Internal Combustion Engine 1

Mechanical Engineering Department

Palestine Technical University – Kadoorie (PTUK)

Dr. Hammam Daraghma

Dr. Hammam Daraghma (PTUK)

Lecture 8

First Law of Thermodynamics

First Law of Thermodynamics

- Conservation of energy is the fundamental principle in the first law of thermodynamics.
- For a fixed mass system, energy conservation is expressed for a finite change between two state 1 and 2.
- The change in the total energy of the system is equal to the heat added to the system minus the work done by the system.

$$Q_{1\rightarrow 2} - W_{1\rightarrow 2} = \Delta E_{1\rightarrow 2}$$

Energy and Enthalpy Balance

• Systems changes from reactants to products (since mass is constant, apply first law for a closed system).

$$Q_{R \to P} - W_{R \to P} = U_P - U_R$$
$$W_{R \to P} = \int_R^P P \, dV = P(V_P - V_R)$$
$$Q_{R \to P} = PV_P - PV_R + U_P - U_R = PV_P + U_P - PV_R - U_R$$
$$Q_{R \to P} = H_P - H_R = \Delta H_{R \to P}$$

Heat of reaction at constant pressure.

Enthalpies of Formation

- The enthalpy increase associated with the formation of one mole of a given compound from its elements, with each substance in its standard thermodynamic state at the specified temperature.
- A table of standard enthalpies of formation provides the value h^o_{f,i} for each substance.

Standard	Enthalpies of	f Formation,	∆ <i>H</i> ,°, at 298 K

Substance	Formula	∆ <i>H</i> ? (kJ/mol)	Substance	Formula	∆ <i>H</i> ? (kJ/mol)
Acetylene	C,H,(g)	-26.7	Hydrogen chloride	HCl(g)	-92.30
Ammonia	NH ₂ (g)	-46.19	Hydrogen fluoride	HF(g)	-268.6
Benzene	C.H.(!)	49.04	Hydrogen iodide	HI(g)	25.9
Calcium carbonate	$CaCO_{s}(s)$	-1207.1	Methane	CH.(g)	-74.85
Calcium oxide	CaO(s)	-635.5	Methanol	CH,OH(l)	-238.6
Carbon dioxide	CO.(g)	-393.5	Propane	$C_{1}H_{1}(g)$	-103.85
Carbon monoxide	CO(g)	-110.5	Silver chloride	AgCI(s)	-127.0
Diamond	C(s)	1.88	Sodium bicarbonat	B NaHCO.(s)	-947.7
Ethane	C.H.(g)	-84.68	Sodium carbonate	Na ₂ CO ₂ (s)	-1130.9
Ethanol	C.H.OH(!)	-277.7	Sodium chloride	NaCI(s)	-411.0
Ethylene	$C_{2}H_{4}(g)$	52.30	Sucrose	$C_{12}H_{22}O_{11}(s)$	-2221
Glucose	C.H.O.(s)	-1260	Water	$H_{O}(l)$	-285.8
Hydrogen bromide	HBr(g)	236.23	Water vapor	$H_2O(g)$	-241.8

Enthalpies of Formation

• The enthalpy of the products, relative to the standard state enthalpy datum, is given by:

$$H_P^\circ = \sum_{PRODUCT} n_i \Delta h_{f,i}^\circ$$

• The enthalpy of the reactants is given by:

$$H_R^\circ = \sum_{REACTANT} n_i \Delta h_{f,i}^\circ$$

• The enthalpy increase $(\Delta H^{\circ})_{R \to P, T_0}$ is then obtained from the difference:

$$(\Delta H^\circ)_{R
ightarrow P} = H^\circ_P - H^\circ_R$$

Heating Values

• The calorific value of a fuel is the magnitude of heat of reaction at constant pressure or at constant volume at standard temperature (usually 25°*C*) for the complete combustion of unit mass of fuel:

$$egin{aligned} Q_{HV_P} &= -(\Delta H)_{P,T_0} \ Q_{HV_V} &= -(\Delta H)_{v,T_0} \end{aligned}$$

• The two heating values at constant pressure are related by:

$$Q_{HHV_P} = Q_{LHV_P} + \left(rac{m_{H_2O}}{m_f}
ight) h_{fg_{H_2O}}$$

• **Calorimeter** is a device used for heat measurements necessary for calorimetry.

Adiabatic Combustion Processes

• For an adiabatic constant volume combustion process

$$U_P-U_R=0$$

• For an adiabatic constant pressure combustion process

$$H_P-H_R=0$$

- The final temperature of the products in an adiabatic combustion process is called the adiabatic flame temperature
- Adiabatic flame temperature is the maximum temperature that can be achieved

Combustion Efficiency of ICE

• Combustion efficiency is simply a measure of how efficient is combustion process, it is given by:

$$\eta = \frac{H_R(T_A) - H_P(T_A)_c}{m_f Q_{HV}}$$

where

• Net chemical energy released with engine

$$H_R(T_A) - H_P(T_A)_c = \sum_{i, REACTANT} n_i \Delta h_{f,i}^\circ - \sum_{i, PRODUCT} n_i \Delta h_{f,i}^\circ$$

• Maximum Fuel Energy

 $m_f Q_{HV}$

Second Law of Thermodynamics

Second Law of Thermodynamics

- No process is possible whose sole result is the absorption of heat from a reservoir and the conversion
 of this heat into work.
- There exists for every system in equilibrium a property called entropy, which is a thermodynamic property of a system.
- The entropy change of any system and its surroundings, considered together, is positive.
- Entropy approaches zero for any process which approaches reversibility.
- Entropy is a function of the state of the system and can be found if any two properties of the system are known, for example.

$$s = s(p, T)$$
 $s = s(T, v)$ $s = s(p, v)$

• Availability conversion efficiency is a key measure of an internal combustion engine's effectiveness.

$$\eta_a = \frac{\Delta W}{\Delta W_{Umax}}$$

• Another is fuel conversion efficiency.

$$\eta_f = rac{W_c}{m_f Q_{
m HV}}$$

• Thermal combustion efficiency is given by:

$$\eta_t = \frac{W_c}{H_R(T_A) - H_P(T_A)}$$

• The fuel conversion, thermal conversion, and combustion efficiencies are related by:

$$\eta_f = \eta_c \times \eta_t$$

End of Lecture 8