Signals and systems

Chapter 2: systems



Introduction:

* The system is any process that results in transformation on a signal
* It has an input

* An out put

* A transformation function

Excitation SYSTEM Response
> with

Functional relationship

or Output
¥(1) or y[n]

or Input
x(1) or x|n]
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Systems has two types :

e 1-Linear Time Invariant Continuous (LTIC) Time System
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e 2- Linear Time Invariant Discrete (LTID) Time System
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Properties (Classification) of
Continuous Time System



Linear and Non-linear Systems
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* For composite signal
o i, ) —= Y (F)
o X (1) —= ay L&)
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* Thus, for a continuous system to be linear, the weighted sum of
several inputs produces the weighted sum of outputs. In other words,
it should satisfy the homogeneity and additivity properties of
superposition theorem. If the above conditions are not satisfied the
system is said to be non-linear.



Step By Step Procedure to Test Linearity

1. Let

yi(t) = fxi (1))
y2(t) = f(x2(1))

Find the weighted sum of the output

v3(t) = a1y (1) + axy2(1)
y3(t) = a1 f(x1(1)) + az f(x2(2))

where a; and a, are called the weights.
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2. For the linear combination of input [a;x(f) 4+ a>x>(?)] find the output for the
weighted sum of the input.

ya(t) = flaixi(t) + axxx(1)]

y3(t) = ya(1)
the system is linear. Otherwise the system is non-linear. The following examples,

illustrate the method of testing the linearity of continuous time systems.
4. If the output is not zero for zero input, the system will be non-linear.
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Consider the following input-output equation of a certain system.

y(t) = [2x(1)]°

Determine whether the system is linear or non-linear.

Solution: y(1) = [2x(1)]?
= 4x%(1)
V(1) = dxi (1)
2(t) = 4x3 (1)

The weighted sum of the output is,

y3(t) = ayy (1) + axy2(1)
= 4a;x} (1) + 4ax3 (1)

The output due to the weighted sum of the input [a;x; + azx2] 1s,

va(t) = 4[ayx, (t) + arx2 (1)1
= A[alxi (1) + a3x3 (1) + 2ayazx; (H)x2(1)]

y3(1) # ya(r)
Hence, the system is non-linear.
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8/2/2024

y(t) = 2x(t + 1)

yi(t) = *x(t + 1)
y2(t) = Pxa(t + 1)
y3(t) = a1y (1) + axy2(¢)

= *laix (t + 1) + axxa(t + 1)]
ya(t) = layx (t + 1) + axxa(t + 1)]
y3(t) = ya(t)

The system 1s Linear.

Dr. Mahmoud Sawalha

11



y(t) = E,x(1) |
y0%=§h0%+ﬂ—ﬂ]

1
@) = E[—xl (1) +x1(=1)]
1
y2(1) = 5[1‘2(&‘) +x2(=0)]
The weighted sum of the output is,

y3(1) = a1y (1) + axy(1)
1
= Elal-xl(f) + axxy(t) + a1xi(—t) + arxa(—1)]

The output due to the weighted sum of the input is,

1
ya(t) = E[al (1 (1) + x1(=1)) + a2 (x2(?) + x2(=1))]

1
= E[alxl(t) + axx2(t) + ayx) (—1) + axxa(—1)]
y3(t) = ya(1)

The system is Linear.
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8/2/2024

y(f) — E—Z.t’{t)

For x(¢) = 0, y(f) = 1 and not zero. Hence the system is non-linear. Also

@) =e>®

}’2(1‘) — g—h-g(r)
v3(t) = ayyi1(t) +axy:(t) = ale_hl{” + aze—h'zif)
_}M,(I) — E—Z(mxl (D+arxa(t)) _ E—Za;x,(rje—hzxg{r]

y3(t) # y4(2)

The system is Non-linear.
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Time Invariant and Time Varying Systems

e A continuous time system is said to be time invariant if the
parameters of the system do not change with time

(a)

R

(c)

A }C( I)

x(1)

x(t—1y)

y(2)

x(1)

Delay

x(t—1ty)

A 4

Delay

y(t—1y)

v

y(tat())

v



Step 1. For the delayed input x(z — 79) obtain the output y(#, ).
Step 2. Obtain the expression for the delayed output y(z — 7p) by substituting ¢ =
(t — 19).
Step 3. It y(z,19) = y(t — ty), then the system is time invariant. Otherwise it is a time
varying system.
y(t) = tx(t)

1. For the delayed input x(t — 1), the output y(¢, 7y) 1s obtained as
y(t,10) = 1x(t — 1o)
2. The delayed output y(z — #p) is obtained by substituting t =t — ¢, in the

given equation
y(t —19) = (1 — 10)x(t — toy)

3. y(t —19) # y(t, 1)
4.

The system is Time Varying.
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y(£) = cosx(?)

1. y(t,t9) = cosx(t — tp) [For Delayed input]
2. y(t —tg) = cosx(t — ty) [Delayed output]

3. y(t —ty) = y(t, ty)
4.

The system 1s Time Invariant.
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8/2/2024

y(O) = e
1. The output due to delayed input 1s,

y(t,10) = €77

2. The delayed output is obtained by putting t = ¢t — 1y

(i = tg) = 707

3. y(t — 1) = y(t,1p)
4.

The system 1s Time Invariant.

Dr. Mahmoud Sawalha
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8/2/2024

y(t) = at*x(t) + btx(t = 2)
The output y(7, f9) due to the delayed input x(z — 7p) 18

y(t, 10) = at*x(t — ty) + btx(t — tg — 2)
The delayed output y(# — 1) 1s obtained by substituting 1 = 1 — 1.
y(t —to) = at — 10)"x(t — to) + b(t — to)x(t — 10 — 2)
From equations (a) and (b) we see

y(t,tp) # y(t — 1)

The system 1s Time Varying.

Dr. Mahmoud Sawalha
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Static and Dynamic Systems
(Memoryless and System with Memory)

* A dynamic system is defined as a system in which the output signal at
any specified time depends on the values of the input signals at the
specific time at other time also.

* A static system is defined as a system in which the output signal at
any specified time depends on the present value of the input signal
alone. Static system is also called as instantaneous system



8/2/2024

t =to, Present input.
I <ty, Past input.

t > to, Future input.

Dr. Mahmoud Sawalha
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@ y@)=xt+1)+35
y(0) =x(1)+ 5

=0 A X(7)
x(1)
. A
Future mput—-» <«— Qutput
< >
-t 0 1 !

The system response depends on the future input x(# 4+ 1) where ¢ > t,. Hence

The system 1s Dynamic.

wi. viatiiii



(b) y(t) = x(t?)

Fortr =1,
y(l) = x(1) [t = ty Present input]
Fort = 2,
y(2) = x(4)
=2 x2)  x(4)
Future |<«— Output
‘ input
—1 0 2 + t Theresponse depends on the present and future

inputs. The output x(4) depends upon the future input x(2). Hence

The system is Dynamic.
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(h)

(1)

8/2/2024

y(it)=2x({t)+3
The output always depends on the present input. Hence

The system 1s Static.

y(t) = e
The output always depends on the present input only. Hence

The system 1s Static.

Dr. Mahmoud Sawalha
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Causal and Non-causal Systems

* If the response (output) depends on the present and past values of
the input x(t), the system is said to be causal.

y(t) = x(t — 3) + x(t + 3)

(©) x4 y(7) output

v

Future input ~----x(t—t,) Past input
x(t+1,) == x(@® Present input
|
! v v

=t

0 0

I
I
: >t
|

!
|
: <t
|
|

“ l
-t —t, 0 o
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y(®) = x ()

8/2/2024

Fort =0, y(0) = x(0)
Fort = —4, y(—4) = x(—1)

Fort=1, y(l)=x (%)

from y(—4) = x(—1).

The system 1s Non-causal.

Dr. Mahmoud Sawalha
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y() =x()sin(1+1¢)

y(0) = x(0) sin(1)
y(1) = x(1) sin(2)
y(=1) = x(=1) sin(0)

Thus at all time, the output depends on the present input only. Hence

The system 1s Causal.
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y(t) = x(t?)

Fort =0, y(0) = x(0)
Fortr =1, y(1) =x(1)
Fort =2, y(2) =x4)

The system output y(¢) atf = 2, which 1s y(2) = x(4) depends on the future input
x(t). Hence

The system 1s Non-causal.
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L y(t) = x(t —1)

Fort =0, y(0)=x(—1)
Fort =1, y(1) = x(0)
Fort =2, vy(2) = x(1)

The output depends on the past values of the input.

8/2/2024

The system 1s Causal.
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Stable and Unstable Systems

* A linear time invariant continuous time system is said to be Bounded
Input Bounded Output (BIBO) stable, if for any bounded input, it
produces bounded output. This also implies that for BIBO stability, the
area under the impulse response (output) curve should be finite.



y(t) = flx(r)] forallt (2.8)
If |x(¢)| 1s bounded, |y(#)| should also be bounded for the system to be stable.

y(@®)| <M, <oco forall¢ (2.9)
x(1)] <M, <oo forallt (2.10)

where |[M,| and |M,| represent positive values. It can be easily established that the
necessary and sufficient condition for the LTIC time system to be stable 1s,

y(t) = foo [x(0)]dt < o0

oo
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y(t) = tx(t)
If x(#) 1s bounded, y(r) varies with respect to time and becomes unbounded.

Hence

The system i1s BIBO Unstable.

y({) =x(t)sint
It x(¢) 1s bounded, y(?) 1s also bounded because sin ¢t will take a maximum value

of +1 and —1. Hence, y(7) 1s bounded.

The system 1s BIBO Stable.
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8/2/2024

Here
x(t) = e 0<t<o0
= ¢ —o0<t<0
y(1) =[ x(t)dt

The output is bounded and the system is stable.

The system is BIBO Stable.

Dr. Mahmoud Sawalha
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y(t) = te*u(t)

Here the output varies linearly as t and also exponentially increasing due to e*.
Hence, |y(#)| = oo and the system is BIBO unstable. Mathematically this can
be proved as follows. For a causal system, |y(7)| can be written as

y(t)| = [ te* dt
0

The following integration formula is used to evaluate the above integral.

> at y. __ 1 at . o
[0 te dt = a—z[e (at 1}]0
o)l = z|e" -1

[e {200 — 1} + 1]

IS N

I
3

The system 1s BIBO Unstable.
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Invertibility and Inverse System

A system is said to be invertible if the distinct inputs give distinct output.

x(1)

8/2/2024

g

System H

y(1)

Inverse system
H!

w(t) = x(1)

Dr. Mahmoud Sawalha
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Discrete Time System



Linear and Non-linear Systems

ax[n] + axx;[n] =>a,y [n] + axy»[n]

E]:)(\_Vck’-xl > J= ”j\quj;



8/2/2024

y[n] = x?[n]

yi[n] = x}[n]

y2[n] = x3[n]

1. The weighted sum of the output y3[n] is,

y3[n] = aiy1[n] + azy;([n]
= ax;[n] + axx3[n]

2. The output y4[n] due to the weighted sum of the input is,

va[n] = [a1x[n] + azx[n]]?

= a%xf [n] + a%xg [n] + 2a1a:2x1 [n]xa[n]

y3[n] # ya[n]

The system 1s Non-linear.
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ylnl = x[4n + 1]

8/2/2024

ay1[n] = arxi[4n + 1]
ary2[n] = axxy[4n + 1]
yv3ln] = ayy1[n] + axy:[n]

1. The weighted sum of the output is,

v3ln] = aryi[n] + azxy»[n]
= axi[4n + 1] + arxz[4n + 1]

2. The output due to the weighted sum of the input is,

valn] = a1x1[4n + 1] + axxz[4n + 1]

y3[n] = ya[n]

The system is Linear.

Dr. Mahmoud Sawalha
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- y[n]l = x[n*]

ayy1[n] = ayx;[n’]

ayys[n] = axx;[n*]

1. The weighted sum of the output y3[n] 1s,

y3ln] = aryi1[n] + axyz[n]
= axi[n*] + axxy[n?]

2. The output y4[n] due to the weighted sum of input is,

valn] = ayxi[n*] + azxz[n?]

The system 1s Linear.

yi[n] = y4[n]
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Time Invariant and Time Varying DT Systems

. For the delayed input x[n — ng] find the output y[n, ng].

2. Obtain the delayed output y[n — ng] by substituting n = n — ng 1n y[n].

. Ity[n,ng] = y[n — ng], the system 1s time invariant. Otherwise the system is time
varying.

8/2/2024 Dr. Mahmoud Sawalha
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yln] = nx|n]

1. The output for the delayed input x[n — ng] 1s obtained by delaying the input
x[n] as x[n — ng]. Thus

yln, nol = nx[n — no]
2. The delayed output for the input x[n] 1s obtained by substituting n = n — ny.

yln —npl = (n — np)x[n — ny]

yln,nol # yln — npl

The system 1s Time Variant.
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yln] = sin(x[n])

The output due to delayed input 1s

8/2/2024

The delayed output is,

yln,no] = sin(x[n — ng])

yln —ng] = sin(x[n — ng])
yln,ngl = yln — ng|

The system 1s Time Invariant.

Dr. Mahmoud Sawalha
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yln] = x[n]x[n — 1]

The output due to delayed input 1s

The delayed output 1s,

8/2/2024

yln,ng| = x[n — nglx[n —ng — 1]

yln —ng] = x[n — nglx[n — ng — 1]

yln,ngl = yln — np|

The system 1s Time Invariant.

Dr. Mahmoud Sawalha
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Causal and Non-causal DT Systems

e A discrete time system is said to be causal if the response of the
system depends on the present or the past inputs applied. The
systems is non-causal if the output depends on the future input.

ylrl =x[n —1] y[0] = x[—1]
y[1] = x[0]

x[n — 1] 1s the past input for the output y[n]. The output depends on the past
value of x[n]. Hence

The system is Causal.




ylnl = x[n] + x[n —1]

Forn =0, y[0] =x[0]+ x[—1]
Forn =1, y[l] = x[1]+ x[0]

Here x[n] 1s present value and x[n — 1] 1s past value. The output depends on the
present and past inputs. Hence

The system 1s Causal.
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yln — 1] = x[n]

Putn=n+1

yln] = x[n + 1]
y[0] = x[1]

The output depends on the future inputs. Hence

8/2/2024

The system 1s Non-causal.

Dr. Mahmoud Sawalha
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ylnl =Y x[k]

k=—00

= x[—00]+x[—00 + 1]+ - - - +x[—1]+x[0]+x[1]4+x[2]+x[3]+x[4]

x[—oo] + x[—o0 + 1], ..., x[—1] = Future output for past input
x[0] = Present output for present input

x[1], x[2], x[3] and x[4] = Past output for future input

The system 1s Non-causal.

8/2/2024 Dr. Mahmoud Sawalha

48



ylnl = Y 725 x[k] =

= x[0] + x[—1] 4+ x[—2] + x[—3]
x[0] = Present output for present input

x[—1],x[—=2], x[—3] = Future outputs for past input

The output depends on the present and past inputs. Hence

8/2/2024

The system 1s Causal.

Dr. Mahmoud Sawalha
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Stable and Unstable Systems

A discrete time system is said to be stable if for any bounded input, it produces
a bounded output. This implies that the impulse response

yInl =) |hln]| < oo

is absolutely summable.



y[n] = sin x[n] If x[n] is bounded, then sin x[n] is also bounded and so y[n] is
also bounded

The system is Stable.

y[n] = Y 2k x[k]

Here as n — o0, y[n] — o0 and the output 1s unbounded. For bounded input n

should be a finite number.
In that case y[n] 1s bounded and the system is stable.

The system 1s Stable. for n = finite

The system 1s Unstable. forn = oo
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hin] = 3"ul[n + 3]

yinl = ) 3

n=-—3

=37+ T+ '+ "+ + -+ B

= O

The output 1s unbounded.

8/2/2024

The system 1s Unstable.
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y[n] = é[n — 1] + 8[n] + d[n + 1]

8/2/2024

y[0] =48[—1]+6[0]+46[1]=0+1+0=1
y[1] =38[0] +6[1] +46[2] =14+0+0=1
y[-1] =8[-2] +6[-1]+6[0]=04+0+1=1
y[=2] =46[1]1+6[2]1 +46[3]=0+0+0=0
y[2] = 8[1] +6[2] +48[3] =0+0+0=0

yinl =) |hk]|=14+1+1=3 <o

The system is Stable.

Dr. Mahmoud Sawalha
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hln] = nuln]

8/2/2024

The system 1s Unstable.

Dr. Mahmoud Sawalha
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Static and Dynamic Systems

* A discrete time system is said to be static (memoryless or
instantaneous) if the output response depends on the present value
only and not on the past and future values of excitation. Discrete
systems described by difference equations require memory and

hence they are dynamic systems.



yln] = x[3n]

Forn =0, y[0] = x[0]
Forn =1, y[1]=x[3]
Forn=—1, y[—1]=x[-3]

The outputs y[0] = x[0], y[1] = x[3] and y[—1] = x[—3] depend upon the present
input, future input and past input respectively.

The system 1s Dynamic.
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y[n] = sin(x[n])

y[0] = sin(x[O])
yl1] = sm(x[1])

The output depends on the present input at all time. Hence

The system 1s Static.
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Invertible and Inverse Discrete Time Systems

* A discrete time system is said to be invertible if distinct input leads to
distinct output. If a system is invertible then an inverse system exists
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