
Experimental No. (5) VARIATION OF RESISTANCE WITH TEMPERATURE

Phys Lab 2

Dr. Ishaq Musa

For a given material, the resistivity p increases with temperature:

$$\rho_T = \rho_0 [1 + \alpha (T - T_0)]$$

ho: is the resistivity of the metal at certain temperature T, measured in °C

 ρ_0 : is the resistivity at a reference temperature T_0 , usually it is taken 20 °C

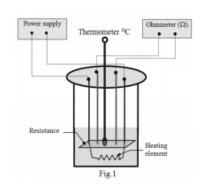
 α : is the temperature coefficient of resistivity

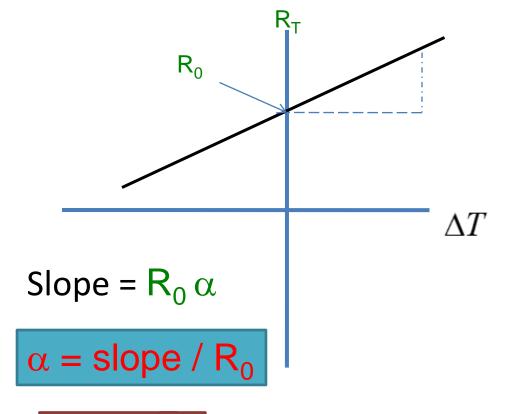
$$\alpha = \frac{1}{\rho_0} \frac{\Delta \rho}{\Delta T}$$
 Where
$$\Delta \rho = \rho - \rho_0, \quad \Delta T = T - T_0$$

The temperature coefficient of resistivity for various metals are given in table 27.1

SI units of α is ${}^{\circ}C^{-1}$

Because
$$R = \rho \frac{\ell}{A} \implies R = R_0 [1 + \alpha (T - T_0)]$$


$$R_{T} = R_{0}[1 + \alpha(T - T_{0})]$$


$$R_T = R_0 + R_0 \alpha (T - T_0)$$

$$\Delta T = T - T_0$$

Y = mx + b

	$T(\mathbb{C}^o)$	$R(\Omega)$
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		

Intercept =
$$R_0$$

Data of Experiment

Temperature	Resistance
80	45.5
76	45
72	44.5
70	44.1
5 6	43.6

Note:

R0 = 36.8 ohms at room temp.

Theoretical value of $\alpha = 0.0039 \text{ 1/c}$