Experimental No. (6) AC bridge meter

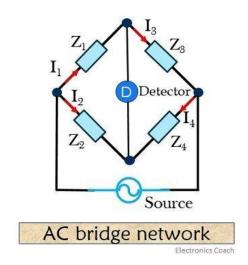
Phys Lab 2

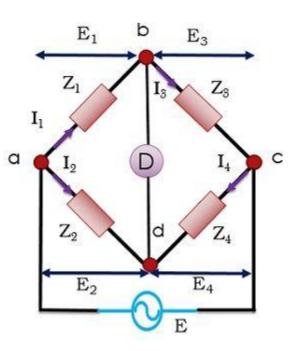
Dr. Ishaq Musa

AC Bridges

Definition: AC bridges are the circuits that are used for the measurement of **electrical quantities** such as inductance, capacitance, resistance.

there are 2 conditions in order to balance the bridge-

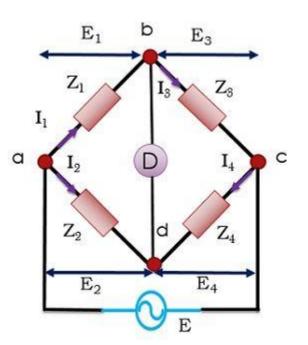

1- The detector current I_d should be zero.


2- The potential difference between the detector node should be zero

AC Bridges general balance equation

The current through detector must be 0 that requires the potential difference V_{bd} to be 0.

In such a condition voltage drop from a to b will get equal to voltage drop from a to d, both in magnitude and phase.



$$E_{1} = E_{2}$$

Applying ohms' law $I_1 Z_1 = I_2 Z_2$

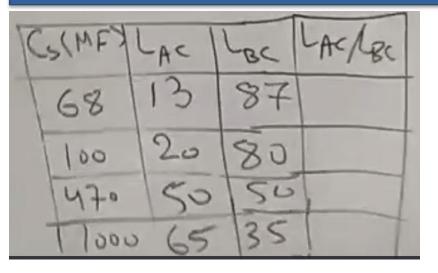
At balance

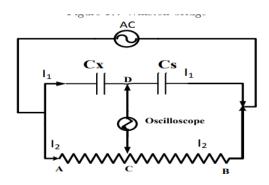
$$I_1 = I_3 = \frac{E}{Z_1 + Z_3}$$
 $I_2 = I_4 = \frac{E}{Z_2 + Z_4}$

Substituting the value of I_1 and I_2

$$\mathbf{Z}_{1}\mathbf{Z}_{4}=\mathbf{Z}_{2}\mathbf{Z}_{3}$$

Experiment AC Cs $V_{DC} = V_D - V_C = 0, \quad So \quad V_{AD} = V_{AC}$ Сх I_ $\frac{I_1}{\omega C_x} = I_2 \frac{\rho L_{AC}}{Area \ of \ the \ wire}$ Oscilloscope l₂ 1₂ $V_{BD} = V_{BC}, \quad So \quad I_1 Z_{c_a} = I_2 R_{BC}$ • Eq.2 $\frac{I_1}{\omega C_s} = I_2 \frac{\rho L_{BC}}{Area \ of \ the \ wire}$ Note: Impedance of capacitor Divided Eq. 1 by Eq.2 ωC $C_x = C_s \frac{L_{BC}}{L_{AC}}$

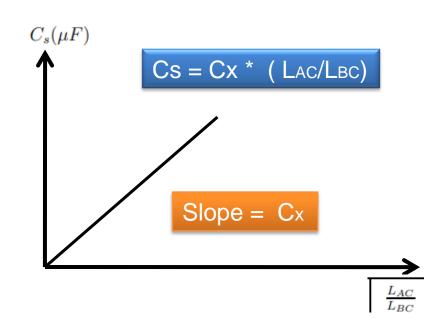

Part 1


Cx1= 470 micro Farad

$C_s(\mu F)$	$L_{BC}(cm)$	$L_{AC}(cm)$	$\frac{L_{AC}}{L_{BC}}$
68			
100			
470			
1000			

$$DrawC_sVs.\frac{L_{AC}}{L_{BC}}, Slope = C_{x1} = \dots$$

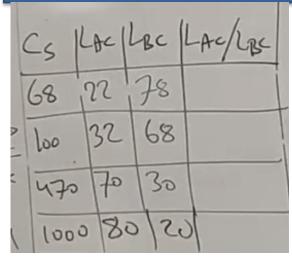
Data of Experiment from record Video

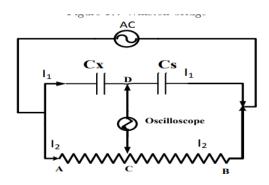


Sample calculation:

$$C_x = C_s \frac{L_{BC}}{L_{AC}}$$

Cx = 68 Micro.Farad (87 cm/13 cm) Cx = 455 Micro Farad

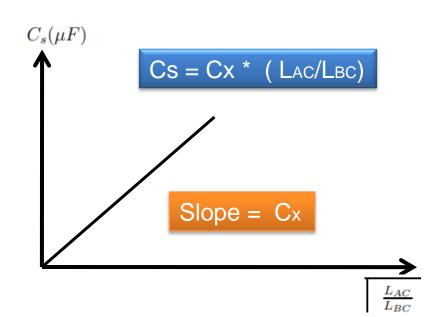

Part 2


Cx2= 220 micro Farad

$C_s(\mu F)$	$L_{BC}(cm)$	$L_{AC}(cm)$	$\frac{L_{AC}}{L_{BC}}$
68			
100			
470			
1000			

$$DrawC_sVs.\frac{L_{AC}}{L_{BC}}, Slope = C_{x1} = \dots$$

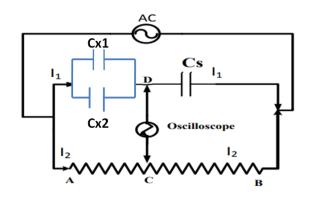
Data of Experiment from record Video



Sample calculation:

$$C_x = C_s \frac{L_{BC}}{L_{AC}}$$

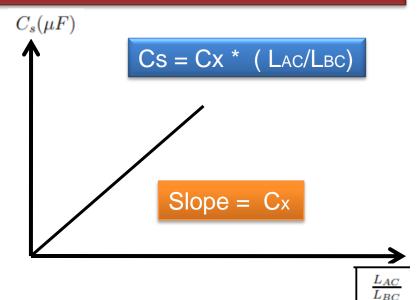
Cx = 68 Micro.Farad (78 cm/22 cm) Cx = 241 Micro Farad



Part 3 (connect Cx1 and Cx2 in parallel)

deo

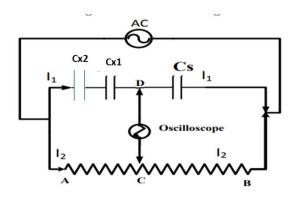
Cxeq= 590 micro Farad


$C_s(\mu F)$	$L_{BC}(cm)$	$L_{AC}(cm)$	$\left(\frac{L_{AC}}{L_{BC}}\right)$	
68				
100				
470				
1000				
$DrawC_sV$	$S.\frac{L_{AC}}{L_{BC}}, Slop$	$be = C_{x1} =$:	
Data of	Experin	nent fro	m reco	rd Vi
(S(MF)	KLAC)	LBC	LAC	-
68	01	90	-	
100	17	83		
470	40	60		
470	s 57	33	1	-

Sample calculation:

$$C_x = C_s \frac{L_{BC}}{L_{AC}}$$

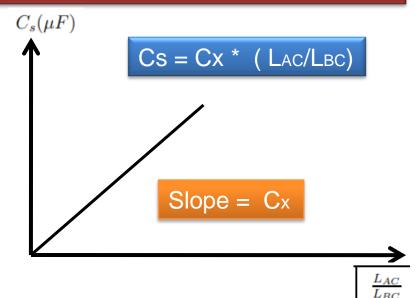
Cx = 68 Micro.Farad (90 cm/10 cm) Cx = 612 Micro Farad


Part 4 (connect Cx1 and Cx2 in series)

Cxeq= 150 micro Farad

$C_s(\mu F)$	$L_{BC}(cm)$	$L_{AC}(cm)$	$\frac{L_{AC}}{L_{BC}}$
68			
100			
470			
1000			
$DrawC_sVs.\frac{L_{AC}}{L_{BC}}, Slope = C_{x1} = \dots$			

Data of Experiment from record Video



Sample calculation:

$$C_x = C_s \frac{L_{BC}}{L_{AC}}$$

Cx = 68 Micro.Farad (73 cm/27 cm) Cx = 183 Micro Farad

