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a. Make a scatterplot of the data.

b. Find and plot a regression line, and superimpose the line on 
the scatterplot.

c. Find and plot a quadratic curve that captures the trend of the 
data, and superimpose the curve on the scatterplot.

42. Growth of yeast cells The table shows the amount of yeast 
cells (measured as biomass) growing over a 7-hour period in a 
nutrient, as recorded by R. Pearl (1927) during a well-known bio-
logical experiment.

a. Make a scatterplot of the data.

b. Find and plot a regression quadratic, and superimpose the 
quadratic curve on the scatterplot.

c. What do you estimate as the biomass of yeast in the nutrient 
after 11 hours?

d. Do you think the quadratic curve would provide a good estimate 
of the biomass after 18 hours? Give reasons for your answer.

Hour 0 1 2 3 4 5 6 7

Biomass 9.6 18.3 29.0 47.2 71.1 119.1 174.6 257.3

Year Index (°C) Year Index (°C)

1940 0.04 1980 0.20
1945 0.06 1985 0.05
1950 -0.16 1990 0.36
1955 -0.11 1995 0.39
1960 -0.01 2000 0.35
1965 -0.12 2005 0.62
1970 0.03 2010 0.63
1975 -0.04

1.5 Exponential Functions

Exponential functions are among the most important in mathematics and occur in a wide 
variety of applications, including interest rates, radioactive decay, population growth, the 
spread of a disease, consumption of natural resources, the earth’s atmospheric pressure, tem-
perature change of a heated object placed in a cooler environment, and the dating of fossils. 
In this section we introduce these functions informally, using an intuitive approach. We give 
a rigorous development of them in Chapter 7, based on important calculus ideas and results.

Exponential Behavior

When a positive quantity P doubles, it increases by a factor of 2 and the quantity becomes 
2P. If it doubles again, it becomes 2(2P) = 22P, and a third doubling gives 2(22P) = 23P.
Continuing to double in this fashion leads us to consider the function ƒ(x) = 2x. We call 
this an exponential function because the variable x appears in the exponent of 2x. Func-
tions such as g(x) = 10 x and h(x) = (1>2)x are other examples of exponential functions. 
In general, if a ≠ 1 is a positive constant, the function

ƒ(x) = ax, a > 0

is the exponential function with base a.

EXAMPLE 1  In 2014, $100 is invested in a savings account, where it grows by 
accruing interest that is compounded annually (once a year) at an interest rate of 5.5%. 
Assuming no additional funds are deposited to the account and no money is withdrawn, 
give a formula for a function describing the amount A in the account after x years have 
elapsed.

Solution If P = 100, at the end of the first year the amount in the account is the original 
amount plus the interest accrued, or

P + a 5.5
100
bP = (1 + 0.055)P = (1.055)P.

At the end of the second year the account earns interest again and grows to

(1 + 0.055) # (1.055P) = (1.055)2P = 100 # (1.055)2. P = 100

Don’t confuse the exponential 2x with 
the power function x2. In the exponen-
tial, the variable x is in the exponent, 
whereas the variable x is the base in the 
power function.
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Continuing this process, after x years the value of the account is

A = 100 # (1.055)x.

This is a multiple of the exponential function with base 1.055. Table 1.5 shows the 
amounts accrued over the first four years. Notice that the amount in the account each year 
is always 1.055 times its value in the previous year.

TABLE 1.5 Savings account growth

Year Amount (dollars) Increase (dollars)

2014 100  

2015 100(1.055) = 105.50 5.50

2016 100(1.055)2 = 111.30 5.80

2017 100(1.055)3 = 117.42 6.12

2018 100(1.055)4 = 123.88 6.46

In general, the amount after x years is given by P(1 + r)x, where r is the interest rate 
(expressed as a decimal).

For integer and rational exponents, the value of an exponential function ƒ(x) = ax is 
obtained arithmetically as follows. If x = n is a positive integer, the number an is given by 
multiplying a by itself n times:

an = a # a # g # a.(++)++*
         n factors

If x = 0, then a0 = 1, and if x = -n for some positive integer n, then

a-n = 1
an = a1ab

n

.

If x = 1>n for some positive integer n, then

a1>n = 2n a,

which is the positive number that when multiplied by itself n times gives a. If x = p>q is 
any rational number, then

ap>q = 2q ap = 12q a2p.
If x is irrational, the meaning of ax is not so clear, but its value can be defined by con-

sidering values for rational numbers that get closer and closer to x. This informal approach 
is based on the graph of the exponential function, as we are about to describe. In Chapter 7 
we define the meaning in a rigorous way.

We displayed the graphs of several exponential functions in Section 1.1, and show 
them again in Figure 1.55. These graphs indicate the values of the exponential functions 
for all real inputs x. The value at an irrational number x is chosen so that the graph of ax

has no “holes” or “jumps.” Of course, these words are not mathematical terms, but they do 
convey the informal idea. We mean that the value of ax, when x is irrational, is chosen so 
that the function ƒ(x) = ax is continuous, a notion that will be carefully explored in the 
next chapter. This choice ensures the graph retains its increasing behavior when a 7 1, or 
decreasing behavior when 0 6 a 6 1 (see Figure 1.55).

Arithmetically, the graphical idea can be described in the following way, using the 
exponential function ƒ(x) = 2x as an illustration. Any particular irrational number, say 
x = 23, has a decimal expansion

23 = 1.732050808 c.

(a) y = 2x, y = 3x, y = 10x
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FIGURE 1.55 Graphs of exponential 
functions.
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We then consider the list of numbers, given as follows in the order of taking more and 
more digits in the decimal expansion,

21, 21.7, 21.73, 21.732, 21.7320, 21.73205, c. (1)

We know the meaning of each number in list (1) because the successive decimal approxi-
mations to 23 given by 1, 1.7, 1.73, 1.732, and so on, are all rational numbers. As these 
decimal approximations get closer and closer to 23, it seems reasonable that the list of 
numbers in (1) gets closer and closer to some fixed number, which we specify to be 223.

Table 1.6 illustrates how taking better approximations to 23 gives better approxima-
tions to the number 223 ≈ 3.321997086. It is the completeness property of the real num-
bers (discussed briefly in Appendix 7) which guarantees that this procedure gives a single 
number we define to be 223 (although it is beyond the scope of this text to give a proof). In 
a similar way, we can identify the number 2x (or ax, a 7 0) for any irrational x. By identi-
fying the number ax for both rational and irrational x, we eliminate any “holes” or “gaps” in 
the graph of ax. In practice you can use a calculator to find the number ax for irrational x by 
taking successive decimal approximations to x and creating a table similar to Table 1.6.

Exponential functions obey the familiar rules of exponents listed below. It is easy to 
check these rules using algebra when the exponents are integers or rational numbers. We 
prove them for all real exponents in Chapters 4 and 7.

TABLE 1.6 Values of 223 for 

rational r closer and closer to23

r 2r

1.0 2.000000000

1.7 3.249009585

1.73 3.317278183

1.732 3.321880096

1.7320 3.321880096

1.73205 3.321995226

1.732050 3.321995226

1.7320508 3.321997068

1.73205080 3.321997068

1.732050808 3.321997086

Rules for Exponents
If a 7 0 and b 7 0, the following rules hold true for all real numbers x and y.

1. ax # ay = ax+ y 2. ax

ay = ax- y

3. (ax)y = (ay)x = axy 4. ax # bx = (ab)x

5. ax

bx = aa
b
b x

EXAMPLE 2  We illustrate using the rules for exponents to simplify numerical expressions.

1. 31.1 # 30.7 = 31.1+0.7 = 31.8 Rule 1

2.
121023
210

= 121023-1 = 121022 = 10 Rule 2

3. 1522222 = 522 # 22 = 52 = 25 Rule 3

4. 7p # 8p = (56)p Rule 4

5. a49b
1>2

= 41>2
91>2 = 2

3 Rule 5

The Natural Exponential Function ex

The most important exponential function used for modeling natural, physical, and economic 
phenomena is the natural exponential function, whose base is the special number e.
The number e is irrational, and its value is 2.718281828 to nine decimal places. (In Sec-
tion 3.8 we will see a way to calculate the value of e.) It might seem strange that we would 
use this number for a base rather than a simple number like 2 or 10. The advantage in 
using e as a base is that it simplifies many of the calculations in calculus.

If you look at Figure 1.55a you can see that the graphs of the exponential functions 
y = ax get steeper as the base a gets larger. This idea of steepness is conveyed by the slope 
of the tangent line to the graph at a point. Tangent lines to graphs of functions are defined 
precisely in the next chapter, but intuitively the tangent line to the graph at a point is a line 
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that just touches the graph at the point, like a tangent to a circle. Figure 1.56 shows the 
slope of the graph of y = ax as it crosses the y-axis for several values of a. Notice that the 
slope is exactly equal to 1 when a equals the number e. The slope is smaller than 1 if 
a 6 e, and larger than 1 if a 7 e. This is the property that makes the number e so useful 
in calculus: The graph of y = ex has slope 1 when it crosses the y-axis.

Exponential Growth and Decay

The exponential functions y = ekx, where k is a nonzero constant, are frequently used for 
modeling exponential growth or decay. The function y = y0 ekx is a model for exponential
growth if k 7 0 and a model for exponential decay if k 6 0. Here y0 represents a con-
stant. An example of exponential growth occurs when computing interest compounded
continuously modeled by y = P # ert, where P is the initial monetary investment, r is the 
interest rate as a decimal, and t is time in units consistent with r. An example of exponen-
tial decay is the model y = A # e-1.2*10-4t, which represents how the radioactive isotope 
carbon-14 decays over time. Here A is the original amount of carbon-14 and t is the time in 
years. Carbon-14 decay is used to date the remains of dead organisms such as shells, 
seeds, and wooden artifacts. Figure 1.57 shows graphs of exponential growth and expo-
nential decay.
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FIGURE 1.56 Among the exponential functions, the graph of y = ex has the property that the 
slope m of the tangent line to the graph is exactly 1 when it crosses the y-axis. The slope is smaller 
for a base less than e, such as 2x, and larger for a base greater than e, such as 3x.

FIGURE 1.57 Graphs of (a) exponential growth, k = 1.5 7 0, and (b) exponential decay, 
k = -1.2 6 0.
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EXAMPLE 3  Investment companies often use the model y = Pert in calculating the 
growth of an investment. Use this model to track the growth of $100 invested in 2014 at an 
annual interest rate of 5.5%.

Solution Let t = 0 represent 2014, t = 1 represent 2015, and so on. Then the exponen-
tial growth model is y(t) = Pert, where P = 100 (the initial investment), r = 0.055 (the 
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annual interest rate expressed as a decimal), and t is time in years. To predict the amount in 
the account in 2018, after four years have elapsed, we take t = 4 and calculate

y(4) = 100e0.055(4)

= 100e0.22

= 124.61. Nearest cent using calculator

This compares with $123.88 in the account when the interest is compounded annually 
from Example 1.

EXAMPLE 4  Laboratory experiments indicate that some atoms emit a part of their 
mass as radiation, with the remainder of the atom re-forming to make an atom of some 
new element. For example, radioactive carbon-14 decays into nitrogen; radium eventually 
decays into lead. If y0 is the number of radioactive nuclei present at time zero, the number 
still present at any later time t will be

y = y0 e-rt, r 7 0.

The number r is called the decay rate of the radioactive substance. (We will see how this 
formula is obtained in Section 7.2.) For carbon-14, the decay rate has been determined 
experimentally to be about r = 1.2 * 10-4 when t is measured in years. Predict the per-
cent of carbon-14 present after 866 years have elapsed.

Solution If we start with an amount y0 of carbon-14 nuclei, after 866 years we are left 
with the amount

y(866) = y0 e(-1.2*10-4) (866)

≈ (0.901)y0. Calculator evaluation

That is, after 866 years, we are left with about 90% of the original amount of carbon-14, 
so about 10% of the original nuclei have decayed. In Example 7 in the next section, you 
will see how to find the number of years required for half of the radioactive nuclei present 
in a sample to decay (called the half-life of the substance).

You may wonder why we use the family of functions y = ekx for different values of the 
constant k instead of the general exponential functions y = ax. In the next section, we show 
that the exponential function ax is equal to ekx for an appropriate value of k. So the formula 
y = ekx covers the entire range of possibilities, and we will see that it is easier to use.

Sketching Exponential Curves
In Exercises 1–6, sketch the given curves together in the appropriate 
coordinate plane and label each curve with its equation.

1. y = 2x, y = 4x, y = 3-x, y = (1>5)x

2. y = 3x, y = 8x, y = 2-x, y = (1>4)x

3. y = 2-t and y = -2t 4. y = 3-t and y = -3t

5. y = ex and y = 1>ex 6. y = -ex and y = -e-x

In each of Exercises 7–10, sketch the shifted exponential curves.

7. y = 2x - 1 and y = 2-x - 1

8. y = 3x + 2 and y = 3-x + 2

9. y = 1 - ex and y = 1 - e-x

10. y = -1 - ex and y = -1 - e-x

Applying the Laws of Exponents
Use the laws of exponents to simplify the expressions in Exercises 
11–20.

11. 162 # 16-1.75 12. 91>3 # 91>6

13. 44.2

43.7 14.
35>3
32>3

15. 1251>824 16. 11322222>2
17. 223 # 723 18. 12321>2 # 121221>2
19. a 2

22
b4

20. a26
3
b2

Exercises 1.5
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31. Radioactive decay The half-life of phosphorus-32 is about 
14 days. There are 6.6 grams present initially.

a. Express the amount of phosphorus-32 remaining as a func-
tion of time t.

b. When will there be 1 gram remaining?

32. If Jean invests $2300 in a retirement account with a 6% interest rate 
compounded annually, how long will it take until Jean’s account 
has a balance of $4150?

33. Doubling your money Determine how much time is required 
for an investment to double in value if interest is earned at the rate 
of 6.25% compounded annually.

34. Tripling your money Determine how much time is required 
for an investment to triple in value if interest is earned at the rate 
of 5.75% compounded continuously.

35. Cholera bacteria Suppose that a colony of bacteria starts with 
1 bacterium and doubles in number every half hour. How many 
bacteria will the colony contain at the end of 24 hr?

36. Eliminating a disease Suppose that in any given year the num-
ber of cases of a disease is reduced by 20%. If there are 10,000 
cases today, how many years will it take

a. to reduce the number of cases to 1000?

b. to eliminate the disease; that is, to reduce the number of cases 
to less than 1?

Composites Involving Exponential Functions
Find the domain and range for each of the functions in Exercises 
21–24.

21. ƒ(x) = 1
2 + ex 22. g(t) = cos (e-t)

23. g(t) = 21 + 3-t 24. ƒ(x) = 3
1 - e2x

Applications
In Exercises 25–28, use graphs to find approximate solutions.

25. 2x = 5 26. ex = 4

27. 3x - 0.5 = 0 28. 3 - 2-x = 0

In Exercises 29–36, use an exponential model and a graphing calcula-
tor to estimate the answer in each problem.

29. Population growth The population of Knoxville is 500,000 
and is increasing at the rate of 3.75% each year. Approximately 
when will the population reach 1 million?

30. Population growth The population of Silver Run in the year 
1890 was 6250. Assume the population increased at a rate of 
2.75% per year.

a. Estimate the population in 1915 and 1940.

b. Approximately when did the population reach 50,000?

T

T

1.6 Inverse Functions and Logarithms

A function that undoes, or inverts, the effect of a function ƒ is called the inverse of ƒ.
Many common functions, though not all, are paired with an inverse. In this section we 
present the natural logarithmic function y = ln x as the inverse of the exponential function 
y = ex, and we also give examples of several inverse trigonometric functions.

One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain. Some 
functions assign the same range value to more than one element in the domain. The func-
tion ƒ(x) = x2 assigns the same value, 1, to both of the numbers -1 and +1; the sines of 
p>3 and 2p>3 are both 23>2. Other functions assume each value in their range no more 
than once. The square roots and cubes of different numbers are always different. A func-
tion that has distinct values at distinct elements in its domain is called one-to-one. These 
functions take on any one value in their range exactly once.

DEFINITION A function ƒ(x) is one-to-one on a domain D if ƒ(x1) ≠ ƒ(x2)
whenever x1 ≠ x2 in D.

EXAMPLE 1  Some functions are one-to-one on their entire natural domain. Other 
functions are not one-to-one on their entire domain, but by restricting the function to a 
smaller domain we can create a function that is one-to-one. The original and restricted 
functions are not the same functions, because they have different domains. However, the 
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