
PART 2

ELECTROSTATICS



Chapter 4

ELECTROSTATIC FIELDS

Take risks: if you win, you will be happy; if you lose you will be wise.

—PETER KREEFT

4.1 INTRODUCTION

Having mastered some essential mathematical tools needed for this course, we are now
prepared to study the basic concepts of EM. We shall begin with those fundamental con-
cepts that are applicable to static (or time-invariant) electric fields in free space (or
vacuum). An electrostatic field is produced by a static charge distribution. A typical
example of such a field is found in a cathode-ray tube.

Before we commence our study of electrostatics, it might be helpful to examine briefly
the importance of such a study. Electrostatics is a fascinating subject that has grown up in
diverse areas of application. Electric power transmission, X-ray machines, and lightning
protection are associated with strong electric fields and will require a knowledge of elec-
trostatics to understand and design suitable equipment. The devices used in solid-state
electronics are based on electrostatics. These include resistors, capacitors, and active
devices such as bipolar and field effect transistors, which are based on control of electron
motion by electrostatic fields. Almost all computer peripheral devices, with the exception
of magnetic memory, are based on electrostatic fields. Touch pads, capacitance keyboards,
cathode-ray tubes, liquid crystal displays, and electrostatic printers are typical examples.
In medical work, diagnosis is often carried out with the aid of electrostatics, as incorpo-
rated in electrocardiograms, electroencephalograms, and other recordings of organs with
electrical activity including eyes, ears, and stomachs. In industry, electrostatics is applied
in a variety of forms such as paint spraying, electrodeposition, electrochemical machining,
and separation of fine particles. Electrostatics is used in agriculture to sort seeds, direct
sprays to plants, measure the moisture content of crops, spin cotton, and speed baking of
bread and smoking of meat.12

'For various applications of electrostatics, see J. M. Crowley, Fundamentals of Applied Electrostat-
ics. New York: John Wiley & Sons, 1986; A. D. Moore, ed., Electrostatics and Its Applications. New
York: John Wiley & Sons, 1973; and C. E. Jowett, Electrostatics in the Electronics Environment.
New York: John Wiley & Sons, 1976.
2An interesting story on the magic of electrostatics is found in B. Bolton, Electromagnetism and Its
Applications. London: Van Nostrand, 1980, p. 2.
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104 Electrostatic Fields

We begin our study of electrostatics by investigating the two fundamental laws gov-
erning electrostatic fields: (1) Coulomb's law, and (2) Gauss's law. Both of these laws are
based on experimental studies and they are interdependent. Although Coulomb's law is ap-
plicable in finding the electric field due to any charge configuration, it is easier to use
Gauss's law when charge distribution is symmetrical. Based on Coulomb's law, the
concept of electric field intensity will be introduced and applied to cases involving point,
line, surface, and volume charges. Special problems that can be solved with much effort
using Coulomb's law will be solved with ease by applying Gauss's law. Throughout our
discussion in this chapter, we will assume that the electric field is in a vacuum or free
space. Electric field in material space will be covered in the next chapter.

4.2 COULOMB'S LAW AND FIELD INTENSITY

Coulomb's law is an experimental law formulated in 1785 by the French colonel, Charles
Augustin de Coulomb. It deals with the force a point charge exerts on another point charge.
By a point charge we mean a charge that is located on a body whose dimensions are much
smaller than other relevant dimensions. For example, a collection of electric charges on a
pinhead may be regarded as a point charge. Charges are generally measured in coulombs
(C). One coulomb is approximately equivalent to 6 X 1018 electrons; it is a very large unit
of charge because one electron charge e = -1.6019 X 10~19C.

Coulomb's law states that the force /•' between two point charges (?, and Q2 is:

1. Along the line joining them
2. Directly proportional to the product QtQ2 of the charges
3. Inversely proportional to the square of the distance R between them.'

Expressed mathematically,

F =
R2

(4.1)

where k is the proportionality constant. In SI units, charges <2i and Q2 are in coulombs (C),
the distance R is in meters (m), and the force F is in newtons (N) so that k = 1/4TTS0. The
constant so is known as the permittivity of free space (in farads per meter) and has the value

8.854 X 10~12 = -^ r -F /m

= 9 X 109 m/F
47T£n

(4.2)

3Further details of experimental verification of Coulomb's law can be found in W. F. Magie, A Source
Book in Physics. Cambridge: Harvard Univ. Press, 1963, pp. 408^20.
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Thus eq. (4.1) becomes

F =
QxQi

4irEoR
2 (4.3)

If point charges Qy and Q2 are located at points having position vectors I"! and r2, then
the force F12 on Q2 due to Qy, shown in Figure 4.1, is given by

(4.4)

(4.5a)

(4.5b)

(4.5c)

(4.6a)

(4.6b)

where

Rl2 = r2 ~

R = |R12

aR,2 - R

By substituting eq. (4.5) into eq. (4.4), we may write eq. (4.4) as

*12 -

or

It is worthwhile to note that

Q1Q2 (r2 - r,)

4xeo|r2 -

1. As shown in Figure 4.1, the force F2, on Qy due to Q2 is given by

F2i = |F,2|aR21 = |F12|(-aRi2)

or

F2] = - F 1 2

since

(4.7)

Figure 4.1 Coulomb vector force on point
changes Qy and Q2.

Origin
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(a) (b) (c)

Figure 4.2 (a), (b) Like charges repel;
(c) unlike charges attract.

2. Like charges (charges of the same sign) repel each other while unlike charges
attract. This is illustrated in Figure 4.2.

3. The distance R between the charged bodies 2i and Q2 must be large compared with
the linear dimensions of the bodies; that is, 2i and Q2 must be point charges.

4. Qx and Q2 must be static (at rest).
5. The signs of Qx and Q2 must be taken into account in eq. (4.4).

If we have more than two point charges, we can use the principle of superposition to
determine the force on a particular charge. The principle states that if there are N charges
2i> 62. • • •. QN located, respectively, at points with position vectors r1; r2 , . . . , r^, the
resultant force F on a charge Q located at point r is the vector sum of the forces exerted on
Q by each of the charges Qu Q2,. . . , QN. Hence:

QQdX ~ rn)

or

ee,(r - r
47reo|r - r

,)

17
r —

4ireo

2

( r -
r -

N

-2

r2)

r2|3

G*(
|r

+ • • • +

r-r,)
(4.8)

We can now introduce the concept of electric field intensity.

The electric field intensity (or electric field strength) K is the force per unit charge
when placed in the electric field.

Thus

or simply

F
E = lim —

0^o Q
(4.9)

E =
Q

(4.10)

The electric field intensity E is obviously in the direction of the force F and is measured in
newtons/coulomb or volts/meter. The electric field intensity at point r due to a point charge
located at r ' is readily obtained from eqs. (4.6) and (4.10) as

E =
Q ~ r')

r - r '
(4.11)
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For N point charges Qu Q2,. . . , QN located at r b r2,. . . , rN, the electric field in-
tensity at point r is obtained from eqs. (4.8) and (4.10) as

or

t, —
6i(r -

4xejr -
fepr - r)2

4irso|r - r2

A 2J
4TT£O £TX r -

- rN)

4TT£O r -

(4.12)

EXAMPLE 4.1
Point charges 1 mC and - 2 mC are located at (3, 2, -1 ) and (—1, —1,4), respectively.
Calculate the electric force on a 10-nC charge located at (0, 3, 1) and the electric field in-
tensity at that point.

Solution:

QQk - rk)

A=i,247reo|r - rk\

Q / 10"3[(0, 3, 1) - (3,2,-1)] 2.10'3[(0, 3, 1) - (-1,-1,4)]

47re0 I |(0,3, 1 ) - ( 3 , 2 , - 1 ) | 3

10"3 • 10 • 10"9 r (-3,1,2)
- ( - 1 , - 1 , 4)|3

4TT

= 9 - 1 0

F = - i

At that point,

10 - 9

2(1,4,-3)

(9 + 1 + 4yu (1 + 16 + 9)3/2

36TT
- 2 [ ( - 3 , 1,2) + ( -2 , -8 ,6)

14Vl4 26V26
- 3.817ay + 7.506azmN

E =
Q

= (-6.507, -3.817, 7.506)
10

10 • 10"9

E = -650.7ax - 381.7a. + 750.6azkV/m

PRACTICE EXERCISE 4.1

Point charges 5 nC and —2 nC are located at (2,0, 4) and ( -3 ,0 , 5), respectively.

(a) Determine the force on a 1-nC point charge located at (1, —3, 7).

(b) Find the electric field E at (1, - 3 , 7).

Answer: (a) -1.004a* - 1.284a,, + 1.4aznN,
(b) -1.004ax - 1.284a,+1.4a2V/m.
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EXAMPLE 4.2
Two point charges of equal mass m, charge Q are suspended at a common point by two
threads of negligible mass and length t. Show that at equilibrium the inclination angle a of
each thread to the vertical is given by

Q = 16x eomg£ sin a tan a

If a is very small, show that

Solution:

Consider the system of charges as shown in Figure 4.3 where Fe is the electric or coulomb
force, T is the tension in each thread, and mg is the weight of each charge. At A or B

T sin a = Fe

T cos a = mg

Hence,

But

Hence,

or

sin a _ Fe 1 Q2

cos a mg mg 4ireor

r = 2€ sin a

Q cos a = I6irejng€2 sin3 a

Q2 = I6irsomg(2 sin2 a tan a

as required. When a is very small

tan a — a — sin a.

Figure 4.3 Suspended charged particles; for
Example 4.2.
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and so

or

'2_3Q2 = I6wsomgtla

a =
Ql

16ireomg€

PRACTICE EXERCISE 4.2

Three identical small spheres of mass m are suspended by threads of negligible
masses and equal length € from a common point. A charge Q is divided equally
between the spheres and they come to equilibrium at the corners of a horizontal equi-
lateral triangle whose sides are d. Show that

Q2 =

where g = acceleration due to gravity.

Answer: Proof.

r21-l/2

EXAMPLE 4.3
A practical application of electrostatics is in electrostatic separation of solids. For example,
Florida phosphate ore, consisting of small particles of quartz and phosphate rock, can be
separated into its components by applying a uniform electric field as in Figure 4.4. Assum-
ing zero initial velocity and displacement, determine the separation between the particles
after falling 80 cm. Take E = 500 kV/m and Qlm = 9 /xC/kg for both positively and neg-
atively charged particles.

Figure 4.4 Electrostatic separation of solids; for
Example 4.3.

Phosphate Quartz
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Solution:

Ignoring the coulombic force between particles, the electrostatic force is acting horizon-
tally while the gravitational force (weight) is acting vertically on the particles. Thus,

or

Integrating twice gives

dt2

Q
2m c2

where C\ and c2 are integration constants. Similarly,

or

dt2

Integrating twice, we get

y =

Since the initial displacement is zero,

x(t ~-

y(f-

Also, due to zero initial velocity,

dx

~dt

dy

dt

-\l2gt2

= 0) =

= 0) =

(=0

*—n

= 0

0

0

+ c,t

- > c 4

+ c4

= 0

= 0

= 0

= 0

Thus

QE 2

2m
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Wheny = - 8 0 cm = -0 .8 m

f2 = ̂  = ° ' 1 6 3 3

and

111

x = 1/2 X 9 X 10"6 X 5 X 105 X 0.1633 = 0.3673 m

The separation between the particles is 2x = 73.47 cm.

PRACTICE EXERCISE 4.3

An ion rocket emits positive cesium ions from a wedge-shape electrode into the region
described by* > |y|. The electric field is E = -400a, + 200a>, kV/m. The ions have
single electronic charges e = -1.6019 X 10"19 C and mass m = 2.22 X 10~25 kg
and travel in a vacuum with zero initial velocity. If the emission is confined to
—40 cm < v < 40 cm, find the largest value of x which can be reached.

Answer: 0.8 m.

4.3 ELECTRIC FIELDS DUE TO CONTINUOUS
CHARGE DISTRIBUTIONS

So far we have only considered forces and electric fields due to point charges, which are es-
sentially charges occupying very small physical space. It is also possible to have continuous
charge distribution along a line, on a surface, or in a volume as illustrated in Figure 4.5.

It is customary to denote the line charge density, surface charge density, and volume
charge density by pL (in C/m), ps (in C/m2), and pv (in C/m3), respectively. These must not
be confused with p (without subscript) used for radial distance in cylindrical coordinates.

The charge element dQ and the total charge Q due to these charge distributions are ob-
tained from Figure 4.5 as

= \pLdl (line charge) (4.13a)

Point
charge

Line
charge

+ Ps +
+ + +

Surface
charge

Volume
charge

Figure 4.5 Various charge distributions
and charge elements.
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dQ = psdS^Q = psdS (surface charge)
4

dQ = pv dv —> Q = \ pv dv (volume charge)

(4.13b)

(4.13c)

The electric field intensity due to each of the charge distributions pL, ps, and pv may be
regarded as the summation of the field contributed by the numerous point charges making
up the charge distribution. Thus by replacing Q in eq. (4.11) with charge element dQ =
pL dl, ps dS, or pv dv and integrating, we get

E =

E =

E =

PLdl

4-jrsJt2

PsdS

A-weJi2

pvdv

(line charge)

(surface charge)

(volume charge)

(4.14)

(4.15)

(4.16)

It should be noted that R2 and a^ vary as the integrals in eqs. (4.13) to (4.16) are evaluated.
We shall now apply these formulas to some specific charge distributions.

A. A Line Charge

Consider a line charge with uniform charge density pL extending from A to B along the
z-axis as shown in Figure 4.6. The charge element dQ associated with element dl = dz of
the line is

dQ = pLdl = pL dz

(0,0,2)7-^

(0,0, z')

dEz dE

Figure 4.6 Evaluation of the E field due to i
l i n e
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and hence the total charge Q is

Q = (4.17)

The electric field intensity E at an arbitrary point P(x, y, z) can be found using
eq. (4.14). It is important that we learn to derive and substitute each term in eqs. (4.14) to
(4.15) for a given charge distribution. It is customary to denote the field point4 by (x, y, z)
and the source point by (x', y', z'). Thus from Figure 4.6,

dl = dz'

R = (x, y, Z) - (0, 0, z') = xax + yay + (z - z')az

or

R = pap + (z - z') az

= 2

R (z - z')az

R2 R (z~ z'f]213/2

Substituting all this into eq. (4.14), we get

PL
E = N 213/24ireo J [p2 + (Z - z'

To evaluate this, it is convenient that we define a, au and a2 as in Figure 4.6.

R = [p2 + (z - z'f]m = p sec a

z' = OT - p tan a, dz' = —p sec2 a da

Hence, eq. (4.18) becomes

—pL [ai p sec2 a [cos a a,, + sin a az] daE =
4iren p2 sec2 a

PL [cos a a , + sin a a j da

Thus for a finite line charge,

E =
PL [- (sin a2 - sin aOa,, + (cos a2 - cos a{)az]

(4.18)

(4.19)

(4.20)

4The field point is the point at which the field is to be evaluated.
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As a special case, for an infinite line charge, point B is at (0, 0, °°) and A at (0, 0, -co) so
that al = x/2, a2 = —x/2; the z-component vanishes and eq. (4.20) becomes

E = PL (4.21)

Bear in mind that eq. (4.21) is obtained for an infite line charge along the z-axis so that p
and ap have their usual meaning. If the line is not along the z-axis, p is the perpendicular
distance from the line to the point of interest and ap is a unit vector along that distance di-
rected from the line charge to the field point.

B. A Surface Charge

Consider an infinite sheet of charge in the xy-plane with uniform charge density ps. The
charge associated with an elemental area dS is

dQ = Ps dS

and hence the total charge is

Q= PsdS (4.22)

From eq. (4.15), the contribution to the E field at point P(0, 0, h) by the elemental surface
1 shown in Figure 4.7 is

JE =
dQ

(4.23)

Figure 4.7 Evaluation of the E field due to an infinite sheet of charge.
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From Figure 4.7,

115

. 2 , ,211/2R = p(-ap) + haz, R = |R| = Lc/ + fr

n
aR = —,

K
= Ps dS = psp d<j) dp

Substitution of these terms into eq. (4.23) gives

= pspd<j>dp[-pap + haz]
(4.24)

Due to the symmetry of the charge distribution, for every element 1, there is a correspond-
ing element 2 whose contribution along ap cancels that of element 1, as illustrated in
Figure 4.7. Thus the contributions to Ep add up to zero so that E has only z-component.
This can also be shown mathematically by replacing â  with cos </> ax + sin </> a r Integra-
tion of cos <j> or sin </> over 0 < <j> < 2ir gives zero. Therefore,

E =
Ps hp dp d<j>

13/2 '

trH'2+^'V=
(4.25)

that is, E has only z-component if the charge is in the xy-plane. In general, for an infinite
sheet of charge

(4.26)

where an is a unit vector normal to the sheet. From eq. (4.25) or (4.26), we notice that the
electric field is normal to the sheet and it is surprisingly independent of the distance
between the sheet and the point of observation P. In a parallel plate capacitor, the electric
field existing between the two plates having equal and opposite charges is given by

C. A Volume Charge

Let the volume charge distribution with uniform charge density pv be as shown in
Figure 4.8. The charge dQ associated with the elemental volume dv is

dQ = pv dv
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p,-

dE

\

z

- -

^~

dE2

P(0, 0, z)

V !

„ dv at ( r \ S :, <j>')

\

Figure 4.8 Evaluation of the E field due to a volume charge
distribution.

and hence the total charge in a sphere of radius a is

Q = \ pv dv = pv \ dv

4ira3

(4.28)

The electric field dE at P(0, 0, z) due to the elementary volume charge is

"E = : a s
4xS o^2

where aR = cos a a , + sin a ap. Due to the symmetry of the charge distribution, the con-
tributions to Ex or Ey add up to zero. We are left with only Ez, given by

Ez = E • az = dE cos a =

Again, we need to derive expressions for dv, R2, and cos a.

dv = r'2 sin 6' dr' dd' d<t>'

Applying the cosine rule to Figure 4.8, we have

R2 = z2 + r'2 - 2zr' cos B'

r'2 = z2 + R2 ~ 2zR cos a

dv c o s
(4.29)

(4.30)

w
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It is convenient to evaluate the integral in eq. (4.29) in terms of R and r'. Hence we express
cos d', cos a, and sin 6' dd' in terms of R and r', that is,

cos a =
z2-

2
Z

h R 2 -

2zR

Yr'2-

r'2

R2

2zr'

Differentiating eq. (4.31b) with respect to 0' keeping z and r' fixed, we obtain

RdR
sin 6' dd' =

zr'

Substituting eqs. (4.30) to (4.32) into eq. (4.29) yields

E = d<t>'
4xeo J , , = o J r , = 0 J ^ ^

ra rz+r'

dr'

r'=0 JR = z-r'

r'
ro

£i
1 1 IA

4r'2dr'=- -2 -
47reo z

z V3

or

(4.31a)

(4.31b)

(4.32)

(4.33)

This result is obtained for E at P(0, 0, z). Due to the symmetry of the charge distribution,
the electric field at P(r, 9, <j>) is readily obtained from eq. (4.33) as

E =
Q

ar
(4.34)

which is identical to the electric field at the same point due to a point charge Q located at
the origin or the center of the spherical charge distribution. The reason for this will become
obvious as we cover Gauss's law in Section 4.5.

EXAMPLE 4.4
A circular ring of radius a carries a uniform charge pL C/m and is placed on the xy-plane
with axis the same as the z-axis.

(a) Show that

E(0, 0, h) =
pLah

2eo[h2 + a2}13/2 "z
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(b) What values of h gives the maximum value of E?

(c) If the total charge on the ring is Q, find E as a -> 0.

Solution:

(a) Consider the system as shown in Figure 4.9. Again the trick in finding E using
eq. (4.14) is deriving each term in the equation. In this case,

dl = a d4>,

R = R

R = a ( - haz

= \a2 1.211/2 R
R

or

a« R -aap

/?2 |R|3 [a2 + h2}13/2

Hence

E =
PL (-aa p +

By symmetry, the contributions along ap add up to zero. This is evident from the fact that
for every element dl there is a corresponding element diametrically opposite it that gives
an equal but opposite dEp so that the two contributions cancel each other. Thus we are left
with the z-component. That is,

pLahaz

4vso[h2 + a2]13/2 d<t> =
pLahaz

2so[h2 a2f2

as required.

Figure 4.9 Charged ring; for
Example 4.4.

I
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(b)

dh 2eo

For maximum E, = 0, which implies that
dh

[h2 + a2]3

a2 - 2hz = 0 or h = ±

(c) Since the charge is uniformly distributed, the line charge density is

Q

so that

Asa

or in general

PL =

E =
Qh

213/2 H z

E = —~si
A-KSJI2

4ireor

which is the same as that of a point charge as one would expect.

PRACTICE EXERCISE 4.4

A circular disk of radius a is uniformly charged with ps C/m2. If the disk lies on the
z = 0 plane with its axis along the z-axis,

(a) Show that at point (0, 0, h)

_h \

(b) From this, derive the E field due to an infinite sheet of charge on the z = 0 plane.

(c) If a <3C h, show that E is similar to the field due to a point charge.

Answer: (a) Proof, (b) — a,, (c) Proof
2en
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EXAMPLE 4.5

I

The finite sheet 0 < x < 1, 0 < y < 1 on the z = 0 plane has a charge density
p s = xy(x2 + y2 + 25)3/2 nC/m2. Find

(a) The total charge on the sheet

(b) The electric field at (0, 0, 5)

(c) The force experienced by a — 1 mC charge located at (0, 0, 5)

Solution:

(a) g = I psdS= I [ xy(x2 + y2 + 25)3'2 dx dy nC
J Jo Jo

Since x dx = 1/2 d(x2), we now integrate with respect to x2 (or change variables: x2 = u so
that x dx = dull).

1
Q = j

1 f1

y2 + 25)3/2 d(x2) dy nC

y2 + 25 '2 dy

1 2
\7/21

= 33.15 nC

(b) E =
(r - r')

4ireor
2 J 4?reo|r - r'|3

where r - r' = (0, 0, 5) - (x, y, 0) = (-x, -y, 5). Hence,

E =
o Jo

10" y2 + 25f\-xax - yay + 5az)dxdy

10"9

36TT
+ yz + 25)3/2

r r l r l r 1 rl f l r l

= 9 - x2 dx \ ydyax- x dx \ y2dy ay + 5 xdx \ y dy

6 ' 6 ' 4 ,
= ( - 1 . 5 , - 1 . 5 , 11.25) V/m

(c) F = ^E = (1.5, 1.5, -11.25) mN
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PRACTICE EXERCISE 4.5

A square plate described by — 2 :S A: < 2, — 2^y^2,z = 0 carries a charge
12 \y\ mC/m2. Find the total charge on the plate and the electric field intensity at
(0, 0, 10).

Answer: 192 mC, 16.46 a, MV/m.

EXAMPLE 4.6
Planes x = 2 and y = — 3, respectively, carry charges 10 nC/m2 and 15 nC/m2. If the line
x = 0, z = 2 carries charge lOx nC/m, calculate E at (1, 1, —1) due to the three charge
distributions.

Solution:

Let

E = E, + E2 + E3

where Ej, E2, and E3 are, respectively, the contributions to E at point (1, 1, — 1) due to the
infinite sheet 1, infinite sheet 2, and infinite line 3 as shown in Figure 4.10(a). Applying
eqs. (4.26) and (4.21) gives

-v-9

ar = -1807rar

36?r

15 • 10"

10- 9 = 270TT av

36TT

y = - 3

- l

(b)

Figure 4.10 For Example 4.6: (a) three charge distributions;
(b) finding p and ap on plane y — 1.
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and

E3 = PL

2ireop

where ap (not regular ap but with a similar meaning) is a unit vector along LP perpendicu-
lar to the line charge and p is the length LP to be determined from Figure 4.10(b).
Figure 4.10(b) results from Figure 4.10(a) if we consider plane y = 1 on which E3 lies.
From Figure 4.10(b), the distance vector from L to P is

R =

P = = VTo, R

Hence,

lOir • 10 - 9

2 T T -
10- 9 10

Vio"* Vio'

(a, - 3az)

36TT

= 187r(ax - 3a,)

Thus by adding Eu E2, and E3, we obtain the total field as

E = -162Trax + 270ira, - 54x3, V/m

Note that to obtain ar, ap, or a«, which we always need for finding F or E, we must go
from the charge (at position vector r') to the field point (at position vector r); hence ar, ap,
or an is a unit vector along r — r'. Observe this carefully in Figures 4.6 to 4.10.

PRACTICE EXERCISE 4.6

In Example 4.6 if the line x = 0, z = 2 is rotated through 90° about the point
(0, 2, 2) so that it becomes x = 0, y = 2, find E at (1, 1, -1 ) .

Answer: -282.7a.* + 564.5a, V/m.

4.4 ELECTRIC FLUX DENSITY

The flux due to the electric field E can be calculated using the general definition of flux in
eq. (3.13). For practical reasons, however, this quantity is not usually considered as the
most useful flux in electrostatics. Also, eqs. (4.11) to (4.16) show that the electric field in-
tensity is dependent on the medium in which the charge is placed (free space in this
chapter). Suppose a new vector field D independent of the medium is defined by

D = eoE (4.35)

II
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We define electric flux f in terms of D using eq. (3.13), namely,

= \D-dS (4.36)

In SI units, one line of electric flux emanates from +1 C and terminates on - 1 C. There-
fore, the electric flux is measured in coulombs. Hence, the vector field D is called the elec-
tric flux density and is measured in coulombs per square meter. For historical reasons, the
electric flux density is also called electric displacement.

From eq. (4.35), it is apparent that all the formulas derived for E from Coulomb's law
in Sections 4.2 and 4.3 can be used in calculating D, except that we have to multiply those
formulas by eo. For example, for an infinite sheet of charge, eqs. (4.26) and (4.35) give

(4.37)

(4.38)

Note from eqs. (4.37) and (4.38) that D is a function of charge and position only; it is in-
dependent of the medium.

and for a volume charge distribution, eqs. (4.16) and (4.35) give

D = , Pvdv

EXAMPLE 4.7
Determine D at (4, 0, 3) if there is a point charge —5TT mC at (4, 0, 0) and a line charge
3TT mC/m along the y-axis.

Solution:

Let D = DQ + DL where D e and DL are flux densities due to the point charge and line
charge, respectively, as shown in Figure 4.11:

Q (r - r')
= eoE =

Q

4mR/ 47r|r - r '

where r - r ' = (4, 0, 3) - (4, 0, 0) = (0, 0, 3). Hence,

Also

In this case

- 3 /

DQ
-5TT • 10^(0, 0, 3)

4TT|(0,0, 3) |3
2

= -0.138 az mC/m

(4, 0, 3) - (0, 0, 0) (4, 0, 3)

* |(4,0, 3) - (0,0, 0)| 5

p = |(4,0,3) - (0,0,0)| = 5
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= 3?rC/m

--y

Q = -SirC

Figure 4.11 Flux density D due to a point charge and an infinite line
charge.

Hence,

Thus

3TT

2TT(25)
3az) = 0.24ax + 0.18azmC/m2

D = DG + DL

= 240a* + 42a2 /xC/m2

PRACTICE EXERCISE 4.7

A point charge of 30 nC is located at the origin while plane y = 3 carries charge
10nC/m2. Find D at (0,4, 3).

Answer: 5.076a,, + 0.0573az nC/m2.

4.5 GAUSS'S LAW—MAXWELL'S EQUATION

Gauss's5 law constitutes one of the fundamental laws of electromagnetism.

Gauss's law stales thai the loial electric Mux V through any closed surface is equal to
the total charge enclosed by that surface.

Karl Friedrich Gauss (1777-1855), a German mathematician, developed the divergence theorem of
Section 3.6, popularly known by his name. He was the first physicist to measure electric and mag-
netic quantities in absolute units. For details on Gauss's measurements, see W. F. Magie, A Source
Book in Physics. Cambridge: Harvard Univ. Press, 1963, pp. 519-524.

<r if
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Thus

that is,

(4.39)

<T¥ = d> D • dS

= Total charge enclosed Q = I pv dv (4.40)

or

(4.41)

By applying divergence theorem to the middle term in eqs. (4.41)

D • dS = I V • D dv

Comparing the two volume integrals in eqs. (4.41) and (4.42) results in

= V • D

(4.42)

(4.43)

which is the first of the four Maxwell's equations to be derived. Equation (4.43) states that
the volume charge density is the same as the divergence of the electric flux density. This
should "not be surprising to us from the way we defined the divergence of a vector in eq.
(3.32) and from the fact that pv at a point is simply the charge per unit volume at that point.

Note that:

1. Equations (4.41) and (4.43) are basically stating Gauss's law in different ways; eq.
(4.41) is the integral form, whereas eq. (4.43) is the differential or point form of Gauss's
law.

2. Gauss's law is an alternative statement of Coulomb's law; proper application of the
divergence theorem to Coulomb's law results in Gauss's law.

3. Gauss's law provide* an easy means of finding E or D for symmetrical charge dis-
tributions such as a point charge, an infinite line charge, an infinite cylindrical surface
charge, and a spherical distribution of charge. A continuous charge distribution has rectan-
gular symmetry if it depends only on x (or y or z), cylindrical symmetry if it depends only
on p, or spherical symmetry if it depends only on r (independent of 6 and <j>). It must be
stressed that whether the charge distribution is symmetric or not, Gauss's law always
holds. For example, consider the charge distribution in Figure 4.12 where V] and v2 are
closed surfaces (or volumes). The total flux leaving vl is 10 - 5 = 5 nC because only
10 nC and - 5 nC charges are enclosed by vj. Although charges 20 nC and 15 nC outside
Vi do contribute to the flux crossing v1; the net flux crossing vi, according to Gauss's law,
is irrespective of those charges outside vj. Similarly, the total flux leaving v2 is zero
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. 20 nC

Figure 4.12 Illustration of Gauss's
law; flux leaving v{ is 5 nC and that

> 15 nC leaving v2 is 0 C.

because no charge is enclosed by v2. Thus we see that Gauss's law, f = <2enciosed> is still
obeyed even though the charge distribution is not symmetric. However, we cannot use the
law to determine E or D when the charge distribution is not symmetric; we must resort to
Coulomb's law to determine E or D in that case.

4.6 APPLICATIONS OF GAUSS'S LAW

The procedure for applying Gauss's law to calculate the electric field involves first
knowing whether symmetry exists. Once symmetric charge distribution exists, we con-
struct a mathematical closed surface (known as a Gaussian surface). The surface is chosen
such that D is normal or tangential to the Gaussian surface. When D is normal to the
surface, D • dS = D dS because D is constant on the surface. When D is tangential to the
surface, D • dS = 0. Thus we must choose a surface that has some of the symmetry ex-
hibited by the charge distribution. We shall now apply these basic ideas to the following
cases.

A. Point Charge
Suppose a point charge Q is located at the origin. To determine D at a point P, it is easy to
see that choosing a spherical surface containing P will satisfy symmetry conditions. Thus,
a spherical surface centered at the origin is the Gaussian surface in this case and is shown
in Figure 4.13.

Figure 4.13 Gaussian surface about a point charge.

*-y

Gaussian surface



4.6 APPLICATIONS OF GAUSS'S LAW • 127

Since D is everywhere normal to the Gaussian surface, that is, D = D^n applying
Gauss's law (V = genciosed) gives

Q = i> D • dS = Dr $> dS = Dr Aitr (4.44)

where § dS =
surface. Thus

LQ / £ = 0 r
2 sin 6 dd dcf> = 4irr2 is the surface area of the Gaussian

(4.45)11

as expected from eqs. (4.11) and (4.35).

B. Infinite Line Charge

Suppose the infinite line of uniform charge pL C/m lies along the z-axis. To determine D at
a point P, we choose a cylindrical surface containing P to satisfy symmetry condition as
shown in Figure 4.14. D is constant on and normal to the cylindrical Gaussian surface; that
is, D = Dpap. If we apply Gauss's law to an arbitrary length € of the line

PJ = Q = = Dp 2irp€ (4.46)

where § dS = 2irp€ is the surface area of the Gaussian surface. Note that J D • dS evalu-
ated on the top and bottom surfaces of the cylinder is zero since D has no z-component;
that means that D is tangential to those surfaces. Thus

D

as expected from eqs. (4.21) and (4.35).

2irp
(4.47)

Figure 4.14 Gaussian surface about an infinite line

line charge P /C/m

Gaussian surface
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C. Infinite Sheet of Charge

Consider the infinite sheet of uniform charge ps C/m2 lying on the z = 0 plane. To deter-
mine D at point P, we choose a rectangular box that is cut symmetrically by the sheet of
charge and has two of its faces parallel to the sheet as shown in Figure 4.15. As D is normal
to the sheet, D = Dzaz, and applying Gauss's law gives

Ps | dS = Q = <f> D • dS = Dz dS + dS
op ^bottom

(4.48)

Note that D • dS evaluated on the sides of the box is zero because D has no components
along ax and ay. If the top and bottom area of the box each has area A, eq. (4.48) becomes

and thus

PsA = DZ(A+ A)

Ps

(4.49)

or

(4.50)

as expected from eq. (4.25).

D. Uniformly Charged Sphere

Consider a sphere of radius a with a uniform charge pv C/m3. To determine D everywhere,
we construct Gaussian surfaces for eases r < a and r > a separately. Since the charge has
spherical symmetry, it is obvious that a spherical surface is an appropriate Gaussian
surface.

Infinite sheet of
charge ps C/m2

Figure 4.15 Gaussian surface about an
infinite line sheet of charge.

Gaussian surface
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For r < a, the total charge enclosed by the spherical surface of radius r, as shown in
Figure 4.16 (a), is

Gene = \Pvdv = pAdv = pA I I r2 sin 6 drdd d<j> (4.51)

and

V = <P D • dS = Dr $ dS = Dr

= Dr4xr2

Hence, TP = <2enc g i y e s

D r 4x r 2 =

rlsm.6ded<$>

=o
(4.52)

or

0 < r « a (4.53)

For r > a, the Gaussian surface is shown in Figure 4.16(b). The charge enclosed by
the surface is the entire charge in this case, that is,

while

G e n e = \ p v d v = p v \ d v = p

= pv - ira

sinO drdd
=o

= cb D - dS = Dr4irr2

(4.54)

(4.55)

Gaussian surface

I
I
f
I
\

Figure 4.16 Gaussian surface for a uniformly
charged sphere when: (a) r & a and (b) r £ a.

(a) (b)
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IDI Figure 4.17 Sketch of |D| against r for a uniformly
charged sphere.

just as in eq. (4.52). Hence:

or

r 3s a (4.56)

Thus from eqs. (4.53) and (4.56), D everywhere is given by

D =
0 < r s= a

;pvar r> a
(4.57)

and |D| is as sketched in Figure 4.17.

Notice from eqs. (4.44), (4.46), (4.48), and (4.52) that the ability to take D out of the
integral sign is the key to finding D using Gauss's law. In other words, D must be constant
on the Gaussian surface.

EXAMPLE 4.8 Given that D = Zp cos20 az C/m2, calculate the charge density at d , T/4, 3) a nd the total
charge enclosed by the cylinder of radius 1 m with - 2 < z < 2 m .

Solution:

pv = V • D = —z- = p cos2

dZ

At (1, TT/4, 3), Pv = 1 • cos2(7r/4) = 0.5 C/m3. The total charge enclosed by the cylinder
can be found in two different ways.
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Method 1: This method is based directly on the definition of the total volume charge.

Q = \ pv dv = p cos <j> pd<t>dp dz

dz
= - 2

p2dp = 4(TT)(1/3)

Method 2: Alternatively, we can use Gauss 's law.

D

= y, + IP, +

where f „ f „ and !P6 are the flux through the sides, the top surface, and the bottom surface
of the cylinder, respectively (see Figure 3.17). Since D does not have component along ap,
Ys = 0, for ¥*„ dS = pd<j> dp az so

zp cos2 4> p d<t> dp = 2 I p2dp I cos 2

and for Wb, dS = —p d(f> dp az, so

i cos <t> p d<j> dp

_ 2TT

~ T "x

Thus

= 2
= -2 Jo

c o s z 4> d<t>

as obtained previously.

PRACTICE EXERCISE 4.8

If D = (2)»2 + Z)AX + 4xyay + xaz C/m2, find

(a) The volume charge density at (— 1, 0, 3)

(b) The flux through the cube defined b y 0 < J t < l , 0 < . y < l ( 0 < z < l

(c) The total charge enclosed by the cube

Answer: (a) - 4 C/m\ (b) 2 C, (c) 2 C.
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A charge distribution with spherical symmetry has density

'' P°r rv , - — r.

EXAMPLE 4.9

= 1 R '
r> R

Determine E everywhere.

Solution:

The charge distribution is similar to that in Figure 4.16. Since symmetry exists, we can
apply Gauss's law to find E. y

(a) For r < R

So<PE-dS = gene = P

r r IT r 2ir

eoEr 4 x r = Qenc = pv r sin 9 d<t> dB dr
Jo Jo Jo

i . 2 Por , PoT-r4

= 4-Trr — dr =
R R

or

(b) For r > R,

= Qenc =

r rir r2ic

0 J0

pvr sin 6 d<j) dd dr

= I — 4irr2dr+ 0 • 4wr2 dr
Jo R ]R

or

PRACTICE EXERCISE 4.9

A charge distribution in free space has pv = 2r nC/m3 for 0 £ r £ 10 m and zero
otherwise. Determine E at r = 2 m and r = 12 m.

Answer: 226ar V/m, 3.927ar kV/m.
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4.7 ELECTRIC POTENTIAL

From our discussions in the preceding sections, the electric field intensity E due to a charge
distribution can be obtained from Coulomb's law in general or from Gauss's law when the
charge distribution is symmetric. Another way of obtaining E is from the electric scalar po-
tential V to be defined in this section. In a sense, this way of rinding E is easier because it
is easier to handle scalars than vectors.

Suppose we wish to move a point charge Q from point A to point B in an electric field
E as shown in Figure 4.18. From Coulomb's law, the force on Q is F = QE so that the
work done in displacing the charge by d\ is

dW = - F • d\ = -QE • d\ (4.58)

The negative sign indicates that the work is being done by an external agent. Thus the total
work done, or the potential energy required, in moving Q from A to B is

(4.59)

Dividing W by Q in eq. (4.59) gives the potential energy per unit charge. This quantity,
denoted by VAB, is known as the potential difference between points A and B. Thus

(4.60)

Note that

1. In determining VAB, A is the initial point while B is the final point.
2. If VAB is negative, there is a loss in potential energy in moving Q from A to B;

this implies that the work is being done by the field. However, if VAB is positive,
there is a gain in potential energy in the movement; an external agent performs
the work.

3. VAB is independent of the path taken (to be shown a little later).
4. VAB is measured in joules per coulomb, commonly referred to as volts (V).

Origin

Figure 4.18 Displacement of point charge Q in
an electrostatic field E.
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As an example, if the E field in Figure 4.18 is due to a point charge Q located at the
origin, then

E

so eq. (4.60) becomes

4iren

Q

Q
2

rA 4ireor

Q [ l

d r &r

(4.61)

(4.62a)

or

vAB = vB-vA
(4.62b)

where VB and VA are the potentials (or absolute potentials) at B and A, respectively. Thus
the potential difference VAB may be regarded as the potential at B with reference to A. In
problems involving point charges, it is customary to choose infinity as reference; that is,
we assume the potential at infinity is zero. Thus if VA = 0 as rA —» °° in eq. (4.62), the po-
tential at any point (rB —> r) due to a point charge Q located at the origin is

V =
Q

4irenr
(4.63)

Note from eq. (4.62a) that because E points in the radial direction, any contribution from a
displacement in the 6 or </> direction is wiped out by the dot product
E • d\ = E cos 8 dl = E dr. Hence the potential difference VAB is independent of the path
as asserted earlier.

The potential ;il an\ poim is the pulomial dit'tcrcntx" helwecn thai poim and a chosen
poinl in which the potential is /em.

In other words, by assuming zero potential at infinity, the potential at a distance r from the
point charge is the work done per unit charge by an external agent in transferring a test
charge from infinity to that point. Thus

V = - E • dl (4.64)

If the point charge Q in eq. (4.63) is not located at the origin but at a point whose po-
sition vector is r', the potential V(x, y, z) or simply V(r) at r becomes

V(r) = Q
4iren r — r'

(4.65)
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We have considered the electric potential due to a point charge. The same basic ideas
apply to other types of charge distribution because any charge distribution can be regarded
as consisting of point charges. The superposition principle, which we applied to electric
fields, applies to potentials. For n point charges Qu Q2,. • • ,Qn located at points with po-
sition vectors r b r2 , . . . , rn, the potential at r is

V(r) = Qn

47TE 4ireo|r - r2 4ire0 r -

or

r - r.
(point charges) (4.66)

For continuous charge distributions, we replace Qk in eq. (4.66) with charge element pL dl,
ps dS, or pv dv and the summation becomes an integration, so the potential at r becomes

V(r) =

V(r) =

\/r*\ -

1
4irso

1

47Tfio

1

r - r

Ps(r')dS'

4TTS O

r - rr

Pv(r')dV

r - r'

(line charge)

(surface charge)

(volume charge)

(4.67)

(4.68)

(4.69)

where the primed coordinates are used customarily to denote source point location and the
unprimed coordinates refer to field point (the point at which Vis to be determined).

The following points should be noted:

1. We recall that in obtaining^qs. (4.63) to (4.69), the zero potential (reference) point
has been chosen arbitrarily to be at infinity. If any other point is chosen as reference,
eq. (4.65), for example, becomes

V =
Q

+ C (4.70)

where C is a constant that is determined at the chosen point of reference. The same idea
applies to eqs. (4.63) to (4.69).

2. The potential at a point can be determined in two ways depending on whether the
charge distribution or E is known. If the charge distribution is known, we use one of eqs.
(4.65) to (4.70) depending on the charge distribution. If E is known, we simply use

V = - E • dl + C

The potential difference VAB can be found generally from

fB

vAB = vB-vA =
w
-

(4.71)

(4.72)
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EXAMPLE 4.10

Electrostatic Fields

Two point charges - 4 juC and 5 jtC are located at ( 2 , - 1 , 3) and (0, 4, -2 ) , respectively.
Find the potential at (1, 0, 1) assuming zero potential at infinity.

Solution:

Let

6i = - 4

V(r) =

Q2 = 5

4vreo r - r. 4Treo|r - r2
C0

If = 0, Co = 0,

r - r, = |(1, 0, 1) - (2, - 1 , 3)| = | ( -1 , 1, -2) | = V6

r - r2| = |(1, 0, 1) - (0, 4, -2) | = |(1, -4 , 3)| = V26

Hence

V(l,0, 1) =
4TT X

- 4

1OV6 V26J
36TT

= 9 X 103 (-1.633 + 0.9806)
= -5.872 kV

PRACTICE EXERCISE 4.10

If point charge 3 fiC is located at the origin in addition to the two charges of example
4.10, find the potential at ( - 1 , 5, 2) assuming V(o°) = 0.

Answer: 10.23 kV.

EXAMPLE 4.11
A point charge 5 nC is located at ( - 3 , 4, 0) while line y = 1, z = 1 carries uniform charge
2 nC/m.

(a) If V = 0 V at O(0, 0, 0), find V at A(5, 0, 1).

(b) If V = 100 V at 5(1, 2, 1), find Vat C(-2, 5, 3).

(c) If V = - 5 V at O, find VBC.

Solution:

Let the potential at any point be

V = VQ + VL
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where VQ and VL are the contributions to V at that point due to the point charge and the line
charge, respectively. For the point charge,

VQ= -SE-d\= ~
Q

ar • dr ar

Q
+ c,4xeor

For the infinite line charge,

VL = - I E • d\ = -
PL

2?r£op
dp ap

PL

2irsc

In p + C2

Hence,

V = -
PL

2ireo
lnp +

Q
4irenr

+ C

where C = Cx + C2 = constant, p is the perpendicular distance from the line y = 1,
z = 1 to the field point, and r is the distance from the point charge to the field point.

(a) If V = 0 at O(0, 0, 0), and V at A(5, 0, 1) is to be determined, we must first determine
the values of p and r at O and A. Finding r is easy; we use eq. (2.31). To find p for any point
(x, y, z), we utilize the fact that p is the perpendicular distance from (x, y, z) to line y = 1,
z = 1, which is parallel to the x-axis. Hence p is the distance between (x, y, z) and (x, 1, 1)
because the distance vector between the two points is perpendicular to ax. Thus

p = |(x, y, z) ~ (x, 1, 1)| = V(y - I)2 + (z - I)2

Applying this for p and eq. (2.31) for r at points O and A, we obtain

P o = | ( 0 , 0 , 0 ) - (0,l

r o = |(0,0,0) - ( - 3

pA= |(5,0, 1 ) - ( 5 , 1

rA = |(5,0, 1) - ( - 3

= \Tl
)| = 5

= 1

)| = 9

Hence,

0 PA

- 2 • 10"9 \fl
-In +

J 1
ro r/

5 • 10~9

2TT
10- 9 1

4TT
10- 9

36TT " 36TT

0 - V, = - 3 6 In V 2 + 45 ( - - -
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or

VA = 36 In V 2 - 4 = 8.477 V

fnote H T I T ! g Stant C by Subtracti"g one

another and that it does not matter which one is subtracted from which.
(b) If V = 100 at 5(1, 2, 1) and Vat C(-2, 5, 3) is to be determined, we find

PB= 1(1,2,1) - (1,1,1)| = 1

rB = |(1, 2, 1) - (-3, 4, 0)| = V2T

Pc= K-2,5,3) - (-2,1,1)| = V20

rc= |(-2,5,3) - (-3,4,0)| =

2xeo

or

361n

= -50.175 V

Vc = 49.825 V

21 J

(c) To find the potential difference between two points, we do not need a potential refer-
ence if a common reference is assumed.

= Vc - VB = 49.825 - 100
= -50.175 V

as obtained in part (b).

PRACTICE EXERCISE 4.11

A point charge of 5 nC is located at the origin. If V = 2 V at (0, 6, -8 ) , find

(a) The potential at A(-3, 2,6)

(b) The potential at B(\, 5, 7)

(c) The potential difference VAB

Answer: (a) 3.929 V, (b) 2.696 V, (c) -1.233 V.
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4.8 RELATIONSHIP BETWEEN E AND V—
MAXWELL'S EQUATION

As shown in the previous section, the potential difference between points A and B is inde-
pendent of the path taken. Hence,

VAB

that is, VBA + VAB = $ E • d\ = 0

or

(4.73)

This shows that the line integral of E along a closed path as shown in Figure 4.19 must be
zero. Physically, this implies that no net work is done in moving a charge along a closed
path in an electrostatic field. Applying Stokes's theorem to eq. (4.73) gives

E • d\ = (V X E) • dS = 0

or

V X E = 0 (4.74)

Any vector field that satisfies eq. (4.73) or (4.74) is said to be conservative, or irrotational,
as discussed in Section 3.8. Thus an electrostatic field is a conservative field. Equation
(4.73) or (4.74) is referred to as Maxwell's equation (the second Maxwell's equation to be
derived) for static electric fields. Equation (4.73) is the integral form, and eq. (4.74) is the
differential form; they both depict the conservative nature of an electrostatic field.

From the way we defined potential, V = — / E • d\, it follows that

dV = -Edl= -Ex dx - Eydy - Ez dz

Figure 4.19 Conservative nature of an electrosta-
tic field.
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But

dV dV dV
dV= — dx + — dy + — dz

dx dy dz

Comparing the two expressions for dV, we obtain

dV
Ex=-

dV

dx'
= E =

dy' z dz

Thus:

E = - V V

(4.75)

(4.76)

that is, the electric field intensity is the gradient of V. The negative sign shows that the di-
rection of E is opposite to the direction in which V increases; E is directed from higher to
lower levels of V. Since the curl of the gradient of a scalar function is always zero
(V X V V = 0), eq. (4.74) obviously implies that E must be a gradient of some scalar func-
tion. Thus eq. (4.76) could have been obtained from eq. (4.74).

Equation (4.76) shows another way to obtain the E field apart from using Coulomb's
or Gauss's law. That is, if the potential field V is known, the E can be found using
eq. (4.76). One may wonder how one function V can possibly contain all the information
that the three components of E carry. The three components of E are not independent of
one another: They are explicitly interrelated by the condition V X E = 0. What the poten-
tial formulation does is to exploit this feature to maximum advantage, reducing a vector
problem to a scalar one.

EXAMPLE 4.12 Given the potential V = —^ sin 6 cos 0,

(a) Find the electric flux density D at (2, TT/2, 0).

(b) Calculate the work done in moving a 10-/*C charge from point A(l, 30°, 120°) to
B(4, 90°, 60°).

Solution:

(a) D = eoE

But

1 dV
dr r dd rsind ari

20 . 10
= —r sin 0 cos <p ar r- cos d cos

10
H—r- sin i

r
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At (2, TT/2, 0),

/20 \
D = eoE (r = 2, 6 = TT/2, 0 = 0) = so( — ar - 0ae + 0a* I

= 2.5eoarC/m2 = 22.1 arpC/m2

(b) The work done can be found in two ways, using either E or V.

Method 1:

W
or = I E • dlW = -Q E- dl

and because the electrostatic field is conservative, the path of integration is immaterial.
Hence the work done in moving Q from A(l, 30°, 120°) to 5(4, 90°, 60°) is the same as
that in moving Q from A to A', from A' to B', and from B' to B where

A(l, 30°

i dl

A'(4, 30°

, 120°)

= drar

, 120°)
dl = rddag

—>

B(4, 90°,

B'(4, 90°,

60°)

120°).

: r s in 6 d<f>

That is, instead of moving Q directly from A and B, it is moved from A —> A', A' -* B',
B' —» B so that only one variable is changed at a time. This makes the line integral a lot
easier to evaluate. Thus

-W

~Q

1

'AA' A'B' B'B

Edl

20 sin 6 cos <j>
dr

= 3 0 ° , <t> = 120°
90° - 1 0 cos 6 cos <(>

= 30°
60° 10 sin

rdd

r s in 6 d<t>

r = 4, 4 > = 1

10 (-1) . .
"l6^S m e

- 7 5 ^ _ _ K)
32 + 32 16

10
- cos 0

60°

120°
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or

45
W = — Q = 28.125

Method 2:
Since Vis known, this method is a lot easier.

W=-Q

- VA)

= 1 0 ( j ^ sin 90° cos 60° - y sin 30° cos 120°) • 1(T6

- 28.125 ̂ J as obtained before

PRACTICE EXERCISE 4.12

Given that E = (3*2 + v) a, + Aa, W/m, find the work done in moving a - 2 MC
charge from (0, 5, 0) to (2, - 1 , 0) by taking the path

(a) (0,5,0) ~>(2, 5,0) -> (2, - 1 , 0 )
(b) y = 5 - 3x

Answer: (a) 12 mJ, (b) 12 mJ.

4.9 AN ELECTRIC DIPOLE AND FLUX LINES

An electric dipole is formed when two poim charges of equal magnitude but oppo-
site sign are separated by a small distance.

The importance of the field due to a dipole will be evident in the subsequent chapters
Consider the dipole shown in Figure 4.20. The potential at point P(r, 6, 0) is given by

r2\ 4TTEO
(4.77)

where r, and r2 are the distances between P and +Q and P and -Q, respectively If
r » d,r2- r, = d cos 6, r2rx - r2, and eq. (4.77) becomes

V =
Q dcosd

(4.78)
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Figure 4.20 An electric dipole.

dcosd

Since d cos 6 = d • ar, where d = daz, if we define

as the dipole moment, eq. (4.78) may be written as

(4.79)

(4.80)

Note that the dipole moment p is directed from — Q to +Q. If the dipole center is not at the
origin but at r', eq. (4.80) becomes

V(r) =
p (r - r')

47ren|r - r '
(4.81)

The electric field due to the dipole with center at the origin, shown in Figure 4.20, can
be obtained readily from eqs. (4.76) and (4.78) as

E = - V V = -

_ Qd cos 0

27T£nr3

ay l ay

QJ sin 6

or

E = (2 cos 6 ar + sin 6 ae) (4.82)

where p = |p| = Qd.
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Notice that a point charge is a monopole and its electric field varies inversely as r2

while its potential field varies inversely as r [see eqs. (4.61) and (4.63)]. From eqs. (4.80)
and (4.82), we notice that the electric field due to a dipole varies inversely as r3 while its
potential varies inversely as r2. The electric fields due to successive higher-order multi-
poles (such as a quadrupole consisting of two dipoles or an octupole consisting of two
quadrupoles) vary inversely as r4, r5, r6,. . . while their corresponding potentials vary in-
versely as r3, r4, r5, . . . .

The idea of electric flux lines (or electric lines of force as they are sometimes called)
was introduced by Michael Faraday (1791-1867) in his experimental investigation as a
way of visualizing the electric field.

An electric flux line is an imaginary path or line drawn in such a way thai its direc-
tion at any poinl is the direction of Ihc electric field at that point.

In other words, they are the lines to which the electric field density D is tangential at
every point.

Any surface on which the potential is the same throughout is known as an equipoten-
tial surface. The intersection of an equipotential surface and a plane results in a path or line
known as an equipotential line. No work is done in moving a charge from one point to
another along an equipotential line or surface (VA - VB = 0) and hence

E-dl (4.83)

on the line or surface. From eq. (4.83), we may conclude that the lines of force or flux
lines (or the direction of E) are always normal to equipotential surfaces. Examples of
equipotential surfaces for point charge and a dipole are shown in Figure 4.21. Note
from these examples that the direction of E is everywhere normal to the equipotential

flux line

Figure 4.21 Equipotential surfaces for (a) a point charge and (b) an electric
dipole.
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lines. We shall see the importance of equipotential surfaces when we discuss conducting
bodies in electric fields; it will suffice to say at this point that such bodies are equipoten-
tial volumes.

A typical application of field mapping (flux lines and equipotential surfaces) is found
in the diagnosis of the human heart. The human heart beats in response to an electric field
potential difference across it. The heart can be characterized as a dipole with the field map
similar to that of Figure 4.2 l(b). Such a field map is useful in detecting abnormal heart po-
sition.6 In Section 15.2, we will discuss a numerical technique for field mapping.

EXAMPLE 4.13
Two dipoles with dipole moments -5a z nC/m and 9az nC/m are located at points
(0, 0, - 2 ) and (0, 0, 3), respectively. Find the potential at the origin.

Solution:

where

Hence,

= -5az ,

t r i 4ireor
3
k

p2 r2

r\ r\

= (0, 0, 0) - (0, 0, -2 ) = 2az, , j = 2

p2 = 9az, r2 = (0, 0, 0) - (0, 0, 3) = -3az , r2 = jr2| = 3

- 1 0 27

10" 9 L 2 3 3 3 10-9

36vr
= -20.25 V

PRACTICE EXERCISE 4.13

An electric dipole of 100 a. pC • m is located at the origin. Find V and E at points

(a) (0,0, 10)

(b) (I,7i73, TT/2)

Answer: (a) 9 mV, 1.8ar mV/m, (b) 0.45 V, 0.9ar + 0.7794a,, V/m.

6For more information on this, see R. Plonsey, Bioelectric Phenomena. New York: McGraw-Hill,
1969.
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4.10 ENERGY DENSITY IN ELECTROSTATIC FIELDS

To determine the energy present in an assembly of charges, we must first determine the
amount of work necessary to assemble them. Suppose we wish to position three point
charges Qx, Q2, and Q3 in an initially empty space shown shaded in Figure 4.22. No work
is required to transfer Qx from infinity to Pl because the space is initially charge free and
there is no electric field [from eq. (4.59), W = 0]. The work done in transferring Q2 from
infinity to P2 is equal to the product of Q2 and the potential V2i

 a t P2 due to Qx. Similarly,
the work done in positioning Q3 at P3 is equal to Q3(V32 + V31), where V32 and V31 are the
potentials at P3 due to Q2 and Qu respectively. Hence the total work done in positioning
the three charges is

W3

= 0 + Q2V2l +

If the charges were positioned in reverse order,

WE = W3 + W2 + 1
= 0 -

v3 2)

V1 3)

(4.84)

(4.85)

where V23 is the potential at P2 due to Q3, Vl2 and Vl3 are, respectively, the potentials at Pi
due to Q2 and Q3. Adding eqs. (4.84) and (4.85) gives

2WE = + V13) + Q2(V2l + V23) + Q3(V3]

Q2V2 + Q3V3

V32)

or

Q2V2 + Q3V3) (4.86)

where Vu V2, and V3 are total potentials at Pu P2, and P3, respectively. In general, if there
are n point charges, eq. (4.86) becomes

(in joules) (4.87)

Figure 4.22 Assembling of charges.
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If, instead of point charges, the region has a continuous charge distribution, the sum-
mation in eq. (4.87) becomes integration; that is,

WE = -\pLVdl (line charge)

W£ = - | psV dS (surface charge)

WE = — I pvV dv (volume charge)

Since pv = V • D, eq. (4.90) can be further developed to yield

WE = ~ j(V-D)Vdv

But for any vector A and scalar V, the identity

V • VA = A • VV + V(V • A)

or

(V • A)V = V • VA - A • VV

holds. Applying the identity in eqs. (4.92) to (4.91), we get

WE = - (V • VD) dv (D • VV) dv

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

By applying divergence theorem to the first term on the right-hand side of this equation, we
have \

1
WE = - 4> (VD) • dS (D • VV) dv (4.94)

From Section 4.9, we recall that V varies as 1/r and D as 1/r2 for point charges; V varies
as 1/r2 and D as 1/r3 for dipoles; and so on. Hence, VD in the first term on the right-hand
side of eq. (4.94) must vary at least as 1/r3 while dS varies as r2. Consequently, the first
integral in eq. (4.94) must tend to zero as the surface S becomes large. Hence, eq. (4.94)
reduces to

(4.95)WE= - - (D • VV) dv = | | (D • E) dv

and since E = - VV and D = eoE

(4.96)
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From this, we can define electrostatic energy density wE (in J/m ) as

dW* 1 _ „ 1 i _ D2

wE = dv 2 2eo

(4.97)

so eq. (4.95) may be written as

WE = wE dv (4.98)

EXAMPLE 4.14
Three point charges - 1 nC, 4 nC, and 3 nC are located at (0, 0, 0), (0, 0, 1), and (1, 0, 0),
respectively. Find the energy in the system.

Solution:

w = w, + w2 + w3
= 0 + Q2V21 + G3

V32)

-a-
4TT£O

Q\
1(1,0,0) - (0,0,0)| |(l,0,0) - (0,0,l)|

4ir
10"

- 4 - 3

36TT

= 91-^= - 7 | nJ = 13.37 nJ

Alternatively,

W = 2 •

2
Qi
2

2 L4TS O ( 1 )

= 9( ^= - 7 ) nJ = 13.37 nJ

as obtained previously.
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PRACTICE EXERCISE 4.14

Point charges <2, = 1 nC, Q2 = - 2 nC, Q3 = 3 nC, and Q4 = - 4 nC are posi-
tioned one at a time and in that order at (0, 0, 0), (1,0, 0), (0, 0, -1 ) , and (0, 0, 1),
respectively. Calculate the energy in the system after each charge is positioned.

Answer: 0, - 1 8 nJ, -29.18 nJ, -68.27 nJ.

EXAMPLE 4.15
A charge distribution with spherical symmetry has density

"po, 0 < r < R
Pv = 0, r>R

Determine V everywhere and the energy stored in region r < R.

Solution:
The D field has already been found in Section 4.6D using Gauss's law.

(a) Forr » R,E = -^^ar.
3e</

Once E is known, V is determined as

3eor
+ C,, R

Since V(r = oo) = o,Ci = 0.

(b) For r =£ /?, E = — ar.
3eo

Hence,

por
6eo

From part (a) V(r = R) = . Hence,
3e0

d\= -— | rdr
3eo

+ C,

6eo 2en
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and

6eo

Thus from parts (a) and (b)

V =

(c) The energy stored is given by

3e</'

^(3R2-r2), r

W = | I D • E dv = - eo | E2 dv

Forr =S R,

Hence,

2ir
- I ô

W ~ 2 S e 2 J J J
r2 • r2 sin 0

2 D 5

45eo

PRACTICE EXERCISE 4.15

If V = x — y + xy + 2z V, find E at (1, 2, 3) and the electrostatic energy stored in a
cube of side 2 m centered at the origin.

Answer: -3ax - 2a, V/m, 0.2358 nJ.

SUMMARY 1. The two fundamental laws for electrostatic fields (Coulomb's and Gauss's) are pre-
sented in this chapter. Coulomb's law of force states that

Aireji2

2. Based on Coulomb's law, we define the electric field intensity E as the force per unit
charge; that is,

T? Q
4-ireJi R

(point charge only)
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3. For a continuous charge distribution, the total charge is given by

Q = \ pLdl for line charge

Q = \ ps dS for surface charge

Q = \ pv dv for volume charge

The E field due to a continuous charge distribution is obtained from the formula for
point charge by replacing Q with dQ = pL dl, dQ = ps dS or dQ = pv dv and integrat-
ing over the line, surface, or volume respectively.

4. For an infinite line charge,

and for an infinite sheet of charge,

F -
2e0

5. The electric flux density D is related to the electric field intensity (in free space) as

D = eoE

The electric flux through a surface S is

/ y = I D - d s
's

6. Gauss's law states that the net electric flux penetrating a closed surface is equal to the
total charge enclosed, that is, f = Qenc. Hence,

or

Pv = V D

= 2 e n c = Pvdv

(first Maxwell's equation to be derived)

When charge distribution is symmetric so that a Gaussian surface (where D = Dnan is
constant) can be found, Gauss's law is useful in determining D; that is,

Dn*dS= gene or Dn =
Gene
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7. The total work done, or the electric potential energy, to move a point charge Q from
point A to B in an electric field E is

W = - Q \ E - d l

8. The potential at r due to a point charge Q at r ' is

V(r) = Q
47rso|r - r ' |

C

where C is evaluated at a given reference potential point; for example C = 0 if
V(r —> oo) = 0. To determine the potential due to a continuous charge distribution, we
replace Q in the formula for point charge by dQ = pL dl, dQ = ps dS, or dQ = pv dv
and integrate over the line, surface, or volume, respectively.

9. If the charge distribution is not known, but the field intensity E is given, we find the
potential using

V=-\E-dl

W

10. The potential difference VAB, the potential at B with reference to A, is

VAB= - J W
-dl = -=VB-VA

11. Since an electrostatic field is conservative (the net work done along a closed path in a
static E field is zero),

E • dl = 0

or

V X E = 0 (second Maxwell's equation to be derived)

12. Given the potential field, the corresponding electric field is found using

. E = -VV

13. For an electric dipole centered at r ' with dipole moment p, the potential at r is given
by

V(r) =
P • (r - r')

47rco|r - r ' |3

14. D is tangential to the electric flux lines at every point. An equipotential surface (or
line) is one on which V = constant. At every point, the equipotential line is orthogonal
to the electric flux line.
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15. The electrostatic energy due to n point charges is

WE = ~ 2 QkVk
1

For a continuous volume charge distribution,

= - \D-Edv = - | eo\E\zdv

REVIEW QUESTIONS

4.1 Point charges Q, = 1 nC and Q2 = 2 nC are at a distance apart. Which of the following
statements are incorrect?

(a) The force on Ql is repulsive.
(b) The force on Q2 is the same in magnitude as that on Qx.

(c) As the distance between them decreases, the force on Ql increases linearly.

(d) The force on Q2 is along the line joining them.

(e) A point charge Q3 = — 3 nC located at the midpoint between Q{ and Q2 experiences
no net force.

4.2 Plane z = 10 m carries charge 20 nC/m2. The electric field intensity at the origin is

(a) -10a ,V/m

(b) -187razV/m

(c) -727razV/m

(d) -360irazV/m

4.3 Point charges 30 nC, -20 nC, and 10 nC are located at ( -1 ,0 ,2) , (0,0,0), and
(1,5, — 1), respectively. The total flux leaving a cube of side 6 m centered at the origin is:

(a) - 2 0 nC

(b) 10 nC

(c) 20 nC

(d) 30 nC

(e) 60 nC

4.4 The electric flux density on a spherical surface r = b is the same for a point charge Q
located at the origin and for charge Q uniformly distributed on surface r = a(a < b).

(a) Yes

(b) No
(c) Not necessarily
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4.5 The work done by the force F = 4ax - 3ay + 2az N in giving a 1 nC charge a displace-
f lO + 2 7 i+ 2ay - 7az m isment of

(a) 103 nJ
(b) 60 nJ
(c) 64 nJ

(d) 20 nJ

4.6 By saying that the electrostatic field is conservative, we do not mean that

(a) It is the gradient of a scalar potential.
(b) Its circulation is identically zero.
(c) Its curl is identically zero.

(d) The work done in a closed path inside the field is zero.

(e) The potential difference between any two points is zero.

4.7 Suppose a uniform electric field exists in the room in which you are working, such that the
lines of force are horizontal and at right angles to one wall. As you walk toward the wall
from which the lines of force emerge into the room, are you walking toward

(a) Points of higher potential?

(b) Points of lower potential?

(c) Points of the same potential (equipotential line)?

4.8 A charge Q is uniformly distributed throughout a sphere of radius a. Taking the potential
at infinity as zero, the potential at r = b < a is

(a) -

(b) -

(c) -

(d) -

Q

0 4irsor
2

a Q

= 4ireor
2

" Q

dr

dr -
Qr

4irena
dr

dr

4.9 A potential field is given by V = 3x2y - yz- Which of the following is not true?

(a) At point (1, 0, - 1), V and E vanish.

(b) x2y = 1 is an equipotential line on the xy-plane.

(c) The equipotential surface V = — 8 passes through point P(2, —1,4).

(d) The electric field at P is 12a^ - 8a,, - az V/m.

(e) A unit normal to the equipotential surface V = —8 at P is —0.83a^ + 0.55aj,+
0.07a7.
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4.10 An electric potential field is produced by point charges 1 juC and 4 /*(
( -2 , 1, 5) and (1, 3, -1 ) , respectively. The energy stored in the field is

(a) 2.57 mJ
(b) 5.14 mJ
(c) 10.28 mJ

(d) None of the above

Answers: 4.1c,e, 4.2d, 4.3b, 4.4a, 4.5d, 4.6e, 4.7a, 4.8c, 4.9a, 4.10b.
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located at

PROBLEMS
4.1 Point charges Qx = 5 jtC and Q2 = - 4 /xC are placed at (3, 2, 1) and ( -4 , 0, 6), re-

spectively. Determine the force on Qx.

4.2 Five identical 15-/*C point charges are located at the center and corners of a square
defined by - 1 < x, y < 1, z = 0.

(a) Find the force on the 10-/*C point charge at (0, 0, 2).
(b) Calculate the electric field intensity at (0, 0, 2).

4.3 Point charges Qx and Q2 are, respectively, located at (4,0, -3 ) and (2,0, 1). If
Q2 = 4 nC, find Qx such that

(a) The E at (5, 0, 6) has no z-component

(b) The force on a test charge at (5, 0, 6) has no jc-component.

4.4 Charges + Q and + 3Q are separated by a distance 2 m. A third charge is located such that
the electrostatic system is in equilibrium. Find the location and the value of the third
charge in terms of Q.

4.5 Determine the total charge

(a) On line 0 < x < 5 m if pL = \2x2 mC/m
(b) On the cylinder p = 3, 0 < z < 4 m if ps = pz2 nC/m2

10 3

(c) Within the sphere r = 4 m if pv = —:—- C/m

4.6 Calculate the total charge due to the charge distributions labeled A, B, C in Fig. 4.23.

4.7 Find E at (5, 0, 0) due to charge distribution labeled A in Figure 4.23.

4.8 Due to the charge distribution labeled B in Figure 4.23,

(a) Find E at point (0, 0, 3) if ps = 5 mC/m2.

(b) Find E at point (0, 0, 3) if ps = 5 sin </> mC/m2.

4.9 A circular disk of radius a carries charge ps = — C/m2. Calculate the potential at (0, 0, h).
P
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x= - 2

pv = 1 mC/m3

ps = 5 mC/m2

Figure 4.23 For Problem 4.6.

4.10 A ring placed along y2 + z2 = 4, x = 0 carries a uniform charge of 5 /xC/m.

(a) FindDatP(3,0, 0).

(b) If two identical point charges Q are placed at (0, —3, 0) and (0, 3, 0) in addition to
the ring, find the value of Q such that D = 0 at P.

*4.11 (a) Show that the electric field at point (0, 0, h) due to the rectangle described by
— a < x < a, — b •& y < b, z = 0 carrying uniform charge psC/m2 is

ab

(b) If a = 2, b = 5,ps = 10~5, find the total charge on the plate and the electric field in-
tensity at (0, 0, 10).

4.12 A point charge 100 pC is located at ( 4 , 1 , — 3) while the x-axis carries charge 2 nC/m. If
the plane z = 3 also carries charge 5 nC/m2, find E at (1 , 1, 1).

4.13 Linex = 3, z = — 1 carries charge 20 nC/m while plane x = —2 carries charge 4 nC/m2.
Find the force on a point charge - 5 mC located at the origin.

4.14 Point charges are placed at the corners of a square of size 4 m as shown in Figure 4.24. If
Q = 15/tC, find D at (0,0, 6).
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Figure 4.24 For Problem 4.14.
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*4.15 State Gauss's law. Deduce Coulomb's law from Gauss's law thereby affirming that
Gauss's law is an alternative statement of Coulomb's law and that Coulomb's law is im-
plicit in Maxwell's equation V • D = pv.

4.16 Determine the charge density due to each of the following electric flux densities:

(a) D = %xyax + 4x\ C/m2

(b) D = p sin <t> ap + 2p cos + 2z2az C/m2

(c) D =
2 cos 6

ar +
sin 0

C/m2

4.17 Let E = xyax + x2ay, find

(a) Electric flux density D.

(b) The volume charge density pv.

4.18 Plane x + 2y = 5 carries charge ps = 6 nC/m2. Determining E at ( - 1 , 0, 1).

4.19 In free space, D = 2v2a,t + 4xy - az mC/m2. Find the total charge stored in the region
l < x < 2 , l < y < 2 , - 1 < z < 4.

4.20 In a certain region, the electric field is given by

D = 2p(z + l)cos </> ap - p(z + l)sin 0 a0 + p2 cos <t> az /^C/m2

(a) Find the charge density.

\ . (b) Calculate the total charge enclosed by the volume 0 < p < 2, 0 < <t> < x/2,
0 < z < 4.

(c) Confirm Gauss's law by finding the net flux through the surface of the volume in (b).

*4.21 The Thomson model of a hydrogen atom is a sphere of positive charge with an electron (a
point charge) at its center. The total positive charge equals the electronic charge e. Prove
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that when the electron is at a distance r from the center of the sphere of positive charge, it
is attracted with a force

F =

where R is the radius of the sphere.

4.22 Three concentric spherical shells r = 1, r = 2, and r = 3 m, respectively, have charge
distributions 2, - 4 , and 5

(a) Calculate the flux through r = 1.5 m and r = 2.5 m.
(b) Find D at r = 0.5, r = 2.5, and r = 3.5 m.

4.23 Given that

j

Determine D everywhere.

4.24 Let

/ Up nC/m3,
\0,

1 <P < 2
otherwise

mC/m3,

0,

1 < r < 4

r> 0

(a) Find the net flux crossing surface r = 2 m and r = 6 m.
(b) Determine D at r = 1 m and r = 5 m.

4.25 Find the work done in carrying a 5-C charge from P(l, 2, -4 ) to R(3, - 5 , 6) in an elec-
tric field

E = ax + z \ + 2yzaz V/m

4.26 Given that the electric field in a certain region is

E = (z + 1) sin 0 a, + (z + 1) cos a0 + p sin <£ az V/m

determine the work done in moving a 4-nC charge from

(a) A(l,0, 0)toB(4, 0,0)

(b) S(4, 0, 0) to C(4, 30°, 0)
(c) C(4, 30°, 0)toD(4, 30°, -2 )
(d) AtoD

4̂ 27 In an electric field E = 20r sin 6 ar + lOr cos 6 ae V/m, calculate the energy expended
in transferring a 10-nC charge

(a) From A(5, 30°, 0°) to B(5, 90°, 0°)

(b) From A to C( 10, 30°, 0°)
(c) FromAtoD(5,30°, 60°)
(d) From A to £(10, 90°, 60°)
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4.28 Let V = xy2z, calculate the energy expended in transfering a 2-^C point charge from
( 1 , - 1 , 2) to (2, 1,-3).

4.29 Determine the electric field due to the following potentials:

(a) V= x2 + 2y2 + 4z2

(b) V = sin(x2 + y2 + z2)1'2

(c) V = p2(z + l)sin (j>

(d) V = e'r sin 6 cos 2<t>

4.30 Three point charges gi = 1 mC, Q2 = - 2 m C , and Q3 = 3 mC are, respectively,
located at (0, 0, 4), ( -2 , 5, 1), and (3, - 4 , 6).

(a) Find the potential VP at P(-1, 1, 2).
(b) Calculate the potential difference VPQ if Q is (1, 2, 3).

4.31 In free space, V = x2y(z + 3) V. Find

(a) Eat (3, 4, - 6 )
(b) the charge within the cube 0 < x,y,z < 1.

4.32 A spherical charge distribution is given by

r<a
2

j 0, r> a

Find V everywhere.

4.33 To verify that E = yzax + xzay + xyaz V/m is truely an electric field, show that

(a) V X E = 0

(b) j>L E • d\ = 0, where L is the edge of the square defined \ayO<x,y<2,z= 1 •

4.34 (a) A total charge Q = 60 fiC is split into two equal charges located at 180° intervals
around a circular loop of radius 4 m. Find the potential at the center of the loop.

(b) If Q is split into three equal charges spaced at 120° intervals around the loop, find the
potential at the center.

Q
(c) If in the limit pL = — , find the potential at the center.

4.35 For a spherical charge distribution

Pv =
Po(a2 - r2) ,
0,

r < a
r > a

(a) Find E and V for r> a

(b) Find E and V for r < a

(c) Find the total charge
(d) Show that E is maximum when r = 0.145a.
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*4.36 (a) Prove that when a particle of constant mass and charge is accelerated from rest in an
electric field, its final velocity is proportional to the square root of the potential dif-
ference through which it is accelerated.

(b) Find the magnitude of the proportionality constant if the particle is an electron.

(c) Through what voltage must an electron be accelerated, assuming no change in its mass,
to require a velocity one-tenth that of light? (At such velocities, the mass of a body
becomes appreciably larger than its "rest mass" and cannot be considered constant.)

*4.37 An electron is projected with an initial velocity uo = 107 m/s into the uniform field
between the parallel plates of Figure 4.25. It enters the field at the midway between the
plates. If the electron just misses the upper plate as it emerges from the field.

(a) Find the electric field intensity.

(b) Calculate its velocity as it emerges from the field. Neglect edge effects.

4.38 An electric dipole with p = paz C • m is placed at (x, z) = (0, 0). If the potential at
(0, 1) nm is 9 V, find the potential at (1, 1) nm.

4.39 Point charges Q and -Q are located at (0, d/2, 0) and (0, -d/2, 0). Show that at point
(r, 6, <t>), where r » d,

Qd sin 6 sin 4>
V =

Find the corresponding E field.

4.40 Determine the work necessary to transfer charges Q\ = \ mC and Q2 = —2 mC from
infinity to points ( — 2, 6, 1) and (3, —4, 0), respectively.

4.41 A point charge Q is placed at the origin. Calculate the energy stored in region r > a.

4.42 Find the energy stored in the hemispherical region r < 2 m , 0 < 6 < it, where

E = 2r sin 8 cos <j> a r + r cos 6 cos <f> ae — r sin <j> a^ V/m

exists.

4.43 If V = p2z sin <£, calculate the energy within the region defined by 1 < p < 4,
- 2 < z < 2 , 0 < <f> < 7i73.

2 cm

-10 cm -

Figure 4.25 For Problem 4.37.


