Basic Structures: Sets, Functions, Sequences, Sums, and Matrices Chapter 2

Chapter Summary

- Sets
 - The Language of Sets
 - Set Operations
 - Set Identities
- Functions
 - Types of Functions
 - Operations on Functions
 - Computability
- Sequences and Summations
 - Types of Sequences
 - Summation Formulae
- Set Cardinality
 - Countable Sets
- Matrices
 - Matrix Arithmetic

Section 2.1

Section Summary

- Definition of sets
- Describing Sets
 - Roster Method
 - Set-Builder Notation
- Some Important Sets in Mathematics
- Empty Set and Universal Set
- Subsets and Set Equality
- Cardinality of Sets
- Tuples
- Cartesian Product

Introduction

- Sets are one of the basic building blocks for the types of objects considered in discrete mathematics.
 - Important for counting.
 - Programming languages have set operations.
- Set theory is an important branch of mathematics.
 - Many different systems of axioms have been used to develop set theory.
 - Here we are not concerned with a formal set of axioms for set theory. Instead, we will use what is called naïve set theory.

Sets

- A *set* is an unordered collection of objects.
 - the students in this class
 - the chairs in this room
- The objects in a set are called the *elements*, or *members* of the set. A set is said to *contain* its elements.
- The notation *a* ∈ *A* denotes that *a* is an element of the set *A*.
- If *a* is not a member of *A*, write $a \notin A$

Describing a Set: Roster Method

- $S = \{a, b, c, d\}$
- Order not important

 $S = \{a, b, c, d\} = \{b, c, a, d\}$

• Each distinct object is either a member or not; listing more than once does not change the set.

 $S = \{a, b, c, d\} = \{a, b, c, b, c, d\}$

 Elipses (...) may be used to describe a set without listing all of the members when the pattern is clear.

 $S = \{a, b, c, d, \dots, z\}$

Roster Method

- Set of all vowels in the English alphabet:
 V = {a,e,i,o,u}
- Set of all odd positive integers less than 10:

 $O = \{1, 3, 5, 7, 9\}$

• Set of all positive integers less than 100:

 $S = \{1, 2, 3, \dots, 99\}$

• Set of all integers less than 0:

 $S = \{...., -3, -2, -1\}$

Some Important Sets

 $N = natural numbers = \{0,1,2,3,...\}$ $Z = integers = \{...,-3,-2,-1,0,1,2,3,...\}$ $Z^{+} = positive integers = \{1,2,3,....\}$ R = set of real numbers $R^{+} = set of positive real numbers$ C = set of complex numbers.Q = set of rational numbers

Set-Builder Notation

- Specify the property or properties that all members must satisfy:
 - $S = \{x \mid x \text{ is a positive integer less than } 100\}$
 - $O = \{x \mid x \text{ is an odd positive integer less than } 10\}$
 - $O = \{x \in \mathbf{Z}^+ \mid x \text{ is odd and } x < 10\}$
- A predicate may be used:

 $S = \{x \mid P(x)\}$

- Example: $S = \{x \mid Prime(x)\}$
- Positive rational numbers:

 $\mathbf{Q}^+ = \{x \in \mathbf{R} \mid x = p/q, \text{ for some positive integers } p,q\}$

Interval Notation

$$[a,b] = \{x \mid a \le x \le b\}$$

$$[a,b) = \{x \mid a \le x < b\}$$

$$(a,b] = \{x \mid a < x \le b\}$$

$$(a,b) = \{x \mid a < x < b\}$$

closed interval [a,b] open interval (a,b)

Universal Set and Empty Set

- The *universal set U* is the set containing everything currently under consideration.
 - Sometimes implicit
 - Sometimes explicitly stated.
 - Contents depend on the context.
- The empty set is the set with no elements. Symbolized Ø, but {} also used.

Venn Diagram

John Venn (1834-1923) Cambridge, UK

Some things to remember

Sets can be elements of sets.
 {{1,2,3}, a, {b,c}}

 $\{N,Z,Q,R\}$

• The empty set is different from a set containing the empty set.

 $\emptyset \neq \{ \emptyset \}$

Set Equality

Definition: Two sets are *equal* if and only if they have the same elements.

- Therefore if A and B are sets, then A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$
- We write *A* = *B* if *A* and *B* are equal sets.

 $\{1,3,5\} = \{3, 5, 1\}$ $\{1,5,5,5,3,3,1\} = \{1,3,5\}$

Subsets

Definition: The set *A* is a *subset* of *B*, if and only if every element of *A* is also an element of *B*.

- The notation *A* ⊆ *B* is used to indicate that *A* is a subset of the set *B*.
- $A \subseteq B$ holds if and only if $\forall x (x \in A \rightarrow x \in B)$ is true.
 - Because $a \in \emptyset$ is always false, $\emptyset \subseteq S$, for every set *S*.
 - 2. Because $a \in S \rightarrow a \in S$, $S \subseteq S$, for every set *S*.

Showing a Set is or is not a Subset of Another Set

- Showing that A is a Subset of B: To show that $A \subseteq B$, show that if x belongs to A, then x also belongs to B.
- Showing that A is not a Subset of B: To show that A is not a subset of $B, A \not\subseteq B$, find an element $x \in A$ with $x \notin B$. (Such an x is a counterexample to the claim that $x \in A$ implies $x \in B$.)

Examples:

- 1. The set of all computer science majors at your school is a subset of all students at your school.
- 2. The set of integers with squares less than 100 is not a subset of the set of nonnegative integers.

Another look at Equality of Sets

- Recall that two sets *A* and *B* are *equal*, denoted by A = B, iff $\forall x (x \in A \leftrightarrow x \in B)$
- Using logical equivalences we have that *A* = *B* iff

$$\forall x [(x \in A \to x \in B) \land (x \in B \to x \in A)]$$

This is equivalent to

 $A \subseteq B$ and $B \subseteq A$

Proper Subsets

Definition: If $A \subseteq B$, but $A \neq B$, then we say A is a *proper subset* of B, denoted by $A \subset B$. If $A \subset B$, then

$$\forall x (x \in A \to x \in B) \land \exists x (x \in B \land x \notin A)$$

is true.

Set Cardinality

- **Definition**: If there are exactly n distinct elements in *S* where *n* is a nonnegative integer, we say that *S* is *finite*. Otherwise it is *infinite*.
- **Definition**: The *cardinality* of a finite set A, denoted by |A|, is the number of (distinct) elements of A.
- **Examples**:
- $1. \quad |\emptyset| = 0$
- 2. Let S be the letters of the English alphabet. Then |S| = 26
- 3. $|\{1,2,3\}| = 3$
- 4. $|\{\emptyset\}| = 1$
- 5. The set of integers is infinite.

Power Sets

Definition: The set of all subsets of a set *A*, denoted $\mathcal{P}(A)$, is called the *power set* of *A*. **Example**: If $A = \{a,b\}$ then $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$

• If a set has *n* elements, then the cardinality of the power set is 2^{*n*}. (In Chapters 5 and 6, we will discuss different ways to show this.)

Tuples

- The ordered *n*-tuple (a₁,a₂,....,a_n) is the ordered collection that has a₁ as its first element and a₂ as its second element and so on until a_n as its last element.
- Two n-tuples are equal if and only if their corresponding elements are equal.
- 2-tuples are called *ordered pairs*.
- The ordered pairs (*a*,*b*) and (*c*,*d*) are equal if and only if *a* = *c* and *b* = *d*.

René Descartes (1596-1650)

Cartesian Product

Definition: The *Cartesian Product* of two sets *A* and *B*, denoted by $A \times B$ is the set of ordered pairs (a,b) where $a \in A$ and $b \in B$.

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Example:

$$A = \{a, b\} \quad B = \{1, 2, 3\}$$

$$A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$$

• **Definition**: A subset *R* of the Cartesian product *A* × *B* is called a *relation* from the set A to the set B. (Relations will be covered in depth in Chapter 9.)

Cartesian Product

Definition: The cartesian products of the sets A_1, A_2, \dots, A_n , denoted by $A_1 \times A_2 \times \dots \times A_n$, is the set of ordered *n*-tuples (a_1, a_2, \dots, a_n) where a_i belongs to A_i for $i = 1, \dots n$.

$$A_1 \times A_2 \times \dots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

Example: What is $A \times B \times C$ where $A = \{0,1\}, B = \{1,2\}$ and $C = \{0,1,2\}$

Solution: $A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}$

Truth Sets of Quantifiers

Given a predicate *P* and a domain *D*, we define the *truth set* of *P* to be the set of elements in *D* for which *P*(*x*) is true. The truth set of *P*(x) is denoted by

$$\{x \in D | P(x)\}$$

 Example: The truth set of P(x) where the domain is the integers and P(x) is "|x| = 1" is the set {-1,1}