Showing that *f* is one-to-one or onto

Suppose that $f : A \rightarrow B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.

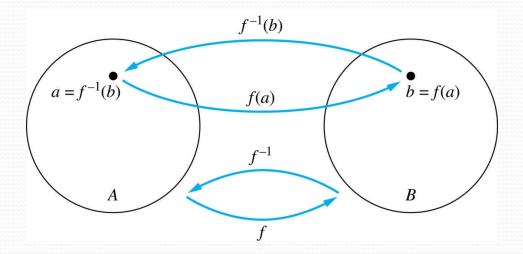
To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

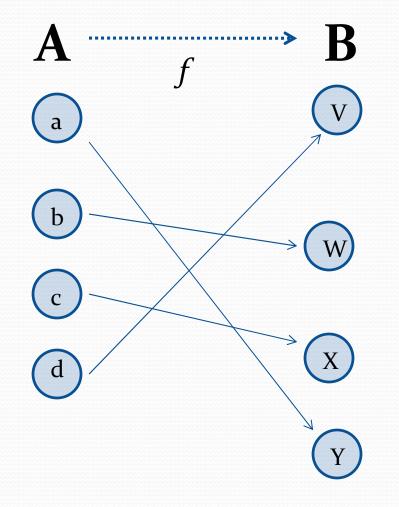
To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

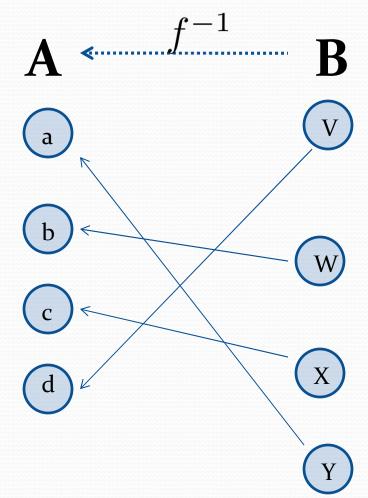
Showing that *f* is one-to-one or onto

Example 1: Let *f* be the function from $\{a,b,c,d\}$ to $\{1,2,3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is *f* an onto function?


Solution: Yes, f is onto since all three elements of the codomain are images of elements in the domain. If the codomain were changed to {1,2,3,4}, f would not be onto.

Example 2: Is the function $f(x) = x^2$ from the set of integers to the set of integers onto?


Solution: No, *f* is not onto because there is no integer x with $x^2 = -1$, for example.


Inverse Functions

Definition: Let f be a bijection from A to B. Then the *inverse* of f, denoted f^{-1} , is the function from B to A defined as $f^{-1}(y) = x$ iff f(x) = yNo inverse exists unless f is a bijection. Why?

Inverse Functions

Questions

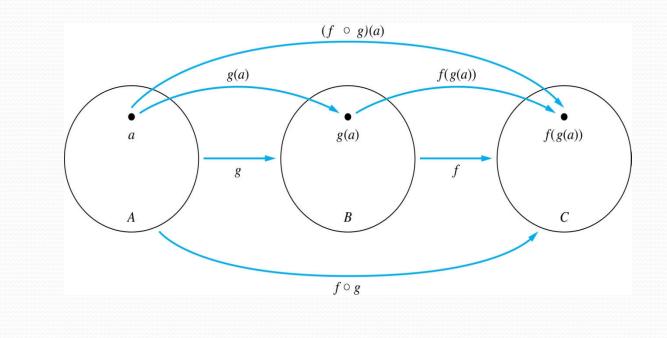
Example 1: Let *f* be the function from $\{a,b,c\}$ to $\{1,2,3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is *f* invertible and if so what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function $f^{_1}$ reverses the correspondence given by f, so $f^{_1}(1) = c$, $f^{_1}(2) = a$, and $f^{_1}(3) = b$.

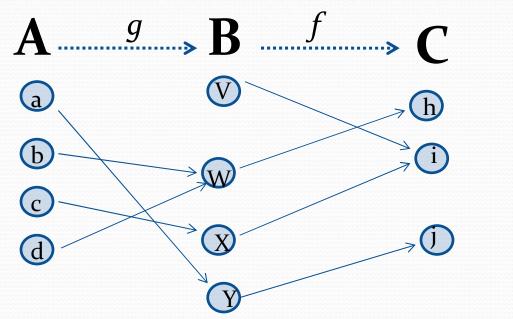
Questions

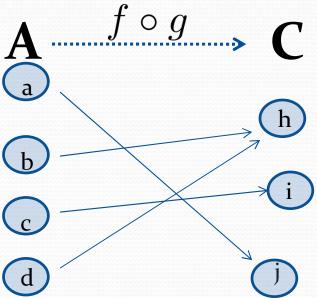
Example 2: Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be such that f(x) = x + 1. Is f invertible, and if so, what is its inverse?

Solution: The function *f* is invertible because it is a one-to-one correspondence. The inverse function $f^{_1}$ reverses the correspondence so $f^{_1}(y) = y - 1$.


Questions

Example 3: Let $f: \mathbf{R} \to \mathbf{R}$ be such that $f(x) = x^2$. Is f invertible, and if so, what is its inverse?


Solution: The function *f* is not invertible because it is not one-to-one .


Composition

• **Definition**: Let $f: B \to C, g: A \to B$. The composition of *f with g*, denoted $f \circ g$ is the function from *A* to *C* defined by $f \circ g(x) = f(g(x))$

Composition

Composition

Example 1: If $f(x) = x^2$ and g(x) = 2x + 1, then

$$f(g(x)) = (2x+1)^2$$

and

$$g(f(x)) = 2x^2 + 1$$

Composition Questions

Example 2: Let *g* be the function from the set $\{a,b,c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let *f* be the function from the set $\{a,b,c\}$ to the set $\{1,2,3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1.

What is the composition of *f* and *g*, and what is the composition of *g* and *f*.

Solution: The composition *f* ∘*g* is defined by

 $f \circ g(a) = f(g(a)) = f(b) = 2.$ $f \circ g(b) = f(g(b)) = f(c) = 1.$ $f \circ g(c) = f(g(c)) = f(a) = 3.$

Note that *g* of is not defined, because the range of *f* is not a subset of the domain of *g*.

Composition Questions

Example 2: Let f and g be functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2.

What is the composition of *f* and *g*, and also the composition of *g* and *f*?

Solution:

 $f \circ g(x) = f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7$ $g \circ f(x) = g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11$