

Engineering Economy

[7-2] Rate of Return Analysis Single Alternatives

- We have so far come across net cash flows that change once during the investment period
- That is, we started with a negative value at the very beginning (<u>initial payment</u>) and the cash flows became positives (<u>incomes</u>)
- This situation is called <u>conventional</u> (simple) cash flow series

- In many situations, the net cash flows switch between positive and negative values from year to another so that we have more than one sign change
- Such series is called <u>non-conventional</u> (non-simple)

	Sign on Net Cash Flow							Number of
Type of Series	0	1	2	3	4	5	6	Sign Changes
Conventional	-	+	+	+	+	+	+	
Conventional	-	-	-	+	+	+	+	1
Conventional	+	+	+	+	+	-	-	1
Nonconventional	-	+	+	+	_	00200	1	2
Nonconventional	+	+	-	-	_	+	+	2
Nonconventional	-	+	-	-	+	+	+	3

Examples of *conventional* and *non-conventional* net cash flows for a 6-year project

- When there is more than one sign change in the net cash flows, it is possible that there will be multiple i* values in the -100% to plus infinity range
- A test should be performed on the non-conventional series to determine if there is one <u>unique</u> or <u>multiple</u> i* values
- Rule of signs: total number of <u>real-number roots</u> is always less than or equal to the number of sign changes in the series

Multiple Rate of Return Values Example [1]

Calculate the i* values for the following cash flows:

Year	0	1	2	3
\$	+2,000	-500	-8,100	+6,800

Multiple Rate of Return Values Example [1]

PW =

2,000 - 500(P/F,i,1) - 8,100(P/F,i,2) + 6,800(P/F,i,3)=0

i	PW
0%	\$200.00
5%	\$50.97
10%	-\$39.82
15%	-\$88.44
20%	-\$106.48
25%	-\$102.40
30%	-\$82.39
35%	-\$51.01
40%	-\$11.66
45%	\$33.13
50%	\$81.48

 If we examine the sign change we find out the following sequence:

+ - - +

0 to 1 to 1 to 2

 So, we have at most two potential rates of return values

Multiple Rate of Return Values Example [1]

