Engineering Economy [9] Benefit Cost Analysis

General Definitions

- Benefits: the advantages to the public [favorable consequences of the project to the public]
- Costs: construction, operations, and maintenance [monetary disbursement required from the government]
- Disbenefits: expected undesirable (negative) consequences to the public [*loss in funding, decline in service,*..]

Benefit/Cost Analysis

- The <u>benefit/cost ratio</u> (B/C) is relied upon as a fundamental analysis method for public engineering projects
- All cost and benefit estimates must be converted to a common monetary unit (<u>PW</u>, <u>AW</u>, <u>FW</u>)

 $B/C = \frac{PW \text{ of benefits}}{PW \text{ of costs}} = \frac{AW \text{ of benefits}}{AW \text{ of costs}} = \frac{FW \text{ of benefits}}{FW \text{ of costs}}$

 The sign of B/C is positive so the costs are considered positive amounts

B/C Decision Guidelines

- If $B/C \ge 1.0$, <u>accept</u> the project
- If B/C < 1.0, <u>reject</u> the project

The Conventional B/C Ratio

The conventional B/C ratio is calculated as follows (most widely used):

$$\frac{B}{C} = \frac{benefits - disbenefits}{costs}$$

- In this equation, *disbenefits* are subtracted from benefits not added to costs
- Net benefits = benefits disbenefits

The Modified B/C Ratio

- The modified B/C ratio includes <u>maintenance and</u> <u>operation</u> (M&O) costs and treat them in a manner similar to disbenefits
- Salvage value is included as a negative cost
- The modified B/C ratio is:

Modified
$$\frac{B}{C} = \frac{benefits - disbenefits - M&O\ costs}{initial\ investment}$$

The Benefit and Cost Difference Measure

- This measure (formula) is based on the <u>difference</u> between PW, AW, FW of benefits and costs
- That is, <u>B C</u>
- If $(B C) \ge 0$, the project is acceptable

- The Ford Foundation expects to award <u>\$15 million</u> in grants to public high schools to develop new ways to teach the fundamentals of engineering that prepare students for university-level material
- The grants will extend over a 10-year period and will create an estimated savings of <u>\$1.5 million per year</u> in faculty salaries and student-related expenses. The Foundation uses a rate of return of 6% per year on all grant awards
- An estimated \$200,000 per year will be removed from other program funding. To make this program successful, a \$500,000 per year operating cost will be incurred from the regular M&O budget. Use the B/C method to determine if the grants program is economically justified

- The first step is to convert all the cash flows into annual worth flows (AW)
- Thus, you need to find AW for the <u>investment cost</u>, <u>benefit</u>, <u>disbenefit</u>, and <u>M&O</u> cost
- <u>AW of investment cost</u> = 15,000,000(A/P,6%,10) = \$2,038,050 per year
- AW of benefit = \$1,500,000 per year
- AW of disbenefit = \$200,000 per year
- AW of M&O cost = \$500,000 per year

The project is not justified since B/C < 1.0

The modified B/C ratio =

The project is not economically justified since B/C < 1.0

- For the (B C) model, B is the <u>net benefit</u>, and the annual M&O cost is included with costs
- B C = (1,500,000 200,000) (2,038,050 + 500,000) = \$
 -1.24 million
- Since (B C) < 0, the project is not economically justified

Alternative Selection

- The technique to compare <u>two mutually exclusive</u> alternatives using B/C analysis is to use <u>ΔB/ΔC</u> for the <u>larger-cost alternative</u>
- If $\Delta B/\Delta C \ge 1.0$, choose the higher-cost alternative If $\Delta B/\Delta C < 1.0$, choose the lower cost alternative

- There are *two* designs and one of them must be accepted
- The *three* estimates in the table should be considered to determine which design to recommend
- The interest rate is 5% and the life is 30 years

	Design A	Design B
Construction cost, \$	10,000,000	15,000,000
Maintenance cost, \$/year	35,000	55,000
Usage cost, \$/year	450,000	200,000

The AW of total <u>costs</u> is the sum of construction and maintenance costs:

<u>Design B</u> has the larger AW costs, so the incremental cost value is:

 $\Delta C = AW_B - AW_A = 1,030,750 - 685,500 = $345,250/year$

 Although design <u>A</u> has less investment cost compared to design <u>B</u>, yet design <u>B</u> can yield benefits in terms of *reducing the usage cost at a value of \$250,000/year*

The incremental (<u>net</u>) <u>benefit</u> is the difference in usage cost:

 $\Delta B = 450,000 - 200,000 = $250,000 \text{ per year}$

- The incremental B/C ratio is:
 ΔB/ΔC = 250,000 / 345,250 = 0.72
- The <u>ΔB/ΔC</u> ratio is less than 1.0 indicating that *design A is* selected

- There are <u>four</u> proposals for a <u>rehabilitation of a park</u> and you need to find out the best one using the B/C analysis if the interest rate is 7%
- The cash flows are provided in the table below:

	1	2	3	4
Initial cost, \$	\$ 250,000	\$ 350,000	\$ 500,000	\$ 800,000
Maintenance cost, \$/year	\$ 25,000	\$ 35 <i>,</i> 000	\$ 50 <i>,</i> 000	\$ 80,000
Entrance fees, \$/year	\$ 500,000	\$ 450,000	\$ 425,000	\$ 250,000
Extra sales, \$/year	\$ 310,000	\$ 320,000	\$ 320,000	\$ 340,000
Life, years	8	8	8	8

 Find the annual cost for each proposal. For instance, proposal #1 has the following annual cost:

Initial investment + maintenance cost = \$250,000(A/P,7%,8) + 25,000 = \$66,867

	Proposal 1	Proposal 2	Proposal 3	Proposal 4
AW C	\$ 66,867	\$ 93,614	\$ 133,734	\$ 213,974

- For #1 and #2, compute $\Delta C = 93,614 66,867 = $26,747$
- Compute $\Delta B = (500,000 450,000) + (320,000 310,000) =$ \$60,000 (when proposal #2 is compared to proposal #1, the entrance fees decrease by \$50,000 per year and the sales increase by \$10,000)
- $\Delta B/\Delta C = 60,000/26,747 = 2.24$
- Choose #2 over #1

	2-to-1			3-to-2		4-to-2	
ΔC	\$	26,747	\$	40,120	\$	120,360	
ΔB	\$	60,000	\$	25,000	\$	220,000	
ΔΒ/ΔC		2.24		0.62		1.83	
	2 i	s better	2 i	s better	4 is	s the best	

- Compare three <u>flood-control options</u> all with 50 year life time under the assumption of i = 6%
- <u>Option C</u> causes environmental damage (e.g., damage to salmon fisheries)

	Α	В	С
Investment cost	\$ O	\$ 2,900,000	\$ 5,300,000
Annual maintenance cost	\$ O	\$ 35,000	\$ 40,000
Expected annual <u>flood</u> damage	\$ 480,000	\$ 105,000	\$ 55 <i>,</i> 000
Annual damage caused by <u>dam</u>	\$ 0	\$0	\$ 38,000
Life, years		50	50

- First of all, convert to annual worth the estimates of investment costs
- Thereafter, find out the total annual cost (<u>investment</u> + <u>maintenance</u>)
- Then, find the total <u>annual damage</u> (<u>caused by dam + flood</u>)
- Choose any two alternatives and compute $\Delta B/\Delta C$

2,900,000(A/ 35,00	2,900,000(A/P,6%,50)+ 35,000			
	Α	I	Bi	С
Annual dam investment cost	\$ O	\$	183,988	\$ 336,255
Total annual dam cost	\$ O	` \$	218,988	\$ 376,255
Total annual damage	\$ 480,000	\$	105,000	\$ 93,000

	A vs. B		B vs. C
∆ costs	\$	218,988	\$ 157,266
∆ benefits	\$	375,000	\$ 12,000
ΔΒ/ΔC		1.712	0.076

- Since $\Delta B/\Delta C$ ratio (1.7) > 1, *then choose B*
- 480,000 105,000
- Since $\Delta B/\Delta C$ ratio (0.07) < 1, *then choose B*

- Two engineers, Bob and Judy, made the estimates shown below for two optional methods by which new construction technology would be implemented at a site for public housing
- Either one of the two options may be selected.
 Determine if option 1 or option 2 is selected by each engineer
- Use a life time of 5 years and an interest rate of 10% per year for all analyses

	Engine	eer Bob	Engineer Judy		
	Option 1	Option 2	Option 1	Option 2	
Initital cost, \$	\$50,000	\$90,000	\$75,000	\$90,000	
Cost, \$/year	\$3,000	\$4,000	\$3,800	\$3,000	
Benefits, \$/year	\$20,000	\$29,000	\$30,000	\$35,000	
Disbenefits, \$/year	\$500	\$1,500	\$1,000	\$0	
Life, years	5	5	5	5	

You need to find the <u>net benefits</u> (benefits - disbenefits) and <u>total costs</u> (initial + running) for each option

Net Benefits, \$/year	\$19,500	\$27,500	\$29,000	\$35,000
Net cost, \$/year	\$16,190	\$27,742	\$23,585	\$26,742

- Find the incremental B/C ratio and do the selection of alternatives
- Select <u>option 1</u> according to the estimates of the first engineer
- Select <u>option 2</u> according to the estimates of the second engineer

	2-1	2-1
ΔB	\$8,000	\$6,000
ΔC	\$11,552	\$3,157
ΔΒ/ΔC	0.69	1.90

• A public project has the following cash flows (in millions):

Year	Inflow (\$)	Outflow (\$)
0	0	10
1	0	10
2	20	5
3	30	5
4	30	8
5	20	8

Compute the benefit cost ratio for this project

 Assume that the benefits (B) are the inflows and compute the present worth:

B = 20(P/F,10%,2) + 30(P/F,10%,3) + 30(P/F,10%,4) + 20(P/F,10%,5) = \$71.98

 Assume that the cost values (C) are the outflows and compute the present worth:

C = 10 + 10(P/F,10%,1) + 5(P/F,10%,2) + 5(P/F,10%,3) + 8(P/F,10%,4) + 8(P/F,10%,5) = \$37.41

B/C = 71.98/37.41 = 1.92 and the project is economically feasible