TYPES OF CHEMICAL REACTION

I. METATHESIS REACTIONS (or DOUBLE DISPLACEMENT RXNS)

• In these reactions the **ions** of the reactants are **exchanged**:

$$A^{+}B^{-}(aq)$$
 + $C^{+}D^{-}(aq)$ \longrightarrow AD (?) + CB (?)

- Double-Displacement Reactions can be further classified into:
 - 1. Precipitation Reactions
 - 2. Acid Base Reactions
 - 3. Reactions that form an unstable product

II. REDOX REACTIONS (Oxidation – Reduction Reactions)

- In these reactions an **exchange of electrons** occurs between the reactants.
- Redox Reactions can be further classified into:
 - 1. Combination Reactions
 - 2. Decomposition Reactions
 - 3. Single Replacement Reactions
 - 4. Combustion Reactions

Each type of these reactions will be discussed in detail.

SOLUBILITY RULES

1. Precipitation Reactions

- In these reactions an insoluble solid (precipitate) forms.
- To better understand these reactions, a knowledge of solubility rules for ionic substances is necessary.
- These solubility rules are summarized in solubility tables (See Table 4.1 in your textbook)

Solubility Rules:

- All compounds of group IA and (NH_4^+) are soluble.
- All nitrates, acetates, and most perchlorates are soluble.
- All chlorides, bromides, and iodides are soluble, except those of Ag⁺, Pb²⁺,
 Cu⁺ and Hg₂²⁺.
- All sulfates are soluble, except those of Ca^{2+} , Sr^{2+} , Ba^{2+} and Pb^{2+} .
- All metal hydroxides are insoluble, except those of Group IA and larger members of Group 2A.
- All carbonates and phosphates are insoluble, except those of Group IA and (NH_A^+) .
- All sulfides are insoluble, except those of Group IA, Group 2A and (NH₄⁺).

Examples:

Use solubility table to determine if each of the following substances are soluble or insoluble:

CaCl₂

PbSO₄

Mg(OH)₂

(NH₄)₂CO₃

PRECIPITATION REACTIONS

• A solution of silver nitrate is mixed with a solution of sodium chloride. A white precipitate is formed. Write a NET IONIC EQUATION for this reaction.

$$AgNO_3(aq) + NaCl(aq) \longrightarrow AgCl(?) + NaNO_3(?)$$

The solubility of each product must be known! Referring to the solubility rules, we find out that:

AgCl is insoluble in water (precipitate):

NaNO₃ is soluble in water (completely dissociated):

NaNO₃(aq)

• The Molecular Equation becomes:

$$AgNO_3(aq) + NaCl(aq) \longrightarrow AgCl(s) + NaNO_3(aq)$$

• The Complete (Total) Ionic Equation is:

$$Ag^{+}(aq) + NO_{3}^{-}(aq) + Na^{+}(aq) + Cl^{-}(aq)$$
 \longrightarrow $AgCl(s) + Na^{+}(aq) + NO_{3}^{-}(aq)$

• The Net Ionic Equation is obtained by canceling out the spectator ions:

$$Ag^{+}(aq) + NO_{3}^{-}(aq) + Na^{+}(aq) + Cl^{-}(aq)$$

spectator

ion

 $AgCl(s) + Na^{+}(aq) + NO_{3}^{-}(aq)$

spectator ions

• The NET IONIC EQUATION is:

$$Ag^{+}(aq)$$
 + $C\Gamma(aq)$ \longrightarrow $AgCl(s)$

Example:

Write balanced molecular and net ionic equations for the reaction of solutions of Pb(NO₃)₂ and KI.

2. Acid - Base Reactions and Acid - Base Concepts

General	Pror	perties

	ACIDS	BASES		
Taste	sour	bitter		
Change color of indicators:	↓	Į.		
Blue Litmus	Red	No change		
Red Litmus	No change Blue			
Phenolphtalein	Colorless	Pink		
Neutralization	Reacts with bases to produce salt and water	Reacts with acids to produce salt and water		

Arrhenius Concept of Acids and Bases

• This definition defines acids and bases in terms of the effect they have on water

ACIDS	BASES
Substances that dissolve in water and increase the concentration of hydronium ions (H ₃ O ⁺)	Substances that dissolve in water and increase the concentration of hydroxide ions (OH ⁻)
Examples:	Examples:
$HCl(g) + H_2O(l) \rightarrow \mathbf{H_3O^+}(aq) + Cl^-(aq)$ Accepted simplification: $HCl(g) \xrightarrow{\mathbf{H_2O}} \mathbf{H^+}(aq) + Cl^-(aq)$	NaOH (s) $\xrightarrow{\text{H}_2\text{O}}$ Na ⁺ (aq) + OH^- (aq)
$\begin{aligned} &HC_2H_3O_2\ (l) + H_2O\ (l) \rightarrow \ \textbf{H}_3\textbf{O}^+\ (aq) + C_2H_3O_2^-\ (aq) \end{aligned}$ Accepted simplification: $\begin{aligned} &HC_2H_3O_2\ (l) \ \stackrel{\textbf{H}_2O}{\longrightarrow} \ \textbf{H}^+\ (aq)\ + C_2H_3O_2^-\ (aq) \end{aligned}$	$Ba(OH)_2 (s) \xrightarrow{H_2O} Ba^{2+} (aq) + 2 OH^{-} (aq)$

Limitations of Arrhenius definition:

- 1. Considers acid-base reactions **only** in aqueous solutions.
- 2. Singles out the OH⁻ ion as the source of base character; (other species can play a similar role)

Bronsted-Lowry Concept of Acids and Bases

• This definition defines acids and bases in terms of H⁺ (proton) transfer.

ACIDS	BASES	
Acids are H ⁺ (proton donors)	Bases are H ⁺ (protons acceptors	
NEUTDALIZATION: A reaction in which a H ⁺ (proton) is transfered		

NEUTRALIZATION: A reaction in which a H⁺ (proton) is transferred

Examples of Bronsted-Lowry neutralizations:

- A substance that can behave both as a base or an acid depending on the chemical environment is called an **amphiprotic** species.
- H₂O is an **amphiprotic** species.

3.
$$HC_2H_3O_2(1) + H_2O(1) \longrightarrow H_3O^+(aq) + C_2H_3O_2^-(aq)$$
 acetate ion

H₂O is an **amphiprotic** species.

The Bronsted-Lowry Concept of Acids & Bases is more general than the Arrhenius concept:

The Bronsted-Lowry Concept introduces additional points of view:

- 1. A base is a species that accepts H⁺ ions (protons). (OH⁻ is only one example of a base)
- 2. Acids and Bases can be ions as well as molecular substances.
- 3. Acid-Base reactions are not restricted to aqueous solutions.
- 4. Amphiprotic species (like H₂O) can act as either acids or bases, depending on what the other reactant is.

SUMMARY OF ACID - BASE CONCEPTS

	ACID	BASE	ACID-BASE REACTION
ARRHENIUS (less general)	Produces H ⁺ when dissolved in water	Produces OH ⁻ when dissolved in water	$H^+ + OH^- \rightarrow H_2O$
BRONSTED-LOWRY (more general)	Proton donor	Proton acceptor	Proton transfer

CHEMICAL PROPERTIES OF ACIDS AND BASES

• The most important property of ACIDS and BASES is their reaction with each other, called NEUTRALIZATION:

In General:

HA + BOH
$$\longrightarrow$$
 B⁺A⁻ + H₂O any cation any anion (except H⁺) (except OH⁻)

Examples:

1.
$$HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq) + H2O(l)$$

2.
$$\frac{\text{HCl (aq)}}{\text{unbalanced}}$$
 + $\frac{\text{Ba(OH)}_2(\text{aq})}{\text{unbalanced}}$ + $\frac{\text{BaCl}_2(\text{aq})}{\text{H2O (l)}}$

Balanced:
$$2 \text{ HCl (aq)} + \text{Ba(OH)}_2 \text{ (aq)} \longrightarrow \text{BaCl}_2 \text{ (aq)} + 2 \text{ H}_2 \text{O (l)}$$

3.
$$HC_2H_3O_2(aq) + NaOH(aq)$$

4.
$$H_2SO_4(aq) + NaOH(aq)$$
 unbalanced

Balanced:
$$H_2SO_4(aq) + NaOH(aq)$$

• Note that all SALTS are derived from an ACID and a BASE:

Salt	Base from which derived	Acid from which Derived
Fe (NO ₃) ₃ iron (III) nitrate	Fe (OH) ₃ iron (III) hydroxide	HNO ₃ nitric acid
CaCl ₂ calcium chloride	Ca(OH) ₂ calcium hydroxide	HCl hydrochloric acid
Na ₂ CO ₃ sodium carbonate		
(NH ₄) ₂ SO ₄ ammonium sulfate		
Na ₂ S sodium sulfide		
NaC ₂ H ₃ O ₂ sodium acetate		
K ₃ PO ₄ (potassium phosphate)		

STRONG AND WEAK ACIDS AND BASES

• Acids and Bases can be classified according to their ability to ionize or dissociate in aqueous solution:

	ACIDS		BASES	
	STRONG ACIDS	WEAK ACIDS	STRONG BASES	WEAK BASES
Electrolyte strength	Strong electrolytes	Weak electrolytes	Strong electrolytes	Weak electrolytes
Extent of Ionization/ Dissociation	100% Complete Ionization	Less than 100% Partial Ionization	100% Complete Ionization	Less than 100% Partial Ionization
Symbols used to show extent of ionization/dissociation				→
Particles present in aqueous solution	Ions only	Mostly molecules (a few ions)	Ions only	Mostly molecules (a few ions)
Examples	$H^{+}(aq) + Cl^{-}(aq)$ $H^{+}(aq) + NO_{3}^{-}(aq)$ $H^{+}(aq) + HSO_{4}^{-}(aq)$	HC ₂ H ₃ O ₂ (aq) HF (aq) H ₂ CO ₃ (aq)	$Na^{+}(aq) + OH^{-}(aq)$ $K^{+}(aq) + OH^{-}(aq)$ $Ba^{2+}(aq) + 2 OH^{-}(aq)$	NH ₄ OH (aq) also written NH ₃ (aq) + H ₂ O

SUMMARY OF ACID AND BASE STRENGTHS

• In order to write net ionic equations for acid-base (neutralization reactions), a knowledge of the strength of acids and bases is essential.

I. ACIDS

1. Strong Acids

- are Strong Electrolytes
- are Acids that are completely ionized (100%) in aqueous solution and produce H₃O⁺ (H⁺) ions and an anion.
- are molecular substances in pure form Ex: HCl(g)

Example: A solution of 0.10 M HCl(aq)

$$HCl (aq) \longrightarrow H^{+}(aq) + Cl^{-}(aq)$$

0 M 0.1 M 0.1 M

In General: $HA(aq) \longrightarrow H^+(aq) + A^-(aq)$

2. Weak Acids

- are Weak Electrolytes
- are Acids that are partially ionized (less than 100%) in aqueous solution
- molecular substances in pure form Ex: HC₂H₃O₂(l)

Example: A solution of 0.10 M HC₂H₃O₂(aq)

$$HC_2H_3O_2 (aq)$$
 \Rightarrow $H^+ (aq) + C_2H_3O_2^- (aq)$ $\approx 0.001 \text{ M}$ $\approx 0.001 \text{ M}$

In General:
$$HA(aq) \rightarrow H^+(aq) + A^-(aq)$$

II. BASES

1. Strong Bases

- are Strong Electrolytes
- are Bases that are completely dissociated (100%) in aqueous solution and produce a metallic cation and OH⁻ ions
- are ionic substances in pure form(all soluble metallic hydroxides)
 Ex: Na⁺ OH⁻ (s)
 K⁺ OH⁻ (s)

Example: A solution of 0.10 M NaOH(aq)

$$NaOH(aq) \longrightarrow Na^{+}(aq) + OH^{-}(aq)$$

$$0 M \qquad 0.1 M \qquad 0.1 M$$

Example: A solution of 0.10 M Ba(OH)₂(aq)

$$Ba(OH)_2(aq)$$
 \longrightarrow $Ba^{2+}(aq)$ + $2OH^-(aq)$
0 M 0.1 M 0.2 M

In General: $BOH(aq) \longrightarrow B+(aq) + OH^-(aq)$

2. Weak Bases

- are Weak Electrolytes
- are Bases that are partially ionized (less than 100%) in aqueous solution
- molecular substances in pure form Ex: NH₃(g)

Example: A solution of 0.10 M NH₃(aq)

$$NH_3(aq) + H_2O(l)$$
 $\approx 0.099 \text{ M}$ $NH_4^+(aq) + OH^ \approx 0.001 \text{ M}$ $\approx 0.001 \text{ M}$

In General:
$$B(aq) + H_2O(l)$$
 $\rightarrow BH^+(aq) + OH^-(aq)$

COMMON ACIDS AND BASES

Strong Acids

• Completely ionized and written in their ionic forms

```
\begin{array}{lll} HI(aq) & \longrightarrow & H^{^{+}}(aq) & + & \Gamma(aq) \\ HBr(aq) & \longrightarrow & H^{^{+}}(aq) & + & Br^{^{-}}(aq) \\ HCl(aq) & \longrightarrow & H^{^{+}}(aq) & + & C\Gamma(aq) \\ HNO_3(aq) & \longrightarrow & H^{^{+}}(aq) & + & NO_3^{^{-}}(aq) \\ H_2SO_4(aq) & \longrightarrow & 2H^{^{+}}(aq) & + & SO_4^{^{2-}}(aq) \\ HClO_4(aq) & \longrightarrow & H^{^{+}}(aq) & + & ClO_4^{^{-}}(aq) \\ HClO_3(aq) & \longrightarrow & H^{^{+}}(aq) & + & ClO_3^{^{-}}(aq) \end{array}
```

Weak Acids

• Partially ionized and written in their molecular forms

```
H<sub>2</sub>C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>(aq)
HF(aq)
H<sub>2</sub>S (aq)
HCN(aq)
```

Strong Bases

• Completely ionized and written in their ionic forms

```
LiOH(aq) \longrightarrow Li<sup>+</sup>(aq) + OH<sup>-</sup>(aq)

NaOH(aq) \longrightarrow Na<sup>+</sup>(aq) + OH<sup>-</sup>(aq)

KOH(aq) \longrightarrow K<sup>+</sup>(aq) + OH<sup>-</sup>(aq)

Ba(OH)<sub>2</sub>(aq) \longrightarrow Ba<sup>2+</sup>(aq) + 2OH<sup>-</sup>(aq)

Sr(OH)<sub>2</sub>(aq) \longrightarrow Sr<sup>2+</sup>(aq) + 2OH<sup>-</sup>(aq)

Ca(OH)<sub>2</sub>(aq) \longrightarrow Ca<sup>2+</sup>(aq) + 2OH<sup>-</sup>(aq)
```

Weak Bases

• Partially ionized and written in their molecular forms

```
NH<sub>3</sub> or NH<sub>4</sub>OH
CH<sub>3</sub>NH<sub>2</sub>
CO(NH<sub>2</sub>)<sub>2</sub>
```

WRITING NET IONIC EQUATIONS FOR NEUTRALIZATION REACTIONS

Recall:

• Neutralization Reactions can be classified according to the type of acid and base (strong or weak) reacting with each other.

(A) Reaction of a Strong Acid with a Strong Base

Hydrochloric acid + Sodium hydroxide Sodium chloride + Water

Molecular Equation:

Total Ionic Equation:

$$H^{+}(aq) + Cl^{-}(aq) + Na^{+}(aq) + OH^{-}(aq) \longrightarrow Na^{+}(aq) + Cl^{-}(aq) + H_{2}O(l)$$

Net Ionic Equation:

is obtained after canceling out the spectator ions from the Total Ionic Equation:

$$H^{+}(aq) + \frac{Cl^{-}(aq) + Na^{+}(aq)}{(aq)} + OH^{-}(aq) \longrightarrow \frac{Na^{+}(aq) + Cl^{-}(aq)}{(aq)} + H_{2}O(l)$$
spectator ions
$$H^{+}(aq) + OH^{-}(aq) \longrightarrow H_{2}O(l)$$

Example:

Write net ionic equation for the reaction of nitric acid and barium hydroxide.

(B) Reaction of a Weak Acid with a Strong Base

Molecular Equation:

$$HC_2H_3O_2(aq) + NaOH(aq) \longrightarrow NaC_2H_3O_2(aq) + H_2O(l)$$

Weak Electrolyte (partially ionized) Mostly molecules

Strong Electrolyte (completely ionized) Ions only Strong Electrolyte (completely ionized) Ions only Non- Electrolyte (un-ionized) Molecules only

Total Ionic Equation:

$$HC_2H_3O_2(aq) + Na^+(aq) + OH^-(aq)$$
 \longrightarrow $Na^+(aq) + C_2H_3O_2(aq)^-(aq) + H_2O(l)$

$$HC_2H_3O_2(aq) + Na^{\dagger}(aq) + OH^{\dagger}(aq)$$

Spectator ion

Na[†] (aq) + $C_2H_3O_2(aq)^{-} + H_2O(1)$

Spectator ion

Net Ionic Equation:

$$HC_2H_3O_2(aq) + OH^-(aq) \longrightarrow C_2H_3O_2(aq)^- + H_2O(l)$$

Example:

Write net ionic equation for the reaction of hydrosulfuric acid and potassium hydroxide.

(C) Reaction of a Strong Acid with a Weak Base

Hydrochloric Acid + Ammonium hydroxide — Ammonium Chloride + Water

Molecular Equation:

Total Ionic Equation:

$$H^{+}(aq) + Cl^{-}(aq) + NH_4OH(aq) \longrightarrow NH_4^{+}(aq) + Cl(aq)^{-}(aq) + H_2O(l)$$

also written: $NH_3(aq) + H_2O(l)$

$$H^{+}(aq) + C\Gamma(aq) + NH_{4}OH(aq) \longrightarrow NH_{4}^{+}(aq) + C\Gamma(aq)^{-} + H_{2}O(l)$$

$$(NH_{3}(aq) + H_{2}O(l)$$
spectator ion

spectator ion

Net Ionic Equation:

$$H^{+}(aq) + NH_{4}OH(aq) \longrightarrow NH_{4}^{+}(aq) + H_{2}O(l)$$

$$OR$$

$$H^{+}(aq) + NH_{3}(aq) \longrightarrow NH_{4}^{+}(aq)$$

Example:

Write net ionic equation for the reaction of sulfuric acid and ammonia.

(D) Reaction of a Weak Acid with a Weak Base

Acetic Acid + Ammonium hydroxide — Ammonium acetate + Water

Molecular Equation:

$$HC_2H_3O_2(aq) + NH_4OH(aq) \longrightarrow NH_4C_2H_3O_2(aq) + H_2O(l)$$

Weak Electrolyte (partially ionized) Mostly molecules

Weak Electrolyte (partially ionized) Mostly molecules

Strong Electrolyte (completely ionized) Ions only Non- Electrolyte (un-ionized) Molecules only

Total Ionic Equation:

$$HC_2H_3O_2(aq) + NH_4OH(aq) \longrightarrow NH_4^+(aq) + C_2H_3O_2(aq)^- + H_2O(1)$$

also written: $NH_3(aq) + \frac{H_2O(1)}{1}$

NO SPECTATOR IONS ARE PRESENT!

Net Ionic Equation:

$$HC_2H_3O_2(aq) + NH_4OH(aq) \longrightarrow NH_4^+(aq) + C_2H_3O_2(aq)^- + H_2O(l)$$

Note: this is the same as the Total Ionic Equation

OR

$$HC_2H_3O_2(aq) + NH_3(aq)$$
 $NH_4^+(aq) + C_2H_3O_2^-(aq)$

Example:

Write net ionic equation for the reaction of hydrofluoric acid and ammonia.

3. Reactions that form an unstable product

• Some chemical reactions produce gas because one of the products formed in the reaction is unstable.

• Three such substances that readily decompose are:

$$H_2CO_3(aq)$$
 $CO_2(g)+$ $H_2O(l)$ (carbonic acid)

 $H_2SO_3(aq)$ $SO_2(g)+$ $H_2O(l)$ (sulfurous acid)

 $NH_4OH(aq)$ $NH_3(g)+$ ammonium hydroxide

• When any of these products appears in a chemical reaction, they should be replaced with their decomposition products.

Example 1:

$$Na_{2}CO_{3}(aq) + 2 HCl(aq) \longrightarrow NaCl(aq) + H_{2}CO_{3}(aq)$$

$$Na_{2}CO_{3}(aq) + 2 HCl(aq) \longrightarrow 2 NaCl(aq) + H_{2}CO_{3}(aq)$$

$$CO_{2}(g) \longrightarrow H_{2}O(l)$$

$$Na_{2}CO_{3}(aq) + 2 HCl(aq) \longrightarrow 2 NaCl(aq) + CO_{2}(g) + H_{2}O(l)$$

Total Ionic Equation:

$$2Na^{+}(aq) + CO_{3}^{2-}(aq) + 2H^{+}(aq) + 2Cl^{-}(aq) \rightarrow 2Na^{+}(aq) + 2Cl^{-}(aq) + CO_{2}(g) + H_{2}O(l)$$

Net Ionic Equation:

$$\frac{2\text{Na}^{+}(\text{aq})}{(\text{aq})} + \text{CO}_{3}^{2-}(\text{aq}) + 2\text{H}^{+}(\text{aq}) + \frac{2\text{CI}^{-}(\text{aq})}{(\text{aq})} \rightarrow \frac{2\text{Na}^{+}(\text{aq})}{(\text{aq})} + \frac{2\text{CI}^{-}(\text{aq})}{(\text{aq})} + \text{CO}_{2}(g) + \text{H}_{2}\text{O}(l)$$

$$\frac{\text{CO}_{3}^{2-}(\text{aq})}{(\text{aq})} + 2\text{H}^{+}(\text{aq}) + \frac{2\text{CI}^{-}(\text{aq})}{(\text{aq})} + \frac{2\text{CI}^{-}(\text{aq})}{(\text{a$$

Example 2:

$$CaCO_3(s) + 2 HNO_3(aq) \longrightarrow Ca(NO_3)_2(aq) + H_2CO_3(aq)$$
 unstable

$$CaCO_3(s) + 2 HNO_3(aq)$$
 $Ca(NO_3)_2(aq)$ $Co_2(g)$ $Co_2(g)$

$$CaCO_3(s) + 2 HNO_3(aq)$$
 $Ca(NO_3)_2(aq) + CO_2(g) + H_2O(l)$

Total Ionic Equation:

$$CaCO_3(s) + 2H^+(aq) + 2NO_3^-(aq)$$
 $Ca^{2+}(aq) + 2NO_3^-(aq) + CO_2(g) + H_2O(l)$

Net Ionic Equation:

$$CaCO_3(s) + 2H^+(aq) + 2NO_3^-(aq)$$
 $Ca^{2+}(aq) + 2NO_3^-(aq) + CO_2(g) + H_2O(l)$ $CaCO_3(s) + 2H^+(aq)$ $Ca^{2+}(aq) + CO_2(g) + H_2O(l)$

Example 3:

Write a balanced net ionic equation for the reaction of sodium sulfite and hydrobromic acid.