly used in chemistry: cm, mm, µm, nm, pm (for atomic sizes)

1 m	=	$10^2 \mathrm{cm}$	OR	1 cm	=	10^{-2} m
1 m	=	$10^3 \mathrm{mm}$	OR	1 mm	=	10^{-3} m
1 m		$10^6 \mu m$	OR	1 μm		10^{-6}m
1 m	=	$10^9 \mathrm{nm}$	OR	1 nm	=	$10^{-9}{\rm m}$
1 m	=	10^{12}pm	OR	1 pm	=	$10^{-12}\mathrm{m}$

Also used: the Angstrom, A

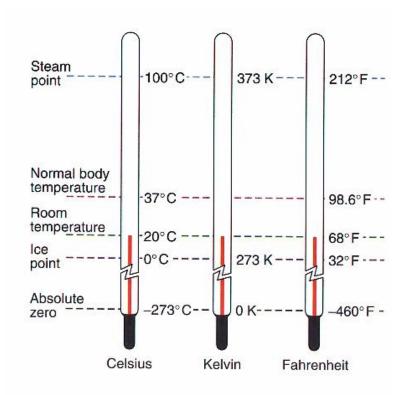
$$1 \text{ m} = 10^{10} \text{ A}$$

$$1 \text{ A} = 10^{-10} \text{ m}$$

• NOTE: The Angstrom IS NOT AN SI UNIT

2. Measurement of Mass

Base Unit: the kilogram, kg (the gram would not be practical since it is too small)


3. Measurement of Time

Base Unit: the second, s

- Conversion to minutes (60 sec/min) or hours (60 min/hr) is an exception to the decimal-based prefixes of the SI (is due to the calendar)
- Recently, nanoseconds (10^{-9} s) and picoseconds (10^{-12} s) are increasingly used in computer work

4. Measurement of Temperature

- Temperature is a measure of how hot or cold a substance is.
- It is a quantity that determines the direction of heat flow: warmer → cooler
- Three temperature scales are commonly used: Celsius, Kelvin (absolute) and Fahrenheit

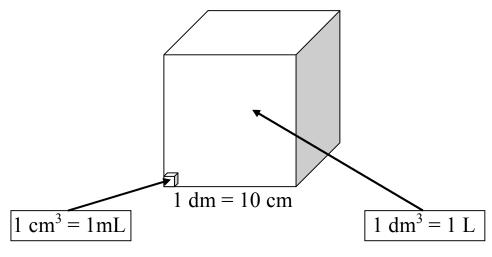
• To convert between Fahrenheit and Celsius;

REMEMBER: 1.8 unit F = 1 unit C 32 °F = 0 °C

$$^{\circ}F = 32 + (1.8 \text{ x }^{\circ}C)$$
 or $^{\circ}C = \frac{F - 32}{1.8}$

• To convert between Celsius and Kelvin:

REMEMBER: -The Kelvin temperature is 273 degrees higher than the Celsius


$$K = {}^{0}C + 273$$
 ${}^{0}C = K - 273$

II. <u>DERIVED UNITS</u>

1. Volume

Base Unit: m^3 Commonly used: dm^3

Not practical because it is very large Also called "<u>THE LITER (L)"</u>

NOTE:
$$1 \text{ dm}^3 = (10 \text{ cm})^3 = 1,000 \text{ cm}^3$$

 $1 \text{ L} = 1,000 \text{ mL}$

IMPORTANT RELATIONSHIPS TO REMEMBER:

 $1 \text{ dm}^3 = 1 \text{ L}$

 $1 \text{ dm}^3 = 1000 \text{ cm}^3$

 $1 L = 1000 \, \text{mL}$

 $1 \text{ cm}^3 = 1 \text{ mL}$

 $1 \text{ cm}^3 = 0.001 \text{ dm}^3$

1 mL = 0.001 L

2. <u>Density</u> (d):

Density is the mass of a unit volume

$$d = \frac{mass}{volume} = \frac{m}{V}$$

Examples:

1. Calculate the density of a piece of glass with a mass of 6.65 g and a volume of 2.95 mL.

$$m = 6.65 g$$

 $V = 2.95 mL$
 $d = ?$

2. Calculate the thickness of an Aluminum foil 15.38 cm long and 14.39 cm wide. The mass of the foil is 1.4939 g. The density of aluminum is 2.70 g/cm³.

(HINT: We consider the Aluminum foil to be a rectangular solid).

L = 15.38 cm
W = 14.39 cm
m = 1.4939 g
d = 2.70 g/cm³

Thickness = Height = ?

L

$$d = \frac{m}{V} = \frac{m}{L \times W \times Th}$$

Solve the equation for the unknown (Th), before using numbers:

Th =
$$\frac{\text{m}}{\text{d x L x W}} = \frac{1.4939 \text{ g}}{(2.70 \text{ g/cm}^3)(15.38 \text{ cm})(14.39 \text{ cm})} = 2.50 \text{ x } 10^{-3} \text{ cm}$$

Notes:

- The units cancel out. The units obtained for the answer are cm, which is to be expected.
- If the units would not be units of length, that would imply that you made a mistake in your algebra (when you solved for the unknown)

DIMENSIONAL ANALYSIS (FACTOR-LABEL METHOD)

- It is a method of calculation in which the units are carried along
- Makes word problems and chemistry calculations easy!
- Any unit can be converted into another by use of the appropriate **conversion factor**, as shown below:

$$\frac{\text{beginning unit}}{\text{beginning unit}} = \text{final unit}$$

$$\uparrow$$

$$\text{conversion factor}$$

Examples:

1. On a picnic, **162 students** are each given **2 hot dogs**. If there are **9 hot** dogs per **pound**, priced at \$ **4** per **3 pounds**, what is the cost of the hot dogs?

Note that the following conversion factors can be obtained from the text of the problem:

• To begin solving the problem, start with a known and keep your goal in mind:

162 students
$$x = \frac{2 \text{ hot dogs}}{1 \text{ student}} x = \frac{1 \text{ lb}}{9 \text{ hot dogs}} x = \frac{4 \text{ \$}}{3 \text{ lbs}} = 48 \text{ \$}$$

• Note that all the units (except \$) cancel out!

Chemistry 101

2. Convert 0.00250 centimeters in micrometers (µm)

? cm = ?
$$\mu$$
m Not easily remembered!

However, other relationships are easier recalled:

$$1 \text{ m} = 10^2 \text{ cm}$$
 $1 \text{ m} = 10^6 \text{ } \mu\text{m}$

• Start by what is given, and set up the units to cancel and give you the desired results:

Chapter 1

2.50 x
$$10^{-3}$$
 em x $\frac{m}{em}$ x $\frac{\mu m}{m}$ = μm

• Next, plug in the appropriate numbers (conversion factors):

2.50 x
$$10^{-3}$$
 em x $\frac{1}{10^{2}}$ em x $\frac{10^{6}}{1}$ $\frac{\mu m}{1}$ = 25.0 μm

- Note that all the units cancel out, except the µm
- 3. A water solution containing 12.0% sodium hydroxide by mass has a density of 1.131 g/mL. What volume of this solution (in L) must be used in an application requiring 3.50 kg of sodium hydroxide?