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10.3 CASCADE COMPENSATION NETWORKS

FIGURE 10.2
Pole-zero diagram
of the phase-lead
network.

In this section, we will consider the design of a cascade or feedback network, as
shown in Figures 10.1(a) and (b), respectively. The compensation network function
G (s) is cascaded with the specified process G(s) in order to provide a suitable loop
transfer function L(s) = G.(s)G(s)H(s). The compensator G.(s) can be chosen to
alter either the shape of the root locus or the frequency response. In either case, the
network may be chosen to have a transfer function

M
KH(S + z;)
G(s) = ——n (10.1)

H(S + Pj)
j=1

Then the problem reduces to the judicious selection of the poles and zeros of the
compensator. To illustrate the properties of the compensation network, we will con-
sider a first-order compensator. The compensation approach developed on the basis
of a first-order compensator can then be extended to higher-order compensators,
for example, by cascading several first-order compensators.

A compensator G.(s) is used with a process G(s) so that the overall loop gain
can be set to satisfy the steady-state error requirement, and then G.(s) is used to
adjust the system dynamics favorably without affecting the steady-state error.

Consider the first-order compensator with the transfer function

G.(s) = ES(ST“LPQ. (102)

The design problem then becomes the selection of z, p, and K in order to provide a
suitable performance. When |z| < |pl, the network is called a phase-lead network
and has a pole—zero s-plane configuration, as shown in Figure 10.2. If the pole was
negligible, that is, | p| >> |zl and the zero occurred at the origin of the s-plane, we
would have a differentiator so that

G.(s) = %s. (10.3)
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FIGURE 10.3
Bode diagram of
the phase-lead
network.
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Thus, a compensation network of the form of Equation (10.2) is a differentiator-type
network. The differentiator network of Equation (10.3) has the frequency characteristic

G (jw) = j%w = (fw)fﬁ"“ (10.4)

and a phase angle of +90°. Similarly, the frequency response of the differentiating
network of Equation (10.2) is
K(jo +2) _ (Kz/p)lj(w/z) + 1] _ Ki(1 + jwar)

Gljo) = jo + p B jw/p) + 1 1+ jor (10.5)

where 7 = 1/p, p = az, and K; = K/a. The frequency response of this phase-lead
network is shown in Figure 10.3. The angle of the frequency characteristic is

d(w) = tan" awr) — tan"Y(wr). (10.6)

Because the zero occurs first on the frequency axis, we obtain a phase-lead charac-
teristic, as shown in Figure 10.3. The slope of the asymptotic magnitude curve is
+20 dB/decade.

The phase-lead compensation transfer function can be obtained with the net-
work shown in Figure 10.4. The transfer function of this network is
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FIGURE 10.4
Phase-lead
network.

Section 10.3 Cascade Compensation Networks 749

C
AY
Ul
+o A4 —o+
Ry
Vl(S) %Rz Vz(S)
—o o—

and we obtain the phase-lead compensation transfer function

+
G.(s) = 1+ ars

= m, (10.8)

which is equal to Equation (10.5) when an additional cascade gain K is inserted.

The maximum value of the phase lead occurs at a frequency w,,, where w,, is the
geometric mean of p = 1/7 and z = 1/(ar); that is, the maximum phase lead occurs
halfway between the pole and zero frequencies on the logarithmic frequency scale.
Therefore,

1
W, = VIp = W—;

To obtain an equation for the maximum phase-lead angle, we rewrite the phase
angle of Equation (10.5) as

-1 Q0T — @T

= tan .
¢ 1+ (0r)’a

(10.9)

Then, substituting the frequency for the maximum phase angle, w,, = 1/(7Va), we
have

_a/\/a—l/\/&_a—l
tan ¢, = 1+ 1 = N

We use the trigonometric relationship sin ¢ = tan ¢/ V1 + tan’ ¢ and obtain

(10.10)

a—1
a+ 1

sin ¢, = (10.11)

Equation (10.11) is very useful for calculating a necessary @ ratio between the pole
and zero of a compensator in order to provide a required maximum phase lead. A
plot of ¢,, versus « is shown in Figure 10.5. The phase angle readily obtainable from
this network is not much greater than 70°. Also, since a = (R; + Ry)/R,, there are
practical limitations on the maximum value of « that we should attempt to obtain.
Therefore, if we required a maximum angle greater than 70°, two cascade compen-
sation networks would be used. Then the equivalent compensation transfer function
would be G, (5)G,,(s) when the loading effect of G_,(s) on G, (s) is negligible.
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FIGURE 10.5
Maximum phase
angle ¢, versus «
for a phase-lead
network.

FIGURE 10.6

Phase-lag network.

FIGURE 10.7
Pole-zero diagram
of the phase-lag
network.
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C/-I\ N

It is often useful to add a cascade compensation network that provides a phase-
lag characteristic. The phase-lag network is shown in Figure 10.6. The transfer func-
tion of the phase-lag network is
Vo(s) Ry + 1/(Cs) RyCs +1

Val®) TRt Ryt 1/C) (Rt R)Cs 1 (0

G(s) =

Whent = R,C and a = (R; + R,)/R,, we have the phase-lag compensation trans-
fer function

l4+7s 1s+2z
l+ars as+p

Gs) = (10.13)

where z = 1/7 and p = 1/(a7). In this case, because « > 1, the pole lies closest to
the origin of the s-plane, as shown in Figure 10.7. This type of compensation network
is often called an integrating network because it has a frequency response like an in-
tegrator over a finite range of frequencies. The Bode diagram of the phase-lag net-
work is obtained from the transfer function

1+
Gjo) = el (10.14)

1 + jowar




FIGURE 10.8

Bode diagram of

the phase-lag
network.
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and is shown in Figure 10.8. The form of the Bode diagram of the lag network is sim-
ilar to that of the phase-lead network; the difference is the resulting attenuation and
phase-lag angle instead of amplification and phase-lead angle. However, note that
the shapes of the diagrams of Figures 10.3 and 10.8 are similar. Therefore, we can
show that the maximum phase lag occurs at w,, = Vzp.

In the succeeding sections, we wish to utilize these compensation networks to
obtain a desired system frequency response or s-plane root location. The lead net-
work can provide a phase-lead angle and thus a satisfactory phase margin for a sys-
tem. Alternatively, the phase-lead network can enable us to reshape the root locus
and thus provide the desired root locations. The phase-lag network is used, not to
provide a phase-lag angle, which is normally a destabilizing influence, but rather to
provide an attenuation and to increase the steady-state error constant [3]. The fol-
lowing six sections discuss these approaches to design utilizing the phase-lead and
phase-lag networks.

10.4 PHASE-LEAD DESIGN USING THE BODE DIAGRAM

The Bode diagram is used to design a suitable phase-lead network in preference to
other frequency response plots. The frequency response of the cascade compensation
network is added to the frequency response of the uncompensated system. That is,
because the total loop transfer function of Figure 10.1(a) is L(jw) = G.(jo)G(jw)H (jw),
we will first plot the Bode diagram for G(jw)H (jw). Then we can examine the plot for
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G(jw)H (jw) and determine a suitable location for p and z of G.(jw) in order to satis-
factorily reshape the frequency response. The uncompensated G(jw)H (jw) is plotted
with the desired gain to allow an acceptable steady-state error. Then the phase margin
and the expected M,,, are examined to find whether they satisfy the specifications. If
the phase margin is not sufficient, phase lead can be added to the phase-angle curve of
the system by placing the G (jw) in a suitable location. To obtain maximum additional
phase lead, we adjust the network so that the frequency w,, is located at the frequency
where the magnitude of the compensated magnitude curve crosses the 0-dB axis.
(Recall the definition of phase margin.) The value of the added phase lead required allows
us to determine the necessary value for « from Equation (10.11) or Figure 10.5. The
zero z = 1/(ar) is located by noting that the maximum phase lead should occur at
®,, = Vzp, halfway between the pole and the zero. Because the total magnitude gain
for the network is 20 log «, we expect a gain of 10 log a at w,,,. Thus, we determine the
compensation network by completing the following steps:

1. Evaluate the uncompensated system phase margin when the error constants are satisfied.
2. Allowing for a small amount of safety, determine the necessary additional phase lead ¢,,,.
3. Evaluate « from Equation (10.11).

4. Evaluate 10 log « and determine the frequency where the uncompensated magni-
tude curve is equal to —10 log a dB. Because the compensation network provides a
gain of 10 log « at w,,, this frequency is the new 0-dB crossover frequency and w,,
simultaneously.

5. Calculate the pole p = w,,Vaand z = p/a.

6. Draw the compensated frequency response, check the resulting phase margin, and
repeat the steps if necessary. Finally, for an acceptable design, raise the gain of the
amplifier in order to account for the attenuation (1/a).

EXAMPLE 10.1 A lead compensator for a type-two system
Let us consider a single-loop feedback control system as shown in Figure 10.1(a), where

G(s) = % (10.15)

and H(s) = 1. The uncompensated system is a type-two system and at first appears
to possess a satisfactory steady-state error for both step and ramp input signals. How-
ever, the response of the uncompensated system is an undamped oscillation because

Y(s) K
R(s) s+ K,

Therefore, the compensation network is added so that the loop transfer function is
L(s) = G.(s)G(s). The specifications for the system are

T(s) = (10.16)

Settling time, Ty < 4 5;
System damping constant { = 0.45.
The settling time (with a 2% criterion) requirement is
4

= = 4
T {w, ’




FIGURE 10.9
Bode diagram for
Example 10.1.
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therefore,

Perhaps the easiest way to check the value of w,, for the frequency response is to
relate w, to the bandwidth wg, and evaluate the —3-dB bandwidth of the closed-
loop system. For a closed-loop system with { = 0.45, we estimate from Figure 8.26
that wg = 1.33w,. Therefore, we require a closed-loop bandwidth wg =
1.33(2.22) = 3.00. The bandwidth can be checked following compensation by utiliz-
ing the Nichols chart. For the uncompensated system, the bandwidth of the system is
wg = 1.33w,, and w,, = \/I? Therefore, a loop gain equal to K = w,? ~ 5 would be
sufficient. To provide a suitable margin for the settling time, we will select X = 10in
order to draw the Bode diagram of

K
G(jw) = —.
(jw)®
The Bode diagram of the uncompensated system is shown as solid lines in Figure 10.9.
By using Equation (9.58), the phase margin of the system is required to be
approximately

{ 0.45

m = per = oo = 45° (10.17)

¢
The phase margin of the uncompensated system is 0° because the double integra-
tion results in a constant 180° phase lag. Therefore, we must add a 45° phase-lead
angle at the crossover (0-dB) frequency of the compensated magnitude curve. Eval-
uating the value of @, we have

a—1
= sin ¢,, = sin 45° 10.18
a+1 m ’ ( )
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and thus @ = 5.8. To provide a margin of safety, we will use @ = 6. The value of
10 log « is then equal to 7.78 dB. Then the lead network will add an additional gain
of 7.78 dB at the frequency w,,, and we want to have w,, equal to the compensated
slope near the 0-dB axis (the dashed line) so that the new crossover is w,, and the
dashed magnitude curve is 7.78 dB above the uncompensated curve at the crossover
frequency. Thus, the compensated crossover frequency is located by evaluating the
frequency where the uncompensated magnitude curve is equal to —7.78 dB, which
in this case is w = 4.95. Then the maximum phase-lead angle is added to
w = w,; = 495, as shown in Figure 10.9. Using step 5, we determine the pole
p = 0,,Va = 12.0 and the zero z = p/a = 2.0.

The bandwidth of the compensated system can be obtained from the Nichols
chart. For estimating the bandwidth, we can simply examine Figure 9.26 and note
that the —3-dB line for the closed-loop system occurs when the magnitude of G(jw)
is —6 dB and the phase shift of G(jw) is approximately —140°. Therefore, to esti-
mate the bandwidth from the open-loop diagram, we will approximate the band-
width as the frequency for which 20 X log|G| is equal to —6 dB. Thus, the
bandwidth of the uncompensated system is approximately equal to wy = 4.4, while
the bandwidth of the compensated system is equal to wgz = 8.4. The lead compensa-
tion doubles the bandwidth in this case, and satisfies the specification that
wg > 3.00. Therefore, the compensation of the system is completed, and the system
specifications are satisfied. The total compensated loop transfer function is

10[jw/2.0 + 1]

L(jw) = G (jo)G(jw) = . 10.19
(o) = G (jo)G(jw) Goyljw/120 + 1] (10.19)
The transfer function of the compensator is
+ 1+ /2.0
Gus) = rams 11+ (10.20)

a(l +75) 61+ s5/120°

in the form of Equation (10.8). Because an attenuation of % results from the passive RC

network, the gain of the amplifier in the loop must be raised by a factor of 6 so that the

total DC loop gain is still equal to 10, as required in Equation (10.19). When we add the

compensation network Bode diagram to the uncompensated Bode diagram, as in

Figure 10.9, we assume that we can raise the amplifier gain to account for this 1/«

attenuation. The pole and zero values can be read from Figure 10.9, noting that p = az.
The total loop transfer function is (recall that H(s) = 1)

101 + 5/2)  60(s +2)
TS+ s/12)  sX(s + 12)

L(s)

The closed-loop transfer function is

60(s + 2) _ 60(s + 2)
$ + 1252 + 60s + 120 (s2 + 65 + 20)(s + 6)°

T(s) =

and the effects of the zero at s = —2 and the third pole at s = —6 will affect the
transient response. Plotting the step response, we find an overshoot of 34% and a
settling time of 1.4 seconds. m
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EXAMPLE 10.2 A lead compensator for a second-order system
A unity feedback control system has a loop transfer function

K

Lo =5y

(10.21)

where L(s) = G(s)G(s) and H(s) = 1. We want to have a steady-state error for a
ramp input equal to 5% of the velocity of the ramp. Therefore, we require that

A A
K, = e—“ = 0054 20. (10.22)

Furthermore, we desire that the phase margin of the system be at least 45°. The first
step is to plot the Bode diagram of the uncompensated transfer function

K, B 20
jo(05jw + 1) jw(05jw + 1)

as shown in Figure 10.10(a). The frequency at which the magnitude curve crosses the
0-dB line is 6.2 rad/s, and the phase margin at this frequency is determined readily
from the equation of the phase of G(jw), which is

/G(jo) = ¢p(w) = —90° — tan"'(0.5w). (10.24)
At the crossover frequency w = w, = 6.2 rad/s, we have
¢(w) = —162°, (10.25)

and therefore the phase margin is 18°. Using Equation (10.24) to evaluate the phase
margin is often easier than drawing the complete phase-angle curve, which is shown
in Figure 10.10(a). Thus, we need to add a phase-lead network so that the phase mar-
gin is raised to 45° at the new crossover (0-dB) frequency. Because the compensa-
tion crossover frequency is greater than the uncompensated crossover frequency,
the phase lag of the uncompensated system is also greater. We shall account for this
additional phase lag by attempting to obtain a maximum phase lead of
45° — 18° = 27°, plus a small increment (10%) of phase lead to account for the
added lag. Thus, we will design a compensation network with a maximum phase lead
equal to 27° + 3° = 30°. Then, calculating &, we obtain

a—1
a+1

= sin 30° = 0.5, (10.26)

and therefore & = 3.

The maximum phase lead occurs at w,,, and this frequency will be selected so
that the new crossover frequency and w,, coincide. The magnitude of the lead net-
work at w,, is 10log @ = 10log 3 = 4.8 dB. The compensated crossover frequency
is then evaluated where the magnitude of G(jw) is —4.8dB, and thus
w,, = w, = 8.4. Drawing the compensated magnitude line so that it intersects the
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FIGURE 10.10
(a) Bode diagram
for Example 10.2.
(b) Nichols diagram
for Example 10.2.
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0-dB axis at w = w, = 8.4, we find that z = w,,/Va = 4.8 and p = az = 144.
Therefore, the compensation network is

11+ s/48

The total DC loop gain must be raised by a factor of three in order to account for the
factor 1/a = % Then the compensated loop transfer function is

20(s/4.8 + 1)
5(0.5s5 + 1)(s/14.4 + 1)

L(s) = G(s)G(s) = (10.28)

To verify the final phase margin, we can evaluate the phase of G (jw)G(jw) at
o = w. = 8.4 and thus obtain the phase margin. The phase angle is then

)= —90° - tan™t 0.5, — tan -+ tan 1%
Hw,) 90 tan™ 0.5, — tan 144 tan 18
= —90° — 76.5° — 30.0° + 60.2°
= —136.3°. (10.29)

Therefore, the phase margin for the compensated system is 43.7°. If we desire to
have exactly a 45° phase margin, we would repeat the steps with an increased value
of a—for example, with @ = 3.5. In this case, the phase lag increased by 7° between
w = 6.2 and w = 84, and therefore the allowance of 3° in the calculation of & was
not sufficient. The step response of this system yields a 28% overshoot with a set-
tling time of 0.75 second.

The Nichols diagram for the compensated and uncompensated system is shown
in Figure 10.10(b). The reshaping of the frequency response locus is clear on this
diagram. Note the increased phase margin for the compensated system as well as
the reduced magnitude of M, the maximum magnitude of the closed-loop fre-
quency response. In this case, M), has been reduced from an uncompensated value
of +12 dB to a compensated value of approximately +3.2 dB. Also, we note that the
closed-loop 3-dB bandwidth of the compensated system is equal to 12 rad/s com-
pared with 9.5 rad/s for the uncompensated system. m

Looking again at Examples 10.1 and 10.2, we note that the system design is sat-
isfactory when the asymptotic curve for the magnitude 20 log| GG,| crosses the 0-dB
line with a slope of —20 dB/decade.

10.5 PHASE-LEAD DESIGN USING THE ROOT LOCUS

The design of the phase-lead compensation network can also be readily accom-
plished using the root locus. The phase-lead network has a transfer function

s+ 1lar s+ 2

Gels) = s+ 1/t s+p

(10.30)
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FIGURE 10.11
Compensation on
the s-plane using a
phase-lead
network.
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where a and = are defined for the RC network in Equation (10.7). The locations of
the zero and pole are selected so as to result in a satisfactory root locus for the com-
pensated system. The specifications of the system are used to specify the desired
location of the dominant roots of the system. The s-plane root locus method is as

follows:

1. List the system specifications and translate them into a desired root location for the

dominant roots.

2. Sketch the uncompensated root locus, and determine whether the desired root loca-
tions can be realized with an uncompensated system.

3. If a compensator is necessary, place the zero of the phase-lead network directly
below the desired root location (or to the left of the first two real poles).

4. Determine the pole location so that the total angle at the desired root location is 180°
and therefore is on the compensated root locus.

5. Evaluate the total system gain at the desired root location and then calculate the

error constant.

6. Repeat the steps if the error constant is not satisfactory.

Therefore, we first locate our desired dominant root locations so that the dominant
roots satisfy the specifications in terms of { and w,, as shown in Figure 10.11(a). The
root locus of the uncompensated system is sketched as illustrated in Figure 10.11(b).

Jjw Jjo
Desired ¢ line 4 A
s
Desired —
root
&)"
—> O +—X > < > o
N
(a) Desired root location (b) Uncompensated root locus
jw jw
A A
Desired = - -
root -
7 ieﬂ
3¢ O +’ o < == P> —» 0
=3I -p
O

(¢) Addition of zero

(d) Location of new pole
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Then the zero is added to provide a phase lead by placing it to the left of the first two
real poles. Some caution is necessary because the zero must not alter the dominance of
the desired roots; that is, the zero should not be placed closer to the origin than the sec-
ond pole on the real axis, or a real root near the origin will result and will dominate the
system response. Thus, in Figure 10.11(c), we note that the desired root is directly above
the second pole, and we place the zero z somewhat to the left of the second real pole.

Consequently, the real root may be near the real zero, and the coefficient of this
term of the partial fraction expansion may be relatively small. Hence, the response due
to this real root may have very little effect on the overall system response. Neverthe-
less, the designer must be continually aware that the compensated system response will
be influenced by the roots and zeros of the system and that the dominant roots will not
by themselves dictate the response. It is usually wise to allow for some margin of error
in the design and to test the compensated system using a computer simulation.

Because the desired root is a point on the root locus when the final compensation
is accomplished, we expect the algebraic sum of the vector angles to be 180° at that
point. Thus, we calculate the angle 6, from the pole of the compensator in order to re-
sult in a total angle of 180°. Then, locating a line at an angle 6, intersecting the desired
root, we are able to evaluate the compensator pole p, as shown in Figure 10.11(d).

The advantage of the root locus method is the ability of the designer to specify
the location of the dominant roots and therefore the dominant transient response.
The disadvantage of the method is that we cannot directly specify an error constant
(for example, K,) as in the Bode diagram approach. After the design is complete,
we evaluate the gain of the system at the root location, which depends on p and z,
and then calculate the error constant for the compensated system. If the error con-
stant is not satisfactory, we must repeat the design steps and alter the location of
the desired root as well as the location of the compensator pole and zero. We shall
consider again Examples 10.1 and 10.2 and design a compensation network using
the root locus (s-plane) approach.

EXAMPLE 10.3 Lead compensator using the root locus

Let us consider again the system of Example 10.1 where the uncompensated loop
transfer function is

K
L(s) = = (10.31)
s
The characteristic equation of the uncompensated system is
K
1+ L(s)=1+— =0, (10.32)
s

and the root locus is the jw-axis. Therefore, we propose to compensate this system
with a network

s+ z
s+p
where |z| < |pl. The specifications for the system are

Ge(s) =

(10.33)

Settling time (with a 2% criterion), T = 4s;
Percent overshoot for a step input PO. =< 35%.
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FIGURE 10.12
Phase-lead design
for Example 10.3.
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Therefore, the damping ratio should be ¢ = 0.32. The settling time requirement is

4
T =—= 4’
* {wﬂ
s0 {w, = 1. Thus, we will choose a desired dominant root location as
ror = —1% 2, (10.34)

as shown in Figure 10.12 (hence, { = 0.45).

Now we place the zero of the compensator directly below the desired location
ats = —z = —1, as shown in Figure 10.12. Measuring the angle at the desired root,
we have

¢ = —2(116°) + 90° = —142°.
Therefore, to have a total of 180° at the desired root, we evaluate the angle from the
undetermined pole, 6,, as
—180° = —142° — 4, (10.35)

or 6, = 38°. Then a line is drawn at an angle 6, = 38° intersecting the desired root
location and the real axis, as shown in Figure 10.12. The point of intersection with

the real axis is then s = —p = —3.6. Therefore, the compensator is
s+ 1
Gds) = T a6 (10.36)

Compensated. . |, | |
Loy
root locus ~~+g\!
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and the compensated loop transfer function for the system is

KI(S + 1)

L(s) = G(s)G(s) = 26 7 30

(10.37)

The gain K is evaluated by measuring the vector lengths from the poles and zeros
to the root location. Hence,

2.23)%(3.25
1= % = 8.1. (10.38)
Finally, the error constants of this system are evaluated. We find that this system
with two open-loop integrations will result in a zero steady-state error for a step and
ramp input signal. The acceleration constant is

_sl

K”_3.6

= 2.25. (10.39)

The steady-state performance of this system is quite satisfactory, and therefore
the compensation is complete. When we compare the compensation network evalu-
ated by the s-plane method with the network obtained by using the Bode diagram
approach, we find that the magnitudes of the poles and zeros are different. Howev-
er, the resulting system will have the same performance, and we need not be con-
cerned with the difference. In fact, the difference arises from the arbitrary design
step (number 3), which places the zero directly below the desired root location. If
we placed the zero at s = —2.0, we would find that the pole evaluated by the s-plane
method is approximately equal to the pole evaluated by the Bode diagram
approach.

The specifications for the transient response of this system were originally
expressed in terms of the overshoot and the settling time of the system. These specifi-
cations were translated, on the basis of an approximation of the system by a
second-order system, to an equivalent { and w, and therefore a desired root loca-
tion. However, the original specifications will be satisfied only if the selected roots
are dominant. The zero of the compensator and the root resulting from the addition
of the compensator pole result in a third-order system with a zero. The validity of
approximating this system with a second-order system without a zero is dependent
upon the validity of the dominance assumption. Often, the designer will simulate the
final design by using a digital computer and obtain the actual transient response of
the system. In this case, a computer simulation of the system resulted in an over-
shoot of 46% and a settling time (to within 2% of the final value) of 3.8 seconds for
a step input. These values compare moderately well with the specified values of 35%
and 4 seconds, and they justify the use of the dominant root specifications. The dif-
ference in the overshoot from the specified value is due to the zero, which is not neg-
ligible. Thus, again we find that the specification of dominant roots is a useful
approach but must be utilized with caution and understanding. A second attempt
to obtain a compensated system with an overshoot of 30% would use a prefilter to
eliminate the effect of the zero in the closed-loop transfer function, as described in
Section 10.10. m
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EXAMPLE 10.4 Lead compensator for a type-one system

Now, let us consider again the system of Example 10.2 and design a compensator
based on the root locus approach. The system loop transfer function is

K

L(s) = s(s +2)

(10.40)
We want the damping ratio of the dominant roots of the system to be { = 0.45 and
the velocity error constant to be equal to 20. To satisfy the error constant require-
ment, the gain of the uncompensated system must be KX = 40. When K = 40, the
roots of the uncompensated system are

s+ 25 +40 = (s + 1+ j6.25)(s + 1 — j6.25). (10.41)

The damping ratio of the uncompensated roots is approximately 0.16, and therefore
a compensation network must be added. To achieve a rapid settling time, we will
select the real part of the desired roots as {w, = 4, and therefore 7, = 1s.This
implies the natural frequency of these roots is fairly large, w, = 9; hence, the velocity
constant should be reasonably large. The location of the desired roots is shown in
Figure 10.13(a) for {w, = 4,{ = 045,and w, = 9.

The zero of the compensator is placed at s = —z = —4, directly below the
desired root location. Then the angle at the desired root location is

¢ = —116° — 104° + 90° = —130°. (10.42)
Therefore, the angle from the undetermined pole is determined from
—180° = —130° — 6,

and thus 6, = 50°. This angle is drawn to intersect the desired root location, and p is
evaluated as s = —p = —10.6, as shown in Figure 10.13(a). The gain of the compen-
sated system is then

« 2 J825)(104)

2 = 96.5. (10.43)

The compensated system loop transfer function is then

L(s) = G8)G(s) = 96.5(s + 4) (10.44)
(8) = GIG) = 505 + 10.6) ‘
Therefore, the velocity constant of the compensated system is
K, = lims[G(s)G(s)] = 2%6.5(4) _ 18.2 (10.45)
v sl_l;l'(l)s[ L‘(s) (S)] - 2(10.6) - fadd .

The velocity constant of the compensated system is less than the desired value of 20.
Accordingly, we must repeat the design procedure for a second choice of a desired
root. If we choose w, = 10, the process can be repeated, and the resulting gain K
will be increased. The compensator pole and zero location will also be altered.



FIGURE 10.13

{a) Design of a
phase-lead network
on the s-plane for
Example 10.4.

(b) Step response
of the compensated
system of Example
10.4.
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Then the velocity constant can be again evaluated. We will leave it as an exercise to
show that for w, = 10, the velocity constant is K, = 22.7 when z = 4.5 and
p =116.

Finally, for the compensation network of Equation (10.44), we have

s+ 4 _S+1/(0t7)

GdS) =106 = s+ 17

(10.46)

The design of an RC-lead network to implement G (s), as shown in Figure 10.4, fol-
lows directly from Equations (10.46) and (10.7):

Rz R1CS +1
Ry + Ry [RiRy/(Ry + R)]Cs + 1

G.(s) = (10.47)

Thus, in this case, we have

Ly ad e Rt R_ 106

R,C * R, 4
Then, choosing C = 1 uf, we obtain R; = 250,000 Q and R, = 152,000 ). The step
response of the compensated system yields a 32% overshoot with a settling time of



