GAS MIXTURES

• Consider mixing equal volumes of 3 different gases, all at the same temperature and pressure in a container of the same size.

P(mixture) = 6 atm

NOTE: 1. H

Each gas in a mixture of gases acts as though it were the only gas in the mixture

2.
$$P(mixture) = P(He) + P(N_2) + P(O_2)$$

$$PARTIAL PRESSURES$$

DALTON'S LAW OF PARTIAL PRESSURES

• The Total Pressure (P_T) of a mixture of gases is equal to the sum of the partial pressures of the gases in the mixture.

$$P_T = P_A$$
 + P_B + P_C +

MOLE FRACTION OF A GAS IN A MIXTURE OF GASES

Gas A + Gas B + Gas C = Mixture of gases

Total Number of Moles of gas in the Mixture = N

 N_A = number of moles of gas A

 N_B = number of moles of gas B

 N_C = number of moles of gas C

$$N = N_A + N_B + N_C$$

$$\begin{array}{c} N_A \\ \underline{\hspace{1cm}} \\ N \end{array} = \text{Mole Fraction of Gas A} = X_A$$

$$N_B$$
= Mole Fraction of Gas B = X_B

$$N_C$$
= Mole Fraction of Gas $C = X_C$

$\underline{\text{Mole Percent}} = \underline{\text{Mole fraction X 100}}$

Example: Mole % of A = $\frac{N_A}{N}$ x 100

DALTON'S LAW OF PARTIAL PRESSURES

• The **Pressure** of a sample gas is **directly proportional** to the number of molecules (expressed as **number of moles**) of gas.

$$\frac{P_A}{P} = \frac{N_A}{N}$$

$$\frac{P_B}{P} = \frac{N_B}{N}$$

$$\frac{P_{C}}{P} = \frac{N_{C}}{N}$$

Where:

- N_A , N_B , N_C = number of moles of gas A, B and C respectively
- N = total number of moles of gas mixture
- P_A , P_B , P_C = partial pressures of gas A, B and C respectively
- P = total pressure of gas mixture

Alternately,

$$P_A = X_A P$$
 $P_B = X_B P$ $P_C = X_C P$

Examples:

1. Calculate the total pressure (in atm) and partial pressure of each gas in a mixture composed of 0.0200 moles helium gas and 0.0100 moles hydrogen gas in a 5.00 L flask at 10⁰ C.

 $N_T = 0.0200 \text{ mol} + 0.0100 \text{ mol} = 0.0300 \text{ mol}$

$$n_T = 0.0300 \text{ mol}$$

 $V = 5.00 \text{ L}$
 $T = 283 \text{ K}$
 $P = ?$

$$\mathbf{P} \mathbf{V} = \mathbf{n}_{\mathbf{T}} \mathbf{R} \mathbf{T}$$

$$\mathbf{P} = \frac{\mathbf{n}_{\mathbf{T}} \mathbf{R} \mathbf{T}}{\mathbf{V}}$$

$$P = \frac{(0.300 \text{ mol})(0.0821 \frac{\text{L atm}}{\text{mol K}})(283 \text{ K})}{5.00 \text{ L}} = 0.139 \text{ atm}$$

$$P_{He} = X_{He} P =$$

$$P_{H2} = X_{H2} \; P =$$

2. The atmosphere in a sealed diving bell contains oxygen and helium. If the gas mixture has 0.200 atmospheres of oxygen and a total pressure of 3.00 atmospheres, calculate the mass of helium in 1.00 L of gas mixture at 20^{0} C.

PART A: Calculate the pressure of helium

$$P_T = P_{Oxygen} + P_{Helium}$$
 $P_{Helium} = P_T - P_{Oxygen}$ $P_{Helium} = 3.00 \ atm - 0.200 \ atm = 2.80 \ atm$

PART B: Calculate the number of moles of Helium

$$\begin{array}{c} P_{He} = \ 2.80 \ atm \\ V_{He} = \ 1.00 \ L \\ T_{He} = \ 293 \ K \\ \textbf{n}_{He} = \ ? \end{array} \qquad \begin{array}{c} PV \\ \text{PV} = \textbf{n} \ R \ T \\ \hline n = \frac{(2.80 \ atm)(1.00 \ L)}{(0.0821 \frac{L \ atm}{mol \ K})(293 \ K)} = 0.11\underline{65} \ mol \end{array}$$

<u>PART C</u>: Calculate the mass of Helium

? g He =
$$0.11\underline{6}5$$
 moles He x $\frac{4.00 \text{ g He}}{1 \text{ mole He}}$ = 0.466 g He

3. A mixture of 0.25 mol H_2 and 0.45 mol of N_2 are placed in a 1.50-L flask at 27°C. Calculate the partial pressures of each gas and the total pressure.

4. The partial pressure of CH₄ gas is 0.175 atm and that of O₂ gas is 0.250 atm in a mixture of the two gases. What is the mole fraction of each gas in the mixture?

COLLECTING GASES OVER WATER

- Many gases are commonly collected over water.
- Consider the collection of Hydrogen gas from the reaction of zinc with hydrochloric acid:

P(H₂O) = is temperature dependent = is given in tables (Table 5.6, page 206)

Example:

1. An aqueous solution of ammonium nitrite decomposes when heated to give off nitrogen gas and water vapor:

$$NH_4NO_2(aq)$$
 -----> $2 H_2O(g)$ + $N_2(g)$

How many grams of NH₄NO₂ must have reacted if 4.16 L of N₂ gas was collected over water at 19 °C and 0.965 atmospheres of pressure?

$$NH_4NO_2 (aq)$$
 \longrightarrow $2 H_2O(g)$ + $N_2(g)$ $+ 16 L$

PART A: Calculate the pressure of dry Nitrogen

$$P_T = P(N_2) + Pressure of Water Vapor$$

 $P(N_2) = P_T - Pressure of Water Vapor$

$$P_T = 0.965$$
 atm
Pressure of Water Vapor = ? Table 5.6 at $19 \,^{\circ}\text{C} \implies P(H_2O) = 16.5 \text{mmHg}$

$$\frac{1 \text{ atm}}{16.5 \text{ mm Hg x}} = 0.0217 \text{ atm}$$

$$\frac{1 \text{ atm}}{760.0 \text{ mm Hg}} = 0.0217 \text{ atm}$$

$$P(N_2) = 0.965 \text{ atm} - 0.0217 \text{ atm} = 0.9433 \text{ atm}$$

PART B: Calculate the number of moles of nitrogen

P = 0.9433 atm
V = 4.16 L
T = 292 K
n = ?

$$n = \frac{(0.94\underline{33 \text{ atm}})(4.16 \text{ L})}{(0.0821 \frac{\text{L} \text{ atm}}{\text{mol K}})(292 \text{ K})} = 0.16\underline{37 \text{ mol}}$$

PART C: Calculate the mass of NH₄NO₂ (Stoichiometry)

$$1 \frac{\text{mole NH}_4\text{NO}_2}{\text{?g NH}_4\text{NO}_2} = 0.16\underline{3}7 \frac{\text{moles N}_2}{\text{mole N}_2} \times \frac{64.06 \text{ g NH}_4\text{NO}_2}{\text{3}} = 10.5 \text{ g}$$

$$1 \frac{\text{mole NH}_4\text{NO}_2}{\text{1 mole NH}_4\text{NO}_2} = 10.5 \text{ g}$$

2. Helium is collected over water at 25°C and 1.00 atm total pressure. What volume of gas must be collected to obtain 0.586 g of helium? (At 25°C the vapor pressure of water is 23.8 mmHg)

KINETIC - MOLECULAR THEORY OF IDEAL GASES

(Theory of Gas Molecules in Motion)

Ideal Gas = A gas that follows the IDEAL GAS LAW (PV = nRT)

BASIC IDEA:

A GAS CONSISTS OF MOLECULES IN CONSTANT RANDOM MOTION

Recall: Kinetic Energy =
$$E_K = \frac{1}{-mv^2}$$
 m = mass of molecule $v = molecular$ speed $E_K = energy$ of moving molecule

POSTULATE 1:

• The size of molecules is negligible compared to the intermolecular distances

Consequence:

• The Volume of a gas is determined by the distances between the molecules.

POSTULATE 2:

• Molecules move randomly in straight lines in all directions and at various speeds

Consequence:

• The Pressure of a gas is the same in all directions

POSTULATE 3:

• The attractive or repulsive forces between molecules are very weak (negligible)

POSTULATE 4:

• When molecules collide with one another, the collisions are elastic (no energy is lost). This is similar to collisions between billiard balls.

POSTULATE 5:

The Average Kinetic Energy is directly proportional to the Absolute Temperature

INTERPRETATION OF THE KINETIC-MOLECULAR THEORY OF GASES

The **PRESSURE** of a gas results from:

-The **COLLISIONS** of the molecules with the walls

of the container

The NUMBER OF COLLISIONS is determined by: -the number of molecules per unit volume

-average speed of molecules

BOYLE'S LAW

Recall: The Temperature is constant; therefore: $KE_{ave} = constant$

An Increase In Volume

 \Longrightarrow

Decreases the number of molecules per unit volume

Decreases the frequency of collisions

Decreases the Pressure

CHARLES' LAW

Recall: The pressure is constant, therefore: Frequency and force of molecular collisions are constant.

An Increase In Temperature Increases Average
Molecular Speed

Increases the Volume (molecules spread), in order to maintain frequency of collisions unchanged

MOLECULAR SPEEDS

- In gases, molecular speeds vary over a wide range
- Meaning: Different molecules move at different speeds, that are constantly changing, as the molecules collide with one another and the walls of the container

It is more convenient to refer to:

U = AVERAGE MOLECULAR SPEED

THE SPEED OF A MOLECULE HAVING AVERAGE KINETIC ENERGY (KE_{AVE})

$$\mathbf{U} = \sqrt{\frac{3 \mathbf{R} \mathbf{T}}{\mathbf{M}_{\mathbf{m}}}}$$

R = gas constant

T = absolute temperature

 $M_m = molar mass$

NOTE: The higher the molar mass, the lower the average molecular speed.

(The heavier the molecules, the slower they move)

DIFFUSION & EFFUSION

• Diffusion is the process by which a gas spreads through another gas.

• Effusion is the process by which a gas flows out from a container through a small hole.

- Same Volume, Same Pressure, Same Temperature, Same Size Hole
- Which Balloon deflates faster? OR Which gas has a higher Rate of Effusion?
- What is the **Ratio between the Rates of Effusion**?

Rate of Effusion depends on:

- 1. The cross-sectional area of the hole (the same)
- 2. The number of molecules per unit volume (the same)
- 3. The average Molecular Speed (U) (different) (the faster they move, the sooner they escape)

Recall:
$$U = \sqrt{\frac{3 R T}{M_{m}}}$$

NOTE: The Rate of Effusion:

- is directly proportional to the Average Molecular Speed (U)
- is inversely proportional to the square root of the Molar Mass

GRAHAM'S LAW OF EFFUSION

• The Rate of Effusion is inversely proportional to the square root of the Molar Mass

$$\frac{\text{Rate of Effusion of H}_2}{\text{Rate of Effusion of O}_2} = \frac{\sqrt{\text{Molar Mass of O}_2}}{\sqrt{\text{Molar Mass of H}_2}} = \sqrt{\frac{32.0}{2.0}} = 4$$

Conclusion: Hydrogen will effuse 4 times faster than Oxygen

Examples:

1. Obtain the ratio of effusion of H₂ and H₂S under the same conditions.

$$\frac{\text{Rate H}_2}{\text{Rate H}_2\text{S}} = \frac{\sqrt{M_{\text{m}} (\text{H}_2\text{S})}}{\sqrt{M_{\text{m}} (\text{H}_2)}} = \sqrt{\frac{34}{2}} = 4.1$$

2. If 0.10 mol of I₂ vapor can effuse from an opening in a heated vessel in 52 seconds, how long will it take 0.10 mol of H₂ to effuse under the same condition?

$$\frac{\text{Rate H}_2}{\text{Rate I}_2} = \frac{\sqrt{M_m (I_2)}}{\sqrt{M_m (H_2)}} = \sqrt{\frac{253.8}{2.02}} = 11.2$$

H₂ effuses 11.2 faster than I₂

It follows that the time t takes H_2 to effuse is 11.2 times shorter:

$$T (H_2) = \frac{52 \text{ seconds}}{11.2} = 4.6 \text{ seconds}$$

Chapter 5 Chemistry 101

REAL GASES

Gases behave according to the Ideal Gas Law, provided:

- 1. The space occupied by molecules is truly negligible compared to the total gas volume (Postulate 1),
- 2. The intermolecular forces of attraction are truly negligible (Postulate 3)

THIS IS TRUE:

- at High Temperature, and
- at Low Pressure

Reasons:

- Molecules are far apart
- Molecules do not attract

IDEAL GAS

$$PV = nRT$$

THIS IS NOT QUITE TRUE:

- at Low Temperature, and
- at High Pressure

Reasons:

Molecules are relatively closer

As such:

- Volume occupied by molecules must be taken into account
- Intermolecular forces between molecules are not negligible and molecules begin to attract one another

$$(P + \frac{n^2 a}{V^2})(V-nb) = nRT$$

Van Der Waals Equation for Real Gases

NOTE:

V (intermolecular space) becomes (V - nb)

decreased Volume accounts for space occupied by molecules)

P becomes

increased Pressure accounts for intermolecular forces of attraction

a and bare constants

have different values for different gases