

PR I NC I P L E S 	 O F 	 D ATABA S E 	MANAGEMENT

The	Practical	Guide	to	Storing,	Managing	and	Analyzing	Big	and	Small	Data

Principles	of	Database	Management	provides	students	with	 the	comprehensive
database	 management	 information	 to	 understand	 and	 apply	 the	 fundamental
concepts	 of	 database	design	 and	modeling,	 database	 systems,	 data	 storage	 and
the	 evolving	 world	 of	 data	 warehousing,	 governance	 and	 more.	 Designed	 for
those	studying	database	management	for	 information	management	or	computer
science,	 this	 illustrated	 textbook	has	a	well-balanced	 theory–practice	 focus	and
covers	 the	essential	 topics,	 from	established	database	 technologies	up	 to	recent
trends	 like	Big	Data,	NoSQL	 and	 analytics.	On-going	 case	 studies,	 drill-down
boxes	that	reveal	deeper	insights	on	key	topics,	retention	questions	at	the	end	of
every	 section	 of	 a	 chapter,	 and	 connections	 boxes	 that	 show	 the	 relationship
between	concepts	throughout	the	text	are	included	to	provide	the	practical	tools
to	get	started	in	database	management.
Key	features	include:

Full-color	illustrations	throughout	the	text.

Extensive	coverage	of	important	trending	topics,	including	data
warehousing,	business	intelligence,	data	integration,	data	quality,	data
governance,	Big	Data	and	analytics.

An	online	playground	with	diverse	environments,	including	MySQL	for
querying;	MongoDB;	Neo4j	Cypher;	and	a	tree	structure	visualization
environment.

Hundreds	of	examples	to	illustrate	and	clarify	the	concepts	discussed	that
can	be	reproduced	on	the	book’s	companion	online	playground.

Case	studies,	review	questions,	problems	and	exercises	in	every	chapter.

Additional	cases,	problems	and	exercises	in	the	appendix.

“Although	there	have	been	a	series	of	classical	textbooks	on	database	systems,
the	new	dramatic	advances	call	for	an	updated	text	covering	the	latest	significant
topics,	such	as	Big	Data	analytics,	NoSQL	and	much	more.	Fortunately,	this	is
exactly	what	this	book	has	to	offer.	It	is	highly	desirable	for	training	the	next
generation	of	data	management	professionals.”

–	Jian	Pei,	Simon	Fraser	University

“I	haven’t	seen	an	as	up-to-date	and	comprehensive	textbook	for	database
management	as	this	one	in	many	years.	Principles	of	Database	Management
combines	a	number	of	classical	and	recent	topics	concerning	data	modeling,
relational	databases,	object-oriented	databases,	XML,	distributed	data
management,	NoSQL	and	Big	Data	in	an	unprecedented	manner.	The	authors	did
a	great	job	in	stitching	these	topics	into	one	coherent	and	compelling	story	that
will	serve	as	an	ideal	basis	for	teaching	both	introductory	and	advanced
courses.”

–	Martin	Theobald,	University	of	Luxembourg

“This	is	a	very	timely	book	with	outstanding	coverage	of	database	topics	and
excellent	treatment	of	database	details.	It	not	only	gives	very	solid	discussions	of
traditional	topics	such	as	data	modeling	and	relational	databases,	but	also
contains	refreshing	contents	on	frontier	topics	such	as	XML	databases,	NoSQL
databases,	Big	Data	and	analytics.	For	those	reasons,	this	will	be	a	good	book	for
database	professionals,	who	will	keep	using	it	for	all	stages	of	database	studies
and	works.”

–	J.	Leon	Zhao,	City	University	of	Hong	Kong

“This	accessible,	authoritative	book	introduces	the	reader	the	most	important
fundamental	concepts	of	data	management,	while	providing	a	practical	view	of
recent	advances.	Both	are	essential	for	data	professionals	today.”

–	Foster	Provost,	New	York	University,	Stern	School	of	Business

“This	guide	to	big	and	small	data	management	addresses	both	fundamental
principles	and	practical	deployment.	It	reviews	a	range	of	databases	and	their
relevance	for	analytics.	The	book	is	useful	to	practitioners	because	it	contains
many	case	studies,	links	to	open-source	software,	and	a	very	useful	abstraction
of	analytics	that	will	help	them	choose	solutions	better.	It	is	important	to
academics	because	it	promotes	database	principles	which	are	key	to	successful
and	sustainable	data	science.”

–	Sihem	Amer-Yahia,	Laboratoire	d’Informatique	de	Grenoble;	Editor-in-
Chief,	The	VLDB	Journal	(International	Journal	on	Very	Large	DataBases)

“This	book	covers	everything	you	will	need	to	teach	in	a	database
implementation	and	design	class.	With	some	chapters	covering	Big	Data,
analytic	models/methods	and	NoSQL,	it	can	keep	our	students	up	to	date	with
these	new	technologies	in	data	management-related	topics.”

–	Han-fen	Hu,	University	of	Nevada,	Las	Vegas

PRINCIPLES	OF	DATABASE
MANAGEMENT

The	Practical	Guide	to	Storing,
Managing	and	Analyzing	Big	and	Small

Data
Wilfried	Lemahieu
KU	Leuven,	Belgium

Seppe	vanden	Broucke
KU	Leuven,	Belgium

Bart	Baesens
KU	Leuven,	Belgium;	University	of	Southampton,	United	Kingdom

University	Printing	House,	Cambridge	CB2	8BS,	United	Kingdom

One	Liberty	Plaza,	20th	Floor,	New	York,	NY	10006,	USA

477	Williamstown	Road,	Port	Melbourne,	VIC	3207,	Australia

314–321,	3rd	Floor,	Plot	3,	Splendor	Forum,	Jasola	District	Centre,	New	Delhi	–	110025,	India

79	Anson	Road,	#06–04/06,	Singapore	079906

Cambridge	University	Press	is	part	of	the	University	of	Cambridge.

It	furthers	the	University’s	mission	by	disseminating	knowledge	in	the	pursuit	of	education,
learning,	and	research	at	the	highest	international	levels	of	excellence.

www.cambridge.org

Information	on	this	title:	www.cambridge.org/9781107186125

DOI:	10.1017/9781316888773

©	Wilfried	Lemahieu,	Seppe	vanden	Broucke,	and	Bart	Baesens	2018

This	publication	is	in	copyright.	Subject	to	statutory	exception	and	to	the	provisions	of	relevant
collective	licensing	agreements,	no	reproduction	of	any	part	may	take	place	without	the	written

permission	of	Cambridge	University	Press.

First	published	2018

Printed	and	bound	in	Great	Britain	by	Clays	Ltd,	Elcograf	S.p.A.

A	catalog	record	for	this	publication	is	available	from	the	British	Library.

Library	of	Congress	Cataloging-in-Publication	Data

Names:	Lemahieu,	Wilfried,	1970–	author.	|	Broucke,	Seppe	vanden,	1986–	author.	|	Baesens,
Bart,	author.

Title:	Principles	of	database	management	:	the	practical	guide	to	storing,	managing	and	analyzing
big	and	small	data	/	Wilfried	Lemahieu,	Katholieke	Universiteit	Leuven,	Belgium,	Seppe	vanden

Broucke,	Katholieke	Universiteit	Leuven,	Belgium,	Bart	Baesens,	Katholieke	Universiteit
Leuven,	Belgium.

http://www.cambridge.org
http://www.cambridge.org/9781107186125
http://dx.doi.org/10.1017/9781316888773

Description:	First	edition.	|	New	York,	NY	:	Cambridge	University	Press,	2018.	|	Includes
bibliographical	references	and	index.

Identifiers:	LCCN	2018023251	|	ISBN	9781107186125	(hardback	:	alk.	paper)

Subjects:	LCSH:	Database	management.

Classification:	LCC	QA76.9.D3	L454	2018	|	DDC	005.74–dc23

LC	record	available	at	https://lccn.loc.gov/2018023251

ISBN	978-1-107-18612-5	Hardback

Additional	resources	for	this	publication	at	www.cambridge.org/Lemahieu

Cambridge	University	Press	has	no	responsibility	for	the	persistence	or	accuracy	of	URLs	for	external
or	third-party	internet	websites	referred	to	in	this	publication	and	does	not	guarantee	that	any	content

on	such	websites	is,	or	will	remain,	accurate	or	appropriate.

https://lccn.loc.gov/2018023251
http://www.cambridge.org/Lemahieu

Brief	Contents
About	the	Authors
Preface
Sober:	1000‰	Driven	by	Technology

Part	I Databases	and	Database	Design

1 Fundamental	Concepts	of	Database	Management

2 Architecture	and	Categorization	of	DBMSs

3 Conceptual	Data	Modeling	Using	the	(E)ER	Model	and	UML
Class	Diagram

4 Organizational	Aspects	of	Data	Management

Part	II Types	of	Database	Systems

5 Legacy	Databases

6 Relational	Databases:	The	Relational	Model

7 Relational	Databases:	Structured	Query	Language	(SQL)

8 Object-Oriented	Databases	and	Object	Persistence

9 Extended	Relational	Databases

10 XML	Databases

11 NoSQL	Databases

Part	III Physical	Data	Storage,	Transaction
Management,	and	Database	Access

12 Physical	File	Organization	and	Indexing

13 Physical	Database	Organization

14 Basics	of	Transaction	Management

15 Accessing	Databases	and	Database	APIs

16 Data	Distribution	and	Distributed	Transaction	Management

Part	IV Data	Warehousing,	Data	Governance,
and	(Big)	Data	Analytics

17 Data	Warehousing	and	Business	Intelligence

18 Data	Integration,	Data	Quality,	and	Data	Governance

19 Big	Data

20 Analytics

Appendix	Using	the	Online	Environment

Glossary
Index

Contents
About	the	Authors
Preface
Sober:	1000‰	Driven	by	Technology

Part	I Databases	and	Database	Design

1 Fundamental	Concepts	of	Database	Management
1.1 Applications	of	Database	Technology
1.2 Key	Definitions
1.3 File	versus	Database	Approach	to	Data	Management
1.3.1 The	File-Based	Approach
1.3.2 The	Database	Approach

1.4 Elements	of	a	Database	System
1.4.1 Database	Model	versus	Instances
1.4.2 Data	Model
1.4.3 The	Three-Layer	Architecture
1.4.4 Catalog
1.4.5 Database	Users
1.4.6 Database	Languages

1.5 Advantages	of	Database	Systems	and	Database
Management
1.5.1 Data	Independence
1.5.2 Database	Modeling
1.5.3Managing	Structured,	Semi-Structured,	and
Unstructured	Data

1.5.4Managing	Data	Redundancy
1.5.5 Specifying	Integrity	Rules
1.5.6 Concurrency	Control
1.5.7 Backup	and	Recovery	Facilities
1.5.8 Data	Security
1.5.9 Performance	Utilities

Summary

Key	Terms	List

Review	Questions

Problems	and	Exercises

2 Architecture	and	Categorization	of	DBMSs
2.1 Architecture	of	a	DBMS
2.1.1 Connection	and	Security	Manager
2.1.2 DDL	Compiler
2.1.3 Query	Processor
2.1.3.1 DML	Compiler
2.1.3.2 Query	Parser	and	Query	Rewriter
2.1.3.3 Query	Optimizer
2.1.3.4 Query	Executor

2.1.4 Storage	Manager
2.1.4.1 Transaction	Manager
2.1.4.2 Buffer	Manager
2.1.4.3 Lock	Manager
2.1.4.4 Recovery	Manager

2.1.5 DBMS	Utilities
2.1.6 DBMS	Interfaces

2.2 Categorization	of	DBMSs

2.2.1 Categorization	Based	on	Data	Model
2.2.1.1 Hierarchical	DBMSs
2.2.1.2 Network	DBMSs
2.2.1.3 Relational	DBMSs
2.2.1.4 Object-Oriented	DBMSs
2.2.1.5 Object-Relational/Extended	Relational	DBMSs
2.2.1.6 XML	DBMSs
2.2.1.7 NoSQL	DBMSs

2.2.2 Categorization	Based	on	Degree	of	Simultaneous
Access
2.2.3 Categorization	Based	on	Architecture
2.2.4 Categorization	Based	on	Usage

Summary

Key	Terms	List

Review	Questions

Problems	and	Exercises

3 Conceptual	Data	Modeling	Using	the	(E)ER	Model	and	UML
Class	Diagram
3.1 Phases	of	Database	Design
3.2 The	Entity	Relationship	Model
3.2.1 Entity	Types
3.2.2 Attribute	Types
3.2.3.1 Domains
3.2.3.2 Key	Attribute	Types
3.2.3.3 Simple	versus	Composite	Attribute	Types
3.2.3.4 Single-Valued	versus	Multi-Valued	Attribute
Types
3.2.3.5 Derived	Attribute	Type

3.2.4 Relationship	Types
3.2.4.1 Degree	and	Roles
3.2.4.2 Cardinalities
3.2.4.3 Relationship	Attribute	Types

3.2.5Weak	Entity	Types
3.2.6 Ternary	Relationship	Types
3.2.7 Examples	of	the	ER	Model
3.2.8 Limitations	of	the	ER	Model

3.3 The	Enhanced	Entity	Relationship	(EER)	Model
3.3.1 Specialization/Generalization
3.3.2 Categorization
3.3.3 Aggregation
3.3.4 Examples	of	the	EER	Model
3.3.5 Designing	an	EER	Model

3.4 The	UML	Class	Diagram
3.4.1 Recap	of	Object	Orientation
3.4.2 Classes
3.4.3 Variables
3.4.4 Access	Modifiers
3.4.5 Associations
3.4.5.1 Association	Class
3.4.5.2 Unidirectional	versus	Bidirectional	Association
3.4.5.3 Qualified	Association

3.4.6 Specialization/Generalization
3.4.7 Aggregation
3.4.8 UML	Example
3.4.9 Advanced	UML	Modeling	Concepts
3.4.9.1 Changeability	Property
3.4.9.2 Object	Constraint	Language	(OCL)

3.4.9.3 Dependency	Relationship
3.4.10 UML	versus	EER

Summary

Key	Terms	List

Review	Questions

Problems	and	Exercises

4 Organizational	Aspects	of	Data	Management
4.1 Data	Management
4.1.1 Catalogs	and	the	Role	of	Metadata
4.1.2Metadata	Modeling
4.1.3 Data	Quality
4.1.3.1 Data	Quality	Dimensions
4.1.3.2 Data	Quality	Problems

4.1.4 Data	Governance
4.2 Roles	in	Data	Management
4.2.1 Information	Architect
4.2.2 Database	Designer
4.2.3 Data	Owner
4.2.4 Data	Steward
4.2.5 Database	Administrator
4.2.6 Data	Scientist

Summary

Key	Terms	List

Review	Questions

Problems	and	Exercises

Part	II Types	of	Database	Systems

5 Legacy	Databases
5.1 The	Hierarchical	Model
5.2 The	CODASYL	Model
Summary

Key	Terms	List

Review	Questions

Problems	and	Exercises

6 Relational	Databases:	The	Relational	Model
6.1 The	Relational	Model
6.1.1 Basic	Concepts
6.1.2 Formal	Definitions
6.1.3 Types	of	Keys
6.1.3.1 Superkeys	and	Keys
6.1.3.2 Candidate	Keys,	Primary	Keys,	and	Alternative
Keys
6.1.3.3 Foreign	Keys

6.1.4 Relational	Constraints
6.1.5 Example	Relational	Data	Model
6.2 Normalization
6.2.1 Insertion,	Deletion,	and	Update	Anomalies	in	an
Unnormalized	Relational	Model
6.2.2 Informal	Normalization	Guidelines
6.2.3 Functional	Dependencies	and	Prime	Attribute	Type
6.2.4 Normalization	Forms
6.2.4.1 First	Normal	Form	(1	NF)
6.2.4.2 Second	Normal	Form	(2	NF)

6.2.4.3 Third	Normal	Form	(3	NF)
6.2.4.4 Boyce–Codd	Normal	Form	(BCNF)
6.2.4.5 Fourth	Normal	Form	(4	NF)

6.3Mapping	a	Conceptual	ER	Model	to	a	Relational	Model
6.3.1Mapping	Entity	Types
6.3.2Mapping	Relationship	Types
6.3.2.1Mapping	a	Binary	1:1	Relationship	type
6.3.2.2Mapping	a	Binary	1:N	Relationship	Type
6.3.2.3Mapping	a	Binary	M:N	Relationship	Type
6.3.2.4Mapping	Unary	Relationship	Types
6.3.2.5Mapping	n-ary	Relationship	Types

6.3.3Mapping	Multi-Valued	Attribute	Types
6.3.4Mapping	Weak	Entity	Types
6.3.5 Putting	it	All	Together

6.4Mapping	a	Conceptual	EER	Model	to	a	Relational
Model
6.4.1Mapping	an	EER	Specialization
6.4.2Mapping	an	EER	Categorization
6.4.3Mapping	an	EER	Aggregation

Summary

Key	Terms	List

Review	Questions

Problems	and	Exercises

7 Relational	Databases:	Structured	Query	Language	(SQL)
7.1 Relational	Database	Management	Systems	and	SQL
7.1.1 Key	Characteristics	of	SQL
7.1.2 Three-Layer	Database	Architecture

7.2 SQL	Data	Definition	Language

7.2.1 Key	DDL	Concepts
7.2.2 DDL	Example
7.2.3 Referential	Integrity	Constraints
7.2.4 DROP	and	ALTER	Command

7.3 SQL	Data	Manipulation	Language
7.3.1 SQL	SELECT	Statement
7.3.1.1 Simple	Queries
7.3.1.2 Queries	with	Aggregate	Functions
7.3.1.3 Queries	with	GROUP	BY/HAVING
7.3.1.4 Queries	with	ORDER	BY
7.3.1.5 Join	Queries
7.3.1.6 Nested	Queries
7.3.1.7 Correlated	Queries
7.3.1.8 Queries	with	ALL/ANY
7.3.1.9 Queries	with	EXISTS
7.3.1.10 Queries	with	Subqueries	in	SELECT/FROM
7.3.1.11 Queries	with	Set	Operations

7.3.2 SQL	INSERT	Statement
7.3.3 SQL	DELETE	Statement
7.3.4 SQL	UPDATE	Statement

7.4 SQL	Views
7.5 SQL	Indexes
7.6 SQL	Privileges
7.7 SQL	for	Metadata	Management
Summary

Key	Terms	List

Review	Questions

Problems	and	Exercises

8 Object-Oriented	Databases	and	Object	Persistence
8.1 Recap:	Basic	Concepts	of	OO
8.2 Advanced	Concepts	of	OO
8.2.1Method	Overloading
8.2.2 Inheritance
8.2.3Method	Overriding
8.2.4 Polymorphism	and	Dynamic	Binding

8.3 Basic	Principles	of	Object	Persistence
8.3.1 Serialization

8.4 OODBMS
8.4.1 Object	Identifiers
8.4.2 ODMG	Standard
8.4.3 Object	Model
8.4.4 Object	Definition	Language	(ODL)
8.4.5 Object	Query	Language	(OQL)
8.4.5.1 Simple	OQL	Queries
8.4.5.2 SELECT	FROM	WHERE	OQL	Queries
8.4.5.3 Join	OQL	Queries
8.4.5.4 Other	OQL	Queries

8.4.6 Language	Bindings
8.5 Evaluating	OODBMSs
Summary

Key	Terms	List

Review	Questions

Problems	and	Exercises

9 Extended	Relational	Databases
9.1 Limitations	of	the	Relational	Model

9.2 Active	RDBMS	Extensions
9.2.1 Triggers
9.2.2 Stored	Procedures

9.3 Object-Relational	RDBMS	Extensions
9.3.1 User-Defined	Types
9.3.1.1 Distinct	Data	Types
9.3.1.2 Opaque	Data	Types
9.3.1.3 Unnamed	Row	Types
9.3.1.4 Named	Row	Types
9.3.1.5 Table	Data	Types

9.3.2 User-Defined	Functions
9.3.3 Inheritance
9.3.3.1 Inheritance	at	Data	Type	Level
9.3.3.2 Inheritance	at	Table	Type	Level

9.3.4 Behavior
9.3.5 Polymorphism
9.3.6 Collection	Types
9.3.7 Large	Objects

9.4 Recursive	SQL	Queries
Summary

Key	Terms	List

Review	Questions

Problems	and	Exercises

10 XML	Databases
10.1 Extensible	Markup	Language
10.1.1 Basic	Concepts
10.1.2 Document	Type	Definition	and	XML	Schema
Definition

10.1.3 Extensible	Stylesheet	Language
10.1.4 Namespaces
10.1.5 XPath

10.2 Processing	XML	Documents
10.3 Storage	of	XML	Documents
10.3.1 The	Document-Oriented	Approach	for	Storing	XML
Documents
10.3.2 The	Data-Oriented	Approach	for	Storing	XML
Documents
10.3.3 The	Combined	Approach	for	Storing	XML
Documents

10.4 Differences	Between	XML	Data	and	Relational	Data
10.5Mappings	Between	XML	Documents	and	(Object-)
Relational	Data
10.5.1 Table-Based	Mapping
10.5.2 Schema-Oblivious	Mapping
10.5.3 Schema-Aware	Mapping
10.5.4 SQL/XML

10.6 Searching	XML	Data
10.6.1 Full-Text	Search
10.6.2 Keyword-Based	Search
10.6.3 Structured	Search	With	XQuery
10.6.4 Semantic	Search	With	RDF	and	SPARQL

10.7 XML	for	Information	Exchange
10.7.1Message-Oriented	Middleware
10.7.2 SOAP-Based	Web	Services
10.7.3 REST-Based	Web	Services
10.7.4Web	Services	and	Databases

10.8 Other	Data	Representation	Formats

Summary

Key	Terms	List

Review	Questions

Problems	and	Exercises

11 NoSQL	Databases
11.1 The	NoSQL	Movement
11.1.1 The	End	of	the	“One	Size	Fits	All”	Era?
11.1.2 The	Emergence	of	the	NoSQL	Movement

11.2 Key–Value	Stores
11.2.1 From	Keys	to	Hashes
11.2.2 Horizontal	Scaling
11.2.3 An	Example:	Memcached
11.2.4 Request	Coordination
11.2.5 Consistent	Hashing
11.2.6 Replication	and	Redundancy
11.2.7 Eventual	Consistency
11.2.8 Stabilization
11.2.9 Integrity	Constraints	and	Querying

11.3 Tuple	and	Document	Stores
11.3.1 Items	with	Keys
11.3.2 Filters	and	Queries
11.3.3 Complex	Queries	and	Aggregation	with	MapReduce
11.3.4 SQL	After	All…

11.4 Column-Oriented	Databases
11.5 Graph-Based	Databases
11.5.1 Cypher	Overview
11.5.2 Exploring	a	Social	Graph

11.6 Other	NoSQL	Categories
Summary

Key	Terms

Review	Questions

Problems	and	Exercises

Part	III Physical	Data	Storage,	Transaction
Management,	and	Database	Access

12 Physical	File	Organization	and	Indexing
12.1 Storage	Hardware	and	Physical	Database	Design
12.1.1 The	Storage	Hierarchy
12.1.2 Internals	of	Hard	Disk	Drives
12.1.3 From	Logical	Concepts	to	Physical	Constructs

12.2 Record	Organization
12.3 File	Organization
12.3.1 Introductory	Concepts:	Search	Keys,	Primary,	and
Secondary	File	Organization
12.3.2 Heap	File	Organization
12.3.3 Sequential	File	Organization
12.3.4 Random	File	Organization	(Hashing)
12.3.4.1 Key-to-Address	Transformation
12.3.4.2 Factors	that	Determine	the	Efficiency	of	Random
File	Organization

12.3.5 Indexed	Sequential	File	Organization
12.3.5.1 Basic	Terminology	of	Indexes
12.3.5.2 Primary	Indexes

12.3.5.3 Clustered	Indexes
12.3.5.4Multilevel	Indexes

12.3.6 List	Data	Organization	(Linear	and	Nonlinear	Lists)
12.3.6.1 Linear	Lists
12.3.6.2 Tree	Data	Structures

12.3.7 Secondary	Indexes	and	Inverted	Files
12.3.7.1 Characteristics	of	Secondary	Indexes
12.3.7.2 Inverted	Files
12.3.7.3Multicolumn	Indexes
12.3.7.4 Other	Index	Types

12.3.8 B-Trees	and	B+-Trees
12.3.8.1Multilevel	Indexes	Revisited
12.3.8.2 Binary	Search	Trees
12.3.8.3 B-Trees
12.3.8.4 B+-Trees

Summary

Key	Terms	List

Review	Questions

Problems	and	Exercises

13 Physical	Database	Organization
13.1 Physical	Database	Organization	and	Database	Access
Methods
13.1.1 From	Database	to	Tablespace
13.1.2 Index	Design
13.1.3 Database	Access	Methods
13.1.3.1 Functioning	of	the	Query	Optimizer
13.1.3.2 Index	Search	(with	Atomic	Search	Key)
13.1.3.3Multiple	Index	and	Multicolumn	Index	Search

13.1.3.4 Index-Only	Access
13.1.3.5 Full	Table	Scan

13.1.4 Join	Implementations
13.1.4.1 Nested-Loop	Join
13.1.4.2 Sort-Merge	Join
13.1.4.3 Hash	Join

13.2 Enterprise	Storage	Subsystems	and	Business	Continuity
13.2.1 Disk	Arrays	and	RAID
13.2.2 Enterprise	Storage	Subsystems
13.2.2.1 Overview	and	Classification
13.2.2.2 DAS	(Directly	Attached	Storage)
13.2.2.3 SAN	(Storage	Area	Network)
13.2.2.4 NAS	(Network	Attached	Storage)
13.2.2.5 NAS	Gateway
13.2.2.6 iSCSI/Storage	Over	IP

13.2.3 Business	Continuity
13.2.3.1 Contingency	Planning,	Recovery	Point,	and
Recovery	Time
13.2.3.2 Availability	and	Accessibility	of	Storage	Devices
13.2.3.3 Availability	of	Database	Functionality
13.2.3.4 Data	Availability

Summary

Key	Terms	List

Review	Questions

Problems	and	Exercises

14 Basics	of	Transaction	Management
14.1 Transactions,	Recovery,	and	Concurrency	Control
14.2 Transactions	and	Transaction	Management

14.2.1 Delineating	Transactions	and	the	Transaction
Lifecycle
14.2.2 DBMS	Components	Involved	in	Transaction
Management
14.2.3 The	Logfile

14.3 Recovery
14.3.1 Types	of	Failures
14.3.2 System	Recovery
14.3.3Media	Recovery

14.4 Concurrency	Control
14.4.1 Typical	Concurrency	Problems
14.4.1.1 Lost	Update	Problem
14.4.1.2 Uncommitted	Dependency	Problem	(aka	Dirty
Read	Problem)
14.4.1.3 Inconsistent	Analysis	Problem
14.4.1.4 Other	Concurrency-Related	Problems

14.4.2 Schedules	and	Serial	Schedules
14.4.3 Serializable	Schedules
14.4.4 Optimistic	and	Pessimistic	Schedulers
14.4.5 Locking	and	Locking	Protocols
14.4.5.1 Purposes	of	Locking
14.4.5.2 The	Two-Phase	Locking	Protocol	(2PL)
14.4.5.3 Cascading	Rollbacks
14.4.5.4 Dealing	with	Deadlocks
14.4.5.5 Isolation	Levels
14.4.5.6 Lock	Granularity

14.5 The	ACID	Properties	of	Transactions
Summary

Key	Terms	List

Review	Questions

Problems	and	Exercises

15 Accessing	Databases	and	Database	APIs
15.1 Database	System	Architectures
15.1.1 Centralized	System	Architectures
15.1.2 Tiered	System	Architectures

15.2 Classification	of	Database	APIs
15.2.1 Proprietary	versus	Universal	APIs
15.2.2 Embedded	versus	Call-Level	APIs
15.2.3 Early	Binding	versus	Late	Binding

15.3 Universal	Database	APIs
15.3.1 ODBC
15.3.2 OLE	DB	and	ADO
15.3.3 ADO.NET
15.3.4 Java	DataBase	Connectivity	(JDBC)
15.3.5 Intermezzo:	SQL	Injection	and	Access	Security
15.3.6 SQLJ
15.3.7 Intermezzo:	Embedded	APIs	versus	Embedded
DBMSs
15.3.8 Language-Integrated	Querying

15.4 Object	Persistence	and	Object-Relational	Mapping	APIs
15.4.1 Object	Persistence	with	Enterprise	JavaBeans
15.4.2 Object	Persistence	with	the	Java	Persistence	API
15.4.3 Object	Persistence	with	Java	Data	Objects
15.4.4 Object	Persistence	in	Other	Host	Languages

15.5 Database	API	Summary
15.6 Database	Access	in	the	World	Wide	Web
15.6.1 Introduction:	the	Original	Web	Server

15.6.2 The	Common	Gateway	Interface:	Toward	Dynamic
Web	Pages
15.6.3 Client-Side	Scripting:	The	Desire	for	a	Richer	Web
15.6.4 JavaScript	as	a	Platform
15.6.5 DBMSs	Adapt:	REST,	Other	Web	Services,	and	a
Look	Ahead

Summary

Key	Terms	List

Review	Questions

Problems	and	Exercises

16 Data	Distribution	and	Distributed	Transaction	Management
16.1 Distributed	Systems	and	Distributed	Databases
16.2 Architectural	Implications	of	Distributed	Databases
16.3 Fragmentation,	Allocation,	and	Replication
16.3.1 Vertical	Fragmentation
16.3.2 Horizontal	Fragmentation	(Sharding)
16.3.3Mixed	Fragmentation
16.3.4 Replication
16.3.5 Distribution	and	Replication	of	Metadata

16.4 Transparency
16.5 Distributed	Query	Processing
16.6 Distributed	Transaction	Management	and	Concurrency
Control
16.6.1 Primary	Site	and	Primary	Copy	2PL
16.6.2 Distributed	2PL
16.6.3 The	Two-Phase	Commit	Protocol	(2PC)
16.6.4 Optimistic	Concurrency	and	Loosely	Coupled
Systems

16.6.5 Compensation-Based	Transaction	Models
16.7 Eventual	Consistency	and	BASE	Transactions
16.7.1 Horizontal	Fragmentation	and	Consistent	Hashing
16.7.2 The	CAP	Theorem
16.7.3 BASE	Transactions
16.7.4Multi-Version	Concurrency	Control	and	Vector
Clocks
16.7.5 Quorum-Based	Consistency

Summary

Key	Terms

Review	Questions

Problems	and	Exercises

Part	IV Data	Warehousing,	Data	Governance,
and	(Big)	Data	Analytics

17 Data	Warehousing	and	Business	Intelligence
17.1 Operational	versus	Tactical/Strategic	Decision-Making
17.2 Data	Warehouse	Definition
17.3 Data	Warehouse	Schemas
17.3.1 Star	Schema
17.3.2 Snowflake	Schema
17.3.3 Fact	Constellation
17.3.4 Specific	Schema	Issues
17.3.4.1 Surrogate	keys
17.3.4.2 Granularity	of	the	Fact	Table
17.3.4.3 Factless	Fact	Tables

17.3.4.4 Optimizing	the	Dimension	Tables
17.3.4.5 Defining	Junk	Dimensions
17.3.4.6 Defining	Outrigger	Tables
17.3.4.7 Slowly	Changing	Dimensions
17.3.4.8 Rapidly	Changing	Dimensions

17.4 The	Extraction,	Transformation,	and	Loading	(ETL)
Process
17.5 Data	Marts
17.6 Virtual	Data	Warehouses	and	Virtual	Data	Marts
17.7 Operational	Data	Store
17.8 Data	Warehouses	versus	Data	Lakes
17.9 Business	Intelligence
17.9.1 Query	and	Reporting
17.9.2 Pivot	Tables
17.9.3 On-Line	Analytical	Processing	(OLAP)
17.9.3.1MOLAP
17.9.3.2 ROLAP
17.9.3.3 HOLAP
17.9.3.4 OLAP	Operators
17.9.3.5 OLAP	Queries	in	SQL

Summary

Key	Terms	List

Review	Questions

Problems	and	Exercises

18 Data	Integration,	Data	Quality,	and	Data	Governance
18.1 Data	and	Process	Integration
18.1.1 Convergence	of	Analytical	and	Operational	Data
Needs

18.1.2 Data	Integration	and	Data	Integration	Patterns
18.1.2.1 Data	Consolidation:	Extract,	Transform,	Load
(ETL)
18.1.2.2 Data	Federation:	Enterprise	Information
Integration	(EII)
18.1.2.3 Data	Propagation:	Enterprise	Application
Integration	(EAI)
18.1.2.4 Data	Propagation:	Enterprise	Data	Replication
(EDR)
18.1.2.5 Changed	Data	Capture	(CDC),	Near-Real-Time
ETL,	and	Event	Processing
18.1.2.6 Data	Virtualization
18.1.2.7 Data	as	a	Service	and	Data	in	the	Cloud

18.1.3 Data	Services	and	Data	Flows	in	the	Context	of	Data
and	Process	Integration
18.1.3.1 Business	Process	Integration
18.1.3.2 Patterns	for	Managing	Sequence	Dependencies
and	Data	Dependencies	in	Processes
18.1.3.3 A	Unified	View	on	Data	and	Process	Integration

18.2 Searching	Unstructured	Data	and	Enterprise	Search
18.2.1 Principles	of	Full-Text	Search
18.2.2 Indexing	Full-Text	Documents
18.2.3Web	Search	Engines
18.2.4 Enterprise	Search

18.3 Data	Quality	and	Master	Data	Management
18.4 Data	Governance
18.4.1 Total	Data	Quality	Management	(TDQM)
18.4.2 Capability	Maturity	Model	Integration	(CMMI)
18.4.3 Data	Management	Body	of	Knowledge	(DMBOK)
18.4.4 Control	Objectives	for	Information	and	Related

Technology	(COBIT)
18.4.5 Information	Technology	Infrastructure	Library

18.5 Outlook
18.6 Conclusion

Key	Terms	List

Review	Questions

Problems	and	Exercises

19 Big	Data
19.1 The	5	Vs	of	Big	Data
19.2 Hadoop
19.2.1 History	of	Hadoop
19.2.2 The	Hadoop	Stack
19.2.2.1 The	Hadoop	Distributed	File	System
19.2.2.2MapReduce
19.2.2.3 Yet	Another	Resource	Negotiator

19.3 SQL	on	Hadoop
19.3.1 HBase:	The	First	Database	on	Hadoop
19.3.2 Pig
19.3.3 Hive

19.4 Apache	Spark
19.4.1 Spark	Core
19.4.2 Spark	SQL
19.4.3MLlib,	Spark	Streaming,	and	GraphX

19.5 Conclusion

Key	Terms	List

Review	Questions

Problems	and	Exercises

20 Analytics
20.1 The	Analytics	Process	Model
20.2 Example	Analytics	Applications
20.3 Data	Scientist	Job	Profile
20.4 Data	Pre-Processing
20.4.1 Denormalizing	Data	for	Analysis
20.4.2 Sampling
20.4.3 Exploratory	Analysis
20.4.4Missing	Values
20.4.5 Outlier	Detection	and	Handling

20.5 Types	of	Analytics
20.5.1 Predictive	Analytics
20.5.1.1 Linear	Regression
20.5.1.2 Logistic	Regression
20.5.1.3 Decision	Trees
20.5.1.4 Other	Predictive	Analytics	Techniques

20.5.2 Evaluating	Predictive	Models
20.5.2.1 Splitting	Up	the	Dataset
20.5.2.2 Performance	Measures	for	Classification	Models
20.5.2.3 Performance	Measures	for	Regression	Models
20.5.2.4 Other	Performance	Measures	for	Predictive
Analytical	Models

20.5.3 Descriptive	Analytics
20.5.3.1 Association	Rules
20.5.3.2 Sequence	Rules
20.5.3.3 Clustering

20.5.4 Social	Network	Analytics
20.5.4.1 Social	Network	Definitions

20.5.4.2 Social	Network	Metrics
20.5.4.3 Social	Network	Learning

20.6 Post-Processing	of	Analytical	Models
20.7 Critical	Success	Factors	for	Analytical	Models
20.8 Economic	Perspective	on	Analytics
20.8.1 Total	Cost	of	Ownership	(TCO)
20.8.2 Return	on	Investment
20.8.3 In-	versus	Outsourcing
20.8.4 On-Premises	versus	Cloud	Solutions
20.8.5 Open-Source	versus	Commercial	Software

20.9 Improving	the	ROI	of	Analytics
20.9.1 New	Sources	of	Data
20.9.2 Data	Quality
20.9.3Management	Support
20.9.4 Organizational	Aspects
20.9.5 Cross-Fertilization

20.10 Privacy	and	Security
20.10.1 Overall	Considerations	Regarding	Privacy	and
Security
20.10.2 The	RACI	Matrix
20.10.3 Accessing	Internal	Data
20.10.3.1 Anonymization
20.10.3.2 SQL	Views
20.10.3.3 Label-Based	Access	Control

20.10.4 Privacy	Regulation
20.11 Conclusion

Key	Terms	List

Review	Questions

Problems	and	Exercises

Appendix	Using	the	Online	Environment
Glossary
Index

About	the	Authors

Bart	 was	 born	 in	 Bruges	 (Belgium).	 He	 speaks	 West-Flemish,	 Dutch,
French,	a	bit	of	German,	some	English,	and	can	order	a	beer	in	Chinese.	Besides
enjoying	time	with	his	family,	he	is	also	a	diehard	Club	Brugge	soccer	fan.	Bart
is	 a	 foodie	 and	 amateur	 cook	 and	 loves	 a	 good	 glass	 of	wine	 overlooking	 the
authentic	 red	 English	 phone	 booth	 in	 his	 garden.	 Bart	 loves	 traveling;	 his
favorite	 cities	 are	 San	 Francisco,	 Sydney,	 and	 Barcelona.	 He	 is	 fascinated	 by

World	War	 I	 and	 reads	many	books	on	 the	 topic.	He	 is	not	 a	big	 fan	of	being
called	“Professor	 Baesens”,	 shopping,	 vacuuming,	 long	meetings,	 phone	 calls,
admin,	 or	 students	 chewing	 gum	 during	 their	 oral	 exam	 on	 database
management.	He	is	often	praised	for	his	sense	of	humor,	although	he	is	usually
more	modest	about	this.

Bart	is	a	professor	of	Big	Data	and	analytics	at	KU	Leuven	(Belgium)	and	a
lecturer	 at	 the	 University	 of	 Southampton	 (United	 Kingdom).	 He	 has	 done
extensive	 research	 on	 Big	 Data	 and	 analytics,	 credit	 risk	 modeling,	 fraud
detection,	 and	 marketing	 analytics.	 He	 has	 written	 more	 than	 200	 scientific
papers	 and	 six	 books.	 He	 has	 received	 various	 best	 paper	 and	 best	 speaker
awards.	His	research	is	summarized	at	www.dataminingapps.com.

Seppe	was	born	in	Jette	(Brussels,	Belgium),	but	has	lived	most	of	his	life
in	Leuven.	Seppe	speaks	Dutch,	some	French,	English,	understands	German,	and
can	order	a	beer	in	Chinese	(and	unlike	Bart	he	can	do	so	in	the	right	intonation,
having	studied	Mandarin	for	 three	years).	He	is	married	to	Xinwei	Zhu	(which
explains	the	three	years	of	Mandarin).	Besides	spending	time	with	family,	Seppe

http://www.dataminingapps.com

enjoys	traveling,	reading	(Murakami	to	Bukowski	to	Asimov),	listening	to	music
(Booka	Shade	to	Miles	Davis	to	Claude	Debussy),	watching	movies	and	series,
gaming,	and	keeping	up	with	the	news.	He	is	not	a	fan	of	any	physical	activity
other	than	walking	way	too	fast	through	Leuven.	Seppe	does	not	like	vacuuming
(this	seems	to	be	common	with	database	book	authors),	bureaucracy,	meetings,
public	transportation	(even	though	he	has	no	car)	or	Windows	updates	that	start
when	he	is	teaching	or	writing	a	book	chapter.

Seppe	 is	an	assistant	professor	at	 the	Faculty	of	Economics	and	Business,
KU	Leuven,	Belgium.	His	 research	 interests	 include	business	 data	mining	 and
analytics,	machine	learning,	process	management,	and	process	mining.	His	work
has	 been	 published	 in	 well-known	 international	 journals	 and	 presented	 at	 top
conferences.	 Seppe’s	 teaching	 includes	 advanced	 analytics,	 Big	 Data,	 and
information	management	 courses.	 He	 also	 frequently	 teaches	 for	 industry	 and
business	audiences.	See	www.seppe.net	for	further	details.

http://www.seppe.net

Wilfried	was	 born	 in	 Turnhout,	 Belgium.	He	 speaks	Dutch,	 English,	 and
French,	 and	 can	 decipher	 some	 German,	 Latin,	 and	West-Flemish.	 Unable	 to
order	 a	 beer	 in	Chinese,	 he	 has	 perfected	 a	 “looking	 thirsty”	 facial	 expression
that	 works	 in	 any	 language.	 He	 is	 married	 to	 Els	Mennes,	 and	 together	 they
produced	 three	 sons	 –	 Janis,	Hannes,	 and	Arne	 –	 before	 running	 out	 of	 boys’
names.	 Apart	 from	 family	 time,	 one	 of	Wilfried’s	most	 cherished	 pastimes	 is
music.	 Some	would	 say	 he	 is	 stuck	 in	 the	 eighties,	 but	 his	 taste	 ranges	 from
Beethoven	to	Hendrix	and	from	Cohen	to	The	Cure.	He	also	likes	traveling,	with
fond	 memories	 of	 Alaska,	 Bali,	 Cuba,	 Beijing,	 the	 Swiss	 Alps,	 Rome,	 and
Istanbul.	 He	 enjoys	 many	 different	 genres	 of	 movies,	 but	 is	 somewhat
constrained	 by	 his	 wife’s	 bias	 toward	 tearful-kiss-and-make-up-at-the-airport
scenes.	 His	 sports	 watch	 contains	 data	 (certainly	 no	 Big	 Data!)	 on	 erratic
attempts	 at	 running,	 swimming,	biking,	 and	 skiing.	Wilfried	has	no	 immediate
aversion	 to	 vacuuming,	 although	 his	 fellow	 household	 members	 would	 claim
that	his	experience	with	the	matter	is	mainly	theoretical.

Wilfried	is	a	full	professor	at	the	Faculty	of	Economics	and	Business	(FEB)
of	KU	Leuven,	Belgium.	He	conducts	research	on	(big)	data	storage,	integration,
and	 analytics;	 data	 quality;	 business	 process	 management	 and	 service
orchestration,	 often	 in	 collaboration	 with	 industry	 partners.	 Following	 his
position	of	Vice	Dean	 for	Education	at	FEB,	he	was	elected	as	Dean	 in	2017.
See	www.feb.kuleuven.be/wilfried.lemahieu	for	further	details.

http://www.feb.kuleuven.be/wilfried.lemahieu

Preface

Congratulations!	By	picking	up	this	book,	you	have	made	the	first	step	in	your
journey	through	the	wonderful	world	of	databases.	As	you	will	see	in	this	book,
databases	come	in	many	different	forms	–	from	simple	spreadsheets	or	other	file-
based	 attempts	 and	 hierarchical	 structures,	 to	 relational,	 object-oriented,	 and
even	graph-oriented	ones	–	and	are	used	across	the	world	throughout	a	variety	of
industry	sectors	to	manage,	store,	and	analyze	data.

This	 book	 is	 the	 result	 of	 having	 taught	 an	 undergraduate	 database
management	class	and	a	postgraduate	advanced	database	management	class	for
more	 than	 ten	 years.	 Throughout	 the	 years	 we	 have	 found	 no	 textbook	 that
covers	 the	 material	 in	 a	 comprehensive	 way	 without	 becoming	 flooded	 by
theoretical	 detail	 and	 losing	 focus.	 Hence,	 after	 we	 teamed	 up	 together,	 we
decided	to	start	writing	a	book	ourselves.	This	work	aims	to	offer	a	complete	and
practical	 guide	 covering	 all	 the	 governing	 principles	 of	 database	management,
including:

end-to-end	coverage,	starting	with	legacy	technologies	to	emerging
trends	such	as	Big	Data,	NoSQL	databases,	analytics,	data	governance,
etc.;

a	unique	perspective	on	how	lessons	learned	from	past	data	management
could	be	relevant	in	today’s	technology	setting	(e.g.,	navigational	access
and	its	perils	in	CODASYL	and	XML/OO	databases);

The	 book	 also	 includes	 an	 appendix	 explaining	 our	 “online	 playground”
environment,	 where	 you	 can	 try	 out	 many	 concepts	 discussed	 in	 the	 book.
Additional	appendices,	including	an	exam	bank	containing	several	cross-chapter
questions	and	references	to	our	YouTube	lectures,	are	provided	online	as	well.

We	hope	you	enjoy	this	book	and	that	you,	the	reader,	will	find	it	a	useful
reference	and	trusted	companion	in	your	work,	studies,	or	research	when	storing,
managing,	and	analyzing	small	or	Big	Data!

a	critical	reflection	and	accompanying	risk	management	considerations
when	implementing	the	technologies	considered,	based	on	our	own
experiences	participating	in	data	and	analytics-related	projects	with
industry	partners	in	a	variety	of	sectors,	from	banking	to	retail	and	from
government	to	the	cultural	sector;

a	solid	balance	between	theory	and	practice,	including	various	exercises,
industry	examples	and	case	studies	originating	from	diverse	and
complementary	business	practices,	scientific	research,	and	academic
teaching	experience.

Who	This	Book	is	For

We	 have	 tried	 to	 make	 this	 book	 complete	 and	 useful	 for	 both	 novice	 and
advanced	database	practitioners	and	students	alike.	No	matter	whether	you’re	a
novice	just	beginning	to	work	with	database	management	systems,	a	versed	SQL
user	 aiming	 to	 brush	 up	 your	 knowledge	 of	 underlying	 concepts	 or	 theory,	 or
someone	looking	to	get	an	update	on	newer,	more	modern	database	approaches,
this	 book	 aims	 to	 familiarize	 you	with	 all	 the	 necessary	 concepts.	Hence,	 this
book	is	well	suited	for:

Thanks	to	the	exercises	and	industry	examples	throughout	the	chapters,	the
book	can	also	be	used	by	tutors	in	courses	such	as:

under-	or	postgraduate	students	taking	courses	on	database	management
in	BSc	and	MSc	programs	in	information	management	and/or	computer
science;

business	professionals	who	would	like	to	refresh	or	update	their
knowledge	on	database	management;	and

information	architects,	database	designers,	data	owners,	data	stewards,
database	administrators,	or	data	scientists	interested	in	new	developments
in	the	area.

principles	of	database	management;

database	modeling;

database	design;

database	systems;

It	 can	 also	 be	 useful	 to	 universities	working	 out	 degrees	 in,	 for	 example,	 Big
Data	and	analytics.

data	management;

data	modeling;

data	science.

Topics	Covered	in	this	Book

This	book	is	organized	in	four	main	parts.	Chapters	1–4	address	preliminary	and
introductory	 topics	 regarding	 databases	 and	 database	 design,	 starting	 with	 an
introduction	 to	 basic	 concepts	 in	 Chapter	 1,	 followed	 by	 a	 description	 of
common	database	management	system	types	and	their	architecture	in	Chapter	2.
Chapter	 3	 discusses	 conceptual	 data	 modeling,	 and	 Chapter	 4	 provides	 a
management	 overview	of	 the	different	 roles	 involved	 in	 data	management	 and
their	responsibilities.

Part	II	(Chapters	5–11)	then	takes	a	dive	into	the	various	types	of	databases,
from	 legacy	 pre-relational	 and	 relational	 database	 management	 systems	 into
more	 recent	 approaches	 such	 as	 object-oriented,	 object-relational,	 and	 XML-
based	databases	in	Chapters	8–10,	ending	with	a	solid	and	up-to-date	overview
of	NoSQL	technologies	in	Chapter	11.	This	part	also	includes	a	comprehensive
overview	of	the	Structured	Query	Language	(SQL)	in	Chapter	7.

In	 Part	 III,	 physical	 data	 storage,	 transaction	 management,	 and	 database
access	 are	 discussed	 in	 depth.	 Chapter	 12	 discusses	 physical	 file	 organization
and	indexing,	whereas	Chapter	13	elaborates	on	physical	database	organization
and	 business	 continuity.	 This	 is	 followed	 by	 an	 overview	 on	 the	 basics	 of
transaction	management	 in	Chapter	14.	Chapter	 15	 introduces	 database	 access
mechanisms	 and	 various	 database	 application	 programming	 interfaces	 (APIs).
Chapter	16	concludes	 this	part	of	 the	book	by	zooming	 in	on	data	distribution
and	distributed	transaction	management.

Chapters	 17–20	 form	 the	 last	 part	 of	 the	 book.	 Here,	 we	 zoom	 out	 and
elaborate	 on	 data	 warehousing	 and	 emerging	 interest	 areas	 such	 as	 data
governance,	Big	Data,	and	analytics.	Chapter	17	discusses	data	warehouses	and

business	 intelligence	 in	 depth;	Chapter	18	 covers	managerial	 concepts	 such	 as
data	 integration,	data	quality,	and	data	governance;	Chapter	19	provides	an	 in-
depth	overview	of	Big	Data	and	shows	how	a	solid	database	set-up	can	form	the
cornerstone	of	a	modern	analytical	environment.	Chapter	20	concludes	this	part
and	the	book	by	examining	different	types	of	analytics.

By	 the	 end	 of	 the	 book,	 you	will	 have	 gained	 a	 strong	 knowledge	 of	 all
aspects	that	make	up	a	database	management	system.	You	will	be	able	to	discern
the	 different	 database	 systems,	 and	 to	 contrast	 their	 advantages	 and
disadvantages.	You	will	be	able	to	make	the	best	(investment)	decisions	through
conceptual,	 logical,	 and	 physical	 data	 modeling,	 all	 the	 way	 to	 Big	 Data	 and
analytical	applications.	You’ll	have	gained	a	strong	understanding	of	SQL,	and
will	 also	 understand	 how	 database	management	 systems	 work	 at	 the	 physical
level	–	including	transaction	management	and	indexing.	You’ll	understand	how
database	 systems	 are	 accessed	 from	 the	 outside	 world	 and	 how	 they	 can	 be
integrated	with	other	systems	or	applications.	Finally,	you’ll	also	understand	the
various	managerial	 aspects	 that	 come	 into	 play	when	working	with	 databases,
including	 the	 roles	 involved,	 data	 integration,	 quality,	 and	governance	 aspects,
and	 you	 will	 have	 a	 clear	 idea	 on	 how	 the	 concept	 of	 database	 management
systems	fits	in	the	Big	Data	and	analytics	story.

How	to	Read	this	Book

This	book	can	be	used	as	both	a	reference	manual	for	more	experienced	readers
wishing	to	brush	up	their	skills	and	knowledge	regarding	certain	aspects,	as	well
as	an	end-to-end	overview	on	the	whole	area	of	database	management	systems.
Readers	are	free	to	read	this	book	cover	to	cover,	or	to	skip	certain	chapters	and
start	 directly	with	 a	 topic	 of	 interest.	We	 have	 separated	 the	 book	 clearly	 into
different	parts	 and	chapters	 so	 readers	 should	have	 little	 trouble	understanding
the	 global	 structure	 of	 the	 book	 and	 navigating	 to	 the	 right	 spot.	Whenever	 a
topic	 is	 expanded	upon	 in	 a	 later	 chapter	 or	 re-uses	 concepts	 introduced	 in	 an
earlier	 chapter,	we	 include	 clear	 “Connections”	 boxes	 so	 readers	 can	 (re-)visit
earlier	chapters	for	a	quick	refresher	before	moving	on,	or	move	ahead	to	other
places	in	the	book	to	continue	their	learning	trail.

The	 following	 overview	 provides	 some	 common	 “reading	 trails”,
depending	on	your	area	of	interest:

Newcomers	wishing	to	get	up	to	speed	quickly	with	relational	database
systems	and	SQL:	start	with	Part	I	(Chapters	1–4),	then	read	Chapters
6–9.

Experienced	users	wishing	to	update	their	knowledge	on	recent	trends:
read	Chapter	11,	and	then	Chapters	15–20.

Daily	database	users	wishing	to	have	high-level	knowledge	about
database	systems:	Part	I	(Chapters	1–4)	is	for	you.

Managers	wishing	to	get	a	basic	overview	on	fundamental	concepts	and	a
broad	idea	of	managerial	issues:	start	with	Part	I	(Chapters	1–4),	then
move	on	to	Chapters	17,	18,	19,	and	20.

The	 recommended	chapters	 for	each	of	 these	profiles,	 together	with	 some
others	(which	will	be	discussed	in	Chapter	4),	are	summarized	in	the	table.

Chapter Newcomers
Experienced

users
Database
users Managers

Professor
(undergraduate

course)

1 X X X X

2 X X X X

3 X X X X

4 X X X X

5 X

6 X X

7 X X

8 X X

9 X X

10 X

11 X X

12

Professors	teaching	an	undergraduate	course	in	database	management:
Parts	I	and	II.

Professors	teaching	a	postgraduate	course	in	advanced	database
management:	Parts	III	and	IV.

13

14

15 X

16 X

17 X X

18 X X

19 X X

20 X X

Every	 chapter	 aims	 to	 strike	 a	 balance	 between	 theory	 and	 practice,	 so
theoretical	 concepts	 are	 often	 alternated	with	 examples	 from	 industry	 in	 small
“Drill	Down”	boxes	that	provide	more	background	knowledge	or	an	interesting
story	to	illustrate	a	concept.	We	also	include	theoretical	discussions	on	pros	and
cons	 of	 a	 specific	 technique	 or	 technology.	 Each	 chapter	 closes	 with	 a	 set	 of
exercises	 to	 test	 your	 understanding.	Both	multiple-choice	 and	 open	 questions
have	been	included.

Cross-Chapter	Case	Study:	Sober

Throughout	 the	 book	 we	 use	 an	 encompassing	 case	 (about	 a	 fictional	 self-
driving	car	taxi	company	called	“Sober”)	that	will	be	revisited	and	expanded	in
each	 chapter.	When	 reading	 the	 book	 from	 cover	 to	 cover	 you’ll	 therefore	 be
able	to	learn	together	with	the	people	at	Sober,	experiencing	how	their	database
management	 system	 evolves	 from	 a	 simple	 small-scale	 system	 toward	 a	more
modern	 and	 robust	 set-up	 as	 they	 continue	 to	 grow.	 This	 way,	 the	 different
chapters	also	form	a	cohesive	whole	from	a	practical	perspective,	and	you’ll	see
how	all	the	technologies	and	concepts	fit	together.

Additional	Material

We	are	also	happy	to	refer	you	to	our	book	website	at	www.pdbmbook.com.	The
site	 includes	 additional	 information	 such	 as	 updates,	 PowerPoint	 slides,	 video
lectures,	additional	appendices,	and	a	Q&A	section.	It	also	features	a	hands-on,
online	 environment	 where	 readers	 can	 play	 around	 with	 a	 MySQL	 relational
database	management	system	using	SQL,	explore	NoSQL	database	systems,	and
other	small	examples	without	having	 to	 install	anything.	You’ll	 find	a	guide	 in
the	Appendix	that	will	set	you	on	your	way.

http://www.pdbmbook.com

Acknowledgments

It	is	a	great	pleasure	to	acknowledge	the	contributions	and	assistance	of	various
colleagues,	friends,	and	fellow	database	management	lovers	in	the	writing	of	this
book.	This	book	is	the	result	of	many	years	of	research	and	teaching	in	database
management.

We	 first	would	 like	 to	 acknowledge	 our	 publisher,	 Cambridge	University
Press,	 for	 accepting	our	book	proposal	 about	 two	years	 ago.	We	would	 like	 to
thank	Lauren	Cowles	for	supervising	the	entire	process.	We	first	met	Lauren	in
August	2016	 in	San	Francisco,	discussing	 the	book	details	during	dinner	 (crab
cakes	 paired	 with	 Napa	 white)	 while	 overlooking	 an	 ensemble	 of	 sunbathing
seals.	 This	 turned	 out	 to	 be	 the	 perfect	 setting	 for	 initiating	 a	 successful
partnership.	We	are	also	thankful	to	everyone	at	Cambridge	University	Press	for
their	help	in	the	editing,	production,	and	marketing	processes.

Gary	 J.	 O’Brien	 deserves	 a	 special	 mention	 as	 well.	 His	 careful
proofreading	of	the	text	proved	invaluable.	Although	opening	a	Word	document
with	Gary’s	comments	sometimes	 felt	 like	being	 thrown	 in	 the	ocean	knowing
sharks	had	been	 spotted,	 the	mix	of	 to-the-point	 remarks	with	humorous	notes
made	the	revision	a	truly	enjoyable	experience.

We	would	like	to	thank	professor	Jacques	Vandenbulcke,	who	was	the	first
to	introduce	us	to	the	magical	world	of	database	management.	Jacques’	exquisite
pedagogical	talent	can	only	be	surpassed	by	his	travel	planning	skills.	His	legacy
runs	 throughout	 the	 entire	 book,	 not	 only	 in	 terms	 of	 database	 concepts	 and
examples,	 but	 also	 travel	 experiences	 (e.g.,	 the	 Basilica	 Cistern	 on	 the	 front
cover,	Meneghetti	wine).

We	would	also	like	to	acknowledge	the	direct	and	indirect	contributions	of
the	many	colleagues,	fellow	professors,	students,	researchers,	business	contacts,
and	friends	with	whom	we	collaborated	during	the	past	years.	We	are	grateful	to
the	 active	 and	 lively	 database	 management	 community	 for	 providing	 various
user	fora,	blogs,	online	lectures,	and	tutorials	that	proved	very	helpful.

Last	but	not	least,	we	are	grateful	to	our	partners,	kids,	parents,	and	families
for	 their	 love,	 support,	 and	 encouragement!	We	 trust	 they	will	 read	 this	 book
from	 the	 first	 page	 to	 the	 last,	 which	 will	 yield	 ample	 topics	 for	 lively	 and
interesting	discussions	at	the	dinner	table.

We	have	 tried	 to	make	 this	 book	 as	 complete,	 accurate,	 and	 enjoyable	 as
possible.	 Of	 course,	 what	 really	 matters	 is	 what	 you,	 the	 reader,	 think	 of	 it.
Please	share	your	views	by	getting	in	touch.	The	authors	welcome	all	feedback
and	comments,	so	do	not	hesitate	to	let	us	know	your	thoughts.

Front	 cover:	 The	 cover	 picture	 represents	 the	 Basilica	 Cistern,	 an	 immense
subterranean	water	 storage	 facility	built	 in	 the	 sixth	century	by	 the	Romans	 in
Istanbul.	Why	 this	 picture?	Well,	 overall	 it	 is	 a	 spectacular	 location	 in	 a	 truly
magnificent	 city,	 which	 throughout	 its	 history	 has	 been	 a	 meeting	 point	 of
cultures,	civilizations,	and,	literally,	continents.	However,	more	to	the	point,	it	is
definitely	 a	 storage	 infrastructure	 organized	 as	 rows	 and	 columns,	which	 even
involves	replication	and	mirroring,	not	to	mention	historical	data.	In	addition,	it
contained	 one	 of	 the	 most	 famous	 primary	 keys	 ever:	 007,	 as	 it	 featured
prominently	in	the	James	Bond	movie	From	Russia	With	Love.

Sober

1000‰	Driven	by	Technology
Sober	is	a	new	taxi	company	deploying	self-driving	cars	to	provide	cab
services.	Although	 it	operates	 its	own	 fleet	of	 self-driving	cabs,	people
can	 also	 register	 their	 cars	 as	 Sober	 cabs	 and	 have	 them	 provide	 taxi
services	whenever	they	are	not	using	their	cars.	For	the	latter,	Sober	also
wants	to	keep	track	of	the	car	owners.

Sober	 offers	 two	 types	 of	 taxi	 services:	 ride-hailing	 and	 ride-
sharing.	Ride-hailing	 is	 a	 service	whereby	customers	 can	hail	 a	 taxi	 so
they	 can	 be	 picked	 up	 and	 driven	 to	 their	 destination	 for	 a	 time-	 and
distance-based	fee.	The	hailing	is	an	immediate,	on-demand	service	and
requests	 can	 be	 made	 with	 the	 Sober	 App.	 With	 just	 one	 tap	 on	 the
screen,	 a	 customer	 can	 request	 a	 cab	 from	 anywhere,	 receive	 an
estimated	wait	time,	and	a	notification	when	the	car	has	arrived.	Besides
the	Sober	App,	users	can	also	hail	Sober	cabs	by	hand-waving	 them	as
they	 see	 them	 pass,	 in	 which	 case	 Sober’s	 deep-learning	 based	 image
recognition	system	identifies	the	wave	gesture	as	a	cab	request.	For	each
use	of	the	ride-hail	service,	Sober	wants	to	store	the	time	of	pick-up	and
drop-off,	 the	 location	 of	 pick-up	 and	 drop-off,	 the	 ride	 duration,	 the
distance,	 the	 number	 of	 passengers,	 the	 fee,	 the	 type	 of	 request	 (via
Sober	 App	 or	 hand-waving)	 and	 the	 number	 and	 name	 of	 the	 lead
customer	(the	one	who	pays).	The	maximum	number	of	passengers	for	a
ride-hail	service	is	six.

Ride-sharing	 is	 another	 service	 offered	 by	 Sober,	 which	 requires
more	careful	planning.	It	can	also	be	referred	to	as	carpooling	and	aims
at	reducing	costs,	traffic	congestion,	and	the	carbon	footprint.	Because	of
the	planning,	both	Sober	and	its	customers	can	negotiate	the	fee	whereby

more	 customers	 per	 cab	 means	 a	 lower	 fee	 per	 customer	 (flexible
pricing).	To	provide	an	eco-friendly	 incentive,	Sober	pledges	 to	plant	a
tree	 for	 each	 customer	 who	 books	 20	 uses	 of	 the	 Sober	 ride-sharing
service.	 For	 each	 ride-share	 service,	 Sober	 wants	 to	 store	 the	 time	 of
pick-up	 and	 drop-off,	 the	 location	 of	 pick-up	 and	 drop-off,	 the	 ride
duration,	 the	distance,	 the	number	and	names	of	all	 customers,	 and	 the
upfront	negotiated	fee.	The	maximum	number	of	passengers	 for	a	 ride-
share	service	is	ten.

Due	 to	 the	 novelty	 of	 the	 self-driving	 car	 technology,	 accidents
cannot	be	100%	ruled	out.	Sober	also	wants	 to	store	 information	about
accident	dates,	location,	and	damage	amounts	per	car.

Part	I
◈

Databases	and	Database	Design

1 Fundamental	Concepts	of	Database	Management

2 Architecture	and	Categorization	of	DBMSs

3 Conceptual	Data	Modeling	using	the	(E)ER	Model	and	UML	Class
Diagram

4 Organizational	Aspects	of	Data	Management

1

Fundamental	Concepts	of	Database
Management

◈

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

Opening	Scenario

Since	 Sober	 is	 a	 startup	 company,	 it	must	 carefully	 decide	 how	 it	will
manage	all	its	data.	The	company	is	thinking	about	storing	all	its	data	in
Word	documents,	Excel	files,	and	maybe	some	other	files	(e.g.,	Notepad)
as	well.

understand	the	differences	between	the	file	versus	database	approach
to	data	management;

discern	the	key	elements	of	a	database	system;

identify	the	advantages	of	database	systems	and	database
management.

In	 this	 chapter,	we	discuss	 the	 fundamental	 concepts	of	database	management.
Many	 ideas	 presented	 here	 are	 elaborated	 in	 later	 chapters.	 We	 kick	 off	 by
reviewing	 popular	 applications	 of	 database	 technology,	 and	 follow	 this	 by
defining	key	concepts	such	as	a	database	and	a	database	management	system,	or
DBMS.	 Next,	 we	 step	 back	 in	 time	 and	 discuss	 the	 file-based	 approach	 and
contrast	 it	with	the	database	approach	to	data	management.	We	then	zoom	into
the	elements	of	a	database	system.	We	conclude	by	discussing	the	advantages	of
database	design.

1.1	Applications	of	Database	Technology

Data	are	everywhere	and	come	in	different	shapes	and	volumes.	These	data	need
to	 be	 stored	 and	 managed	 using	 appropriate	 data	 management	 or	 database
technologies.	 Think	 about	 the	 storage	 and	 retrieval	 of	 traditional	 numeric	 and
alphanumeric	 data	 in	 an	 application	developed	 to	 keep	 track	of	 the	number	of
products	 in	 stock.	 For	 each	 product,	 the	 product	 number,	 product	 name,	 and
available	quantity	needs	to	be	stored.	Replenishment	orders	need	to	be	issued	as
soon	as	the	quantity	drops	below	the	safety	limit.	Every	replenishment	order	has
an	 order	 number,	 order	 date,	 supplier	 number,	 supplier	 name,	 and	 a	 set	 of
product	numbers,	names,	and	quantities.

Database	 technology	 is	 not	 just	 for	 traditional	 numeric	 and	 alphanumeric
data.	 It	 can	 also	 store	 multimedia	 data	 such	 as	 pictures,	 audio,	 or	 video	 –
YouTube	 and	Spotify	 support	 the	 querying	 of	music	 based	 upon	 artist,	 album,
genre,	playlist,	or	record	label.	Biometric	data,	including	fingerprints	and	retina
scans,	are	often	used	for	security,	such	as	border	control	as	you	enter	a	country.
Information	is	also	gathered	by	wearables,	such	as	a	Fitbit	or	an	Apple	Watch,
which	continuously	monitor	and	analyze	your	health	and	fitness.	Geographical
information	systems	(GIS)	applications,	such	as	Google	Maps,	store	and	retrieve
all	types	of	spatial	or	geographical	data.

Database	technology	can	also	store	and	retrieve	volatile	data.	One	example
is	high-frequency	 trading,	where	automated,	algorithmic	platforms	are	used	by
investment	 banks	 or	 hedge	 funds	 to	 process	 a	 large	 number	 of	 orders	 at
extremely	 high	 speed	 based	 upon	 events	 happening	 in	 the	 environment	 or
macro-economy.	Another	example	is	sensors	monitoring	the	key	parameters	of	a

nuclear	 reactor,	 whereby	 an	 automatic	 system	 shutdown	 may	 be	 enacted	 if
certain	thresholds	are	hit.

You	may	have	heard	 the	 term	Big	Data,	 referring	 to	 the	huge	amounts	of
data	being	gathered	and	analyzed	by	companies	such	as	Google,	Facebook,	and
Twitter.	Look	at	Walmart,	America’s	 largest	retailer	with	over	11,000	locations
worldwide,	 $4.8	 billion	 in	 annual	 sales	 and	 over	 100	 million	 customers	 per
week.	 Its	 point-of-sale	 (POS)	 database	 system	 stores	 an	 enormous	 amount	 of
data	such	as	which	customer	bought	what	products,	in	what	quantities,	at	which
location,	and	at	what	time.	All	these	data	can	then	be	intelligently	analyzed	using
analytical	 data	 modeling	 to	 reveal	 unknown	 but	 interesting	 purchase	 patterns,
such	 as	 which	 products	 are	 frequently	 purchased	 together.	 Better	 still,	 certain
analysis	techniques	allow	one	to	make	predictions	about	the	future	(e.g.,	which
customers	are	most	likely	to	respond	positively	to	a	sales	promotion).	We	discuss
this	in	more	detail	in	Chapter	20.

These	are	just	a	few	examples	of	database	applications;	many	others	exist.

Drill	Down

The	 Internet	 of	 Things	 (IoT)	 provides	 many	 examples	 of	 Big	 Data
applications.	 Moocall	 is	 a	 Dublin-based	 startup	 providing	 sensors	 for
farmers	to	reduce	the	mortality	rates	of	calves	and	cows	during	birthing.
The	 sensor	 is	 attached	 to	 the	 cow’s	 tail.	 They	 measure	 specific
movements	 of	 the	 tail	 triggered	 by	 labor	 contractions	 as	 the	 calving
begins.	 These	 sensor	 data	 are	 then	 sent	 through	 the	 Vodafone	 IoT
network	to	a	farmer’s	smartphone.	Using	an	app,	the	farmer	gets	up-to-
date	information	about	the	calving	process	and	can	intervene	or	call	a	vet
when	 needed.	 The	 app	 can	 generate	 alerts,	 and	 includes	 a	 herd
management	 facility.	 This	 technology	 improves	 both	 the	 farmer’s

productivity	and	the	survival	probabilities	of	calves	and	cows	during	the
birthing	process.

Retention	Questions

Give	some	examples	of	applications	of	database	technology.

1.2	Key	Definitions

We	have	briefly	 introduced	 the	concept	of	a	database	by	exploring	 the	various
types	of	databases	you	may	encounter	every	day.	A	database	can	be	defined	as	a
collection	 of	 related	 data	 items	within	 a	 specific	 business	 process	 or	 problem
setting.	Consider	 a	 purchase	order	 system,	where	you	have	data	 items	 such	 as
products,	 suppliers,	 and	 purchase	 orders.	 Each	 data	 item	 has	 characteristics:	 a
product	has	a	product	number,	product	name,	and	product	color;	a	supplier	has	a
supplier	name	and	a	supplier	address;	a	purchase	order	has	a	reference	number
and	date.	These	data	items	are	also	related.	A	product	can	be	supplied	by	one	or
more	suppliers.	A	purchase	order	is	always	connected	to	exactly	one	supplier.	A
supplier	can	supply	one	or	more	products.	These	are	examples	of	 relationships
between	 the	 data	 items	 that	 should	 be	 adequately	 captured	 by	 a	 database.	 A
database	has	a	target	group	of	users	and	applications.	An	inventory	manager	uses
our	purchase	order	system	to	manage	the	inventory	and	issue	purchase	orders;	a
product	manager	uses	it	for	monitoring	trends	in	product	sales.

A	database	management	system	(DBMS)	is	the	software	package	used	to
define,	 create,	 use,	 and	 maintain	 a	 database.	 It	 typically	 consists	 of	 several
software	modules,	each	with	their	own	functionality,	as	we	discuss	in	Chapter	2.
Popular	 DBMS	 vendors	 are	 Oracle,	 Microsoft,	 and	 IBM.	 MySQL	 is	 a	 well-
known	open-source	DBMS.	The	combination	of	a	DBMS	and	a	database	is	then
often	called	a	database	system.

Drill	Down

Gartner1	 estimated	 the	 total	 DBMS	 market	 value	 at	 $35.9	 billion	 for
2015,	 which	 represented	 an	 8.7%	 growth	 when	 compared	 to	 2014.
According	 to	 the	 IDC,	 the	 overall	 market	 for	 database	 management
solutions	is	estimated	to	reach	over	$50	billion	by	2018.

Connections

In	Chapter	2	we	 discuss	 the	 internal	 architecture	 of	 a	DBMS.	We	 also
provide	a	categorization	of	DBMSs	along	various	dimensions.

Retention	Questions

Define	the	following	concepts:

database

DBMS

database	system

1.3	File	versus	Database	Approach	to	Data
Management

Before	we	further	explore	database	technology,	let’s	step	back	and	see	how	data
management	has	evolved.	This	will	give	us	a	proper	understanding	of	the	legacy
problems	many	companies	are	still	facing.

1.3.1	The	File-Based	Approach

In	 the	 early	 days	 of	 computing,	 every	 application	 stored	 its	 data	 into	 its	 own
dedicated	 files.	 This	 is	 known	 as	 a	 file-based	 approach	 and	 is	 illustrated	 in
Figure	1.1.

Figure	1.1	File-based	approach	to	data	management.

Suppose	 we	 have	 a	 traditional	 invoicing	 application,	 written	 in	 a
programming	 language	 such	 as	 COBOL	 or	 C,	 that	 makes	 use	 of	 customer
information	such	as	customer	number,	customer	name,	VAT	code,	etc.,	stored	in
a	 separate	 file.	 A	 separate	 application,	 such	 as	 a	 customer	 relationship
management	 (CRM)	 system,	makes	use	of	 a	different	 file	 containing	 the	 same
data.	 Finally,	 a	 third	 application	 (GIS)	 stores	 information	 such	 as	 customer
number,	 customer	 name,	 and	ZIP	 code	 in	 yet	 another	 file.	 The	 data	 files	 only
contain	the	data	themselves;	the	data	definitions	and	descriptions	are	included	in
each	application	separately.	An	application	can	make	use	of	one	or	more	 files.
As	more	applications	are	developed	with	corresponding	data	files,	this	file-based
approach	to	data	management	will	cause	serious	problems.

Since	 each	 application	 uses	 its	 own	 data	 files	 and	many	 applications	 use
similar	data,	duplicate	or	redundant	information	will	be	stored,	which	is	a	waste
of	storage	resources.	If	 this	 is	not	appropriately	managed	there	is	a	danger	that
customer	 data	will	 be	 updated	 in	 only	 one	 file	 and	not	 elsewhere,	 resulting	 in
inconsistent	 data.	 In	 this	 file-based	 approach	 to	 data	 management	 there	 is	 a
strong	 coupling,	 or	 dependency,	 between	 the	 applications	 and	 the	 data.	 A
structural	change	in	a	data	file	necessitates	changes	in	all	applications	that	use	it,
which	 is	 not	 desirable	 from	 a	 maintenance	 perspective.	 It	 is	 hard	 to	 manage
concurrency	 control	 (i.e.,	 the	 simultaneous	 access	 by	 different	 users	 or
applications	to	the	same	data	without	conflicts).	For	example,	if	one	application
performs	 a	 cash	 transfer	 while	 another	 application	 calculates	 the	 account
balance,	 and	 the	 data	 operations	 of	 both	 applications	 are	 interleaved	 for
efficiency,	 this	can	easily	 lead	 to	 inconsistent	data	 in	cases	where	 there	are	no
adequate	 concurrency	 control	 facilities	 provided.	 Since	 the	 applications	 each
work	 independently	 with	 their	 own	 ecosystem	 of	 data	 files,	 it	 is	 difficult	 and
expensive	 to	 integrate	applications	aimed	at	providing	cross-company	services.
Although	 this	 file	 approach	 to	 data	 management	 has	 serious	 disadvantages,
many	 firms	 still	 struggle	 with	 “legacy”	 file-based	 systems	 in	 their	 current
information	and	communications	technology	(ICT)	environment.

1.3.2	The	Database	Approach

The	 emergence	 of	 database	 technology	 provided	 a	 new	 paradigm	 for	 data
management.	 In	 this	 database	 approach,	 all	 data	 are	 stored	 and	 managed
centrally	by	a	DBMS,	as	illustrated	in	Figure	1.2.

Figure	1.2	Database	approach	to	data	management.

The	 applications	 now	 directly	 interface	 with	 the	 DBMS	 instead	 of	 with
their	 own	 files.	 The	 DBMS	 delivers	 the	 desired	 data	 at	 the	 request	 of	 each
application.	 The	 DBMS	 stores	 and	 manages	 two	 types	 of	 data:	 raw	 data	 and
metadata.	Metadata	 refers	 to	 the	 data	 definitions	 that	 are	 now	 stored	 in	 the
catalog	of	 the	DBMS.	This	 is	 a	key	difference	 to	 the	 file-based	approach.	The
metadata	 are	 no	 longer	 included	 in	 the	 applications,	 but	 are	 now	 properly
managed	by	the	DBMS	itself.	From	an	efficiency,	consistency,	and	maintenance
perspective,	this	approach	is	superior.

Another	key	advantage	of	 the	database	approach	 is	 the	 facilities	provided
for	data	querying	and	retrieval.	In	the	file-based	approach,	every	application	had
to	explicitly	write	its	own	query	and	access	procedures.	Consider	the	following
example	in	pseudo-code:

Procedure	FindCustomer;
Begin
						open	file	Customer.txt;
						Read(Customer)
						While	not	EOF(Customer)
											If	Customer.name='Bart'	Then
																display(Customer);
											EndIf
						Read(Customer);
						EndWhile;
End;

Here,	we	 first	 open	 a	Customer.txt	 file	 and	 read	 the	 first	 record.	We	 then
implement	a	while	loop	that	iterates	through	each	record	in	the	file	until	the	end
of	the	file	is	reached	(indicated	by	EOF(Customer)).	If	the	desired	information	is
found	(Customer.name='Bart'),	it	will	be	displayed.	This	requires	a	lot	of	coding.
Because	of	 the	 tight	 coupling	between	data	and	applications,	many	procedures
would	 be	 repeated	 in	 various	 applications,	 which	 is	 again	 not	 very	 appealing
from	a	maintenance	perspective.	As	noted,	DBMSs	provide	database	languages
that	facilitate	both	data	querying	and	access.	A	well-known	language,	which	we
discuss	extensively	in	Chapter	7,	is	Structured	Query	Language	(SQL).	SQL	can
be	used	to	formulate	database	queries	in	a	structured	and	user-friendly	way,	and
is	 one	 of	 the	 most	 popular	 data	 querying	 standards	 used	 in	 the	 industry.	 An
example	SQL	query	that	gives	the	same	output	as	our	pseudo-code	above	could
be:

SELECT	*
FROM	Customer
WHERE
name	=	'Bart'

Here,	you	only	need	to	specify	what	information	you	want.	In	our	case,	we
want	all	customer	information	for	customer	'Bart'.	This	SQL	query	will	then	be
executed	by	the	DBMS	in	a	transparent	way.	In	the	database	approach,	we	only
need	 to	specify	which	data	we	are	 interested	 in,	and	no	 longer	how	we	should
access	 and	 retrieve	 them.	 This	 facilitates	 the	 development	 of	 database
applications	 because	 we	 no	 longer	 need	 to	 write	 complex	 data	 retrieval
procedures.

To	summarize,	 the	file-based	approach	results	 in	a	strong	application–data
dependence,	 whereas	 the	 database	 approach	 allows	 for	 applications	 to	 be
independent	from	the	data	and	data	definitions.

Drill	Down

One	 of	 the	 key	 disadvantages	 of	 a	 file-based	 approach	 to	 data
management	 is	 that	 the	 data	 typically	 sit	 all	 over	 the	 organization	 in
silos;	therefore,	an	overall,	comprehensive	view	is	lacking.	For	example,
the	city	of	Amsterdam	has	data	spread	across	12,000	different	datasets.
Because	 of	 the	 lack	 of	 integration,	 no	 one	 knows	 exactly	 how	 many
bridges	 span	 Amsterdam’s	 famous	 canals,	 because	 each	 of	 the	 city’s
individual	 districts	 has	 its	 own	 data	 and	 no	 overall	 comprehensive
database	 is	 available.	 It	 turned	 out	 that	 many	 of	 these	 siloed	 datasets
adopted	their	own	data	definition	of	a	bridge,	which	further	complicates
matters.	 See	 http://sloanreview.mit.edu/case-study/lessons-from-
becoming-a-data-driven-organization.

Retention	Questions

http://sloanreview.mit.edu/case-study/lessons-from-becoming-a-data-driven-organization

Contrast	the	file	versus	database	approach	to	data	management.

1.4	Elements	of	a	Database	System

In	 this	 section	 we	 discuss	 database	 model	 versus	 instances,	 data	 models,	 the
three-layer	 architecture,	 the	 role	 of	 the	 catalog,	 the	 various	 types	 of	 database
users,	and	DBMS	languages.

1.4.1	Database	Model	versus	Instances

In	 any	 database	 implementation,	 it	 is	 important	 to	 distinguish	 between	 the
description	 of	 the	 data,	 or	 data	 definitions,	 and	 the	 actual	 data.	 The	database
model	 or	 database	 schema	 provides	 the	 description	 of	 the	 database	 data	 at
different	 levels	 of	 detail	 and	 specifies	 the	 various	 data	 items,	 their
characteristics,	and	relationships,	constraints,	storage	details,	etc.2	The	database
model	 is	 specified	 during	 database	 design	 and	 is	 not	 expected	 to	 change
frequently.	 It	 is	 stored	 in	 the	 catalog,	 which	 is	 the	 heart	 of	 the	 DBMS.	 The
database	state	then	represents	the	data	in	the	database	at	a	particular	moment.	It
is	 sometimes	 also	 called	 the	 current	 set	 of	 instances.	 Depending	 upon	 data
manipulations,	such	as	adding,	updating,	or	removing	data,	 it	 typically	changes
on	an	ongoing	basis.

The	following	are	examples	of	data	definitions	that	are	an	essential	part	of
the	database	model	stored	in	the	catalog.

Database	model

Student	(number,	name,	address,	email)

Course	(number,	name)

Building	(number,	address)

…

We	have	three	data	items:	Student,	Course,	and	Building.	Each	of	these	data
items	can	be	described	in	terms	of	its	characteristics.	A	student	is	characterized
by	a	number,	name,	address,	and	email;	a	course	by	a	number	and	name;	and	a
building	by	a	number	and	address.

Figure	1.3	shows	an	example	of	a	corresponding	database	state.	You	can	see
the	 database	 includes	 data	 about	 three	 students,	 three	 courses,	 and	 three
buildings.

Figure	1.3	Example	database	state.

1.4.2	Data	Model

A	database	model	comprises	different	data	models,	each	describing	the	data	from
different	 perspectives.	 A	 good	 data	 model	 is	 the	 start	 of	 every	 successful
database	application.	It	provides	a	clear	and	unambiguous	description	of	the	data
items,	 their	 relationships,	 and	 various	 data	 constraints	 from	 a	 particular
perspective.	Several	 types	of	 data	models	will	 be	developed	during	 a	database
design	process.

A	 conceptual	 data	 model	 provides	 a	 high-level	 description	 of	 the	 data
items	 (e.g.,	 supplier,	 product)	 with	 their	 characteristics	 (e.g.,	 supplier	 name,
product	number)	and	relationships	(e.g.,	a	supplier	can	supply	products).	It	 is	a
communication	 instrument	 between	 the	 information	 architect	 (see	 Chapter	 4)
and	 business	 user	 to	make	 sure	 the	 data	 requirements	 are	 adequately	 captured
and	modeled.	Therefore,	 the	conceptual	data	model	 should	be	 implementation-
independent,	user-friendly,	and	close	to	how	the	business	user	perceives	the	data.
It	 will	 usually	 be	 represented	 using	 an	 Enhanced	 Entity	 Relationship	 (EER)
model	or	an	object-oriented	model,	as	we	discuss	in	Chapter	3.

A	 logical	 data	model	 is	 a	 translation	 or	mapping	 of	 the	 conceptual	 data
model	 toward	 a	 specific	 implementation	 environment.	 The	 logical	 data	 items
may	still	be	understood	by	business	users,	but	are	not	too	far	removed	from	the
physical	 data	 organization.	Depending	 upon	 the	 ICT	 environment	 available,	 it
can	be	a	hierarchical	(see	Chapter	5),	CODASYL	(see	Chapter	5),	relational	(see
Chapters	 6	 and	 7),	 object-oriented	 (see	 Chapter	 8),	 extended	 relational	 (see
Chapter	9),	XML	(see	Chapter	10),	or	NoSQL	model	(see	Chapter	11).

The	 logical	 data	 model	 can	 be	 mapped	 to	 an	 internal	 data	 model	 that
represents	the	data’s	physical	storage	details.	It	clearly	describes	which	data	are
stored	where,	in	what	format,	which	indexes	are	provided	to	speed	up	retrieval,

etc.	 It	 is	 therefore	 highly	DBMS-specific.	We	 discuss	 internal	 data	models	 in
Chapters	12	and	13.

The	external	data	model	contains	various	subsets	of	the	data	items	in	the
logical	 model,	 also	 called	 views,	 tailored	 toward	 the	 needs	 of	 specific
applications	or	groups	of	users.

Connections

In	Chapter	3	we	discuss	 the	EER	and	UML	conceptual	 data	models	 in
more	detail.	Later	chapters	cover	 logical	 (and	sometimes	external)	data
models:	 the	 hierarchical	 and	 CODASYL	 model	 in	 Chapter	 5,	 the
relational	 model	 in	 Chapters	 6	 and	 7,	 the	 object-oriented	 model	 in
Chapter	 8,	 the	 extended	 relational	 model	 in	 Chapter	 9,	 the	 XML	 data
model	 in	 Chapter	 10	 and	 various	 NoSQL	 data	 models	 in	 Chapter	 11.
Chapters	12	and	13	elaborate	on	internal	data	models.

1.4.3	The	Three-Layer	Architecture

The	 three-layer	 architecture	 is	 an	 essential	 element	 of	 every	 database
application	and	describes	how	the	different	underlying	data	models	are	related.3

It	is	illustrated	in	Figure	1.4.

Figure	1.4	The	three-layer	database	architecture.

We	 start	 with	 the	 conceptual/logical	 layer.	 Here,	 we	 have	 the	 conceptual
and	logical	data	models.	Both	focus	on	the	data	items,	their	characteristics,	and
relationships	 without	 bothering	 too	 much	 about	 the	 actual	 physical	 DBMS
implementation.	 The	 conceptual	 data	 model	 should	 be	 a	 user-friendly,
implementation-independent,	 and	 transparent	 data	 model,	 constructed	 in	 close
collaboration	between	 the	 information	architect	and	business	user(s).	 It	will	be
refined	to	a	logical	data	model	based	upon	the	implementation	environment.

In	the	external	layer	we	have	the	external	data	model,	which	includes	views
offering	a	window	on	a	carefully	selected	part	of	the	logical	data	model.	A	view
describes	 the	part	 of	 the	database	 that	 a	particular	 application	or	user	group	 is
interested	in,	hiding	the	rest	of	the	database.	It	is	used	to	control	data	access	and
enforce	security.	The	views	will	be	tailored	to	the	data	needs	of	an	application	or

(group	of)	user(s).	A	view	can	serve	one	or	more	applications.	Consider	a	view
offering	only	student	information	to	a	student	registration	application,	or	a	view
offering	only	building	information	to	a	capacity	planning	application.

The	internal	layer	includes	the	internal	data	model,	which	specifies	how
the	data	are	stored	or	organized	physically.	Ideally,	changes	in	one	layer	should
have	 no	 to	 minimal	 impact	 on	 the	 others.	 It	 should	 be	 possible	 to	 physically
reorganize	the	data	with	little	impact	on	the	conceptual/logical	or	external	layer
(physical	data	independence).	Likewise,	changes	to	the	conceptual/logical	layer
can	 be	 made	 with	 minimal	 impact	 on	 the	 external	 layer	 (logical	 data
independence).	 We	 elaborate	 on	 both	 types	 of	 data	 independence	 in	 Section
1.5.1.

Figure	1.5	illustrates	the	three-layer	architecture	for	a	procurement	business
process.	 The	 conceptual/logical	 layer	 defines	 the	 data	 items	 such	 as	 Product,
Customer,	Invoice,	and	Delivery.	The	internal	layer	contains	the	physical	storage
details	 specifying	 how	 and	 where	 the	 data	 are	 stored.	 The	 external	 layer	 has
three	views	offering	 specific	 information	 to	 the	 finance,	 customer	 service,	 and
logistics	 departments.	 This	 three-layer	 database	 architecture	 has	 several
advantages	in	efficiency,	maintenance,	performance,	security,	etc.

Figure	1.5	Three-layer	database	architecture	for	a	business	procurement
process.

1.4.4	Catalog

The	 catalog	 is	 the	 heart	 of	 the	 DBMS.	 It	 contains	 the	 data	 definitions,	 or
metadata,	 of	 your	 database	 application.	 It	 stores	 the	 definitions	 of	 the	 views,
logical	 and	 internal	 data	models,	 and	 synchronizes	 these	 three	 data	models	 to
ensure	their	consistency.4

1.4.5	Database	Users

As	we	discuss	more	extensively	in	Chapter	4,	various	types	of	users	interact	with
the	 database.	 An	 information	 architect	 designs	 the	 conceptual	 data	 model.
He/she	 closely	 interacts	 with	 the	 business	 user	 to	 make	 sure	 the	 data
requirements	 are	 fully	understood	and	modeled.	A	database	designer	 translates
the	conceptual	data	model	into	a	logical	and	internal	data	model.	The	database
administrator	 (DBA)	 is	 responsible	 for	 the	 implementation	 and	monitoring	 of
the	 database.	 He/she	 sets	 up	 the	 database	 infrastructure	 and	 continuously
monitors	 its	 performance	 by	 inspecting	 key	 performance	 indicators	 such	 as
response	 times,	 throughput	 rates,	 and	 storage	 space	 consumed	 (see	 Section
1.5.9).	The	application	developer	 develops	 database	 applications	 in	 a	 general-
purpose	programming	language	such	as	Java	or	Python.	He/she	provides	the	data
requirements,	which	 are	 then	 translated	 by	 the	 database	 designer	 or	DBA	 into
view	 definitions.	 The	 business	 user	 will	 run	 these	 applications	 to	 perform
specific	database	operations.	He/she	can	also	directly	query	 the	database	using
interactive	querying	facilities	for	reporting	purposes.

1.4.6	Database	Languages

Every	DBMS	comes	with	one	or	more	accompanying	database	 languages.	The
data	definition	language	(DDL)	 is	used	by	the	DBA	to	express	the	database’s
external,	 logical,	 and	 internal	 data	models.	 These	 definitions	 are	 stored	 in	 the
catalog.	 The	 data	 manipulation	 language	 (DML)	 is	 used	 to	 retrieve,	 insert,
delete,	and	modify	data.	DML	statements	can	be	embedded	in	a	general-purpose
programming	 language,	 or	 entered	 interactively	 through	 a	 front-end	 querying
tool.	SQL	offers	both	DDL	and	DML	statements	for	relational	database	systems
(see	Chapter	7).

Retention	Questions

What	are	the	key	elements	of	a	database	system?

Discuss	the	three-layer	architecture	of	a	database	application.	Illustrate
with	an	example.

What	is	a	catalog	and	why	is	it	needed?

1.5	Advantages	of	Database	Systems	and
Database	Management

Databases,	 if	 adequately	designed	and	managed,	offer	 advantages	 such	as	data
independence;	 managing	 structured,	 semi-structured,	 and	 unstructured	 data;
database	 modeling;	 managing	 data	 redundancy;	 specifying	 integrity	 rules;
concurrency	 control;	 backup	 and	 recovery	 facilities;	 data	 security	 and
performance	utilities.	We	elaborate	on	these	elements	in	this	section.

1.5.1	Data	Independence

Data	 independence	 means	 changes	 in	 data	 definitions	 have	 minimal	 to	 no
impact	 on	 the	 applications	 using	 the	 data.	 These	 changes	 may	 occur	 in	 the
internal	 or	 the	 conceptual/logical	 layer.	 Physical	 data	 independence	 implies
that	neither	the	applications,	views,	or	logical	data	model	must	be	changed	when
changes	are	made	 to	 the	data	 storage	 specifications	 in	 the	 internal	data	model.
Consider	 reorganizing	 the	 data	 across	 different	 storage	 locations	 or	media,	 the
definition	 of	 new	 access	 paths	 or	 indexes,	 etc.	 The	 applications	 will	 keep
running	successfully,	and	may	be	even	faster	 than	 they	were	before	because	of
the	 physical	 reorganization	 of	 the	 data.	 To	 adequately	 guarantee	 physical	 data
independence,	 the	 DBMS	 should	 provide	 interfaces	 between	 the	 logical	 and
internal	data	models.

Logical	 data	 independence	 implies	 that	 software	 applications	 are
minimally	affected	by	changes	in	the	conceptual	or	logical	data	model.	Consider
the	 example	 of	 adding	 new	 data	 items,	 characteristics,	 or	 relationships.	 The
views	in	the	external	data	model	will	act	as	a	protective	shield	and	mitigate	the
effect	 of	 these	 modifications	 on	 the	 applications.	 To	 guarantee	 logical	 data
independence,	 the	 DBMS	 must	 provide	 interfaces	 between	 the
conceptual/logical	and	external	layer.

1.5.2	Database	Modeling

A	data	model	 is	an	explicit	 representation	of	 the	data	 items	 together	with	 their
characteristics	and	relationships.	It	can	also	include	integrity	rules	and	functions.
A	conceptual	 data	model	 should	 provide	 a	 formal	 and	 perfect	mapping	 of	 the
data	requirements	of	the	business	process	and	is	made	in	close	collaboration	with
the	business	user.	 It	 is	 then	translated	into	a	 logical	data	model	and,	finally,	an
internal	data	model.	Unfortunately,	a	best-case	scenario	with	perfect	mapping	is
often	 unrealistic,	 and	 it	 is	 important	 that	 a	 data	 model’s	 assumptions	 and
shortcomings	are	clearly	documented.	Popular	examples	of	data	models	are	the
hierarchical	 model,	 the	 CODASYL	 model,	 the	 (E)ER	 model,	 the	 relational
model,	 and	 the	 object-oriented	 model.	 We	 discuss	 these	 more	 extensively	 in
Chapters	5–8.

1.5.3	Managing	Structured,	Semi-Structured,	and	Unstructured	Data

It	is	important	to	note	that	not	all	kinds	of	data	can	be	described	according	to	a
formal	logical	data	model.	This	is	only	possible	for	structured	data,	which	was
the	 only	 kind	 of	 data	 the	 earlier	 DBMS	 implementations	 focused	 on.	 With
structured	 data,	 individual	 characteristics	 of	 data	 items	 can	 be	 identified	 and
formally	specified,	such	as	the	number,	name,	address,	and	email	of	a	student,	or
the	 number	 and	 name	 of	 a	 course.	 The	 advantage	 is	 the	 ability	 to	 express
integrity	 rules	 and	 in	 this	way	 enforce	 the	 correctness	 of	 the	 data.	As	we	will
discuss	 in,	 e.g.,	 Chapters	 7–9,	 it	 also	 facilitates	 searching,	 processing,	 and
analyzing	 data,	 because	 both	 the	 DBMS	 and	 the	 data	 processing	 applications
have	 fine-grain	 control	 over	 the	 data.	 They	 can,	 for	 example,	 discriminate
between	 a	 series	 of	 characters	 representing	 a	 student’s	 name	 and	 a	 student’s
address.	In	this	way,	it	becomes	possible	to	retrieve,	for	example,	all	the	names
of	students	that	live	in	New	York.

With	unstructured	data,	 there	 are	 no	 finer-grain	 components	 in	 a	 file	 or
series	of	characters	that	can	be	interpreted	in	a	meaningful	way	by	a	DBMS	or
application.	Consider	a	long	text	document	containing	the	biographies	of	famous
New	York	citizens.	In	this	plain	text	it	is	possible	to	search	for	the	terms	“name”,
“student”,	 and	 “New	York”	 occurring	 closely	 together,	 but	 it	 is	 impossible	 to
assess	whether	 they	 pertain	 to	 students	who	 lived	 in	New	York,	 students	who
were	born	in	New	York	or	maybe	even	students	for	which	the	text	explains	they
always	wore	the	same	sweater,	with	the	imprint	“New	York”	on	it.	Moreover,	it
is	 not	 possible	 to	 retrieve	 only	 the	 series	 of	 characters	 that	 represent	 these
students’	 names.	 In	 spite	 of	 that,	 many	 recent	 database	 management	 systems
provide	facilities	to	efficiently	store	and	search	such	full-text	documents.	This	is
especially	important,	since	the	volume	of	unstructured	data	largely	surpasses	that

of	 structured	 data	 in	most	 organizations.	 These	 unstructured	 data	may	 contain
lots	 of	 useful	 information,	 if	 they	 can	 be	 extracted	 efficiently.	 Consider
improving	 customer	 interaction	 by	 storing	 and	 analyzing	 complaints	 letters,
classifying	legal	documents	according	to	their	content,	or	assessing	the	market’s
sentiment	 toward	 a	 new	product	 by	 analyzing	 tweets	 that	 refer	 to	 the	product.
Moreover,	 modern-day	 DBMSs	 are	 not	 restricted	 to	 storing	 and	 managing
unstructured	 textual	data,	 but	other	kinds	of	data	 as	well,	 such	as	 still	 images,
video,	and	audio.

Finally,	 it	 should	be	stressed	 that	not	all	data	are	completely	structured	or
completely	 unstructured.	 In	 later	 chapters	 we	 will	 discuss	 how	 recent	 DBMS
types,	such	as	XML	databases	(Chapter	10)	and	NoSQL	databases	(Chapter	11),
aim	explicitly	at	dealing	efficiently	with	semi-structured	data.	These	are	data
that	 have	 a	 certain	 structure,	 but	 the	 structure	may	be	very	 irregular	 or	 highly
volatile.	 Typical	 examples	 are	 individual	 users’	 webpages	 on	 a	 large	 social
media	 platform,	 or	 resumé	 documents	 in	 a	 human	 resources	 database,	 which
may	loosely	exhibit	the	same	structure,	but	which	do	not	comply	entirely	with	a
single,	rigid	format.

1.5.4	Managing	Data	Redundancy

One	 of	 the	 key	 drawbacks	 of	 the	 file-based	 approach	 to	 data	 management	 is
undesirable	duplication	of	data,	which	can	easily	lead	to	inconsistent	data.	In	the
database	approach,	redundant	data	can	be	successfully	managed.	Duplication	of
data	 can	 be	 desirable	 in	 distributed	 environments	 to	 improve	 data	 retrieval
performance	 by	 providing	 local	 access	 to	 data	 rather	 than	 using	 resource-
intensive	 network	 connections.	 The	 DBMS	 is	 now	 responsible	 for	 the
management	 of	 the	 redundancy	 by	 providing	 synchronization	 facilities	 to
safeguard	data	consistency.	As	an	example,	an	update	of	a	local	data	copy	will
be	automatically	propagated	to	all	duplicate	data	copies	stored	at	other	locations.
Compared	to	the	file	approach,	the	DBMS	guarantees	correctness	of	the	data.	It
also	 requires	 no	 user	 intervention	 and	 is	 much	 more	 efficient	 and	 less	 error-
prone.

1.5.5	Specifying	Integrity	Rules

Data	 integrity	 rules	 can	 also	 be	 explicitly	 defined.	 These	 rules	 can	 be	 used	 to
enforce	the	correctness	of	the	data.	Syntactical	rules	specify	how	the	data	should
be	 represented	and	stored.	Examples	are:	customerID	should	be	 represented	as
an	integer	(e.g.,	100,	125,	and	200	are	correct,	but	1.20	or	2a	are	not);	birth	date
should	 be	 stored	 as	 month,	 day,	 and	 year	 (e.g.,	 02/27/1975	 is	 correct,	 but
27/02/1975	is	not).	Semantic	rules	focus	on	the	semantic	correctness	or	meaning
of	the	data.	Examples	are:	customerID	should	be	unique;	account	balance	should
be	 bigger	 than	 0;	 and	 a	 customer	 cannot	 be	 deleted	 if	 he/she	 has	 pending
invoices.	In	the	file-based	approach,	these	integrity	rules	have	to	be	embedded	in
every	single	application.	In	the	database	approach,	they	are	specified	as	part	of
the	 conceptual/logical	 data	model	 and	 are	 stored	 centrally	 in	 the	 catalog.	This
substantially	 improves	 the	 efficiency	 and	 maintainability	 of	 the	 applications
since	 the	 integrity	 rules	 are	 now	 directly	 enforced	 by	 the	 DBMS	 whenever
anything	is	updated.	In	the	file-based	approach,	the	applications	themselves	have
to	explicitly	manage	all	integrity	rules,	resulting	into	a	lot	of	duplication	of	code,
with	the	accompanying	risk	of	inconsistencies.

1.5.6	Concurrency	Control

A	DBMS	 has	 built-in	 facilities	 to	 support	 concurrent	 or	 parallel	 execution	 of
database	 programs,	 which	 allows	 for	 good	 performance.	 A	 key	 concept	 is	 a
database	transaction	that	is	a	sequence	of	read/write	operations,	considered	to	be
an	atomic	unit	in	the	sense	that	either	all	operations	are	executed	or	none	at	all
(more	 details	 on	 transactions	 are	 provided	 in	 Chapter	 14).	 Typically,	 these
read/write	operations	can	be	executed	at	the	same	time	by	the	DBMS.	However,
this	should	be	carefully	supervised	to	avoid	inconsistencies.	Let’s	illustrate	this
with	an	example	(Table	1.1).

Table	1.1	Illustrating	concurrency	control

Time T1 T2 Balance

t1 Begin	transaction $100

t2 Begin	transaction read(balance) $100

t3 read(balance) balance	=	balance	+	120 $100

t4 balance	=	balance	–	50 write(balance) $220

t5 write(balance) End	transaction $50

t6 End	transaction $50

Table	 1.1	 shows	 two	 database	 transactions:	 T1	 and	 T2.	 T1	 updates	 the
account	balance	by	withdrawing	$50.	T2	deposits	$120.	The	starting	balance	is
$100.	 If	 both	 transactions	 were	 to	 run	 sequentially,	 instead	 of	 in	 parallel,	 the
ending	balance	should	be	$100–$50	+	$120	=	$170.	If	the	DBMS	interleaves	the
actions	of	both	transactions,	we	get	the	following.	T2	reads	the	balance	at	t2	and

finds	it	is	$100.	T1	reads	the	balance	at	t3	and	finds	it	is	$100.	At	t3,	T2	updates
the	balance	to	$220.	However,	it	still	needs	to	write	(or	save)	this	value.	At	t4,
T1	 calculates	 the	 balance	 as	 $100–$50	 =	 $50	 whereas	 T2	 saves	 the	 balance,
which	now	becomes	$220.	T1	then	saves	the	balance	as	$50	at	t5.	It	overwrites
the	value	of	$220	with	$50,	after	which	both	 transactions	are	ended.	Since	T1
updates	the	balance	based	on	the	value	it	had	before	the	update	by	T2,	and	then
writes	the	updated	balance	after	T2	is	finished,	the	update	effect	of	T2	is	lost.	It
is	as	if	transaction	T2	did	not	take	place.	This	is	commonly	called	a	lost-update
problem.	 The	 DBMS	 should	 avoid	 the	 inconsistencies	 that	 emanate	 from	 the
interference	between	simultaneous	transactions.

To	ensure	database	transactions	are	processed	in	a	reliable	way,	the	DBMS
must	 support	 the	 ACID	 (Atomicity,	 Consistency,	 Isolation,	 Durability)
properties.	Atomicity,	 or	 the	 all-or-nothing	 property,	 requires	 that	 a	 transaction
should	either	be	executed	in	its	entirety	or	not	at	all.	Consistency	assures	that	a
transaction	 brings	 the	 database	 from	 one	 consistent	 state	 to	 another.	 Isolation
ensures	 that	 the	effect	of	concurrent	 transactions	should	be	 the	same	as	 if	 they
had	 been	 executed	 in	 isolation.	 Finally,	 durability	 ensures	 that	 the	 database
changes	made	by	a	transaction	declared	successful	can	be	made	permanent	under
all	circumstances.

1.5.7	Backup	and	Recovery	Facilities

A	key	advantage	of	using	databases	 is	 the	 availability	of	backup	and	 recovery
facilities.	These	facilities	can	be	used	to	deal	with	the	effect	of	loss	of	data	due	to
hardware	or	network	errors,	or	bugs	in	system	or	application	software.	Typically,
backup	 facilities	 can	 perform	 either	 a	 full	 or	 incremental	 backup.	 In	 the	 latter
case,	only	 the	updates	 since	 the	previous	backup	will	be	considered.	Recovery
facilities	allow	restoration	of	data	to	a	previous	state	after	loss	or	damage.

Connections

Chapter	 14	 introduces	 the	 basics	 of	 transactions,	 transaction
management,	 recovery,	 and	 concurrency	 control.	 It	 describes	 how	 the
interplay	 between	 these	 concepts	 guarantees	 concurrent	 access	 by
different	users	to	shared	data.	Chapter	16	then	further	elaborates	on	this
by	reviewing	distributed	transaction	management.

1.5.8	Data	Security

Data	security	can	be	directly	enforced	by	the	DBMS.	Depending	on	the	business
application	 considered,	 some	 users	 have	 read	 access,	 while	 others	 have	 write
access	to	the	data	(role-based	functionality).	This	can	also	be	further	refined	to
certain	parts	of	the	data.	Trends	such	as	e-business,	B2B	(business-to-business),
B2C	 (business-to-consumer),	 and	 CRM	 stress	 the	 importance	 of	 data	 security
because	 they	 increasingly	 expose	 databases	 to	 internal	 and	 external	 parties.
Consider	 the	 example	 of	 vendor-managed	 inventory	 (VMI),	where	 a	 company
can	get	access	to	inventory	details	of	its	downstream	supply	chain	partner.	Using
the	right	security	policies	should	enforce	 that	only	read	access	 is	provided	and
no	 information	 from	competitor	 products	 can	be	 retrieved.	Data	 access	 can	be
managed	 via	 logins	 and	 passwords	 assigned	 to	 users	 or	 user	 accounts.	 Each
account	has	its	own	authorization	rules	that	can	again	be	stored	in	the	catalog.

1.5.9	Performance	Utilities

Three	 key	 performance	 indicators	 (KPIs)	 of	 a	 DBMS	 are:	 response	 time;
throughput	 rate;	 and	 space	 utilization.	 The	 response	 time	 denotes	 the	 time
elapsed	between	issuing	a	database	request	(e.g.,	a	query	or	update	instruction)
and	 the	 successful	 termination	 thereof.	 The	 throughput	 rate	 represents	 the
transactions	a	DBMS	can	process	per	unit	of	time.	Space	utilization	refers	to	the
space	utilized	by	the	DBMS	to	store	both	the	raw	data	and	the	metadata.	A	high-
performing	 DBMS	 is	 characterized	 by	 quick	 response	 times,	 high	 throughput
rates,	and	low	space	utilization.

DBMSs	come	with	various	types	of	utilities	aimed	at	improving	these	three
KPIs.	 Examples	 are	 utilities	 to	 distribute	 and	 optimize	 data	 storage,	 to	 tune
indexes	 for	 faster	 query	 execution,	 to	 tune	 queries	 to	 improve	 application
performance,	or	to	optimize	buffer	management	(buffering	is	instrumental	to	the
exchange	of	data	and	updates	between	internal	memory	and	disk	storage).	These
utilities	are	typically	managed	by	the	DBA.

Retention	Questions

What	are	the	advantages	of	database	systems	and	database
management?

What	is	data	independence	and	why	is	it	needed?

What	are	integrity	rules?	Illustrate	with	examples.

What	is	the	difference	between	structured,	semi-structured,	and
unstructured	data?

Define	the	ACID	properties	in	a	transaction	management	context.

Summary

We	 started	 this	 chapter	 by	 summarizing	 some	 key	 applications	 of	 database
technology.	We	defined	the	concepts	of	a	database,	DBMS,	and	database	system.
We	then	reviewed	the	file	approach	 to	data	management	and	contrasted	 it	with
the	database	approach.	We	reviewed	the	elements	of	database	systems.	We	also
discussed	the	advantages	of	database	systems	and	database	management.

Scenario	Conclusion

Now	that	Sober	understands	the	dangers	of	storing	data	in	files	and	the
benefits	of	using	databases,	it	has	invested	in	database	technology.

Key	Terms	List

ACID

catalog

conceptual	data	model

data	definition	language	(DDL)

data	independence

data	manipulation	language	(DML)

database

database	approach

database	management	system	(DBMS)

database	model

database	schema

database	state

database	system

external	data	model

file-based	approach

internal	data	model

internal	layer

logical	data	independence

logical	data	model

metadata

physical	data	independence

semi-structured	data

structured	data

three-layer	architecture

unstructured	data

view

Review	Questions

1.1.	Which	statement	is	not	correct?

a.	The	file-based	approach	to	data	management	causes	the	same
information	to	be	stored	separately	for	different	applications.

b.	In	a	file-based	approach	to	data	management,	the	data	definitions
are	included	in	each	application	separately.

c.	In	a	file-based	approach	to	data	management,	different	applications
could	be	using	older	and	newer	versions	of	the	same	data.

d.	In	a	file-based	approach	to	data	management,	a	change	in	the
structure	of	a	data	file	is	easily	handled	because	each	application	has
its	own	data	files.

1.2.	Which	statement	is	not	correct?

a.	In	a	database	approach,	applications	don’t	have	their	own	files,	but
all	applications	access	the	same	version	of	the	data	by	interfacing	with
the	DBMS.

b.	In	a	database	approach,	the	data	definitions	or	metadata	are	stored
in	the	applications	accessing	the	data.

c.	In	a	database	approach,	there	is	typically	less	storage	needed
compared	to	the	file	approach.

d.	In	a	database	approach,	maintenance	of	data	and	metadata	is	easier.

1.3.	Which	statement	is	not	correct?

a.	In	a	file-based	approach,	every	application	has	its	own	query	and
access	procedures,	even	if	they	want	to	access	the	same	data.

b.	SQL	is	a	database	language	to	manage	DBMSs	without	having	to
write	a	substantial	amount	of	programming	code.

c.	SQL	is	a	database	language	that	focuses	on	how	to	access	and
retrieve	the	data.

d.	SQL	is	a	database	language	that	allows	different	applications	to
access	different	subsets	of	the	data	necessary	for	each	application.

1.4.	Which	statement	is	not	correct?

a.	In	a	conceptual	data	model,	the	data	requirements	from	the	business
should	be	captured	and	modeled.

b.	A	conceptual	data	model	is	implementation-dependent.

c.	A	logical	data	model	translates	the	conceptual	data	model	to	a
specific	implementation	environment.

d.	Examples	of	implementations	of	logical	data	models	are
hierarchical,	CODASYL,	relational,	or	object-oriented	models.

1.5.	Complete	the	following	sentence,	choosing	the	right	words	in
positions	A	and	B.	A(n)	…A…	data	model	is	the	mapping	of	a(n)	…B…
data	model	to	a	model	that	describes	which	data	are	stored	where	and	in
what	format.

a.	A:	internal,	B:	logical.

b.	A:	conceptual,	B:	internal.

c.	A:	logical,	B:	internal.

d.	A:	logical,	B:	conceptual.

1.6.	What	concept	specifies	the	various	data	items,	their	characteristics,
and	relationships,	constraints,	storage	details,	etc.	and	is	specified	during
the	database	design?

a.	Database	model.

b.	Catalog.

c.	Database	state.

d.	None	of	the	above.

1.7.	Which	statement	regarding	the	database	state	is	correct?

a.	The	database	state	represents	the	data	in	the	database	when	the
database	is	first	created.

b.	The	database	state	changes	when	data	are	updated	or	removed.

c.	The	database	state	specifies	the	various	data	items,	their
characteristics,	and	relationships,	and	is	specified	during	the	database
design.

d.	The	database	state	is	stored	in	the	catalog.

1.8.	Complete	this	sentence:	In	the	three-layer	architecture,	between	the
external	layer	and	the	conceptual/logical	layer,	there	is	…

a.	physical	data	independence.

b.	logical	data	independence.

c.	no	independence,	they	are	basically	the	same	thing.

d.	the	internal	layer.

1.9.	Which	statement	is	correct?
Statement	A:	The	middle	layer	of	the	three-layer	architecture	consists

of	both	the	conceptual	data	model	and	the	logical	data	model.	The	logical
data	model	is	physically	implemented	in	the	internal	layer.
Statement	B:	The	top	level	of	the	three-layer	architecture	is	the

external	layer.	Views	for	one	or	more	applications	always	offer	a	window
on	the	complete	logical	model.

a.	Only	sentence	A	is	right.

b.	Only	sentence	B	is	right.

c.	Sentences	A	and	B	are	right.

d.	Neither	A	nor	B	is	right.

1.10.	Which	statement	is	correct?
Statement	A:	DDL	is	the	language	used	to	define	the	logical	data

model,	but	no	other	data	models.
Statement	B:	SQL	is	a	DML	language	to	retrieve,	insert,	delete,	and

modify	data.	It	is	stored	in	the	catalog.

a.	Only	A.

b.	Only	B.

c.	A	and	B.

d.	Neither	A	nor	B.

1.11.	Which	statement	is	correct?
Statement	A:	Physical	data	independence	implies	that	neither	the

applications	nor	the	views	or	logical	data	model	must	be	changed	when

changes	are	made	to	the	data	storage	specifications	in	the	internal	data
model.
Statement	B:	Logical	data	independence	implies	that	software

applications	are	minimally	affected	by	changes	in	the	conceptual	or
logical	data	model.

a.	Only	A.

b.	Only	B.

c.	A	and	B.

d.	Neither	A	nor	B.

1.12.	Consider	this	rule:	“An	employee	of	a	department	can	never	earn
more	than	the	manager	of	the	department.”	This	is	an	example	of	a:

a.	syntactical	integrity	rule.

b.	semantical	integrity	rule.

Problems	and	Exercises

1.1E	Discuss	examples	of	database	applications.

1.2E	What	are	the	key	differences	between	the	file-based	and	database
approaches	to	data	management?

1.3E	Discuss	the	elements	of	a	database	system.

1.4E	What	are	the	advantages	of	database	systems	and	database	management?

1	https://blogs.gartner.com/merv-adrian/2016/04/12/dbms-2015-numbers-
paint-a-picture-of-slow-but-steady-change.

2	We	consider	the	terms	model	and	schema	as	synonyms.

3	Some	textbooks	refer	to	the	three-schema	architecture	instead	of	the	three-
layer	architecture.	We	prefer	the	latter	since	we	are	working	with	four	data
models	(conceptual	data	model,	logical	data	model,	internal	data	model,	and
external	data	model)	spread	across	three	layers.	This	should	not	be	confused
with	a	three-tier	architecture,	which	we	discuss	in	Chapter	15.

4	The	conceptual	data	model	is	typically	not	stored	in	the	catalog.

https://blogs.gartner.com/merv-adrian/2016/04/12/dbms-2015-numbers-paint-a-picture-of-slow-but-steady-change

2

Architecture	and	Categorization	of
DBMSs

◈

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

Opening	Scenario

To	 kick-start	 its	 business,	 Sober	 purchased	 the	 customer	 database	 of
Mellow	 Cab,	 a	 firm	 that	 recently	 stepped	 out	 of	 the	 taxi	 business.
Unfortunately,	the	database	has	been	handed	over	in	a	legacy	CODASYL
format	that	Sober	is	not	familiar	with.	Sober	also	needs	a	new	database

identify	the	key	components	of	a	DBMS	architecture;

understand	how	these	components	work	together	for	data	storage,
processing,	and	management;

categorize	DBMSs	based	upon	data	model,	degree	of	simultaneous
access,	architecture,	and	usage.

to	 store	 transaction	 details	 whenever	 passengers	 book	 either	 a	 ride-

hailing	 or	 ride-sharing	 service.	 Other	 data	 (e.g.,	 multimedia)	 are	 an
option	 they	 are	 interested	 in.	 Sober	 wants	 to	 continuously	 store	 the
location	of	 its	 taxis	and	periodically	 review	hot-spot	pick-up	and	drop-
off	locations.	Sober	is	looking	at	ways	to	manage	all	these	data	sources
in	the	optimal	way.

As	 discussed	 in	 Chapter	 1,	 a	 DBMS	 supports	 the	 creation,	 usage,	 and
maintenance	 of	 a	 database.	 It	 consists	 of	 several	 modules,	 each	 with	 their
specific	functionality,	that	work	together	according	to	a	predefined	architecture.
In	 this	 chapter,	 we	 zoom	 into	 this	 internal	 architecture	 and	 provide	 a
categorization	of	DBMSs	along	various	dimensions.	The	overview	of	the	chapter
is	straightforward.	We	start	by	discussing	the	components	that	together	make	up
a	DBMS.	Next,	we	provide	a	classification	of	DBMSs	in	 terms	of	data	model,
degree	of	simultaneous	access,	architecture,	and	usage.

2.1	Architecture	of	a	DBMS

As	 discussed	 before,	 a	 DBMS	 needs	 to	 support	 various	 types	 of	 data
management-related	 activities,	 such	 as	 querying	 and	 storage.	 It	 also	 must
provide	interfaces	to	its	environment.	To	achieve	both	of	these	goals,	a	DBMS	is
composed	 of	 various	 interacting	modules	 that	 together	make	 up	 the	database
management	 system	 architecture.	 Figure	 2.1	 shows	 an	 overview	 of	 the	 key
components	of	a	DBMS	architecture.	We	review	each	component	in	more	detail
in	what	follows.

Figure	2.1	Architecture	of	a	database	management	system	(DBMS).

Figure	 2.1	 is	 by	 no	 means	 exhaustive.	 Depending	 upon	 the	 vendor	 and
implementation,	some	components	may	be	left	out	and	others	added.	On	the	left,
you	can	see	various	ways	of	interacting	with	the	DBMS.	DDL	statements	create
data	definitions	that	are	stored	in	the	catalog.	Interactive	queries	are	 typically
executed	 from	 a	 front-end	 tool,	 such	 as	 a	 command-line	 interface,	 simple
graphical	user	interface,	or	forms-based	interface.	Applications	interact	with	the
DBMS	using	embedded	DML	statements.	Finally,	the	database	administrator

(DBA)	 can	 use	 various	 database	 tools	 to	maintain	 or	 fine-tune	 the	DBMS.	To
facilitate	all	these	usages,	the	DBMS	provides	various	interfaces	that	invoke	its
components.	The	most	 important	components	are:	 the	connection	manager;	 the
security	 manager;	 the	 DDL	 compiler;	 various	 database	 utilities;	 the	 query
processor;	 and	 the	 storage	 manager.	 The	 query	 processor	 consists	 of	 a	 DML
compiler,	query	parser,	query	rewriter,	query	optimizer,	and	query	executor.	The
storage	manager	includes	a	transaction	manager,	buffer	manager,	lock	manager,
and	recovery	manager.	All	these	components	interact	in	various	ways	depending
upon	which	database	task	is	executed.	The	database	itself	contains	the	raw	data
or	 database	 state	 and	 the	 catalog	with	 the	 database	model	 and	other	metadata,
including	 the	 indexes	 that	 are	 part	 of	 the	 internal	 data	model	 providing	 quick
access	 to	 the	data.	 In	 the	 rest	of	 this	 section	we	discuss	each	component	more
extensively.

2.1.1	Connection	and	Security	Manager

The	connection	manager	provides	facilities	to	set-up	a	database	connection.	It
can	 be	 set-up	 locally	 or	 through	 a	 network,	 the	 latter	 being	more	 common.	 It
verifies	 the	 logon	 credentials,	 such	 as	 user	 name	 and	 password,	 and	 returns	 a
connection	handle.	A	database	connection	can	run	either	as	a	single	process	or	as
a	 thread	 within	 a	 process.	 Remember,	 a	 thread	 represents	 an	 execution	 path
within	 a	 process	 and	 represents	 the	 smallest	 unit	 of	 processor	 scheduling.
Multiple	threads	can	run	within	a	process	and	share	common	resources	such	as
memory.	The	security	manager	verifies	whether	a	user	has	the	right	privileges	to
execute	 the	database	 actions	 required.	For	 example,	 some	users	 can	 have	 read
access	while	others	have	write	access	 to	certain	parts	of	 the	data.	The	security
manager	retrieves	these	privileges	from	the	catalog.

2.1.2	DDL	Compiler

The	DDL	compiler	compiles	the	data	definitions	specified	in	DDL.	Ideally,	the
DBMS	should	provide	three	DDLs:	one	for	the	internal	data	model;	one	for	the
logical	data	model;	and	one	for	the	external	data	model.	Most	implementations,
however,	have	a	single	DDL	with	three	different	sets	of	instructions.	This	is	the
case	for	most	relational	databases	that	use	SQL	as	their	DDL.	The	DDL	compiler
first	parses	the	DDL	definitions	and	checks	their	syntactical	correctness.	It	then
translates	 the	 data	 definitions	 to	 an	 internal	 format	 and	 generates	 errors	 if
required.	 Upon	 successful	 compilation,	 it	 registers	 the	 data	 definitions	 in	 the
catalog,	where	they	can	be	used	by	all	the	other	components	of	the	DBMS.

Connections

Chapter	 7	 discusses	 how	 SQL	 can	 be	 used	 to	 define	 a	 logical	 and
external	data	model	in	a	relational	environment.	Chapter	13	reviews	how
SQL	can	be	used	to	define	an	internal	data	model.

2.1.3	Query	Processor

The	query	processor	is	one	of	the	most	important	parts	of	a	DBMS.	It	assists	in
the	 execution	 of	 database	 queries	 such	 as	 retrieval	 of	 data,	 insertion	 of	 data,
update	of	data,	 and	 removal	of	data	 from	 the	database.	Although	most	DBMS
vendors	have	their	own	proprietary	query	processor,	it	usually	includes	a	DML
compiler,	query	parser,	query	rewriter,	query	optimizer,	and	query	executor.

2.1.3.1	DML	Compiler

The	 DML	 compiler	 compiles	 the	 data	 manipulation	 statements	 specified	 in
DML.	Before	we	explain	 its	 functioning,	we	need	 to	elaborate	on	 the	different
types	 of	DML.	As	 discussed	 in	Chapter	1,	DML	 stands	 for	 data	manipulation
language.	It	provides	a	set	of	constructs	to	select,	insert,	update,	and	delete	data.

The	 first	 data	 manipulation	 languages	 developed	 were	 predominantly
procedural	DML.	These	DML	statements	explicitly	specified	how	to	navigate
in	the	database	to	locate	and	modify	the	data.	They	usually	started	by	positioning
on	 one	 specific	 record	 or	 data	 instance	 and	 navigating	 to	 other	 records	 using
memory	 pointers.	 Procedural	 DML	 is	 also	 called	 record-at-a-time	 DML.
DBMSs	 with	 procedural	 DML	 had	 no	 query	 processor.	 In	 other	 words,	 the
application	 developer	 had	 to	 explicitly	 define	 the	 query	 optimization	 and
execution	him/herself.	To	write	efficient	queries,	the	developer	had	to	know	all
the	 details	 of	 the	 DBMS.	 This	 is	 not	 a	 preferred	 implementation	 since	 it
complicates	 the	 efficiency,	 transparency,	 and	 maintenance	 of	 the	 database
applications.	Unfortunately,	many	firms	are	still	struggling	with	procedural	DML
applications	due	to	the	legacy	DBMSs	still	in	use.

Declarative	 DML	 is	 a	 more	 efficient	 implementation.	 Here,	 the	 DML
statements	 specify	 which	 data	 should	 be	 retrieved	 or	 what	 changes	 should	 be

made,	 rather	 than	 how	 this	 should	 be	 done.	 The	 DBMS	 then	 autonomously
determines	 the	 physical	 execution	 in	 terms	 of	 access	 path	 and	 navigational
strategy.	 In	other	words,	 the	DBMS	hides	 the	 implementation	details	 from	 the
application	 developer,	 which	 facilitates	 the	 development	 of	 database
applications.	Declarative	DML	 is	usually	 set-at-a-time	DML,	whereby	 sets	of
records	 or	 data	 instances	 can	 be	 retrieved	 at	 once	 and	 provided	 to	 the
application.	Only	the	selection	criteria	are	provided	to	the	DBMS;	depending	on
the	 actual	 database	 state,	 zero,	 one,	 or	 many	 records	 will	 qualify.	 A	 popular
example	of	declarative	DML	is	SQL,	which	we	discuss	extensively	in	Chapter	7.

Many	applications	work	with	data	stored	in	a	database.	To	access	a	database
and	 work	 with	 it,	 DML	 statements	 will	 be	 directly	 embedded	 in	 the	 host
language.	The	host	language	is	the	general-purpose	programming	language	that
contains	 the	 (non-database	 related)	 application	 logic.	 Obviously,	 both	 host
language	and	DML	should	be	able	to	successfully	interact	and	exchange	data.

As	 an	 example,	 think	 about	 a	 Java	 application	 that	 needs	 to	 retrieve
employee	data	from	a	database.	It	can	do	this	by	using	SQL,	which	is	one	of	the
most	 popular	 querying	 languages	 used	 in	 the	 industry	 nowadays.	 In	 the
following	Java	program,	the	SQL	DML	statements	are	highlighted	in	bold	face.

import	java.sql.*;
public	class	JDBCExample1	{
public	static	void	main(String[]	args)	{
try	{
		System.out.println("Loading	JDBC	driver…");
		Class.forName("com.mysql.jdbc.Driver");
		System.out.println("JDBC	driver	loaded!");
}	catch	(ClassNotFoundException	e)	{
		throw	new	RuntimeException(e);
}
String	url	=	"jdbc:mysql://localhost:3306/employeeschema";

String	username	=	"root";
String	password	=	"mypassword123";
String	query	=	"select	E.Name,	D.DName	"	+
"from	employee	E,	department	D	"	+
"where	E.DNR	=	D.DNR;";
Connection	connection	=	null;
Statement	stmt	=	null;
try	{
		System.out.println("Connecting	to	database");
		connection	=	DriverManager.getConnection(url,	username,	
password);
		System.out.println("MySQL	Database	connected!");
		stmt	=	connection.createStatement();
		ResultSet	rs	=	stmt.executeQuery(query);
		while	(rs.next())	{
				System.out.print(rs.getString(1));
				System.out.print("");
				System.out.println(rs.getString(2));
		}
		stmt.close();
}	catch	(SQLException	e)	{
		System.out.println(e.toString());
}	finally	{
		System.out.println("Closing	the	connection.");
		if	(connection	!=	null)	{
		try	{
		connection.close();
}	catch	(SQLException	ignore)	{}}}}

Without	going	 into	any	 language	or	syntax	specifics,	 this	Java	application
first	initiates	a	database	connection	with	a	given	username	and	password.	Next,
the	application	executes	an	SQL	query	that	asks	for	the	employee	names	together

with	their	department	names.	It	then	iterates	through	the	results,	whereby	at	each

step	 the	 employee	name	and	corresponding	department	name	are	displayed	on
the	screen.

Embedding	DML	statements	into	a	host	language	is	not	as	straightforward
as	 it	 may	 at	 first	 seem.	 The	 data	 structures	 of	 the	 DBMS	 and	 the	 DML	may
differ	 from	 the	 data	 structures	 of	 the	 host	 language.	 In	 our	 example,	we	 used
Java,	which	is	an	object-oriented	host	language,	and	combined	it	with	MySQL,
which	 is	 a	 relational	 DBMS	 using	 SQL	 DML.	 The	 mapping	 between	 object-
oriented	 and	 relational	 concepts	 is	 often	 called	 the	 impedance	 mismatch
problem.	It	can	be	solved	in	various	ways.	First,	we	can	choose	a	host	language
and	DBMS	with	comparable	data	 structures.	 In	other	words,	we	combine	 Java
with	an	object-oriented	DBMS,	which	allows	transparent	retrieval	and	storage	of
data.	As	 an	 alternative,	we	 could	 also	 opt	 to	 use	middleware	 to	map	 the	 data
structures	 from	 the	 DBMS	 to	 the	 host	 language	 and	 vice	 versa.	 Both	 options
have	their	pros	and	cons	and	are	discussed	more	extensively	in	Chapter	8.

Figure	2.2	shows	the	impedance	mismatch	problem.	On	the	left,	we	have	a
Java	 class	Employee	with	 characteristics	 such	 as	EmployeeID,	Name,	Gender,
and	DNR	 (which	 is	 the	 department	 number).	 It	 also	 has	 “getter”	 and	 “setter”
methods	to	implement	the	object-oriented	principle	of	information	hiding.	To	the
right,	we	have	the	corresponding	SQL	DDL	that	essentially	stores	information	in
a	tabular	format.

Figure	2.2	The	impedance	mismatch	problem.

The	DML	compiler	starts	by	extracting	the	DML	statements	from	the	host
language.	It	then	closely	collaborates	with	the	query	parser,	query	rewriter,	query
optimizer,	 and	 query	 executor	 for	 executing	 the	 DML	 statements.	 Errors	 are
generated	and	reported	if	necessary.

Connections

Chapter	 5	 introduces	 hierarchical	 and	 CODASYL	 data	 models	 which
both	assume	procedural,	record-at-a-time	DML.	Chapter	7	reviews	SQL,
which	is	declarative,	set-at-time	DML.

2.1.3.2	Query	Parser	and	Query	Rewriter

The	query	parser	parses	the	query	into	an	internal	representation	format	that	can
then	be	further	evaluated	by	the	system.	It	checks	the	query	for	syntactical	and
semantical	correctness.	To	do	so,	 it	uses	 the	catalog	 to	verify	whether	 the	data
concepts	referred	to	are	properly	defined	there,	and	to	see	whether	the	integrity
rules	have	been	respected.	Again,	errors	are	generated	and	reported	if	necessary.

The	query	rewriter	optimizes	 the	query,	 independently	of	 the	current	database
state.	 It	 simplifies	 it	 using	 a	 set	 of	 predefined	 rules	 and	 heuristics	 that	 are
DBMS-specific.	 In	 a	 relational	 database	 management	 system,	 nested	 queries
might	 be	 reformulated	 or	 flattened	 to	 join	 queries.	 We	 discuss	 both	 types	 of
queries	more	extensively	in	Chapter	7.

2.1.3.3	Query	Optimizer

The	query	optimizer	 is	a	very	 important	component	of	 the	query	processor.	 It
optimizes	 the	 query	 based	upon	 the	 current	 database	 state.	 It	 can	make	use	 of
predefined	 indexes	 that	 are	 part	 of	 the	 internal	 data	model	 and	 provide	 quick
access	to	the	data.	The	query	optimizer	comes	up	with	various	query	execution
plans	and	evaluates	their	cost	(in	terms	of	resources	required)	by	aggregating	the
estimated	 number	 of	 input/output	 operations,	 the	 plan’s	 estimated	 CPU
processing	cost	and	the	plan’s	estimated	execution	time	into	the	total	estimated
response	 time.	 A	 good	 execution	 plan	 should	 have	 a	 low	 response	 time.	 It	 is
important	to	note	that	the	response	time	is	estimated	and	not	exact.	The	estimates
are	 made	 using	 catalog	 information	 combined	 with	 statistical	 inference
procedures.	Empirical	distributions	of	the	data	are	calculated	and	summarized	by
their	 means,	 standard	 deviations,	 etc.	 Coming	 up	 with	 accurate	 estimates	 is
crucial	 in	 a	 good	 query	 optimizer.	 Finding	 an	 optimal	 execution	 path	 is
essentially	a	classical	search	or	optimization	problem	whereby	techniques	such
as	 dynamic	 programming	 can	 be	 used.	 As	 already	 mentioned,	 the
implementation	of	the	query	optimizer	depends	upon	the	type	of	DBMS	and	the
vendor,	and	is	a	key	competitive	asset.

2.1.3.4	Query	Executor

The	result	of	the	query	optimization	procedure	is	a	final	execution	plan	which	is
then	handed	over	 to	 the	query	executor.	The	query	executor	 takes	care	of	 the
actual	execution	by	calling	on	the	storage	manager	to	retrieve	the	data	requested.

2.1.4	Storage	Manager

The	storage	manager	governs	 physical	 file	 access	 and	 as	 such	 supervises	 the
correct	and	efficient	storage	of	data.	It	consists	of	a	transaction	manager,	buffer
manager,	lock	manager,	and	recovery	manager.	Let’s	zoom	in	for	more	detail.

2.1.4.1	Transaction	Manager

The	 transaction	 manager	 supervises	 the	 execution	 of	 database	 transactions.
Remember,	 a	 database	 transaction	 is	 a	 sequence	 of	 read/write	 operations
considered	to	be	an	atomic	unit.	The	transaction	manager	creates	a	schedule	with
interleaved	 read/write	 operations	 to	 improve	 overall	 efficiency	 and	 execution
performance.	 It	 also	 guarantees	 the	 atomicity,	 consistency,	 isolation	 and
durability	or	ACID	properties	in	a	multi-user	environment	(see	Chapter	1).	The
transaction	manager	will	“commit”	a	 transaction	upon	successful	execution,	 so
the	 effects	 can	 be	 made	 permanent,	 and	 “rollback”	 a	 transaction	 upon
unsuccessful	execution,	so	any	inconsistent	or	bad	data	can	be	avoided.

2.1.4.2	Buffer	Manager

The	 buffer	 manager	 is	 responsible	 for	 managing	 the	 buffer	 memory	 of	 the
DBMS.	This	is	part	of	the	internal	memory,	which	the	DBMS	checks	first	when
data	need	to	be	retrieved.	Retrieving	data	from	the	buffer	is	significantly	faster
than	 retrieving	 them	 from	 external	 disk-based	 storage.	 The	 buffer	 manager	 is
responsible	for	 intelligently	caching	the	data	 in	 the	buffer	for	speedy	access.	 It
needs	 to	 continuously	monitor	 the	 buffer	 and	 decide	which	 content	 should	 be
removed	and	which	should	be	added.	If	data	in	the	buffer	have	been	updated,	it
must	 also	 synchronize	 the	 corresponding	physical	 file(s)	 on	disk	 to	make	 sure
updates	are	made	persistent	and	are	not	lost.	A	simple	buffering	strategy	is	based

upon	data	locality	that	states	that	data	recently	retrieved	are	likely	to	be	retrieved
again.	 Another	 strategy	 uses	 the	 20/80	 law,	 which	 implies	 that	 80%	 of	 the
transactions	 read	 or	 write	 only	 20%	 of	 the	 data.	When	 the	 buffer	 is	 full,	 the
buffer	 manager	 needs	 to	 adopt	 a	 smart	 replacement	 strategy	 to	 decide	 which
content	 should	 be	 removed.	 Furthermore,	 it	 must	 be	 able	 to	 serve	 multiple
transactions	simultaneously.	Hence,	it	closely	interacts	with	the	lock	manager	to
provide	concurrency	control	support.

2.1.4.3	Lock	Manager

The	lock	manager	is	an	essential	component	for	providing	concurrency	control,
which	ensures	data	integrity	at	all	times.	Before	a	transaction	can	read	or	write	a
database	 object,	 it	 must	 acquire	 a	 lock	 which	 specifies	 what	 types	 of	 data
operations	 the	 transaction	 can	 carry	out.	Two	common	 types	of	 locks	 are	 read
and	 write	 locks.	 A	 read	 lock	 allows	 a	 transaction	 to	 read	 a	 database	 object,
whereas	 a	write	 lock	 allows	 a	 transaction	 to	 update	 it.	 To	 enforce	 transaction
atomicity	 and	 consistency,	 a	 locked	 database	 object	 may	 prevent	 other
transactions	 from	 using	 it,	 hence	 avoiding	 conflicts	 between	 transactions	 that
involve	the	same	data.	The	lock	manager	is	responsible	for	assigning,	releasing,
and	 recording	 locks	 in	 the	 catalog.	 It	makes	 use	 of	 a	 locking	 protocol,	 which
describes	the	locking	rules,	and	a	lock	table	with	the	lock	information.

2.1.4.4	Recovery	Manager

The	 recovery	 manager	 supervises	 the	 correct	 execution	 of	 database
transactions.	 It	 keeps	 track	 of	 all	 database	 operations	 in	 a	 logfile,	 and	will	 be
called	upon	to	undo	actions	of	aborted	transactions	or	during	crash	recovery.

Connections

Chapter	14	elaborates	further	on	the	activities	of	the	transaction,	buffer,
lock,	and	recovery	managers.

2.1.5	DBMS	Utilities

Besides	the	components	we	discussed	before,	a	DBMS	also	comes	with	various
utilities.	A	loading	utility	supports	the	loading	of	the	database	with	information
from	a	variety	of	sources,	such	as	another	DBMS,	text	files,	Excel	files,	etc.	A
reorganization	 utility	 automatically	 reorganizes	 the	 data	 for	 improved
performance.	Performance	monitoring	utilities	report	various	key	performance
indicators	 (KPIs),	 such	 as	 storage	 space	 consumed,	 query	 response	 times,	 and
transaction	 throughput	 rates	 to	 monitor	 the	 performance	 of	 a	 DBMS.	 User
management	utilities	 support	 the	creation	of	user	groups	or	accounts,	and	 the
assignment	 of	 privileges	 to	 them.	 Finally,	 a	 backup	 and	 recovery	 utility	 is
typically	included.

2.1.6	DBMS	Interfaces

A	DBMS	needs	 to	 interact	with	various	parties,	 such	as	a	database	designer,	 a
database	 administrator,	 an	 application,	 or	 even	 an	 end-user.	 To	 facilitate	 this
communication,	 it	 provides	 various	 user	 interfaces	 such	 as	 a	 web-based
interface,	a	stand-alone	query	 language	 interface,	 a	command-line	 interface,	 a
forms-based	interface,	a	graphical	user	interface,	a	natural	 language	 interface,
an	application	programming	interface	(API),	an	admin	interface,	and	a	network
interface.

Figure	2.3	shows	an	example	of	the	MySQL	Workbench	interface.	You	can
see	 the	 navigator	 window	 with	 the	 management,	 instance,	 performance,	 and
schemas	section.	The	query	window	provides	an	editor	to	write	SQL	queries.	In
our	 case,	 we	 wrote	 a	 simple	 SQL	 query	 to	 ask	 for	 all	 information	 from	 the
product	 table.	 The	 results	window	 displays	 the	 results	 of	 the	 execution	 of	 the
query.	The	log	window	provides	a	log	with	actions	and	possible	errors.

Figure	2.3	MySQL	interface.

Retention	Questions

What	are	the	key	components	of	a	DBMS?

What	is	the	difference	between	procedural	and	declarative	DML?

Give	some	examples	of	DBMS	utilities	and	interfaces.

2.2	Categorization	of	DBMSs

Given	 the	 proliferation	 of	 DBMSs	 available,	 in	 this	 section	 we	 introduce	 a
categorization	 according	 to	 various	 criteria.	 We	 discuss	 categorization	 of
DBMSs	 based	 upon	 data	model,	 simultaneous	 access,	 architecture,	 and	 usage.
Note	that	our	categorization	is	not	to	be	interpreted	in	an	exhaustive	or	exclusive
way.	 It	 can	 thus	be	 that	 a	DBMS	falls	 into	multiple	categories	 simultaneously.
Other	categories	may	also	be	considered.

2.2.1	Categorization	Based	on	Data	Model

Throughout	the	past	decades,	various	types	of	data	models	have	been	introduced
for	 building	 conceptual	 and	 logical	 data	 models.	 We	 briefly	 summarize	 them
here	and	provide	more	detail	in	later	chapters.

2.2.1.1	Hierarchical	DBMSs

Hierarchical	DBMSs	were	one	of	the	first	DBMS	types	developed,	and	adopt	a
tree-like	 data	 model.	 The	 DML	 is	 procedural	 and	 record-oriented.	 No	 query
processor	is	included.	The	definitions	of	the	logical	and	internal	data	model	are
intertwined,	which	 is	not	desirable	 from	a	usability,	 efficiency,	or	maintenance
perspective.	Popular	examples	are	IMS	from	IBM	and	the	Registry	in	Microsoft
Windows.

2.2.1.2	Network	DBMSs

Network	DBMSs	use	a	network	data	model,	which	is	more	flexible	than	a	tree-
like	data	model.	One	of	the	most	popular	types	are	CODASYL	DBMSs,	which
implement	 the	 CODASYL	 data	 model.	 Again,	 the	 DML	 is	 procedural	 and
record-oriented,	 and	 no	 query	 processor	 is	 available.	 Consequently,	 the
definitions	of	the	logical	and	internal	data	models	are	also	intertwined.	Popular
examples	 are	 CA-IDMS	 from	 Computer	 Associates,	 UDS	 from	 Siemens
Nixdorf,	 DMS	 1100	 from	Unisys,	 and	 Image	 from	HP.	 Both	 hierarchical	 and
CODASYL	DBMSs	are	legacy	database	software.

2.2.1.3	Relational	DBMSs

Relational	DBMSs	(RDBMSs)	use	 the	relational	data	model	and	are	 the	most
popular	 in	 the	 industry.	 They	 typically	 use	 SQL	 for	 both	 DDL	 and	 DML
operations.	SQL	is	declarative	and	set	oriented.	A	query	processor	is	provided	to
optimize	 and	 execute	 the	 database	 queries.	 Data	 independence	 is	 available
thanks	 to	 a	 strict	 separation	 between	 the	 logical	 and	 internal	 data	model.	This
makes	 it	 very	 attractive	 to	 develop	 powerful	 database	 applications.	 Popular
examples	 are	 MySQL,	 which	 is	 open-source	 and	 maintained	 by	 Oracle,	 the
Oracle	 DBMS	 also	 provided	 by	 Oracle,	 DB2	 from	 IBM,	 and	Microsoft	 SQL
Server	from	Microsoft.

2.2.1.4	Object-Oriented	DBMSs

Object-oriented	DBMSs	(OODBMSs)	are	based	upon	the	object-oriented	data
model.	An	object	encapsulates	both	data	(also	called	variables)	and	functionality
(also	 called	methods).	When	 combining	 an	OODBMS	with	 an	 object-oriented
programming	 language	 (e.g.,	 Java,	 Python),	 there	 is	 no	 impedance	 mismatch
since	 the	 objects	 can	 be	 transparently	 stored	 and	 retrieved	 from	 the	 database.
Examples	 of	 OODBMSs	 are	 db4o,	 which	 is	 an	 open-source	 OODBMS
maintained	 by	 Versant,	 Caché	 from	 Intersystems,	 and	 GemStone/S	 from
GemTalk	 Systems.	 OODBMSs	 are	 not	 very	 popular	 in	 the	 industry,	 beyond
some	niche	markets,	due	to	their	complexity.

2.2.1.5	Object-Relational/Extended	Relational	DBMSs

An	object-relational	DBMS	 (ORDBMS),	 also	 commonly	 called	 an	extended
relational	DBMS	 (ERDBMS),	 uses	 a	 relational	 model	 extended	 with	 object-
oriented	 concepts,	 such	 as	 user-defined	 types,	 user-defined	 functions,
collections,	 inheritance,	 and	 behavior.	 Hence,	 an	 ORDBMS/ERDBMS	 shares
characteristics	with	both	an	RDBMS	and	an	OODBMS.	As	with	pure	relational

DBMSs,	 the	 DML	 is	 SQL,	 which	 is	 declarative	 and	 set	 oriented.	 A	 query
processor	 is	 available	 for	 query	 optimization.	Most	 relational	DBMSs	 such	 as
Oracle,	DB2,	and	Microsoft	SQL	Server	incorporate	object-relational	extensions.

2.2.1.6	XML	DBMSs

XML	 DBMSs	 use	 the	 XML	 data	 model	 to	 store	 data.	 XML	 is	 a	 data
representation	standard.	Here	you	can	see	an	example	of	an	XML	fragment.

<employee>
						<firstname>Bart</firstname>
						<lastname>Baesens</lastname>
						<address>
										<street>Naamsestraat</street>
										<number>69</number>
										<zipcode>3000</zipcode>
										<city>Leuven</city>
										<country>Belgium</country>
						</address>
						<gender>Male</gender>
</employee>

You	can	see	we	have	various	tags,	such	as	employee,	firstname,	lastname,
etc.	The	address	tag	is	further	subdivided	into	street,	number,	zip	code,	city,	and
country	 tags.	 It	 is	 important	 that	every	<tag>	 is	properly	closed	with	a	</tag>.
An	XML	specification	essentially	 represents	data	 in	a	hierarchical	way.	Figure
2.4	shows	the	tree	corresponding	to	our	XML	specification.

Figure	2.4	Tree-based	XML	representation.

XML	 is	 a	 very	 popular	 standard	 to	 exchange	 data	 between	 various
applications.	Native	XML	DBMSs	(e.g.,	BaseX,	eXist)	store	XML	data	by	using
the	 logical,	 intrinsic	 structure	 of	 the	 XML	 document.	 More	 specifically,	 they
map	the	hierarchical	or	tree	structure	of	an	XML	document	to	a	physical	storage
structure.	XML-enabled	DBMSs	(e.g.,	Oracle,	IBM	DB2)	are	existing	RDBMSs
or	ORDBMSs	that	are	extended	with	facilities	to	store	XML	data	and	structured
data	 in	 an	 integrated	 and	 transparent	way.	Both	 types	 of	DBMSs	 also	 provide
facilities	to	query	XML	data.

2.2.1.7	NoSQL	DBMSs

Finally,	 the	 last	 few	 years	 brought	 us	 a	 realm	 of	 new	 database	 technologies
targeted	at	 storing	big	and	unstructured	data.	These	are	often	 referred	 to	using
the	 umbrella	 term	 not-only	 SQL	 (NoSQL)	 databases	 with	 popular	 examples
such	 as	 Apache	 Hadoop	 or	 Neo4j.	 As	 we	 explain	 in	 Chapter	 11,	 NoSQL
databases	can	be	classified	according	to	data	model	into	key–value	stores,	tuple,
or	document	stores,	column-oriented	databases,	and	graph	databases.	However,
even	within	such	subcategories,	the	heterogeneity	of	the	members	is	quite	high.
The	common	denominator	of	all	NoSQL	databases	is	that	they	attempt	to	make
up	 for	 some	 shortcomings	of	 relational	DBMSs	 in	 terms	of	 scalability	 and	 the
ability	to	cope	with	irregular	or	highly	volatile	data	structures.

Connections

Chapter	 5	 reviews	 both	 hierarchical	 and	 network	 DBMSs.	 Chapters	 6
and	7	discuss	relational	DBMSs.	Object-oriented	DBMSs	are	covered	in
Chapter	8,	whereas	 Chapter	 9	 reviews	 object-relational	DBMSs.	XML
DBMSs	 are	 introduced	 in	 Chapter	 10.	 Chapter	 11	 discusses	 NoSQL
DBMSs.

2.2.2	Categorization	Based	on	Degree	of	Simultaneous	Access

DBMSs	can	also	be	categorized	based	upon	the	degree	of	simultaneous	access.
In	 a	 single-user	 system,	 only	 one	 user	 at	 a	 time	 is	 allowed	 to	work	with	 the
DBMS.	This	 is	not	desirable	 in	a	networked	environment.	Multi-user	systems
allow	multiple	users	to	simultaneously	interact	with	the	database	in	a	distributed
environment,	as	illustrated	in	Figure	2.5	where	three	clients	are	being	served	by
three	server	instances	or	threads.

Figure	2.5	Simultaneous	access	to	a	DBMS.

To	 do	 so	 successfully,	 the	 DBMS	 should	 support	 multi-threading	 and
provide	facilities	for	concurrency	control.	A	dispatcher	component	then	typically
distributes	the	incoming	database	requests	among	server	instances	or	threads.

2.2.3	Categorization	Based	on	Architecture

The	architectural	development	of	DBMSs	is	similar	to	that	of	computer	systems
in	general.	 In	a	centralized	DBMS	architecture,	 the	data	are	maintained	on	a
centralized	 host,	 e.g.,	 a	 mainframe	 system.	 All	 queries	 will	 then	 have	 to	 be
processed	by	this	single	host.

In	a	client–server	DBMS	architecture,	active	clients	request	services	from
passive	servers.	A	fat	client	variant	stores	more	processing	functionality	on	the
client,	whereas	a	fat	server	variant	puts	more	on	the	server.

The	 n-tier	 DBMS	 architecture	 is	 a	 straightforward	 extension	 of	 the
client–server	 architecture.	 A	 popular	 example	 is	 a	 client	 with	 GUI	 (graphical
user	interface)	functionality,	an	application	server	with	the	various	applications,
a	database	server	with	 the	DBMS	and	database,	and	a	web	server	for	 the	web-
based	access.	The	communication	between	these	various	servers	is	then	handled
by	middleware.

In	a	cloud	DBMS	architecture,	 the	DBMS	and	database	 are	hosted	by	 a
third-party	 cloud	 provider.	 The	 data	 can	 then	 be	 distributed	 across	 multiple
computers	 in	 a	 network.	 Although	 this	 is	 sometimes	 a	 cost-effective	 solution,
depending	on	 the	context	 it	 can	perform	 less	efficiently	 in	 terms	of	processing
queries	 or	 other	 database	 transactions.	 Popular	 examples	 are	 the	 Apache
Cassandra	project	and	Google’s	BigTable.

A	 federated	 DBMS	 is	 a	 DBMS	 that	 provides	 a	 uniform	 interface	 to
multiple	underlying	data	sources	such	as	other	DBMSs,	file	systems,	document
management	systems,	etc.	By	doing	so,	it	hides	the	underlying	storage	details	(in
particular	 the	 distribution	 and	 possible	 heterogeneity	 of	 data	 formats	 and	 data
management	functionality)	to	facilitate	data	access.

An	in-memory	DBMS	stores	all	data	in	internal	memory	instead	of	slower
external	 storage	 such	 as	 disk-based	 storage.	 It	 is	 often	 used	 for	 real-time
purposes,	such	as	in	Telco	or	defense	applications.	Periodic	snapshots	to	external
storage	 can	 be	 taken	 to	 support	 data	 persistence.	A	popular	 example	 of	 an	 in-
memory	DBMS	is	SAP’s	Hana	product.

2.2.4	Categorization	Based	on	Usage

DBMSs	 can	 also	 be	 categorized	 based	 on	 usage.	 In	what	 follows,	we	 discuss
operational	versus	strategic	usage,	Big	Data	and	analytics,	multimedia	DBMSs,
spatial	DBMSs,	sensor	DBMSs,	mobile	DBMSs,	and	open-source	DBMSs.

On-line	 transaction	 processing	 (OLTP)	 DBMSs	 focus	 on	 managing
operational	or	transactional	data.	Think	of	a	point-of-sale	(POS)	application	in	a
supermarket,	 where	 data	 about	 each	 purchase	 transaction	 such	 as	 customer
information,	 products	 purchased,	 prices	 paid,	 location	 of	 the	 purchase,	 and
timing	of	 the	purchase	need	 to	be	stored.	 In	 these	settings,	 the	database	server
must	 be	 able	 to	 process	 lots	 of	 simple	 transactions	 per	 unit	 of	 time.	Also,	 the
transactions	 are	 initiated	 in	 real-time,	 simultaneously,	 by	 many	 users	 and
applications,	 hence	 the	DBMS	must	 have	 good	 support	 for	 processing	 a	 high
volume	 of	 short,	 simple	 queries.	 On-line	 analytical	 processing	 (OLAP)
DBMSs	 focus	 on	 using	 operational	 data	 for	 tactical	 or	 strategical	 decision-
making.	Here,	a	limited	number	of	users	formulates	complex	queries	to	analyze
huge	 amounts	 of	 data.	 The	 DBMS	 should	 support	 the	 efficient	 processing	 of
these	complex	queries,	which	often	come	in	smaller	volumes.

Big	data	and	analytics	are	all	around	these	days	(see	Chapters	19	and	20).
IBM	projects	that	we	generate	2.5	quintillion	bytes	of	data	every	day.	This	is	a
lot	 compared	 to	 traditional	 database	 applications.	 Hence,	 new	 database
technologies	have	been	introduced	to	efficiently	cope	with	Big	Data.	NoSQL	is
one	 of	 these	 newer	 technologies.	NoSQL	databases	 abandon	 the	 well-known
and	 popular	 relational	 database	 schema	 in	 favor	 of	 a	 more	 flexible,	 or	 even
schema-less,	 database	 structure.	 This	 is	 especially	 handy	 to	 store	 unstructured
information	such	as	emails,	text	documents,	Twitter	tweets,	Facebook	posts,	etc.
One	 of	 their	 key	 advantages	 is	 that	 they	 also	 scale	 more	 easily	 in	 terms	 of

storage	capacity.	We	already	mentioned	four	popular	 types	of	NoSQL	database
technologies,	 classified	 according	 to	 data	 model:	 key–value-based	 databases
such	as	CouchDB;	document-based	databases	such	as	MongoDB;	column-based
databases	 such	 as	 Cassandra;	 and	 graph-based	 databases	 such	 as	 Neo4j.	 We
discuss	these	in	more	detail	in	Chapter	11.

Multimedia	DBMSs	allow	for	the	storage	of	multimedia	data	such	as	text,
images,	 audio,	 video,	 3D	 games,	CAD	designs,	 etc.	 They	 should	 also	 provide
content-based	query	facilities	such	as	“find	images	of	Bart”	or	“find	 images	of
people	 who	 look	 like	 Bart”.	 Streaming	 facilities	 should	 also	 be	 included	 to
stream	 multimedia	 output.	 These	 are	 very	 resource-intensive	 transactions	 that
may	 require	 specific	 hardware	 support.	 Note	 that	multimedia	 data	 are	 usually
stored	 as	 a	 binary	 large	 object	 (BLOB),	 supported	 by	 most	 modern-day
commercial	DBMSs.

A	 spatial	DBMS	 supports	 the	 storage	 and	 querying	 of	 spatial	 data.	 This
could	include	both	2D	objects	(e.g.,	points,	lines,	and	polygons)	and	3D	objects.
Spatial	operations	such	as	calculating	distances	or	relationships	between	objects
(e.g.,	whether	one	object	is	contained	within	another,	intersects	with	another,	is
detached	 from	another,	etc.)	are	provided.	Spatial	databases	are	a	key	building
block	 of	 geographical	 information	 systems	 (GIS).	 Most	 commercial	 DBMS
vendors	offer	facilities	for	spatial	data	management.

A	sensor	DBMS	manages	sensor	data	such	as	biometric	data	obtained	from
wearables,	 or	 telematics	 data	 which	 continuously	 record	 driving	 behavior.
Ideally,	 it	 has	 facilities	 to	 formulate	 application-specific	 queries	 such	 as
spatial–temporal	 queries	 that	 ask	 for	 the	 shortest	 path	 between	 two	 locations
given	the	current	state	of	the	traffic.	Most	modern-day	DBMSs	provide	support
for	storing	sensor	data.

Mobile	DBMSs	are	the	DBMSs	running	on	smartphones,	tablets,	and	other
mobile	 devices.	 They	 should	 always	 be	 online,	 have	 a	 small	 footprint,	 and	 be

able	to	deal	with	limited	processing	power,	storage,	and	battery	life.	Depending
upon	 the	 context,	 they	 could	 connect	 and	 synchronize	 to	 a	 central	 DBMS.
Ideally,	they	should	be	capable	of	handling	queries	and	support	self-management
without	 the	 intervention	 of	 a	 DBA.	 Some	 popular	 examples	 are:	 Oracle	 Lite,
Sybase	SQL	Anywhere,	Microsoft	SQL	Server	Compact,	SQLite,	and	IBM	DB2
Everyplace.

Finally,	open-source	DBMSs	 are	DBMSs	 for	which	 the	 code	 is	 publicly
available	 and	 can	 be	 extended	 by	 anyone.	This	 has	 the	 advantage	 of	 having	 a
large	 development	 community	working	 on	 the	 product.	They	 are	 very	 popular
for	 small	 business	 settings	 and	 in	 developing	 countries	 where	 budgets	 are
limited.	 Most	 of	 the	 open-source	 DBMSs	 can	 be	 obtained	 from
www.sourceforge.net,	which	is	a	well-known	website	for	open-source	software.
Some	examples	are:	MySQL,	which	is	a	relational	DBMS	maintained	by	Oracle;
PostgresSQL,	 which	 is	 also	 relational	 and	 maintained	 by	 the	 PostgresSQL
Global	 Development	 Group;	 Twig,	 which	 is	 an	 object-oriented	 DBMS
maintained	 by	 Google;	 and	 Perst,	 which	 is	 also	 an	 OODBMS	maintained	 by
McObject.

Drill	Down

Spotify	 streams	 more	 than	 24	 million	 songs	 to	 more	 than	 40	 million
users	 worldwide.	 It	 needed	 a	 database	 solution	 which	 ensures	 data
availability	at	all	times,	even	in	the	event	of	crashes	or	bugs.	It	turned	to
Apache	Cassandra	as	the	database	technology	of	choice	since	its	cloud-
based	architecture	ensures	high	availability.

Drill	Down

http://www.sourceforge.net

Gartner1	estimates	that	by	2018	more	than	70%	of	new	applications	will
be	 developed	 using	 open-source	 DBMSs.	 This	 clearly	 illustrates	 that
open-source	solutions	have	significantly	matured	 into	viable	and	robust
alternatives	to	their	commercial	counterparts.

Retention	Questions

How	can	DBMSs	be	categorized	based	on	data	model?

How	can	DBMSs	be	categorized	based	on	usage?

Summary

In	this	chapter	we	first	zoomed	in	on	the	architecture	of	a	DBMS.	We	discussed
the	 components	 that	 together	 comprise	 a	 DBMS.	 We	 illustrated	 how	 they
collaborate	for	data	storage,	processing,	and	management.

Next,	 we	 provided	 a	 categorization	 of	 DBMSs	 in	 terms	 of	 data	 model,
degree	of	simultaneous	access,	architecture,	and	usage.	This	categorization	is	by
no	 means	 exhaustive	 or	 exclusive	 since	 a	 DBMS	 can	 support	 various
functionalities	 simultaneously.	 It	 is	 just	 handy	 to	 set	 the	 stage	 for	 the	 later
chapters	that	provide	more	detail.

Scenario	Conclusion

The	CODASYL	customer	database	Sober	received	from	Mellow	Cab	is
an	example	of	a	network	database.	To	retrieve	the	customer	information,
Sober	 will	 have	 to	 work	 with	 record-at-a-time	 and	 procedural	 DML,
which	 is	not	efficient.	Another	option	 is	 that	Sober	could	 load	 the	data
into	 an	RDBMS	where	 it	 could	 access	 it	 in	 a	more	 friendly	way	using
SQL,	which	is	set-at-time	and	declarative	DML.	If	it	would	also	like	to
store	 images	 of	 its	 taxis	 and	 other	 multimedia	 data,	 it	 could	 even
contemplate	using	an	ORDBMS	instead.	Storing	the	location	of	Sober’s
taxis	 is	 an	 example	of	 a	Big	Data	 application	where	NoSQL	databases
can	come	in	handy.	Alternatively,	a	DBMS	capable	of	storing	sensor	data
can	 be	 considered	 as	 well.	 To	 continuously	 monitor	 the	 geographical
positioning	of	 its	fleet,	Sober	might	consider	 the	development	of	a	GIS
built	on	top	of	a	spatial	database.	The	transaction	information	about	ride-

hailing	and	ride-sharing	taxis	should	be	stored	using	an	OLTP	database,
whereas	the	analysis	of	hot-spot	pick-up	and	drop-off	locations	could	be
implemented	using	OLAP	facilities.

Key	Terms	List

backup	and	recovery	utility

buffer	manager

centralized	DBMS	architecture

client–server	DBMS	architecture

cloud	DBMS	architecture

connection	manager

database	management	system	architecture

DDL	compiler

DDL	statements

declarative	DML

DML	compiler

embedded	DML	statements

extended	relational	DBMS	(ERDBMS)

federated	DBMS

hierarchical	DBMSs

in-memory	DBMS

interactive	queries

loading	utility

lock	manager

mobile	DBMSs

multimedia	DBMSs

multi-user	systems

network	DBMSs

Not-only	SQL	(NoSQL)

n-tier	DBMS	architecture

object-oriented	DBMS	(OODBMS)

object-relational	DBMS	(ORDBMS)

on-line	analytical	processing	(OLAP)	DBMSs

on-line	transaction	processing	(OLTP)	DBMSs

open-source	DBMSs

performance	monitoring	utilities

procedural	DML

query	executor

query	optimizer

query	parser

query	processor

query	rewriter

read	lock

record-at-a-time	DML

recovery	manager

relational	DBMSs	(RDBMS)

reorganization	utility

sensor	DBMS

set-at-a-time	DML

simultaneous	access

single-user	system

spatial	DBMS

storage	manager

transaction	manager

user	interface

user	management	utilities

write	lock

XML	DBMS

Review	Questions

2.1.	Which	of	these	is	part	of	the	query	processor	in	the	architecture	of	a
DBMS?

a.	DDL	compiler.

b.	DML	compiler.

c.	Transaction	manager.

d.	Security	manager.

2.2.	Which	of	these	is	not	part	of	the	storage	manager	in	the	DBMS
architecture?

a.	Connection	manager.

b.	Transaction	manager.

c.	Buffer	manager.

d.	Recovery	manager.

2.3.	Which	statement(s)	is/are	correct?
Statement	A:	The	DDL	compiler	compiles	data	definitions	specified	in

DDL.	It	is	possible	that	there	is	only	one	DDL	with	three	instruction	sets.
Statement	B:	The	first	step	of	the	DDL	compiler	is	to	translate	the

DDL	definitions.

a.	Only	A.

b.	Only	B.

c.	A	and	B.

d.	Neither	A	nor	B.

2.4.	Which	statement(s)	is/are	correct?
Statement	A:	There	is	no	query	processor	available	in	procedural

DML.

Statement	B:	With	procedural	DML,	the	DBMS	determines	the	access
path	and	navigational	strategy	to	locate	and	modify	the	data	specified	in
the	query.

a.	Only	A.

b.	Only	B.

c.	A	and	B.

d.	Neither	A	nor	B.

2.5.	Evaluate	the	following	statements:

1.	Record-at-a-time	DML	means	that	the	query	gets	recorded	from	the
user	at	the	time	the	user	inputs	the	query	and	then	gets	processed.

2.	Record-at-a-time	DML	means	that	navigating	the	database	starts
with	positioning	on	one	specific	record	and	going	from	there	onwards
to	other	records.

3.	Set-at-a-time	DML	means	that	the	query	gets	set	beforehand	and
then	gets	processed	by	the	DBMS.

4.	Set-at-a-time	DML	means	that	many	records	can	be	retrieved	in	one
DML	statement.

a.	1	and	3	are	right.

b.	2	and	3	are	right.

c.	1	and	4	are	right.

d.	2	and	4	are	right.

2.6.	Which	statement(s)	is/are	correct?
Statement	A:	The	impedance	mismatch	problem	can	be	solved	by

using	middleware	to	map	data	structures	between	the	DBMS	and	the
DDL	statements.
Statement	B:	An	object-oriented	host	language	such	as	Java	combined

with	a	document-oriented	DBMS	such	as	MongoDB	does	not	require
mapping	objects	to	documents	and	vice	versa.

a.	Only	A.

b.	Only	B.

c.	A	and	B.

d.	Neither	A	nor	B.

2.7.	Which	statement(s)	is/are	correct?
Statement	A:	The	query	parser	optimizes	and	simplifies	a	query	and

then	passes	it	on	to	the	query	executor.
Statement	B:	In	the	DBMS	architecture,	the	storage	manager	takes

care	of	concurrency	control.

a.	Only	A.

b.	Only	B.

c.	A	and	B

d.	Neither	A	nor	B.

2.8.	Fill	in	the	gaps	in	the	following	sentences:
When,	during	crash	recovery,	aborted	transactions	need	to	be	undone,

that	is	a	task	of	the	…A…

The	part	of	the	storage	manager	that	guarantees	the	ACID	properties	is
the	…B…

a.	A:	lock	manager,	B:	recovery	manager.

b.	A:	lock	manager,	B:	lock	manager.

c.	A:	recovery	manager,	B:	buffer	manager.

d.	A:	recovery	manager,	B:	transaction	manager.

2.9.	CODASYL	is	an	example	of	…

a.	a	hierarchical	DBMS.

b.	a	network	DBMS.

c.	a	relational	DBMS.

d.	an	object-oriented	DBMS.

2.10.	Which	of	the	following	DBMS	types	is	not	a	classification	based
on	a	data	model?

a.	Hierarchical	DBMS.

b.	Network	DBMS.

c.	Cloud	DBMS.

d.	Object-relational	DBMS.

2.11.	Which	statement(s)	is/are	correct?
Statement	A:	In	a	hierarchical	DBMS,	DML	is	declarative	and	set

oriented	with	a	query	processor.

Statement	B:	In	a	relational	DBMS,	there	is	data	independence
between	the	conceptual	and	internal	data	model.

a.	Only	A.

b.	Only	B.

c.	A	and	B.

d.	Neither	A	nor	B

2.12.	If	you	want	to	use	a	DBMS	architecture	that	can	access	multiple
data	sources	itself	and	provides	a	uniform	interface	hiding	the	low-level
details,	the	most	appropriate	DBMS	would	be	a(n)…

a.	n-tier	DBMS.

b.	cloud	DBMS.

c.	client–server	DBMS.

d.	federated	DBMS.

2.13.	Which	statement(s)	is/are	correct?
Statement	A:	An	OLTP	system	is	able	to	cope	with	real-time,

simultaneous	transactions	that	the	database	server	is	able	to	process	in	a
large	volume.
Statement	B:	An	OLAP	system	uses	large	amounts	of	operational	data

to	run	complex	queries	on	and	provide	insights	for	tactical	and	strategic
decision-making.

a.	Only	A.

b.	Only	B

c.	A	and	B.

d.	Neither	A	nor	B.

2.14.	Which	statement(s)	is/are	correct?
Statement	A:	Native	XML	DBMSs	map	the	hierarchical	structure	of

an	XML	document	to	a	physical	storage	structure,	because	they	are	able
to	use	the	intrinsic	structure	of	an	XML	document.
Statement	B:	XML-enabled	DBMSs	are	able	to	store	XML	data	in	an

integrated	and	transparent	way,	because	they	are	able	to	use	the	intrinsic
structure	of	an	XML	document.

a.	Only	A.

b.	Only	B.

c.	A	and	B.

d.	Neither	A	nor	B.

Problems	and	Exercises

2.1E	What	are	the	key	components	of	a	DBMS	architecture	and	how	do	they
collaborate?

2.2E	What	is	the	difference	between	procedural	and	declarative	DML?

2.3E	Why	is	it	important	that	a	DBMS	has	a	good	query	optimizer?

2.4E	Give	some	examples	of	DBMS	utilities	and	interfaces.

2.5E	How	can	DBMSs	be	categorized	in	terms	of	the	following?

1	www.forbes.com/sites/benkerschberg/2016/03/08/how-postgres-and-open-
source-are-disrupting-the-market-for-database-management-
systems/#1d9cca320a3d.

data	model

degree	of	simultaneous	access

architecture

usage

https://www.forbes.com/sites/benkerschberg/2016/03/08/how-postgres-and-open-source-are-disrupting-the-market-for-database-management-systems/#1d9cca320a3d

3

Conceptual	Data	Modeling	Using	the
(E)ER	Model	and	UML	Class

Diagram
◈

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

Opening	Scenario

understand	the	different	phases	of	database	design:	conceptual	design,
logical	design,	and	physical	design;

build	a	conceptual	data	model	using	the	ER	model	and	understand	the
limitations	thereof;

build	a	conceptual	data	model	using	the	EER	model	and	understand
the	limitations	thereof;

build	a	conceptual	data	model	using	the	UML	class	diagram	and
understand	the	limitations	thereof.

Sober	 has	 decided	 to	 invest	 in	 a	 new	 database	 and	 begin	 a	 database
design	 process.	 As	 a	 first	 step,	 it	 wants	 to	 formalize	 the	 data
requirements	in	a	conceptual	data	model.	Sober	asks	you	to	build	both	an
EER	and	a	UML	data	model	for	its	business	setting.	It	also	wants	you	to
extensively	 comment	 on	 both	 models	 and	 properly	 indicate	 their
shortcomings.

In	 this	 chapter	 we	 start	 by	 zooming	 out	 and	 reviewing	 the	 database	 design
process.	We	elaborate	on	conceptual,	logical,	and	physical	database	design.	We
continue	the	chapter	with	conceptual	design,	which	aims	at	elucidating	the	data
requirements	of	a	business	process	 in	a	 formal	way.	We	discuss	 three	 types	of
conceptual	 data	 models:	 the	 ER	 model;	 the	 EER	 model;	 and	 the	 UML	 class
diagram.	Each	model	is	first	defined	in	terms	of	its	fundamental	building	blocks.
Various	examples	are	 included	for	clarification.	We	also	discuss	 the	 limitations
of	 the	 three	 conceptual	 data	 models	 and	 contrast	 them	 in	 terms	 of	 their
expressive	power	 and	modeling	 semantics.	Subsequent	 chapters	 continue	 from
the	conceptual	data	models	of	this	chapter	and	map	them	to	logical	and	internal
data	models.

3.1	Phases	of	Database	Design

Designing	a	database	is	a	multi-step	process,	as	illustrated	in	Figure	3.1.	It	starts
from	 a	 business	 process.	 As	 an	 example,	 think	 about	 a	 B2B	 procurement
application,	invoice	handling	process,	logistics	process,	or	salary	administration.
A	 first	 step	 is	 requirement	 collection	 and	 analysis,	 where	 the	 aim	 is	 to
carefully	 understand	 the	 different	 steps	 and	 data	 needs	 of	 the	 process.	 The
information	architect	 (see	Chapter	4)	will	collaborate	with	 the	business	user	 to
elucidate	 the	 database	 requirements.	 Various	 techniques	 can	 be	 used,	 such	 as
interviews	or	surveys	with	end-users,	 inspections	of	 the	documents	used	 in	 the
current	process,	etc.	During	the	conceptual	design,	both	parties	try	to	formalize
the	 data	 requirements	 in	 a	conceptual	data	model.	As	mentioned	 before,	 this
should	be	a	high-level	model,	meaning	it	should	be	both	easy	to	understand	for
the	business	user	and	formal	enough	for	the	database	designer	who	will	use	it	in
the	next	step.	The	conceptual	data	model	must	be	user-friendly,	and	preferably
have	 a	 graphical	 representation	 such	 that	 it	 can	 be	 used	 as	 a	 handy
communication	 and	 discussion	 instrument	 between	 both	 information	 architects
and	 business	 users.	 It	 should	 be	 flexible	 enough	 that	 new	 or	 changing	 data
requirements	 can	 easily	 be	 added	 to	 the	model.	 Finally,	 it	must	 be	DBMS-	 or
implementation-independent	since	 its	only	goal	 is	 to	adequately	and	accurately
collect	and	analyze	data	requirements.	This	conceptual	model	will	also	have	its
limitations,	 which	 should	 be	 clearly	 documented	 and	 followed	 up	 during
application	development.

Figure	3.1	The	database	design	process.

Once	 all	 parties	 have	 agreed	 upon	 the	 conceptual	 data	 model,	 it	 can	 be
mapped	 to	 a	 logical	 data	 model	 by	 the	 database	 designer	 during	 the	 logical
design	 step.	The	 logical	 data	model	 is	 based	upon	 the	data	model	used	by	 the
implementation	 environment.	 Although	 at	 this	 stage	 it	 is	 already	 known	what
type	of	DBMS	(e.g.,	RDBMS,	OODBMS,	etc.)	will	be	used,	 the	product	 itself
(e.g.,	Microsoft,	IBM,	Oracle)	has	not	been	decided	yet.	Consider	a	conceptual
EER	model	that	will	be	mapped	to	a	logical	relational	model	since	the	database
will	 be	 implemented	 using	 an	RDBMS.	 The	mapping	 exercise	 can	 result	 in	 a
loss	of	semantics	which	should	be	properly	documented	and	followed	up	during
application	development.	 It	might	be	possible	 that	 additional	 semantics	 can	be
added	 to	 further	 enrich	 the	 logical	data	model.	Also,	 the	views	of	 the	 external
data	model	can	be	designed	during	this	logical	design	step.

In	 a	 final	 step,	 the	 logical	 data	model	 can	 be	mapped	 to	 an	 internal	 data
model	by	the	database	designer.	The	DBA	can	also	give	some	recommendations
regarding	performance	during	this	physical	design	step.	In	this	step,	the	DBMS
product	is	known,	the	DDL	is	generated,	and	the	data	definitions	are	stored	in	the
catalog.	 The	 database	 can	 then	 be	 populated	 with	 data	 and	 is	 ready	 for	 use.

Again,	 any	 semantics	 lost	 or	 added	 during	 this	 mapping	 step	 should	 be
documented	and	followed	up.

In	this	chapter,	we	elaborate	on	the	ER	model,	EER	model,	and	UML	class
diagram	for	conceptual	data	modeling.	Subsequent	chapters	discuss	logical	and
physical	database	design.

Connections

We	 discuss	 logical	 data	 models	 in	 Chapter	 5	 (hierarchical	 and
CODASYL	 model),	 Chapters	 6	 and	 7	 (relational	 model),	 Chapter	 8
(object-oriented	model),	Chapter	9	(extended	relational	model),	Chapter
10	(XML	model),	and	Chapter	11	(NoSQL	models).	Internal	data	models
are	covered	in	Chapters	12	and	13.

3.2	The	Entity	Relationship	Model

The	 entity	 relationship	 (ER)	model	 was	 introduced	 and	 formalized	 by	 Peter
Chen	 in	 1976.	 It	 is	 one	 of	 the	 most	 popular	 data	 models	 for	 conceptual	 data
modeling.	The	ER	model	has	an	attractive	and	user-friendly	graphical	notation.
Hence,	it	has	the	ideal	properties	to	build	a	conceptual	data	model.	It	has	three
building	 blocks:	 entity	 types,	 attribute	 types,	 and	 relationship	 types.	 We
elaborate	on	these	in	what	follows.	We	also	cover	weak	entity	types	and	provide
two	 examples	 of	 ER	 models.	 This	 section	 concludes	 by	 discussing	 the
limitations	of	the	ER	model.

Drill	Down

Peter	 Pin-Shan	Chen	 is	 a	 Taiwanese-American	 computer	 scientist	who
developed	 the	 ER	 model	 in	 1976.	 He	 has	 a	 PhD	 in	 computer
science/applied	mathematics	 from	Harvard	University	 and	held	various
positions	 at	 MIT	 Sloan	 School	 of	 Management,	 UCLA	 Management
School,	 Louisiana	 State	 University,	 Harvard,	 and	 National	 Tsing	 Hua
University	(Taiwan).	He	is	currently	a	Distinguished	Career	Scientist	and
faculty	member	at	Carnegie	Mellon	University.	His	seminal	paper	“The
Entity–Relationship	 Model:	 Toward	 A	 Unified	 View	 of	 Data”	 was
published	 in	 1975	 in	 ACM	 Transactions	 on	 Database	 Systems.	 It	 is
considered	 one	 of	 the	 most	 influential	 papers	 within	 the	 field	 of
computer	 software.	 His	work	 initiated	 the	 research	 field	 of	 conceptual
modeling.

3.2.1	Entity	Types

An	entity	type	represents	a	business	concept	with	an	unambiguous	meaning	to	a
particular	set	of	users.	Examples	of	entity	types	are:	supplier,	student,	product,	or
employee.	An	entity	 is	one	particular	occurrence	or	 instance	of	 an	entity	 type.
Deliwines,	 Best	 Wines,	 and	 Ad	 Fundum	 are	 entities	 from	 the	 entity	 type
supplier.	In	other	words,	an	entity	type	defines	a	collection	of	entities	that	have
similar	 characteristics.	 When	 building	 a	 conceptual	 data	 model,	 we	 focus	 on
entity	 types	 and	 not	 on	 individual	 entities.	 In	 the	 ER	model,	 entity	 types	 are
depicted	 using	 a	 rectangle,	 as	 illustrated	 in	 Figure	 3.2	 for	 the	 entity	 type
SUPPLIER.

Figure	3.2	The	entity	type	SUPPLIER.

3.2.2	Attribute	Types

An	attribute	type	represents	a	property	of	an	entity	type.	As	an	example,	name
and	 address	 are	 attribute	 types	 of	 the	 entity	 type	 supplier.	 A	 particular	 entity
(e.g.,	Deliwines)	 has	 a	 value	 for	 each	of	 its	 attribute	 types	 (e.g.,	 its	 address	 is
240,	Avenue	of	the	Americas).	An	attribute	type	defines	a	collection	of	similar
attributes,	or	an	attribute	is	an	instance	of	an	attribute	type.	This	is	illustrated	in
Figure	 3.3.	 The	 entity	 type	 SUPPLIER	 has	 attribute	 types	 SUPNR	 (supplier
number),	 SUPNAME	 (supplier	 name),	 SUPADDRESS	 (supplier	 address),
SUPCITY	 (supplier	 city),	 and	 SUPSTATUS	 (supplier	 status).	 Entities	 then
correspond	to	specific	suppliers	such	as	supplier	number	21,	Deliwines,	together
with	all	its	other	attributes.

Figure	3.3	Entity	relationship	model:	basic	concepts.

In	 the	 ER	 model,	 we	 focus	 on	 attribute	 types	 and	 represent	 them	 using
ellipses,	as	illustrated	in	Figure	3.4	for	 the	entity	 type	SUPPLIER	and	attribute
types	SUPNR,	STATUS,	and	DATE	OF	BIRTH.

Figure	3.4	The	entity	type	SUPPLIER	with	attribute	types	SUPNR,	STATUS,
and	DATE	OF	BIRTH.

In	 the	 following	 subsections	 we	 elaborate	 on	 attribute	 types	 and	 discuss
domains,	 key	 attribute	 types,	 simple	 versus	 composite	 attribute	 types,	 single-
valued	versus	multi-valued	attribute	types	and	derived	attribute	types.

3.2.3.1	Domains

A	domain	 specifies	 the	 set	 of	 values	 that	may	 be	 assigned	 to	 an	 attribute	 for
each	individual	entity.	A	domain	for	gender	can	be	specified	as	having	only	two
values:	 male	 and	 female.	 Likewise,	 a	 date	 domain	 can	 define	 dates	 as	 day,
followed	by	month,	followed	by	year.	A	domain	can	also	contain	null	values.	A
null	value	means	that	a	value	is	not	known,	not	applicable,	or	not	relevant.	It	is
thus	not	the	same	as	the	value	0	or	as	an	empty	string	of	text	“”.	Think	about	a
domain	email	address	that	allows	for	null	values	in	case	the	email	address	is	not
known.	By	convention,	domains	are	not	displayed	in	an	ER	model.

3.2.3.2	Key	Attribute	Types

A	key	 attribute	 type	 is	 an	 attribute	 type	 whose	 values	 are	 distinct	 for	 each
individual	 entity.	 In	 other	words,	 a	 key	 attribute	 type	 can	 be	 used	 to	 uniquely
identify	 each	 entity.	 Examples	 are:	 supplier	 number,	which	 is	 unique	 for	 each
supplier;	product	number,	which	is	unique	for	each	product;	and	social	security

number,	which	is	unique	for	each	employee.	A	key	attribute	type	can	also	be	a
combination	of	attribute	types.	As	an	example,	suppose	a	flight	is	identified	by	a
flight	number.	However,	the	same	flight	number	is	used	on	each	day	to	represent
a	 particular	 flight.	 In	 this	 case,	 a	 combination	 of	 flight	 number	 and	 departure
date	 is	needed	 to	uniquely	 identify	 flight	entities.	 It	 is	clear	 from	 this	example
that	the	definition	of	a	key	attribute	type	depends	upon	the	business	setting.	Key
attribute	types	are	underlined	in	the	ER	model,	as	illustrated	in	Figure	3.5.

Figure	3.5	The	entity	type	SUPPLIER	with	key	attribute	type	SUPNR.

3.2.3.3	Simple	versus	Composite	Attribute	Types

A	 simple	 or	 atomic	 attribute	 type	 cannot	 be	 further	 divided	 into	 parts.
Examples	are	supplier	number	or	supplier	status.	A	composite	attribute	type	is
an	attribute	 type	 that	can	be	decomposed	into	other	meaningful	attribute	 types.
Think	 about	 an	 address	 attribute	 type,	 which	 can	 be	 further	 decomposed	 into
attribute	types	for	street,	number,	ZIP	code,	city,	and	country.	Another	example
is	name,	which	can	be	split	into	first	name	and	last	name.	Figure	3.6	 illustrates
how	the	composite	attribute	 types	address	and	name	are	 represented	 in	 the	ER
model.

Figure	3.6	The	entity	type	SUPPLIER	with	composite	attribute	types	address
and	name.

3.2.3.4	Single-Valued	versus	Multi-Valued	Attribute	Types

A	 single-valued	 attribute	 type	 has	 only	 one	 value	 for	 a	 particular	 entity.	 An
example	is	product	number	or	product	name.	A	multi-valued	attribute	type	 is
an	attribute	type	that	can	have	multiple	values.	As	an	example,	email	address	can
be	a	multi-valued	attribute	type	as	a	supplier	can	have	multiple	email	addresses.
Multi-valued	 attribute	 types	 are	 represented	 using	 a	 double	 ellipse	 in	 the	 ER
model,	as	illustrated	in	Figure	3.7.

Figure	3.7	The	entity	type	SUPPLIER	with	multi-valued	attribute	type	email.

3.2.3.5	Derived	Attribute	Type

A	derived	attribute	type	 is	an	attribute	 type	 that	can	be	derived	from	another
attribute	 type.	 As	 an	 example,	 age	 is	 a	 derived	 attribute	 type	 since	 it	 can	 be
derived	 from	 birth	 date.	 Derived	 attribute	 types	 are	 depicted	 using	 a	 dashed
ellipse,	as	shown	in	Figure	3.8.

Figure	3.8	The	entity	type	SUPPLIER	with	derived	attribute	type	age.

3.2.4	Relationship	Types

A	relationship	represents	an	association	between	two	or	more	entities.	Consider
a	particular	supplier	(e.g.,	Deliwines)	supplying	a	set	of	products	(e.g.,	product
numbers	 0119,	 0178,	 0289,	 etc.).	 A	 relationship	 type	 then	 defines	 a	 set	 of
relationships	 among	 instances	 of	 one,	 two,	 or	 more	 entity	 types.	 In	 the	 ER
model,	relationship	types	are	indicated	using	a	rhombus	symbol	(see	Figure	3.9).
The	rhombus	can	be	 thought	of	as	 two	adjacent	arrows	pointing	 to	each	of	 the
entity	 types	 specifying	 both	 directions	 in	 which	 the	 relationship	 type	 can	 be
interpreted.	Figure	3.9	shows	the	relationship	type	SUPPLIES	between	the	entity
types	SUPPLIER	and	PRODUCT.	A	supplier	can	supply	products	(as	indicated
by	 the	 downwards	 arrow)	 and	 a	 product	 can	 be	 supplied	 by	 suppliers	 (as
indicated	by	 the	upwards	 arrow).	Each	 relationship	 instance	of	 the	SUPPLIES
relationship	type	relates	one	particular	supplier	instance	to	one	particular	product
instance.	 However,	 similar	 to	 entities	 and	 attributes,	 individual	 relationship
instances	are	not	represented	in	an	ER	model.

Figure	3.9	Relationship	type	in	the	ER	model.

In	 the	 following	 subsections	 we	 elaborate	 on	 various	 characteristics	 of
relationship	 types,	 such	 as	 degree	 and	 roles,	 cardinalities,	 and	 relationship
attribute	types.

3.2.4.1	Degree	and	Roles

The	degree	 of	 a	 relationship	 type	 corresponds	 to	 the	 number	 of	 entity	 types
participating	in	the	relationship	type.	A	unary	or	recursive	relationship	type	has
degree	one.	A	binary	relationship	type	has	two	participating	entity	types	whereas
a	 ternary	 relationship	 type	 has	 three	 participating	 entity	 types.	 The	 roles	 of	 a
relationship	 type	 indicate	 the	various	directions	 that	can	be	used	 to	 interpret	 it.
Figure	 3.9	 represents	 a	 binary	 relationship	 type	 since	 it	 has	 two	 participating
entity	 types	 (SUPPLIER	 and	 PRODUCT).	 Note	 the	 role	 names	 (supprod	 and
prodsup)	 that	 we	 have	 added	 in	 each	 of	 the	 arrows	 making	 up	 the	 rhombus
symbol.

Figures	3.10	and	3.11	show	two	other	examples	of	relationship	types.	The
SUPERVISES	relationship	type	is	a	unary	or	recursive	relationship	type,	which
models	 the	 hierarchical	 relationships	 between	 employees.	 In	 general,	 the
instances	of	a	unary	relationship	relate	two	instances	of	the	same	entity	type	to
one	another.	The	role	names	supervises	and	supervised	by	are	added	for	further
clarification.	The	 second	 example	 is	 an	 example	 of	 a	 ternary	 relationship	 type
BOOKING	 between	 the	 entity	 types	 TOURIST,	 HOTEL,	 and	 TRAVEL
AGENCY.	 Each	 relationship	 instance	 represents	 the	 interconnection	 between
one	particular	tourist,	hotel,	and	travel	agency.	Role	names	can	also	be	added	but
this	is	less	straightforward	here.

Figure	3.10	Unary	ER	relationship	type.

Figure	3.11	Ternary	ER	relationship	type.

3.2.4.2	Cardinalities

Every	relationship	type	can	be	characterized	in	terms	of	its	cardinalities,	which
specify	 the	 minimum	 or	 maximum	 number	 of	 relationship	 instances	 that	 an
individual	entity	can	participate	in.	The	minimum	cardinality	can	either	be	0	or
1.	If	it	is	0,	it	implies	that	an	entity	can	occur	without	being	connected	through
that	 relationship	 type	 to	 another	 entity.	 This	 can	 be	 referred	 to	 as	 partial
participation	since	some	entities	may	not	participate	 in	 the	relationship.	 If	 the
minimum	 cardinality	 is	 1,	 an	 entity	must	 always	 be	 connected	 to	 at	 least	 one
other	 entity	 through	 an	 instance	of	 the	 relationship	 type.	This	 is	 referred	 to	 as
total	 participation	 or	 existence	 dependency,	 since	 all	 entities	 need	 to
participate	 in	 the	 relationship,	 or	 in	 other	 words,	 the	 existence	 of	 the	 entity
depends	upon	the	existence	of	another.

The	maximum	cardinality	can	either	be	1	or	N.	In	 the	case	 that	 it	 is	1,	an
entity	 can	 be	 involved	 in	 only	 one	 instance	 of	 that	 relationship	 type.	 In	 other
words,	it	can	be	connected	to	at	most	one	other	entity	through	that	relationship

type.	 In	 case	 the	maximum	 cardinality	 is	 N,	 an	 entity	 can	 be	 connected	 to	 at
most	N	other	entities	by	means	of	the	relationship	type.	Note	that	N	represents
an	arbitrary	integer	number	bigger	than	1.

Relationship	 types	 are	 often	 characterized	 according	 to	 the	 maximum
cardinality	for	each	of	 their	roles.	For	binary	relationship	types,	 this	gives	four
options:	1:1,	1:N,	N:1,	and	M:N.

Figure	3.12	illustrates	some	examples	of	binary	relationship	types	together
with	their	cardinalities.	A	student	can	be	enrolled	for	a	minimum	of	one	course
and	a	maximum	of	M	courses.	Conversely,	a	course	can	have	minimum	zero	and
maximum	N	students	enrolled.	This	is	an	example	of	an	N:M	relationship	type
(also	 called	 many-to-many	 relationship	 type).	 A	 student	 can	 be	 assigned	 to
minimum	zero	and	maximum	one	master’s	thesis.	A	master’s	thesis	is	assigned
to	 minimum	 zero	 and	 maximum	 one	 student.	 This	 is	 an	 example	 of	 a	 1:1
relationship	 type.	 An	 employee	 can	 manage	 minimum	 zero	 and	 maximum	 N
projects.	A	project	is	managed	by	minimum	one	and	maximum	one,	or	in	other
words	exactly	one	employee.	This	is	an	example	of	a	1:N	relationship	type	(also
called	one-to-many	relationship	type).

Figure	3.12	ER	relationship	types:	examples.

3.2.4.3	Relationship	Attribute	Types

Like	 entity	 types,	 a	 relationship	 type	 can	 also	 have	 attribute	 types.	 These
attribute	types	can	be	migrated	to	one	of	the	participating	entity	types	in	case	of
a	1:1	or	1:N	relationship	type.	However,	in	the	case	of	an	M:N	relationship	type,
the	attribute	type	needs	to	be	explicitly	specified	as	a	relationship	attribute	type.

This	 is	 illustrated	 in	 Figure	 3.13.	 The	 attribute	 type	 hours	 represents	 the
number	 of	 hours	 an	 employee	 worked	 on	 a	 project.	 Its	 value	 cannot	 be
considered	 as	 the	 sole	 property	 of	 an	 employee	 or	 of	 a	 project;	 it	 is	 uniquely
determined	 by	 a	 combination	 of	 an	 employee	 instance	 and	 project	 instance	 –
hence,	 it	 needs	 to	 be	 modeled	 as	 an	 attribute	 type	 of	 the	 WORKS	 ON
relationship	type	which	connects	employees	to	projects.

Figure	3.13	Relationship	type	with	attribute	type.

3.2.5	Weak	Entity	Types

A	strong	entity	type	is	an	entity	type	that	has	a	key	attribute	type.	In	contrast,	a
weak	entity	type	is	an	entity	type	that	does	not	have	a	key	attribute	type	of	its
own.	More	specifically,	entities	belonging	to	a	weak	entity	type	are	identified	by
being	related	to	specific	entities	from	the	owner	entity	type,	which	is	an	entity
type	 from	which	 they	borrow	an	attribute	 type.	The	borrowed	attribute	 type	 is
then	combined	with	some	of	 the	weak	entity’s	own	attribute	 types	(also	called
partial	keys)	into	a	key	attribute	type.	Figure	3.14	shows	an	ER	model	for	a	hotel
administration.

Figure	3.14	Weak	entity	types	in	the	ER	model.

A	hotel	has	a	hotel	number	(HNR)	and	a	hotel	name	(Hname).	Every	hotel
has	 a	 unique	 hotel	 number.	Hence,	HNR	 is	 the	 key	 attribute	 type	 of	Hotel.	A
room	 is	 identified	 by	 a	 room	 number	 (RNR)	 and	 a	 number	 of	 beds	 (Beds).
Within	 a	 particular	 hotel,	 each	 room	has	 a	 unique	 room	number	 but	 the	 same
room	number	can	occur	 for	multiple	 rooms	 in	different	hotels.	Hence,	RNR	as
such	 does	 not	 suffice	 as	 a	 key	 attribute	 type.	 Consequently,	 the	 entity	 type
ROOM	is	a	weak	entity	type	since	it	cannot	produce	its	own	key	attribute	type.
More	specifically,	it	needs	to	borrow	HNR	from	HOTEL	to	come	up	with	a	key
attribute	 type	 which	 is	 now	 a	 combination	 of	 its	 partial	 key	 RNR	 and	 HNR.
Weak	 entity	 types	 are	 represented	 in	 the	 ER	 model	 using	 a	 double-lined
rectangle,	 as	 illustrated	 in	 Figure	 3.14.	 The	 rhombus	 representing	 the

relationship	 type	 through	 which	 the	 weak	 entity	 type	 borrows	 a	 key	 attribute
type	is	also	double-lined.	The	borrowed	attribute	type(s)	is/are	underlined	using
a	dashed	line.

Since	 a	weak	 entity	 type	 needs	 to	 borrow	 an	 attribute	 type	 from	 another
entity	type,	its	existence	will	always	be	dependent	on	the	latter.	For	example,	in
Figure	3.14,	ROOM	is	existence-dependent	on	HOTEL,	as	also	indicated	by	the
minimum	 cardinality	 of	 1.	 Note,	 however,	 that	 an	 existence-dependent	 entity
type	 does	 not	 necessarily	 imply	 a	 weak	 entity	 type.	 Consider	 the	 example	 in
Figure	 3.15.	 The	 PURCHASE	 ORDER	 entity	 type	 is	 existence-dependent	 on
SUPPLIER,	as	indicated	by	the	minimum	cardinality	of	1.	However,	in	this	case
PURCHASE	ORDER	 has	 its	 own	 key	 attribute	 type,	which	 is	 purchase	 order
number	 (PONR).	 In	 other	 words,	 PURCHASE	 ORDER	 is	 an	 existence-
dependent	entity	type	but	not	a	weak	entity	type.

Figure	3.15	Weak	versus	existence-dependent	entity	type	in	the	ER	model.

3.2.6	Ternary	Relationship	Types

The	majority	of	relationship	types	in	an	ER	model	are	binary	or	have	only	two
participating	 entity	 types.	 However,	 higher-order	 relationship	 types	 with	more
than	 two	 entity	 types,	 known	 as	 ternary	 relationship	 types,	 can	 occasionally
occur,	and	special	attention	is	needed	to	properly	understand	their	meaning.

Assume	that	we	have	a	situation	in	which	suppliers	can	supply	products	for
projects.	 A	 supplier	 can	 supply	 a	 particular	 product	 for	 multiple	 projects.	 A
product	for	a	particular	project	can	be	supplied	by	multiple	suppliers.	A	project
can	 have	 a	 particular	 supplier	 supply	multiple	 products.	 The	model	must	 also
include	 the	 quantity	 and	 due	 date	 for	 supplying	 a	 particular	 product	 to	 a
particular	project	by	a	particular	supplier.	This	is	a	situation	that	can	be	perfectly
modeled	using	a	ternary	relationship	type,	as	you	can	see	in	Figure	3.16.

Figure	3.16	Ternary	relationship	type:	example.

A	supplier	can	supply	a	particular	product	for	0	to	N	projects.	A	product	for
a	particular	project	can	be	supplied	by	0	to	N	suppliers.	A	supplier	can	supply	0
to	N	 products	 for	 a	 particular	 project.	 The	 relationship	 type	 also	 includes	 the
quantity	and	due	date	attribute	types.1

An	obvious	question	is	whether	we	can	also	model	this	ternary	relationship
type	as	a	set	of	binary	relationship	types,	as	shown	in	Figure	3.17.

Figure	3.17	Ternary	versus	binary	relationship	types.

We	 decomposed	 the	 ternary	 relationship	 type	 into	 the	 binary	 relationship
types	 “SUPPLIES”	 between	 SUPPLIER	 and	 PROJECT,	 “CAN	 SUPPLY”
between	 SUPPLIER	 and	 PRODUCT,	 and	 “USES”	 between	 PRODUCT	 and
PROJECT.	 We	 can	 now	 wonder	 whether	 the	 semantics	 of	 the	 ternary
relationship	 type	 is	 preserved	 by	 these	 binary	 relationship	 types.	 To	 properly
understand	this,	we	need	to	write	down	some	relationship	instances.	Say	we	have
two	projects:	Project	1	uses	a	pencil	and	a	pen,	and	Project	2	uses	a	pen.	Supplier
Peters	 supplies	 the	 pencil	 for	 Project	 1	 and	 the	 pen	 for	 Project	 2,	 whereas
supplier	Johnson	supplies	the	pen	for	Project	1.

Figure	3.18	 shows	 the	 relationship	 instances	 for	both	 cases.	At	 the	 top	of
the	 figure	 are	 the	 relationship	 instances	 that	 would	 be	 used	 in	 a	 ternary
relationship	 type	 “SUPPLY”.	 This	 can	 be	 deconstructed	 into	 the	 three	 binary
relationship	types:	“SUPPLIES”,	“USES”,	and	“CAN	SUPPLY”.

Figure	3.18	Ternary	versus	binary	relationship	types:	example	instances.

From	the	“SUPPLIES”	 relationship	 type,	we	can	 see	 that	both	Peters	 and
Johnson	 supply	 to	 Project	 1.	 From	 the	 “CAN	SUPPLY”	 relationship	 type,	we
can	see	that	both	can	also	supply	a	pen.	The	“USES”	relationship	type	indicates
that	Project	1	needs	 a	pen.	Hence,	 from	 the	binary	 relationship	 types,	 it	 is	not
clear	who	supplies	 the	pen	 for	Project	1.	This	 is,	however,	clear	 in	 the	 ternary
relationship	type,	where	it	can	be	seen	that	Johnson	supplies	the	pen	for	Project
1.	By	decomposing	the	ternary	relationship	types	into	binary	relationship	types,
we	clearly	lose	semantics.	Furthermore,	when	using	binary	relationship	types,	it
is	 also	 unclear	 where	 we	 should	 add	 the	 relationship	 attribute	 types	 such	 as
quantity	and	due	date	(see	Figure	3.16).	Binary	relationship	types	can,	however,
be	used	to	model	additional	semantics.

Figure	3.19	shows	another	example	of	a	 ternary	relationship	type	between
three	entity	types:	INSTRUCTOR	with	key	attribute	type	INR	representing	the
instructor	 number;	 COURSE	 with	 key	 attribute	 type	 CNR	 representing	 the
course	 number;	 and	 SEMESTER	 with	 key	 attribute	 type	 SEM-YEAR
representing	the	semester	year.	An	instructor	can	offer	a	course	during	zero	to	N
semesters.	 A	 course	 during	 a	 semester	 is	 offered	 by	 one	 to	 N	 instructors.	 An
instructor	 can	 offer	 zero	 to	N	 courses	 during	 a	 semester.	 In	 this	 case,	we	 also
added	 an	 extra	 binary	 relationship	 type	QUALIFIED	 between	 INSTRUCTOR
and	COURSE	to	 indicate	what	courses	an	 instructor	 is	qualified	 to	 teach.	Note
that,	 in	 this	 way,	 it	 is	 possible	 to	 model	 the	 fact	 that	 an	 instructor	 may	 be
qualified	 for	 more	 courses	 than	 the	 ones	 she/he	 is	 actually	 teaching	 at	 the
moment.

Figure	3.19	Ternary	relationship	type	in	the	ER	model.

Another	alternative	to	model	a	ternary	relationship	type	is	by	using	a	weak
entity	type	as	shown	in	Figure	3.20.	The	weak	entity	type	SUPPLY	is	existence-
dependent	 on	 SUPPLIER,	 PRODUCT,	 and	 PROJECT,	 as	 indicated	 by	 the
minimum	cardinalities	of	1.	Its	key	is	a	combination	of	supplier	number,	product
number,	and	project	number.	It	also	includes	the	attribute	types	quantity	and	due
date.	Representing	a	ternary	relationship	type	in	this	way	can	be	handy	in	case
the	database	modeling	tool	only	supports	unary	and	binary	relationship	types.

Figure	3.20	Modeling	ternary	relationship	types	as	binary	relationship	types.

3.2.7	Examples	of	the	ER	Model

Figure	3.21	shows	the	ER	model	for	a	human	resources	(HR)	administration.	It
has	three	entity	types:	EMPLOYEE,	DEPARTMENT,	and	PROJECT.	Let’s	read
some	 of	 the	 relationship	 types.	 An	 employee	 works	 in	 minimum	 one	 and
maximum	one,	so	exactly	one,	department.	A	department	has	minimum	one	and
maximum	N	employees	working	in	it.	A	department	is	managed	by	exactly	one
employee.	An	employee	can	manage	zero	or	one	department.	A	department	is	in
charge	of	zero	to	N	projects.	A	project	is	assigned	to	exactly	one	department.	An
employee	works	on	zero	to	N	projects.	A	project	is	being	worked	on	by	zero	to
M	 employees.	 The	 relationship	 type	 WORKS	 ON	 also	 has	 an	 attribute	 type
hours,	representing	the	number	of	hours	an	employee	worked	on	a	project.	Also
note	 the	 recursive	 relationship	 type	 to	 model	 the	 supervision	 relationships
between	employees.	An	employee	supervises	zero	to	N	employees.	An	employee
is	supervised	by	zero	or	one	employees.

Figure	3.21	ER	model	for	HR	administration.

Figure	3.22	 shows	another	 example	of	 an	ER	model	 for	 a	purchase	order
administration.	It	has	three	entity	types:	SUPPLIER,	PURCHASE	ORDER,	and

PRODUCT.	A	supplier	can	supply	zero	to	N	products.	A	product	can	be	supplied
by	 zero	 to	 M	 suppliers.	 The	 relationship	 type	 SUPPLIES	 also	 includes	 the
attribute	 types	purchase_price	and	deliv_period.	A	supplier	can	have	zero	 to	N
purchase	orders	on	order.	A	purchase	order	is	always	assigned	to	one	supplier.	A
purchase	 order	 can	 have	 one	 to	 N	 purchase	 order	 lines	 with	 products.
Conversely,	a	product	can	be	included	in	zero	to	M	purchase	orders.	In	addition,
the	relationship	type	PO_LINE	includes	the	quantity	of	the	order.	Also	note	the
attribute	types	and	key	attribute	types	of	each	of	the	entity	types.

Figure	3.22	ER	model	for	purchase	order	administration.

3.2.8	Limitations	of	the	ER	Model

Although	 the	ER	model	 is	 a	very	user-friendly	data	model	 for	conceptual	data
modeling,	 it	 also	 has	 its	 limitations.	 First	 of	 all,	 the	 ER	 model	 presents	 a
temporary	snapshot	of	the	data	requirements	of	a	business	process.	This	implies
that	 temporal	 constraints,	 which	 are	 constraints	 spanning	 a	 particular	 time
interval,	cannot	be	modeled.	Some	example	temporal	constraints	that	cannot	be
enforced	are:	a	project	needs	to	be	assigned	to	a	department	after	one	month,	an
employee	cannot	return	to	a	department	of	which	he	previously	was	a	manager,
an	employee	needs	to	be	assigned	to	a	department	after	six	months,	a	purchase
order	must	 be	 assigned	 to	 a	 supplier	 after	 two	weeks.	 These	 rules	 need	 to	 be
documented	and	followed	up	with	application	code.

Another	 shortcoming	 is	 that	 the	 ER	model	 cannot	 guarantee	 consistency
across	multiple	relationship	types.	Some	examples	of	business	rules	that	cannot
be	enforced	 in	 the	ER	model	are:	 an	employee	should	work	 in	 the	department
that	 he/she	 manages,	 employees	 should	 work	 on	 projects	 assigned	 to
departments	to	which	the	employees	belong,	and	suppliers	can	only	be	assigned
to	purchase	orders	for	products	they	can	supply.	Again,	these	business	rules	need
to	be	documented	and	followed	up	with	application	code.

Furthermore,	 since	 domains	 are	 not	 included	 in	 the	 ER	 model,	 it	 is	 not
possible	to	specify	the	set	of	values	that	can	be	assigned	to	an	attribute	type	(e.g.,
hours	should	be	positive;	prodtype	must	be	red,	white,	or	sparkling,	supstatus	is
an	integer	between	0	and	100).	Finally,	the	ER	model	also	does	not	support	the
definition	of	functions	(e.g.,	a	function	to	calculate	an	employee’s	salary).

Retention	Questions

What	are	the	key	building	blocks	of	the	ER	model?

Discuss	the	attribute	types	supported	in	the	ER	model.

Discuss	the	relationship	types	supported	in	the	ER	model.

What	are	weak	entity	types	and	how	are	they	modeled	in	the	ER
model?

Discuss	the	limitations	of	the	ER	model.

3.3	The	Enhanced	Entity	Relationship	(EER)
Model

The	Enhanced	Entity	Relationship	model	 or	EER	model	 is	 an	 extension	of
the	ER	model.	It	includes	all	the	modeling	concepts	(entity	types,	attribute	types,
relationship	 types)	 of	 the	ER	model,	 as	well	 as	 three	 new	 additional	 semantic
data	 modeling	 concepts:	 specialization/generalization,	 categorization,	 and
aggregation.	We	discuss	these	in	more	detail	in	the	following	subsections.

3.3.1	Specialization/Generalization

The	 concept	 of	 specialization	 refers	 to	 the	 process	 of	 defining	 a	 set	 of
subclasses	of	an	entity	 type.	The	set	of	subclasses	 that	 form	a	specialization	 is
defined	on	 the	basis	of	 some	distinguishing	characteristic	of	 the	entities	 in	 the
superclass.	 As	 an	 example,	 consider	 an	 ARTIST	 superclass	 with	 subclasses
SINGER	 and	 ACTOR.	 The	 specialization	 process	 defines	 an	 “IS	 A”
relationship.	In	other	words,	a	singer	is	an	artist.	Also,	an	actor	is	an	artist.	The
opposite	does	not	apply.	An	artist	is	not	necessarily	a	singer.	Likewise,	an	artist
is	 not	 necessarily	 an	 actor.	 The	 specialization	 can	 then	 establish	 additional
specific	 attribute	 types	 for	 each	 subclass.	 A	 singer	 can	 have	 a	 music	 style
attribute	type.	During	the	specialization,	it	is	also	possible	to	establish	additional
specific	 relationship	 types	 between	 each	 subclass	 and	 other	 entity	 types.	 An
actor	can	act	 in	movies.	A	singer	can	be	part	of	a	band.	A	subclass	 inherits	all
attribute	types	and	relationship	types	from	its	superclass.

Generalization,	 also	 called	 abstraction,	 is	 the	 reverse	 process	 of
specialization.	Specialization	 corresponds	 to	 a	 top-down	process	 of	 conceptual
refinement.	As	an	example,	the	ARTIST	entity	type	can	be	specialized	or	refined
in	the	subclasses	SINGER	and	ACTOR.	Conversely,	generalization	corresponds
to	a	bottom-up	process	of	conceptual	synthesis.	As	an	example,	the	SINGER	and
ACTOR	subclasses	can	be	generalized	in	the	ARTIST	superclass.

Figure	3.23	 shows	 how	 our	 specialization	 can	 be	 represented	 in	 the	EER
model.	An	 artist	 has	 a	 unique	 artist	 number	 and	 an	 artist	 name.	 The	ARTIST
superclass	is	specialized	in	the	subclasses	SINGER	and	ACTOR.	Both	SINGER
and	ACTOR	inherit	the	attribute	types	ANR	and	aname	from	ARTIST.	A	singer
has	a	music	style.	An	actor	can	act	in	zero	to	N	movies.	Conversely,	in	a	movie
one	to	M	actors	can	act.	A	movie	has	a	unique	movie	number	and	a	movie	title.

Figure	3.23	Example	of	EER	specialization.

A	 specialization	 can	 be	 further	 qualified	 in	 terms	 of	 its	 disjointness	 and
completeness	constraints.	The	disjointness	constraint	specifies	what	subclasses
an	 entity	 of	 the	 superclass	 can	 belong	 to.	 It	 can	 be	 set	 to	 either	 disjoint	 or
overlap.	A	disjoint	specialization	 is	 a	 specialization	where	 an	 entity	 can	 be	 a
member	 of	 at	 most	 one	 of	 the	 subclasses.	 An	 overlap	 specialization	 is	 a
specialization	 where	 the	 same	 entity	 may	 be	 a	 member	 of	 more	 than	 one
subclass.	 The	 completeness	 constraint	 indicates	 whether	 all	 entities	 of	 the
superclass	should	belong	to	one	of	 the	subclasses	or	not.	It	can	be	set	 to	either
total	or	partial.	A	 total	specialization	 is	 a	 specialization	where	every	entity	 in
the	 superclass	 must	 be	 a	 member	 of	 some	 subclass.	 A	 partial	 specialization
allows	an	entity	to	only	belong	to	the	superclass	and	to	none	of	the	subclasses.
The	disjointness	 and	completeness	 constraints	 can	be	 set	 independently,	which
gives	 four	 possible	 combinations:	 disjoint	 and	 total;	 disjoint	 and	 partial;
overlapping	and	total;	and	overlapping	and	partial.	Let’s	illustrate	this	with	some
examples.

Figure	3.24	gives	an	example	of	a	partial	specialization	with	overlap.	The
specialization	 is	 partial	 since	 not	 all	 artists	 are	 singers	 or	 actors;	 think	 about

painters,	 for	 example,	 which	 are	 not	 included	 in	 our	 EER	 model.	 The
specialization	is	overlap	since	some	artists	can	be	both	singers	and	actors.

Figure	3.24	Example	of	partial	(p)	specialization	with	overlap	(o).

Figure	3.25	 illustrates	 a	 total	 disjoint	 specialization.	 The	 specialization	 is
total,	 since	according	 to	our	model	all	people	are	either	students	or	professors.
The	specialization	is	disjoint,	since	a	student	cannot	be	a	professor	at	the	same
time.

Figure	3.25	Example	of	total	(t)	and	disjoint	(d)	specialization.

A	 specialization	 can	 be	 several	 levels	 deep:	 a	 subclass	 can	 again	 be	 a
superclass	of	another	specialization.	In	a	specialization	hierarchy,	every	subclass
can	only	have	a	single	superclass	and	inherits	the	attribute	types	and	relationship
types	 of	 all	 its	 predecessor	 superclasses	 all	 the	 way	 up	 to	 the	 root	 of	 the
hierarchy.	 Figure	 3.26	 shows	 an	 example	 of	 a	 specialization	 hierarchy.	 The

STUDENT	 subclass	 is	 further	 specialized	 in	 the	 subclasses	 BACHELOR,
MASTER,	 and	PHD.	Each	 of	 those	 subclasses	 inherits	 the	 attribute	 types	 and
relationship	types	from	STUDENT,	which	inherits	both	in	turn	from	PERSON.

Figure	3.26	Example	of	specialization	hierarchy.

In	 a	 specialization	 lattice,	 a	 subclass	 can	 have	multiple	 superclasses.	 The
concept	 in	which	a	shared	subclass	or	a	subclass	with	multiple	parents	 inherits
from	all	of	its	parents	is	called	multiple	inheritance.	Let’s	illustrate	this	with	an
example.

Figure	 3.27	 shows	 a	 specialization	 lattice.	 The	 VEHICLE	 superclass	 is
specialized	into	MOTORCYCLE,	CAR,	and	BOAT.	The	specialization	is	partial
and	with	overlap.	TRIKE	is	a	shared	subclass	of	MOTORCYCLE	and	CAR	and
inherits	 the	 attribute	 types	 and	 relationship	 types	 from	 both.	 Likewise,
AMPHIBIAN	is	a	shared	subclass	of	CAR	and	BOAT	and	inherits	the	attribute
types	and	relationship	types	from	both.

Figure	3.27	Example	of	specialization	lattice.

3.3.2	Categorization

Categorization	 is	the	second	important	modeling	extension	of	the	EER	model.
A	category	is	a	subclass	that	has	several	possible	superclasses.	Each	superclass
represents	 a	 different	 entity	 type.	 The	 category	 then	 represents	 a	 collection	 of
entities	 that	 is	 a	 subset	 of	 the	 union	 of	 the	 superclasses.	 Therefore,	 a
categorization	is	represented	in	the	EER	model	by	a	circle	containing	the	letter
“u”	(from	union)	(see	Figure	3.28).

Figure	3.28	EER	categorization.

Inheritance	in	the	case	of	categorization	corresponds	to	an	entity	inheriting
only	the	attributes	and	relationships	of	that	superclass	of	which	it	 is	a	member.
This	 is	 also	 referred	 to	 as	 selective	 inheritance.	 Similar	 to	 a	 specialization,	 a
categorization	can	be	total	or	partial.	In	a	total	categorization,	all	entities	of	the
superclasses	belong	to	the	subclass.	In	a	partial	categorization,	not	all	entities
of	the	superclasses	belong	to	the	subclass.	Let’s	illustrate	this	with	an	example.

Figure	 3.28	 shows	 how	 the	 superclasses	 PERSON	 and	 COMPANY	 have
been	 categorized	 into	 an	 ACCOUNT	HOLDER	 subclass.	 In	 other	 words,	 the
account	 holder	 entities	 are	 a	 subset	 of	 the	 union	 of	 the	 person	 and	 company
entities.	Selective	inheritance	in	this	example	implies	that	some	account	holders
inherit	their	attributes	and	relationships	from	person,	whereas	others	inherit	them
from	company.	The	categorization	is	partial	as	represented	by	the	letter	“p”.	This

implies	 that	 not	 all	 persons	 or	 companies	 are	 account	 holders.	 If	 the
categorization	 had	 been	 total	 (which	 would	 be	 represented	 by	 the	 letter	 “t”
instead),	 then	 this	 would	 imply	 that	 all	 person	 and	 company	 entities	 are	 also
account	 holders.	 In	 that	 case,	 we	 can	 also	 model	 this	 categorization	 using	 a
specialization	with	ACCOUNT	HOLDER	as	 the	 superclass	 and	PERSON	and
COMPANY	as	the	subclasses.

3.3.3	Aggregation

Aggregation	 is	 the	 third	modeling	extension	provided	by	 the	EER	model.	The
idea	here	is	that	entity	types	that	are	related	by	a	particular	relationship	type	can
be	combined	or	aggregated	into	a	higher-level	aggregate	entity	type.	This	can	be
especially	 useful	 when	 the	 aggregate	 entity	 type	 has	 its	 own	 attribute	 types
and/or	relationship	types.

Figure	3.29	gives	an	example	of	aggregation.	A	consultant	works	on	zero	to
N	projects.	A	project	 is	being	worked	on	by	one	 to	M	consultants.	Both	entity
types	 and	 the	 corresponding	 relationship	 type	 can	 now	 be	 aggregated	 into	 the
aggregate	concept	PARTICIPATION.	This	aggregate	has	its	own	attribute	type,
date,	 which	 represents	 the	 date	 at	 which	 a	 consultant	 started	 working	 on	 a
project.	The	aggregate	also	participates	in	a	relationship	type	with	CONTRACT.
Participation	 should	 lead	 to	 a	minimum	of	one	and	maximum	of	one	contract.
Conversely,	a	contract	can	be	based	upon	one	to	M	participations	of	consultants
in	projects.

Figure	3.29	EER	aggregation.

3.3.4	Examples	of	the	EER	Model

Figure	3.30	 presents	 our	 earlier	HR	 administration	 example	 (see	 Figure	 3.21),
but	 now	 enriched	 with	 some	 EER	 modeling	 concepts.	 More	 specifically,	 we
partially	 specialized	 EMPLOYEE	 into	 MANAGER.	 The	 relationship	 type
MANAGES	 then	 connects	 the	 MANAGER	 subclass	 to	 the	 DEPARTMENT
entity	 type.	 DEPARTMENT	 and	 PROJECT	 have	 been	 aggregated	 into
ALLOCATION.	 This	 aggregate	 then	 participates	 in	 the	 relationship	 type
WORKS	ON	with	EMPLOYEE.2

Figure	3.30	EER	model	for	HR	administration.

3.3.5	Designing	an	EER	Model

To	summarize,	an	EER	conceptual	data	model	can	be	designed	according	to	the
following	steps:

1.	Identify	the	entity	types.

2.	Identify	the	relationship	types	and	assert	their	degree.

3.	Assert	the	cardinality	ratios	and	participation	constraints	(total	versus
partial	participation).

4.	Identify	the	attribute	types	and	assert	whether	they	are	simple	or
composite,	single-	or	multi-valued,	derived	or	not.

5.	Link	each	attribute	type	to	an	entity	type	or	a	relationship	type.

6.	Denote	the	key	attribute	type(s)	of	each	entity	type.

7.	Identify	the	weak	entity	types	and	their	partial	keys.

8.	Apply	abstractions	such	as	generalization/specialization,	categorization,
and	aggregation.

9.	Assert	the	characteristics	of	each	abstraction	such	as	disjoint	or
overlapping,	total	or	partial.

Any	 semantics	 that	 cannot	 be	 represented	 in	 the	 EER	 model	 must	 be
documented	as	separate	business	rules	and	followed	up	using	application	code.
Although	the	EER	model	offers	some	new	interesting	modeling	concepts	such	as
specialization/generalization,	categorization,	and	aggregation,	 the	 limitations	of
the	ER	model	unfortunately	still	apply.	Hence,	temporal	constraints	still	cannot
be	 modeled,	 the	 consistency	 among	 multiple	 relationship	 types	 cannot	 be
enforced	and	attribute	 type	domains	or	 functions	cannot	be	specified.	Some	of

these	shortcomings	are	addressed	in	the	UML	class	diagram,	which	is	discussed
in	the	next	section.

Retention	Questions

What	modeling	extensions	are	provided	by	the	EER	model?	Illustrate
with	examples.

What	are	the	limitations	of	the	EER	model?

3.4	The	UML	Class	Diagram

The	Unified	Modeling	Language	(UML)	is	a	modeling	language	that	assists	in
the	specification,	visualization,	construction,	and	documentation	of	artifacts	of	a
software	 system.3	 UML	 is	 essentially	 an	 object-oriented	 system	 modeling
notation	which	 focuses	 not	 only	 on	 data	 requirements,	 but	 also	 on	 behavioral
modeling,	process,	and	application	architecture.	It	was	accepted	as	a	standard	by
the	Object	Management	Group	(OMG)	in	1997	and	approved	as	an	ISO	standard
in	2005.	The	most	recent	version	is	UML	2.5,	introduced	in	2015.	To	model	both
the	 data	 and	 process	 aspects	 of	 an	 information	 system,	 UML	 offers	 various
diagrams	 such	 as	 use	 case	 diagrams,	 sequence	 diagrams,	 package	 diagrams,
deployment	 diagrams,	 etc.	 From	 a	 database	 modeling	 perspective,	 the	 class
diagram	is	 the	most	 important.	It	visualizes	both	classes	and	their	associations.
Before	 we	 discuss	 this	 in	 more	 detail,	 let’s	 first	 provide	 a	 recap	 of	 object
orientation	(OO).

3.4.1	Recap	of	Object	Orientation

Two	 important	 building	 blocks	 of	 OO	 are	 classes	 and	 objects.	 A	 class	 is	 a
blueprint	definition	for	a	set	of	objects.	Conversely,	an	object	is	an	instance	of	a
class.	In	other	words,	a	class	in	OO	corresponds	to	an	entity	type	in	ER,	and	an
object	to	an	entity.	Each	object	is	characterized	by	both	variables	and	methods.4

Variables	 correspond	 to	 attribute	 types	 and	 variable	 values	 to	 attributes	 in	 the
EER	model.	The	EER	model	has	no	equivalent	to	methods.	You	can	think	of	an
example	 class	 Student	 and	 an	 example	 object	 student	 Bart.	 For	 our	 student
object,	 example	 variables	 could	 be	 the	 student’s	 name,	 gender,	 and	 birth	 date.
Example	 methods	 could	 be	 calcAge,	 which	 calculates	 the	 age	 of	 the	 student
based	upon	the	birth	date;	isBirthday	to	verify	whether	the	student’s	birthday	is
today;	hasPassed(courseID),	which	verifies	whether	 the	 student	 has	passed	 the
course	represented	by	the	courseID	input	parameter,	etc.

Information	 hiding	 (also	 referred	 to	 as	 encapsulation)	 states	 that	 the
variables	 of	 an	 object	 can	 only	 be	 accessed	 through	 either	 getter	 or	 setter
methods.	A	getter	method	is	used	to	retrieve	the	value	of	a	variable,	whereas	a
setter	method	 assigns	 a	 value	 to	 it.	 The	 idea	 is	 to	 provide	 a	 protective	 shield
around	 the	 object	 to	 make	 sure	 that	 values	 are	 always	 correctly	 retrieved	 or
modified	by	means	of	explicitly	defined	methods.

Similar	to	the	EER	model,	inheritance	is	supported.	A	superclass	can	have
one	or	more	 subclasses	which	 inherit	both	 the	variables	and	methods	 from	 the
superclass.	As	an	example,	Student	and	Professor	can	be	a	subclass	of	the	Person
superclass.	 In	 OO,	 method	 overloading	 is	 also	 supported.	 This	 implies	 that
various	 methods	 in	 the	 same	 class	 can	 have	 the	 same	 name,	 but	 a	 different
number	or	type	of	input	arguments.

Connections

We	discuss	object	orientation	in	greater	detail	in	Chapter	8.

3.4.2	Classes

In	a	UML	class	diagram,	a	class	is	represented	as	a	rectangle	with	three	sections.
Figure	3.31	 illustrates	a	UML	class	SUPPLIER.	In	 the	upper	part,	 the	name	of
the	class	is	mentioned	(e.g.,	SUPPLIER),	in	the	middle	part	the	variables	(e.g.,
SUPNR,	Supname),	and	in	the	bottom	part	the	methods	(e.g.,	getSUPNR).	You
can	compare	this	with	the	corresponding	ER	representation	in	Figure	3.2.

Figure	3.31	UML	class.

Example	 methods	 are	 the	 getter	 and	 setter	 methods	 for	 each	 of	 the
variables.	The	method	getSUPNR	is	a	getter	method	 that	 retrieves	 the	supplier
number	 of	 a	 particular	 supplier	 object,	 whereas	 the	 method
setSUPNR(newSUPNR)	 assigns	 the	value	newSUPNR	 to	 the	SUPNR	variable
of	a	supplier	object.

3.4.3	Variables

Variables	with	unique	values	(similar	to	key	attribute	types	in	the	ER	model)	are
not	directly	supported	in	UML.	The	reason	is	because	a	UML	class	diagram	is
assumed	to	be	implemented	using	an	OODBMS	in	which	every	object	created	is
assigned	a	unique	and	immutable	object	identifier	(OID)	that	it	keeps	during	its
entire	lifetime	(see	Chapter	8).	Hence,	this	OID	can	be	used	to	uniquely	identify
objects	and	no	other	variables	are	needed	to	serve	as	a	key.	To	explicitly	enforce
the	 uniqueness	 constraint	 of	 a	 variable,	 you	 can	 use	 OCL,	 as	 we	 discuss	 in
Section	3.4.9.2.

UML	provides	a	set	of	primitive	types	such	as	string,	integer,	and	Boolean,
which	can	be	used	to	define	variables	in	the	class	diagram.	It	is	also	possible	to
define	your	own	data	types	or	domains	and	use	them.	This	is	illustrated	in	Figure
3.32.	 The	 variables	 SUPNR	 and	 status	 are	 defined	 as	 integers.	 The	 variable
address	is	defined	using	the	domain	Address_Domain.

Figure	3.32	UML	class	with	refined	variable	definitions.

Composite	variables	(similar	to	composite	attribute	types	in	the	ER	model)
can	be	tackled	in	two	ways.	A	first	option	is	to	decompose	them	into	their	parts.
In	 our	 example,	 we	 decomposed	 Supname	 into	 first	 name	 and	 last	 name.
Another	 alternative	 is	 by	 creating	 a	 new	 domain	 as	 we	 did	 for	 the	 address
variable.

Multi-valued	variables	can	also	be	modeled	in	two	ways.	A	first	option	is	to
indicate	 the	multiplicity	of	 the	variable.	This	specifies	how	many	values	of	 the
variable	 will	 be	 created	 when	 an	 object	 is	 instantiated.	 In	 our	 example,	 we
specified	that	a	supplier	can	have	0	to	4	email	addresses.	An	infinite	number	of
email	addresses	can	be	defined	as	“email:	String[*]”.	Another	option	is	by	using
an	aggregation,	as	we	discuss	in	what	follows.

Finally,	derived	variables	(e.g.,	age)	need	to	be	preceded	by	a	forward	slash.

3.4.4	Access	Modifiers

In	UML,	access	modifiers	can	be	used	to	specify	who	can	access	a	variable	or
method.	 Example	 choices	 are:	 private	 (denoted	 by	 the	 symbol	 “–”),	 in	 which
case	 the	 variable	 or	 method	 can	 only	 be	 accessed	 by	 the	 class	 itself;	 public
(denoted	 by	 the	 symbol	 “+”),	 in	 which	 case	 the	 variable	 or	 method	 can	 be
accessed	by	any	other	class;	and	protected	(denoted	by	the	symbol	“#”),	in	which
case	the	variable	or	method	can	be	accessed	by	both	the	class	and	its	subclasses.
To	enforce	 the	concept	of	 information	hiding,	 it	 is	 recommended	 to	declare	all
variables	 as	 private	 and	 access	 them	 using	 getter	 and	 setter	 methods.	 This	 is
illustrated	in	Figure	3.33,	where	all	variables	are	private	and	all	methods	public.

Figure	3.33	Access	modifiers	in	UML.

You	can	compare	 this	with	 the	corresponding	ER	representation	 in	Figure
3.2.	From	this	comparison,	it	is	already	clear	that	UML	models	more	semantics
than	its	ER	counterpart.

3.4.5	Associations

Analogous	 to	 relationship	 types	 in	 the	ER	model,	 classes	 can	be	 related	using
associations	 in	UML.	Multiple	 associations	 can	 be	 defined	 between	 the	 same
classes.	 Also,	 unary	 (or	 reflexive)	 and	 n-ary	 (e.g.,	 ternary)	 associations	 are
possible.	 An	 association	 corresponds	 to	 a	 relationship	 type	 in	 the	 ER	 model,
whereas	 a	 particular	 occurrence	 of	 an	 association	 is	 referred	 to	 as	 a	 link	 that
corresponds	to	a	relationship	in	the	ER	model.

An	 association	 is	 characterized	 by	 its	 multiplicities,	 which	 indicate	 the
minimum	and	maximum	number	of	participations	of	 the	corresponding	classes
in	 the	 association.	Hence,	 this	 corresponds	 to	 the	 cardinalities	we	discussed	 in
the	ER	model.	Table	3.1	 lists	 the	options	available	and	contrasts	 them	with	 the
corresponding	ER	model	cardinalities.	An	asterisk	(*)	is	introduced	to	denote	a
maximum	cardinality	of	N.

Table	3.1	UML	multiplicities	versus	ER	cardinalities

UML	class	diagram	multiplicity ER	model
cardinality

* 0..N

0..1 0..1

1..* 1..N

1 1..1

In	 what	 follows,	 we	 elaborate	 further	 on	 associations	 and	 discuss
association	classes,	unidirectional	versus	bidirectional	associations,	and	qualified
associations.

3.4.5.1	Association	Class

If	an	association	has	variables	and/or	methods	on	its	own,	it	can	be	modeled	as
an	association	 class.	 The	 objects	 of	 this	 class	 then	 represent	 the	 links	 of	 the
association.	 Consider	 the	 association	 between	 SUPPLIER	 and	 PRODUCT	 as
depicted	in	Figure	3.34.	The	association	class	SUPPLIES	has	two	variables:	the
purchase	price	and	delivery	period	for	each	product	supplied	by	a	supplier.	It	can
also	 have	 methods	 such	 as	 getter	 and	 setter	 methods	 for	 these	 variables.
Association	 classes	 are	 represented	 using	 a	 dashed	 line	 connected	 to	 the
association.

Figure	3.34	Association	class.

3.4.5.2	Unidirectional	versus	Bidirectional	Association

Associations	can	be	augmented	with	direction	reading	arrows,	which	specify	the
direction	of	querying	or	navigating	through	it.	In	a	unidirectional	association,
there	is	only	a	single	way	of	navigating,	as	indicated	by	the	arrow.	Figure	3.35
gives	an	example	of	a	unidirectional	association	between	the	classes	SUPPLIER
and	PURCHASE_ORDER.	 It	 implies	 that	 all	 purchase	orders	 can	be	 retrieved
through	a	 supplier	object.	Hence,	 according	 to	 this	model,	 it	 is	not	possible	 to
navigate	 from	 a	 purchase	 order	 object	 to	 a	 supplier	 object.	 Also	 note	 the
multiplicities	of	the	association.

Figure	3.35	Unidirectional	association.

In	a	bidirectional	association,	both	directions	are	possible,	and	hence	there
is	no	arrow.	Figure	3.34	is	an	example	of	a	bidirectional	association	between	the
classes	SUPPLIER	and	PRODUCT.	According	 to	 this	UML	class	diagram,	we
can	 navigate	 from	 SUPPLIER	 to	 PRODUCT	 as	 well	 as	 from	 PRODUCT	 to
SUPPLIER.

3.4.5.3	Qualified	Association

A	qualified	association	 is	a	 special	 type	of	association	 that	uses	a	qualifier	 to
further	refine	the	association.	The	qualifier	specifies	one	or	more	variables	that
are	 used	 as	 an	 index	 key	 for	 navigating	 from	 the	 qualified	 class	 to	 the	 target
class.	 It	 reduces	 the	 multiplicity	 of	 the	 association	 because	 of	 this	 extra	 key.
Figure	3.36	gives	an	example.

Figure	3.36	Qualified	association.

We	have	two	classes,	TEAM	and	PLAYER.	They	are	connected	using	a	1:N
relationship	 type	 in	 the	 ER	model	 (upper	 part	 of	 the	 figure)	 since	 a	 team	 can

have	zero	to	N	players	and	a	player	is	always	related	to	exactly	one	team.	This
can	 be	 represented	 in	 UML	 using	 a	 qualified	 association	 by	 including	 the
position	variable	as	the	index	key	or	qualifier	(lower	part	of	the	figure).	A	team
at	a	given	position	has	zero	or	one	players,	whereas	a	player	always	belongs	to
exactly	one	team.

Qualified	 associations	 can	 be	 used	 to	 represent	weak	 entity	 types.	 Figure
3.37	 shows	 our	 earlier	 example	 of	 ROOM	 as	 a	 weak	 entity	 type,	 being
existence-dependent	on	HOTEL.	In	the	UML	class	diagram,	we	can	define	room
number	 as	 a	 qualifier	 or	 index	 key.	 In	 other	 words,	 a	 hotel	 combined	 with	 a
given	 room	number	 corresponds	 to	 zero	or	 one	 room,	whereas	 a	 room	always
belongs	to	one	hotel.

Figure	3.37	Qualified	associations	for	representing	weak	entity	types.

3.4.6	Specialization/Generalization

Similar	 to	 the	EER	model,	UML	also	 supports	 specialization	or	 generalization
relationships.	 Figure	 3.38	 shows	 the	 UML	 representation	 of	 our	 earlier	 EER
specialization	of	Figure	3.24	with	ARTIST,	SINGER,	and	ACTOR.

Figure	3.38	Specialization/generalization	in	UML.

The	hollow	triangle	represents	a	specialization	in	UML.	The	specialization
characteristics	 such	as	 total/partial	or	disjoint/overlap	can	be	added	next	 to	 the
triangle.	UML	 also	 supports	multiple	 inheritance	where	 a	 subclass	 can	 inherit
variables,	methods,	and	associations	from	multiple	superclasses.

3.4.7	Aggregation

Similar	to	EER,	aggregation	represents	a	composite	to	part	relationship	whereby
a	composite	class	contains	a	part	class.	Two	types	of	aggregation	are	possible	in
UML:	 shared	 aggregation	 (also	 referred	 to	 as	 aggregation)	 and	 composite
aggregation	 (also	 referred	 to	 as	 composition).	 In	 shared	 aggregation,	 the	 part
object	can	simultaneously	belong	to	multiple	composite	objects.	In	other	words,
the	maximum	multiplicity	at	the	composite	side	is	undetermined.	The	part	object
can	 also	 occur	without	 belonging	 to	 a	 composite	 object.	A	 shared	 aggregation
thus	 represents	 a	 rather	 loose	 coupling	 between	 both	 classes.	 In	 composite
aggregation	or	 composition,	 the	part	object	 can	only	belong	 to	one	composite.
The	maximum	multiplicity	at	the	composite	side	is	1.	According	to	the	original
UML	 standard,	 the	 minimum	 multiplicity	 can	 be	 either	 1	 or	 0.	 A	 minimum
cardinality	 of	 0	 can	 occur	 in	 case	 the	 part	 can	 belong	 to	 another	 composite.
Consider	 two	 composite	 aggregations	–	 one	 between	 engine	 and	boat	 and	one
between	 engine	 and	 car.	 Since	 an	 engine	 can	 only	 belong	 to	 either	 a	 car	 or	 a
boat,	the	minimum	cardinality	from	engine	(the	part)	to	boat	and	car	will	be	0,
respectively.	A	composite	aggregation	represents	a	 tight	coupling	between	both
classes,	and	 the	part	object	will	be	automatically	 removed	when	 the	composite
object	is	removed.	Note	that	a	part	object	can	also	be	deleted	from	a	composite
before	the	composite	is	deleted.

Figure	3.39	illustrates	both	concepts.	A	shared	aggregation	is	indicated	by	a
hollow	diamond	 and	 a	 composite	 aggregation	 by	 a	 filled	 diamond.	We	have	 a
shared	aggregation	between	COMPANY	and	CONSULTANT.	A	consultant	can
work	for	multiple	companies.	When	a	company	is	removed,	any	consultants	that
worked	for	it	remain	in	the	database.	We	have	a	composite	aggregation	between

BANK	and	ACCOUNT.	An	account	is	tightly	coupled	to	one	bank	only.	When
the	bank	is	removed,	all	connected	account	objects	disappear	as	well.

Figure	3.39	Shared	versus	composite	aggregation	in	UML.

3.4.8	UML	Example

Figure	3.40	shows	our	earlier	EER	HR	example	of	Figure	3.30	in	UML	notation.
It	 has	 six	 classes	 including	 two	 association	 classes	 (Manages	 and	Works_On).
Note	 the	 different	 variables	 and	 methods	 for	 each	 of	 the	 classes.	 The	 access
modifiers	 for	 each	 of	 the	 variables	 have	 been	 set	 to	 private	 so	 as	 to	 enforce
information	hiding.	Getter	and	setter	methods	have	been	added	for	each	of	 the
variables.	We	also	 included	a	shared	aggregation	between	DEPARTMENT	and
LOCATION	and	between	PROJECT	and	LOCATION.	Hence,	 this	 implies	 that
location	 information	 is	 not	 lost	 upon	 removal	 of	 a	 department	 or	 project.	We
have	two	unidirectional	associations:	between	EMPLOYEE	and	PROJECT,	and
between	 DEPARTMENT	 and	 PROJECT.	 The	 unary	 association	 for	 the
EMPLOYEE	class	models	the	supervision	relationship.	When	you	contrast	this
UML	 class	 diagram	 with	 the	 EER	 model	 of	 Figure	 3.30,	 it	 is	 clear	 that	 the
former	has	a	lot	more	semantics	embedded.

Figure	3.40	HR	example	in	UML.

3.4.9	Advanced	UML	Modeling	Concepts

UML	offers	various	advanced	modeling	concepts	to	further	add	semantics	to	our
data	model.	In	the	following	subsections,	we	discuss	the	changeability	property,
the	object	constraint	language	(OCL),	and	the	dependency	relationship.

3.4.9.1	Changeability	Property

The	changeability	property	specifies	the	type	of	operations	that	are	allowed	on
either	variable	values	or	links.	Three	common	choices	are:	default,	which	allows
any	 type	 of	 edit;	 addOnly,	which	 only	 allows	 additional	 values	 or	 links	 to	 be
added	(no	deletions);	and	frozen,	which	allows	no	further	changes	once	the	value
or	link	is	established.	You	can	see	this	illustrated	in	Figure	3.41.

Figure	3.41	Changeability	property	in	UML.

The	supplier	and	purchase	order	number	are	both	declared	as	frozen,	which
means	 that	 once	 a	 value	 has	 been	 assigned	 to	 either	 of	 them	 it	 can	 no	 longer
change.	 The	 languages	 variable	 of	 the	 SUPPLIER	 class	 defines	 a	 set	 of
languages	 a	 supplier	 can	 understand.	 It	 is	 defined	 as	 addOnly	 since	 languages
can	only	be	added	and	not	removed	from	it.	Also	note	the	addOnly	characteristic
that	 was	 added	 to	 the	 ON_ORDER	 association.	 It	 specifies	 that	 for	 a	 given
supplier,	purchase	orders	can	only	be	added	and	not	removed.

3.4.9.2	Object	Constraint	Language	(OCL)

The	 object	 constraint	 language	 (OCL),	 which	 is	 also	 part	 of	 the	 UML
standard,	 can	 be	 used	 to	 specify	 various	 types	 of	 constraints.	 The	 OCL
constraints	are	defined	in	a	declarative	way.	They	specify	what	must	be	true,	but
not	 how	 this	 should	 be	 accomplished.	 In	 other	 words,	 no	 control	 flow	 or
procedural	code	is	provided.	They	can	be	used	for	various	purposes,	such	as	to
specify	invariants	for	classes,	to	specify	pre-	and	post-conditions	for	methods,	to
navigate	between	classes,	or	to	define	constraints	on	operations.

A	 class	 invariant	 is	 a	 constraint	 that	 holds	 for	 all	 objects	 of	 a	 class.	 An
example	could	be	a	constraint	specifying	that	the	supplier	status	of	each	supplier
object	should	be	greater	than	100:

SUPPLIER:	SUPSTATUS>100

Pre-	 and	 post-conditions	 on	methods	must	 be	 true	 when	 a	method	 either
begins	or	ends.	For	example,	before	the	method	withdrawal	can	be	executed,	the
balance	must	be	positive.	After	 it	 has	been	executed,	 the	balance	must	 still	 be
positive.

OCL	 also	 supports	 more	 complex	 constraints.	 Figure	 3.42	 illustrates	 the
two	classes	EMPLOYEE	and	DEPARTMENT.	These	two	classes	are	connected
with	two	associations	to	define	which	employee	works	in	which	department	and
which	employee	manages	what	department.	Note	the	role	names	that	have	been
added	 to	 both	 associations.	 Various	 constraints	 can	 now	 be	 added.	 A	 first
constraint	states	that	a	manager	of	a	department	should	have	worked	there	for	at
least	ten	years:

Figure	3.42	OCL	constraints	in	UML.

Context:	Department
invariant:	self.managed_by.yearsemployed>10

The	context	of	 this	 constraint	 is	 the	DEPARTMENT	class.	The	constraint
applies	 to	 every	 department	 object,	 hence	 the	 keyword	 invariant.	We	 use	 the
keyword	self	to	refer	to	an	object	of	the	DEPARTMENT	class.	We	then	used	the
role	 name	managed_by	 to	 navigate	 to	 the	 EMPLOYEE	 class	 and	 retrieve	 the
yearsemployed	variable.

A	second	constraint	states:	a	department	should	have	at	least	20	employees:

Context:	Department
invariant:	self.workers→size()	>20

The	context	is	again	DEPARTMENT.	Note	that	self.workers	returns	the	set
of	employees	working	in	a	specific	department.	The	size	method	is	then	used	to
calculate	the	number	of	members	in	the	set.

A	final	constraint	says:	A	manager	of	a	department	must	also	work	 in	 the
department.	In	OCL,	this	becomes:

Context:	Department
Invariant:	self.managed_by.works_in=self

From	these	examples,	it	is	clear	that	OCL	is	a	very	powerful	language	that
adds	a	lot	of	semantics	to	our	conceptual	data	model.	For	more	details	on	OCL,

refer	to	www.omg.org/spec/OCL.

3.4.9.3	Dependency	Relationship

In	UML,	dependency	defines	a	“using”	relationship	that	states	that	a	change	in
the	 specification	 of	 a	 UML	 modeling	 concept	 may	 affect	 another	 modeling
concept	 that	 uses	 it.	 It	 is	 denoted	 by	 a	 dashed	 line	 in	 the	 UML	 diagram.	 An
example	could	be	when	an	object	of	one	class	uses	an	object	of	another	class	in
its	 methods,	 but	 the	 referred	 object	 is	 not	 stored	 in	 any	 variable.	 This	 is
illustrated	in	Figure	3.43.

Figure	3.43	Dependency	relationship	in	UML.

We	have	 two	classes,	EMPLOYEE	and	COURSE.	Let’s	say	an	employee
can	 take	 courses	 as	 part	 of	 a	 company	 education	 program.	 The	 EMPLOYEE
class	includes	a	method,	tookCourse,	that	determines	whether	an	employee	took
a	particular	course	represented	by	the	input	variable	CNR.	Hence,	an	employee
object	 makes	 use	 of	 a	 course	 object	 in	 one	 of	 its	 methods.	 This	 explains	 the
dependency	between	both	classes.

http://www.omg.org/spec/OCL

3.4.10	UML	versus	EER

Table	3.2	lists	the	similarities	between	both	the	UML	class	diagram	and	the	EER
model.	 From	 the	 table,	 it	 can	 be	 seen	 that	 the	UML	 class	 diagram	 provides	 a
richer	 set	 of	 semantics	 for	 modeling	 than	 the	 EER	 model.	 The	 UML	 class
diagram	can	define	methods	that	are	not	supported	in	the	EER	model.	Complex
integrity	constraints	can	be	modeled	using	OCL,	which	 is	also	not	available	 in
the	EER	model.

Table	3.2	UML	versus	EER	concepts

UML	class	diagram EER	model

Class Entity	type

Object Entity

Variable Attribute	type

Variable	value Attribute

Method –

Association Relationship	type

Link Relationship

Qualified	association Weak	entity	type

Specialization/generalization Specialization/generalization

Aggregation Aggregation	(composite/shared)

OCL –

Multiplicity * Cardinality 0..N

0..1 0..1

1..* 1..N

1 1..1

Drill	Down

Some	 popular	 examples	 of	 conceptual	 modeling	 tools	 are:	 Astah
(Change	 Vision),	 Database	 Workbench	 (Upscene	 Productions),
Enterprise	Architect	(Sparx	Systems),	ER/Studio	(Idera),	and	Erwin	Data
Modeler	 (Erwin).	 These	 tools	 typically	 provide	 facilities	 to	 build	 a
conceptual	 model	 (e.g.,	 EER	 or	 UML	 class	 diagram)	 and	 then
automatically	map	it	to	a	logical	or	internal	data	model	for	various	target
DBMS	 platforms.	 Most	 of	 them	 also	 include	 reverse	 engineering
facilities	whereby	an	existing	internal	data	model	can	be	turned	back	into
a	conceptual	data	model.

Retention	Questions

What	are	the	key	concepts	of	object	orientation	(OO)?

Discuss	the	components	of	a	UML	class	diagram.

How	can	associations	be	modeled	in	UML?

What	types	of	aggregation	are	supported	in	UML?

What	advanced	modeling	concepts	are	offered	by	UML?

Contrast	the	UML	class	diagram	with	the	EER	model.

Summary

In	this	chapter	we	discussed	conceptual	data	modeling	using	the	ER	model,	EER
model,	and	UML	class	diagram.	We	started	the	chapter	by	reviewing	the	phases
of	 database	 design:	 requirement	 collection	 and	 analysis,	 conceptual	 design,
logical	 design,	 and	 physical	 design.	 The	 aim	 of	 a	 conceptual	 model	 is	 to
formalize	 the	data	 requirements	of	 a	business	process	 in	 an	accurate	 and	user-
friendly	 way.	 The	 ER	 model	 is	 a	 popular	 technique	 for	 conceptual	 data
modeling.	It	has	the	following	building	blocks:	entity	types,	attribute	types,	and
relationship	types.	The	EER	model	offers	 three	additional	modeling	constructs:
specialization/generalization,	 categorization,	 and	 aggregation.	 The	 UML	 class
diagram	 is	 an	 object-oriented	 conceptual	 data	 model	 and	 consists	 of	 classes,
variables,	 methods,	 and	 associations.	 It	 also	 supports
specialization/generalization	 and	 aggregation,	 and	 offers	 various	 advanced
modeling	 concepts	 such	 as	 the	 changeability	 property,	 object	 constraint
language,	 and	 dependency	 relationships.	 From	 a	 pure	 semantic	 perspective,
UML	is	richer	than	both	ER	and	EER.	In	subsequent	chapters,	we	elaborate	on
how	to	proceed	to	both	logical	and	physical	design.

Scenario	Conclusion

Figure	 3.44	 shows	 the	 EER	model	 for	 our	 Sober	 scenario	 case.	 It	 has
eight	 entity	 types.	 The	 CAR	 entity	 type	 has	 been	 specialized	 into
SOBER	 CAR	 and	 OTHER	 CAR.	 Sober	 cars	 are	 owned	 by	 Sober,
whereas	other	 cars	 are	owned	by	customers.	The	RIDE	entity	 type	has
been	specialized	into	RIDE	HAILING	and	RIDE	SHARING.	The	shared

attribute	types	between	both	subclasses	are	put	in	the	superclass:	RIDE-
NR	 (which	 is	 the	 key	 attribute	 type),	 PICKUP-DATE-TIME,
DROPOFF-DATE-TIME,	 DURATION,	 PICKUP-LOC,	 DROPOFF-
LOC,	DISTANCE,	and	FEE.	Note	that	DURATION	is	a	derived	attribute
type	since	it	can	be	derived	from	PICKUP-DATE-TIME	and	DROPOFF-
DATE-TIME.	 DISTANCE	 is	 not	 a	 derived	 attribute	 type	 since	 there
could	 be	 multiple	 routes	 between	 a	 pick-up	 location	 and	 a	 drop-off
location.	Three	 attribute	 types	 are	 added	 to	 the	RIDE	HAILING	entity
type:	 PASSENGERS	 (the	 number	 of	 passengers),	 WAIT-TIME	 (the
effective	wait	 time),	and	REQUEST-TIME	(Sober	App	request	or	hand
wave).	The	LEAD_CUSTOMER	relationship	 type	is	a	1:N	relationship
type	 between	 CUSTOMER	 and	 RIDE	 HAILING,	 whereas	 the	 BOOK
relationship	type	is	an	N:M	relationship	type	between	CUSTOMER	and
RIDE	SHARING.	A	car	(e.g.,	Sober	or	other	car)	can	be	involved	in	zero
to	N	accidents,	whereas	an	accident	can	have	one	to	M	cars	(e.g.,	Sober
or	 other	 car)	 involved.	 The	 DAMAGE	 AMOUNT	 attribute	 type	 is
connected	 to	 the	 relationship	 type	because	 it	 is	dependent	upon	 the	car
and	the	accident.

Figure	3.44 	EER	model	for	Sober.

As	 discussed	 in	 this	 chapter,	 our	 EER	 model	 has	 certain
shortcomings.	 Since	 the	 EER	 model	 is	 a	 snapshot	 in	 time,	 it	 cannot
model	 temporal	 constraints.	 Examples	 of	 temporal	 constraints	 that
cannot	be	enforced	by	our	EER	model	are:	the	pick-up-date-time	should
always	 precede	 the	 drop-off-date-time;	 a	 customer	 cannot	 book	 a	 ride-
hailing	and	ride-sharing	service	that	overlap	in	time.

The	EER	model	 cannot	 guarantee	 the	 consistency	 across	multiple
relationship	types.	An	example	of	a	business	rule	that	cannot	be	enforced
in	 the	 EER	 model	 is:	 a	 customer	 cannot	 book	 a	 ride-hailing	 or	 ride-
sharing	service	with	his/her	own	car.

The	EER	model	does	not	support	domains	–	for	example,	we	cannot
specify	 that	 the	 attribute	 type	 PASSENGERS	 is	 an	 integer	 with	 a
minimum	value	of	0	and	a	maximum	value	of	6.	Furthermore,	our	EER
model	 does	 not	 specify	 that	 the	maximum	number	 of	 passengers	 for	 a
ride-share	 service	 is	 ten	 or	 that	 the	 WAIT-TIME	 is	 only	 relevant	 for
Sober	App	requests	and	should	be	zero	in	case	of	hand-wave	requests.

Figure	 3.45	 shows	 the	 UML	 class	 diagram	 for	 Sober.	 It	 has	 nine
classes.	The	class	INVOLVED	is	an	association	class	between	CAR	and
ACCIDENT.	To	enforce	 information	hiding,	 the	access	modifiers	of	all
variables	have	been	set	to	private.	Getter	and	setter	methods	are	used	to
access	them.	We	also	added	the	following	additional	methods:

In	the	RIDE	class:	CalcDuration	which	calculates	the	derived	variable
duration.

In	the	RIDE-SHARING	class:	NumberOfCustomers,	which	returns
the	number	of	customers	for	a	ride-share	service.

In	the	CUSTOMER	class:	Top5CustomersHail	and
Top5CustomersShare,	which	returns	the	top	five	customers	for	ride-
hailing	and	ride-sharing	services,	respectively.

In	the	CAR	class:	NumberOfRides,	which	returns	the	number	of	rides
a	car	has	serviced.

In	the	SOBER	CAR	class:	NumberOfSoberCars,	which	returns	the
number	of	Sober	cars	in	the	database.

In	the	INVOLVED	association	class:	GenerateReport,	which	returns	a
report	of	which	cars	have	been	involved	in	what	accident.

In	the	ACCIDENT	class:	Top3AccidentHotSpots	and
Top3AccidentPeakTimes,	which	return	the	top	three	most	common
accident	locations	and	timings,	respectively.

Figure	3.45 	UML	class	diagram	for	Sober.

All	 associations	have	been	defined	 as	 bidirectional,	which	 implies
that	 they	 can	be	 navigated	 in	 both	 directions.	We	 set	 the	 changeability
property	 of	 the	 number	 variables	 (e.g.,	 RIDE-NR,	 CAR-NR,	 etc.)	 to
frozen,	which	means	that	once	a	value	has	been	assigned	to	any	of	them,
it	can	no	longer	be	changed.

We	can	now	enrich	our	UML	model	by	adding	OCL	constraints.	We
define	 a	 class	 invariant	 for	 the	RIDE	HAILING	 class,	which	 specifies
that	the	number	of	passengers	for	a	ride-hail	service	should	be	less	than
six:

RIDE-HAILING:	PASSENGERS	≤	6

Remember	that	the	maximum	number	of	passengers	for	a	ride-share
service	is	ten.	This	can	be	defined	using	the	following	OCL	constraint:5

Context:	RIDE	SHARING

invariant:	self.BOOK→size()	≤	10

The	 constraint	 applies	 to	 every	 ride-sharing	 object,	 hence	 the
keyword	 invariant.	 Other	 OCL	 constraints	 can	 be	 added	 for	 further
semantic	refinement.

The	 UML	 specification	 is	 semantically	 richer	 than	 its	 EER
counterpart.	 As	 an	 example,	 both	 passenger	 constraints	 cannot	 be
enforced	 in	 the	EER	model.	The	UML	class	diagram	also	specifies	 the
domains	(e.g.,	integer,	string,	etc.)	for	each	of	the	variables	and	includes
methods,	both	of	which	were	not	possible	in	the	EER	model.

Sober	is	now	ready	to	proceed	to	the	next	stage	of	database	design
in	which	the	conceptual	data	model	will	be	mapped	to	a	logical	model.

Key	Terms	List

abstraction

access	modifiers

aggregation

association	class

associations

attribute	type

bidirectional	association

business	process

cardinalities

categorization

changeability	property

class

class	invariant

completeness	constraint

composite	attribute	type

conceptual	data	model

degree

dependency

derived	attribute	type

disjoint	specialization

disjointness	constraint

domain

Enhanced	Entity	Relationship	(EER)	model

entity	relationship	(ER)	model

entity	type

existence	dependency

generalization

information	hiding

inheritance

key	attribute	type

multi-valued	attribute	type

object

object	constraint	language	(OCL)

overlap	specialization

owner	entity	type

partial	categorization

partial	participation

partial	specialization

qualified	association

relationship

relationship	type

requirement	collection	and	analysis

roles

selective	inheritance

simple	or	atomic	attribute	type

single-valued	attribute

specialization

strong	entity	type

temporal	constraints

ternary	relationship	types

total	categorization

total	participation

total	specialization

unidirectional	association

Unified	Modeling	Language	(UML)

weak	entity	type

Review	Questions

3.1.	Given	the	ER	model	above,	which	of	the	following	statements	is
correct?

a.	A	movie	can	have	as	many	lead	actors	as	there	are	actors	in	the
movie.

b.	PRODUCER	is	an	existence-dependent	entity	type.

c.	A	director	of	a	movie	can	also	act	in	the	same	movie.

d.	A	movie	can	have	multiple	actors,	producers,	and	directors.

3.2.	In	the	movie	ER	model	above,	we	focus	on	the	binary	relationship
“PRODUCES”.	Suppose	we	add	an	attribute	type	that	indicates	the	time
that	each	producer	spent	on	producing	each	movie	called	“WORKING
HOURS”.	Which	of	the	following	scenarios	is	possible?

a.	We	can	migrate	the	attribute	type	“WORKING	HOURS”	to	the
“MOVIE”	entity	type.

b.	We	can	migrate	the	attribute	type	“WORKING	HOURS”	to	the
“PRODUCER”	entity	type.

c.	We	can	migrate	the	attribute	type	“WORKING	HOURS”	to	either
one	of	the	linked	entity	types.

d.	We	can	add	the	attribute	type	“WORKING	HOURS”	to	the
relationship	type	PRODUCES.

3.3.	Which	statement	is	correct?

a.	In	the	case	a	ternary	relationship	type	is	represented	as	three	binary
relationship	types,	then	semantics	will	get	lost.

b.	A	ternary	relationship	type	can	always	be	represented	as	three
binary	relationship	types	without	loss	of	semantics.

c.	Three	binary	relationship	types	between	three	entity	types	can
always	be	replaced	by	one	ternary	relationship	type	between	the	three
participating	entity	types.

d.	A	ternary	relationship	type	cannot	have	attribute	types.

3.4.	Which	statements	are	correct?

a.	A	weak	entity	type	can	only	have	one	attribute	type.

b.	A	weak	entity	type	is	always	existence-dependent.

c.	An	existence-dependent	entity	type	is	always	a	weak	entity	type.

d.	An	existence-dependent	entity	type	always	participates	in	a	1:1
relationship	type.

3.5.	Given	the	following	ER	model:

which	statement	is	not	correct?

a.	The	ER	model	does	not	enforce	that	a	supplier	can	only	have
purchase	orders	outstanding	for	products	he/she	can	actually	supply.

b.	The	ER	model	has	both	weak	and	existence-dependent	entity	types.

c.	According	to	the	ER	model,	a	supplier	cannot	have	more	than	one
address.

d.	According	to	the	ER	model,	there	can	be	suppliers	that	supply	no
products	and	have	no	purchase	orders	outstanding.

3.6.	Given	the	following	EER	specialization:

which	of	the	following	statements	is	correct?

a.	A	supermarket	product	can	be	a	food	and	non-food	product	at	the
same	time.

b.	There	are	certain	supermarket	products	that	are	not	fruits	and
vegetables,	not	meat	and	not	non-food.

c.	All	food	products	are	either	fruits	and	vegetables	or	meat.

d.	A	meat	product	does	not	have	any	attribute	types.

3.7.	Given	the	following	EER	categorization:

which	statement	is	correct?

a.	All	men	and	women	are	patients.

b.	A	patient	only	inherits	the	“Name”	and	“Date	of	birth”	attribute
types	from	the	superclass	that	the	current	entity	belongs	to.

c.	The	categorization	can	also	be	represented	as	a	specialization.

d.	The	categorization	can	also	be	represented	as	an	aggregation.

3.8.	Which	one	of	the	following	is	an	example	of	a	disjoint	and	partial
specialization?

a.	HUMAN	→	VEGETARIAN	+	NON-VEGETARIAN

b.	HUMAN	→	BLONDE	+	BRUNETTE

c.	HUMAN	→	LOVES	FISH	+	LOVES	MEAT

d.	HUMAN	→	UNIVERSITY	DEGREE	+	COLLEGE	DEGREE

3.9.	Which	of	the	following	statements	is	correct?

a.	An	aggregation	cannot	have	attribute	types.

b.	An	aggregation	cannot	participate	in	a	relationship	type.

c.	An	aggregation	should	both	have	attribute	types	and	participate	in
one	or	more	relationship	types.

d.	An	aggregation	can	have	attribute	types	and	participate	in
relationship	types.

3.10.	Which	statement	is	correct?

a.	A	class	is	an	instance	of	an	object.

b.	A	class	only	has	variables.

c.	Inheritance	is	not	supported	in	object	orientation.

d.	Information	hiding	(also	referred	to	as	encapsulation)	states	that	the
variables	of	an	object	can	only	be	accessed	through	either	getter	or
setter	methods.

3.11.	Which	variable	types	are	not	directly	supported	in	UML?

a.	Composite	variables.

b.	Multi-valued	variables.

c.	Variables	with	unique	values	(similar	to	key	attribute	types	in	the
ER	model).

d.	Derived	variables.

3.12.	Which	of	the	following	statements	is	not	correct?

a.	In	UML,	access	modifiers	can	be	used	to	specify	who	can	have
access	to	a	variable	or	method.

b.	A	private	access	modifier	(denoted	by	the	symbol	“–”)	is	used	in	the
case	that	the	variable	or	method	can	only	be	accessed	by	the	class
itself.

c.	A	public	access	modifier	(denoted	by	the	symbol	“+”)	is	used	in	the
case	that	the	variable	or	method	can	be	accessed	by	any	other	class.

d.	A	protected	access	modifier	(denoted	by	the	symbol	“#”)	is	used	in
the	case	that	the	variable	or	method	can	be	accessed	by	both	the	class
and	its	superclasses.

3.13.	Which	statement	is	correct?

a.	An	association	is	an	instance	of	a	link.

b.	Only	binary	associations	are	supported	in	the	UML	class	diagram.

c.	An	association	is	always	bidirectional.

d.	Qualified	associations	can	be	used	to	represent	weak	entity	types.

3.14.	A	composite	aggregation…

a.	has	a	maximum	multiplicity	of	1	and	a	minimum	multiplicity	of	0
or	1	at	the	composite	side.

b.	has	a	maximum	multiplicity	of	n	and	a	minimum	multiplicity	of	0	at
the	composite	side.

c.	has	a	maximum	multiplicity	of	n	and	a	minimum	multiplicity	of	0	or
1	at	the	composite	side.

d.	has	a	maximum	multiplicity	of	1	and	a	minimum	multiplicity	of	1	at
the	composite	side.

3.15.	Which	statement	is	not	correct?

a.	The	changeability	property	specifies	the	type	of	operations	that	are
allowed	on	either	variable	values	or	links.

b.	OCL	constraints	are	defined	in	a	procedural	way.

c.	OCL	constraints	can	be	used	for	various	purposes,	such	as	to	specify
invariants	for	classes,	to	specify	pre-	and	post-conditions	for	methods,
to	navigate	between	classes	or	to	define	constraints	on	operations.

d.	In	UML,	dependency	defines	a	“using”	relationship	that	states	that	a
change	in	the	specification	of	a	UML	modeling	concept	may	affect
another	modeling	concept	that	uses	it.

Problems	and	Exercises

3.1E	Fitness	company	“Conan”	wants	to	set-up	a	database	for	its	members	and
trainers.	One	of	the	aims	is	to	record	information	about	which	members
participated	in	which	sessions	and	which	trainers	supervised	which	sessions.
Conan	operates	various	fitness	centers	in	various	cities.	Every	center	is

characterized	by	a	unique	name	(e.g.,	Fitplaza,	my6pack).	Every	center	has	an
address	and	one	or	more	rooms	(you	can	consider	address	as	atomic).	Every
room	has	a	maximum	capacity.	Within	a	center,	each	room	has	a	unique	number
such	as	1,	2,	3,	etc.
People	can	register	for	individual	or	group	sessions	in	different	centers.	Each

group	session	requires	exactly	one	trainer.	Individual	sessions	are	done	without	a
trainer.	For	each	person,	we	want	to	store	the	first	name,	family	name,	and	birth
date.	You	can	assume	that	the	combination	of	first	name,	family	name,	and	birth
date	is	unique.	For	each	trainer,	the	diploma	is	also	recorded.	A	person	can	be	a
trainer	in	one	session	and	participant	in	another	session	(either	individual	or
group	session).	The	model	should	also	include	information	about	people	(e.g.,
prospects)	that	have	not	participated	in	any	sessions	yet,	or	trainers	(e.g.,	interns)
that	have	not	supervised	any	group	sessions	yet.
For	each	session,	the	date	and	starting	hour	should	be	recorded.	For	group

sessions,	also	the	type	should	be	stored	(e.g.,	aerobics,	bodystyling,	etc.).
Sessions	can	start	at	the	same	time	on	the	same	day	but	in	different	rooms	of	a
center	or	in	different	centers.	At	a	given	start	hour	of	a	given	day,	at	most	one
individual	or	group	session	can	start	in	a	given	room	of	a	given	center.
Make	an	EER	model	and	UML	class	diagram	to	model	the	data	requirements

for	Conan.	Comment	on	the	limitations	of	both	models.

3.2E	Recently,	the	European	Union	made	funds	available	to	set-up	a	cross-
national	research	database	that	stores	information	concerning	scientific	articles
of	researchers	working	at	institutions	in	the	EU.	Science	Connect	is	the	company
that	will	be	setting	up	this	database.
The	system	will	store	information	regarding	scientific	staff	(persons)	and

research	institutions.	Both	are	uniquely	identified	by	a	person	ID	and	an
institution	code,	respectively.	The	following	is	also	recorded	for	each	person:	a
phone	number,	keywords	that	identify	his/her	key	research	topics	and	the
institution	he/she	works	for.	A	person	can	be	an	author	of	one	article	and	a
reviewer	of	another	peer-reviewed	article	at	the	same	time.
The	database	will	store	the	following	information	concerning	scientific

articles.	Each	scientific	article	is	uniquely	identified	by	a	DOI	(a	document
object	identifier),	and	the	system	also	stores	the	title	and	the	authors	of	the
article.	In	the	case	of	multiple	authors,	the	position	of	each	author	is	stored.
Science	Connect	distinguishes	between	two	types	of	scientific	articles:	a
scientific	article	is	either	a	peer-reviewed	paper	or	a	technical	report.	The	system
stores	the	citation	count	of	peer-reviewed	papers	and	who	reviewed	the	paper.	A
technical	report	is	always	published	by	a	single	research	institution,	while
research	institutions	can	of	course	publish	multiple	technical	reports.
The	system	keeps	track	of	the	different	scientific	publishers	(e.g.,	IEEE,

Elsevier).	A	publisher	is	identified	by	name.	A	publisher	can	publish	multiple
journals	to	which	research	institutions	can	subscribe.	These	journals	are	given	a
name	by	the	publisher	(e.g.,	Decision	Support	Systems).	Publishers	can	have
journals	with	the	same	name	as	other	publishers;	e.g.,	it	is	possible	that	both
IEEE	and	Elsevier	have	a	journal	with	the	title	Management	Science.	The	impact
factor,	which	measures	the	scientific	impact	of	a	journal,	is	also	stored.
Finally,	only	peer-reviewed	papers	are	published	in	journals,	not	technical

reports.

Make	an	EER	model	and	UML	class	diagram	to	model	the	data	requirements.
Comment	on	the	limitations	of	both	models.

3.3E	One	of	your	(hipster)	acquaintances	thinks	he	has	the	next	billion-dollar
startup	idea	for	an	app:	Pizza	Delivery	with	Entertainment.	He	heard	from	other
people	that	you	are	following	the	course	on	database	management,	and	asks	you
to	design	the	EER	model.	Afterwards,	he	will	use	the	EER	model	to	ask
programmers	to	implement	the	app.
He	explains	the	basic	functionality	of	the	app	as	follows:	customers	can	order

pizzas	from	restaurants	to	be	delivered	to	a	specific	address,	and	if	they	want	to,
they	can	choose	a	special	“entertainment	order”.	When	an	order	is	an
entertainment	order,	the	delivery	person	stays	with	the	customer	after	delivering
the	pizza	and	entertains	the	customers	(e.g.,	by	singing,	making	jokes,	doing
magic	tricks,	etc.)	for	a	certain	amount	of	time.
Now	follows	a	detailed	explanation	of	the	range	of	capabilities	of	the	app:

when	people	create	an	account	for	the	app	and	become	app	users,	they	have	to
indicate	their	birthday	and	fill	in	their	name	and	address.	Every	user	should	also
be	uniquely	identifiable.
Once	the	account	is	created,	the	users	should	be	presented	with	three	options:

the	first	option	in	the	app	is	to	select	“business	owner”.	Of	these	business
owners,	we	also	ask	them	to	provide	their	LinkedIn	account	so	we	can	add	them
to	our	professional	network.	Every	business	owner	can	own	a	number	of	pizza
restaurants.	Of	these	pizza	restaurants,	we	want	to	register	the	zip	code,	address,
phone	number,	website,	and	the	opening	hours.
Each	pizza	restaurant	can	offer	a	number	of	pizzas.	Of	those	pizzas,	we	want

to	keep	the	name	(margarita,	quattro	stagioni,	etc.),	the	crust	structure	(for
example,	classic	Italian	crust,	deep	dish	crust,	cheese	crust),	and	the	price.	While

two	pizzas	from	different	pizza	restaurants	may	have	the	same	name,	they	will
not	be	exactly	the	same	as	the	taste	will	be	different,	and	thus	should	be
considered	unique.	Moreover,	pizzas	should	be	distinguishable	even	if	they	have
the	same	price,	e.g.,	a	pizza	margarita	from	Pizza	Pronto	in	New	York	which
costs	$12	must	be	distinguishable	from	a	pizza	margarita	from	Pizza	Rapido	in
Singapore,	which	also	costs	$12.
The	second	option	in	the	app	is	to	select	“hungry	customer”.	For	these	hungry

customers,	we	need	a	delivery	address.	Hungry	customers	can	make	orders	for
pizzas.	Each	order	gets	assigned	an	ID,	and	we	want	our	app	to	log	the	date	and
time	when	the	order	was	placed.	We	also	allow	the	hungry	customer	to	indicate
the	latest	time	of	delivery,	and	ask	how	many	people	the	order	is	for.	An	order
can	be	for	one	or	more	pizzas.
Also,	a	special	type	of	order	can	be	made:	the	entertainment	order.	Not	every

order	has	to	be	an	entertainment	order.	But	when	a	hungry	customer	indicates
that	he	or	she	wants	to	be	entertained	while	eating	the	pizza,	we	not	only	want	to
register	all	the	regular	order	information,	but	also	the	type	of	entertainment	the
user	requests,	and	for	how	long	(a	duration).
The	third	option	in	the	app	to	select	is	that	of	“entertainer”.	When	users	select

entertainer,	they	need	to	provide	a	stage	name,	write	a	short	bio	about
themselves,	and	indicate	their	price	per	30	minutes.	Every	entertainment	order	is
fulfilled	by	exactly	one	entertainer.	Every	entertainer	can	choose	for	which	pizza
restaurant(s)	he/she	wants	to	work.	For	each	pizza	restaurant	an	entertainer
wants	to	work	with,	he/she	should	indicate	his/her	availability	by	day	(Monday,
Tuesday,	Wednesday,	etc.).
Make	an	EER	model	and	UML	class	diagram	to	model	the	data	requirements.

Comment	on	the	limitations	of	both	models.

3.4E	Attracted	by	the	success	of	Spotify,	a	group	of	students	wants	to	build	its
own	music	streaming	website	called	Musicmatic.	Being	economists,	they	are
unaware	of	the	specificities	of	databases	and	have	therefore	asked	you	to	create
an	EER	model.
A	large	number	of	songs	will	be	made	available	through	their	website,	and	the

following	information	on	each	song	needs	to	be	stored:	title,	year,	length,	and
genre.	Also,	artist	information	will	be	added,	including	date	of	birth,	name	and	a
URL	to	a	website	(e.g.,	Wikipedia	page)	with	additional	information	on	the
artist.	You	can	assume	an	artist	is	uniquely	identified	by	his/her	name,	and	that	a
song	always	belongs	to	exactly	one	artist.	The	Musicmatic	students	also	point
out	that	songs	having	the	same	title	are	possible,	and	only	the	combination	of
song	and	artist	can	be	assumed	to	be	unique.
The	database	will	also	have	to	store	information	on	the	people	using

Musicmatic.	It	was	decided	to	only	discriminate	between	two	types	of	users:	the
regular	users	who	will	be	able	to	buy	music,	and	the	business	users	who	will
deliver	the	content	(upload	the	music).	The	following	information	is	recorded	on
each	user:	(unique)	ID,	name,	and	address.	Business	users	will	also	have	a	VAT
number.
The	students	want	to	offer	a	flexible	service,	and	decided	business	users	can

only	upload	individual	songs.	These	songs	are	classified	either	as	singles	or	hits,
and	regular	users	can	directly	buy	the	singles.	Otherwise,	people	can	compose	an
album	consisting	of	multiple	hits	(no	singles).	The	position	of	each	hit	in	the
album	is	stored	as	a	track	number	in	the	database.	Note	that	the	album	of	regular
users	can	be	turned	into	a	suggestion	to	other	regular	users	with	similar
purchasing	behavior.
Finally,	a	user	can	be	a	regular	user	on	some	occasions	(e.g.,	when

downloading	a	single	or	album),	and	a	business	user	at	other	times	(e.g.,	when
uploading	self-made	songs	to	Musicmatic).

Make	an	EER	model	and	UML	class	diagram	to	model	the	data	requirements.
Comment	on	the	limitations	of	both	models.

3.5E	Recently,	a	new	social	network	site,	Facepage,	was	founded.	Given	the
current	trends,	the	managers	of	Facepage	are	convinced	that	this	will	be	the	new
hype	in	the	near	future.
When	new	users	want	to	join	Facepage,	they	first	need	to	fill	in	a	form	with

their	personal	information	(i.e.,	ID,	name,	email,	and	date	of	birth).	A	user	has	a
unique	ID.	Afterwards,	an	account	is	created.	An	account	is	uniquely	identified
by	an	account	number,	automatically	generated	by	the	database	system.	The	user
needs	to	specify	which	type	of	account	he/she	prefers:	a	business	account	or	a
personal	account.	A	business	account	is	specifically	designed	to	support
companies	in	their	marketing	campaigns.	When	a	user	decides	to	open	a
business	account,	he/she	has	to	specify	the	name	of	the	company.	Users	with	a
business	account	pay	a	monthly	fee.	When	a	user	opts	for	a	personal	account,
he/she	can	keep	in	touch	with	other	Facepage	users.	Only	personal	accounts	can
send	or	receive	friend	requests.
Maintaining	multiple	accounts,	regardless	of	the	purpose,	is	a	violation	of

Facepage’s	Terms	of	Use.	If	a	user	already	has	a	personal	(business)	account,
then	Facepage	cannot	allow	the	user	to	create	an	additional	personal	or	business
account	for	any	reason.
Each	account	can	create	several	pages.	While	each	page	must	be	administrated

by	exactly	one	account,	personal	accounts	can	be	granted	privileges	(e.g.,	to
write	something	on	the	wall	of	friends,	adjust	some	information)	to	pages
belonging	to	other	personal	accounts.	For	each	page,	the	page	name	and	the
number	of	visits	are	logged.	For	each	account,	no	two	pages	can	exist	with	the
same	name.	Users	with	a	business	profile	can	create	a	special	type	of	page:	an

advertisement	page.	This	page	records	several	features,	like	the	bounce	rate,	the
click-through	rate,	and	the	conversion	rate.	The	bounce	rate	is	the	percentage	of
visitors	on	the	page	that	leave	immediately.	The	click-through	rate	is	the
percentage	of	visitors	that	click	on	a	certain	banner	on	the	page.	The	conversion
rate	is	the	percentage	of	visitors	that	accomplish	the	intended	goal,	like	a
purchase	or	a	transaction.
Make	an	EER	model	and	UML	class	diagram	to	model	the	data	requirements

for	Facepage.	Comment	on	the	limitations	of	both	models.

1	Some	textbooks	put	the	cardinalities	of	each	entity	type	next	to	the	entity
type	itself	instead	of	at	the	opposite	side	as	we	do.	For	ternary	relationship
types,	this	makes	the	notation	less	ambiguous.	However,	we	continue	to	use
our	notation	because	this	is	the	most	commonly	used.

2	We	introduced	the	aggregation	in	the	EER	model	for	illustration	purposes.
However,	since	every	project	is	assigned	to	exactly	one	department,	we	could
also	remove	the	aggregate	ALLOCATION	and	draw	a	relationship	type
between	EMPLOYEE	and	PROJECT.

3	See	www.omg.org/spec/UML/2.5	for	the	most	recent	version.

4	In	the	UML	model,	variables	are	also	referred	to	as	attributes	and	methods	as
operations.	However,	to	avoid	confusion	with	the	ER	model	(where	attributes
represent	instances	of	attribute	types),	we	will	stick	to	the	terms	variables	and
methods.

5	We	could	have	defined	two	different	role	names	for	the	association	BOOK
to	represent	its	two	directions.	However,	for	the	sake	of	simplicity,	we	use
BOOK	to	refer	to	the	association	from	the	direction	of	RIDE	SHARING	to
CUSTOMER.

http://www.omg.org/spec/UML/2.5/

4

Organizational	Aspects	of	Data
Management

◈

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

Opening	Scenario

identify	the	basic	concepts	of	data	management;

understand	the	role	and	importance	of	catalogs,	metadata,	data	quality,
and	data	governance;

identify	key	roles	in	database	modeling	and	management;

understand	the	differences	between	an	information	architect,	database
designer,	data	owner,	data	steward,	database	administrator,	and	data
scientist.

Sober	 realizes	 that	 the	 success	of	 its	 entire	business	model	depends	on
data,	and	it	wants	to	make	sure	the	data	are	managed	in	an	optimal	way.
The	company	is	looking	at	how	to	organize	proper	data	management	and
wondering	about	the	corresponding	job	profiles	to	hire.	The	challenge	is
twofold.	 On	 the	 one	 hand,	 Sober	 wants	 to	 have	 the	 right	 data
management	 team	 to	 ensure	 optimal	 data	 quality.	 On	 the	 other	 hand,
Sober	only	has	a	limited	budget	to	build	that	team.

In	this	chapter,	we	zoom	into	the	organizational	aspects	of	data	management.	We
begin	 by	 elaborating	 on	 data	 management	 and	 review	 the	 essential	 role	 of
catalogs	 and	metadata,	 both	 of	 which	were	 introduced	 in	 Chapter	 1.	We	 then
discuss	metadata	modeling,	which	essentially	follows	a	similar	database	design
process	to	that	which	we	described	in	Chapter	3.	Data	quality	is	also	extensively
covered	in	terms	of	both	its	importance	and	its	underlying	dimensions.	Next,	we
introduce	data	governance	as	a	corporate	culture	 to	 safeguard	data	quality.	We
conclude	by	reviewing	various	roles	in	data	modeling	and	management,	such	as
information	 architect,	 database	 designer,	 data	 owner,	 data	 steward,	 database
administrator,	and	data	scientist.

4.1	Data	Management

Data	management	entails	the	proper	management	of	data	and	the	corresponding
data	 definitions	 or	 metadata.	 It	 aims	 at	 ensuring	 that	 (meta-)data	 are	 of	 good
quality	and	thus	a	key	resource	for	effective	and	efficient	managerial	decision-
making.	 In	 the	 following	 subsections	 we	 first	 review	 catalogs,	 the	 role	 of
metadata,	 and	 the	modeling	 thereof.	 This	 is	 followed	 by	 a	 discussion	 on	 data
quality	and	data	governance.

4.1.1	Catalogs	and	the	Role	of	Metadata

The	importance	of	good	metadata	management	cannot	be	understated.	In	the	past
this	 was	 often	 neglected,	 resulting	 in	 significant	 problems	 when	 applications
needed	 to	 be	 updated	 or	 maintained.	 In	 the	 file-based	 approach	 to	 data
management,	 the	metadata	were	 stored	 in	 each	 application	 separately,	 creating
the	issues	discussed	in	Chapter	1.	Just	as	with	raw	data,	metadata	are	also	data
that	need	to	be	properly	modeled,	stored,	and	managed.	Hence,	the	concepts	of
data	 modeling	 should	 also	 be	 applied	 to	 metadata	 in	 a	 transparent	 way.	 In	 a
DBMS	approach,	metadata	are	stored	in	a	catalog,	sometimes	also	called	a	data
dictionary	or	data	repository,	which	constitutes	the	heart	of	the	database	system.
This	facilitates	the	efficient	answering	of	questions	such	as	which	data	are	stored
where	 in	 the	 database?	Who	 is	 the	 owner	 of	 the	 data?	Who	 has	 access	 to	 the
data?	How	are	 the	 data	 defined	 and	 structured?	Which	 transactions	work	with
which	 data?	 Are	 the	 data	 replicated	 and	 how	 can	 consistency	 be	 guaranteed?
Which	 integrity	 rules	 are	 defined?	 How	 frequently	 are	 backups	 made?	 The
catalog	can	be	an	integral	part	of	a	DBMS	or	a	standalone	component	that	must
be	updated	manually.	The	integrated	solution	is	preferred	and	is	more	prevalent
in	modern	DBMSs.

The	 catalog	 provides	 an	 important	 source	 of	 information	 for	 end-users,
application	developers,	and	the	DBMS	itself.	Remember,	the	data	definitions	are
generated	by	the	DDL	compiler.	The	DML	compiler	and	query	processor	use	the
metadata	to	solve	queries	and	determine	the	optimal	access	path	(see	Chapter	2).

The	 catalog	 should	 provide	 support	 for	 various	 functionalities.	 It	 should
implement	an	extensible	metamodel	for	the	description	of	the	metadata.	It	should
have	facilities	to	import	and	export	the	data	definitions	and	provide	support	for
maintenance	 and	 re-use	 of	 metadata.	 The	 integrity	 rules	 stored	 should	 be

continuously	 monitored	 and	 enforced	 whenever	 the	 raw	 data	 are	 updated.	 By
doing	so,	 the	catalog	guarantees	that	 the	database	is	always	in	a	consistent	and
correct	state.	It	should	support	facilities	for	user	access	by	clearly	defining	which
user	has	access	to	which	metadata.	A	catalog	also	stores	statistics	about	the	data
and	 its	 usage.	 These	 are	 extensively	 used	 by	 the	 DBA	 for	 performance
monitoring	and	 tuning.	Also,	 the	query	optimizer	of	 the	DBMS	relies	on	 these
statistics	to	determine	the	optimal	execution	path	of	a	query.

Drill	Down

Different	 vendors	 may	 adopt	 different	 names	 for	 the	 catalog.	 For
example,	in	Oracle	it	is	referred	to	as	the	data	dictionary,	in	SQL	server
as	the	system	catalog,	in	DB2	as	the	DB2	catalog	or	system	catalog,	and
in	MySQL	as	the	information	schema.

4.1.2	Metadata	Modeling

A	metamodel	is	a	data	model	for	metadata.	A	metamodel	determines	the	type	of
metadata	that	can	be	stored.	Just	as	with	raw	data,	a	database	design	process	can
be	 used	 to	 design	 a	 database	 storing	 metadata	 (see	 Chapter	 3).	 As	 already
discussed,	the	first	step	is	to	design	a	conceptual	model	of	the	metadata.	This	can
be	 either	 an	EER	model	 or	 a	UML	model.	 Figure	4.1	 shows	 an	 example	 of	 a
metamodel	that	in	this	case	is	an	EER	conceptual	model	of	an	EER	model.	The
relationship	types	R1	and	R2	model	the	relationship	between	an	attribute	and	an
entity	 or	 relationship.	 The	 relationship	 type	 R3	 specifies	 which	 entities
participate	 in	 which	 relationships.	 The	 relationship	 type	 R4	 is	 a	 ternary
relationship	 type	 between	 entity	 type,	 relationship	 type,	 and	 role.	 R5	 and	 R6
model	the	entities	that	participate	in	a	generalization,	as	either	a	superclass	or	a
subclass.	We	assume	that	every	generalization	has	one	superclass	(R5)	and	one
or	more	subclasses	(R6).

Figure	4.1	EER	conceptual	model	of	an	EER	model.

Connections

In	Chapter	7	we	discuss	how	to	design	a	relational	database	for	a	catalog
and	illustrate	how	it	can	be	defined	and	queried	using	SQL.

4.1.3	Data	Quality

Data	 quality	 (DQ)	 is	 often	 defined	 as	 “fitness	 for	 use”,	 which	 implies	 the
relative	nature	of	the	concept.	Data	of	acceptable	quality	in	one	decision	context
may	be	perceived	to	be	of	poor	quality	in	another	decision	context,	even	by	the
same	 business	 user.	 For	 instance,	 the	 extent	 to	 which	 data	 are	 required	 to	 be
complete	for	accounting	tasks	may	not	be	required	for	analytical	sales	prediction
tasks.

Data	 quality	 determines	 the	 intrinsic	 value	 of	 the	 data	 to	 the	 business.
Information	 technology	 only	 serves	 as	 a	 magnifier	 for	 this	 intrinsic	 value.
Hence,	high-quality	data	combined	with	effective	technology	comprises	a	great
asset,	 but	 poor-quality	 data	 combined	 with	 effective	 technology	 is	 an	 equally
great	 liability.	This	 is	 sometimes	also	called	 the	GIGO	–	Garbage	 In,	Garbage
Out	–	principle,	stating	that	bad	data	result	in	bad	decisions,	even	with	the	best
technology	available.	Decisions	made	based	on	useless	data	have	cost	companies
billions	of	dollars.	A	popular	example	of	this	is	the	address	of	a	customer.	It	 is
estimated	 that	 approximately	10%	of	 customers	 change	 their	 address	 annually.
Obsolete	 customer	 addresses	 can	have	 substantial	 consequences	 for	mail	 order
companies,	package	delivery	providers,	or	government	services.

Poor	DQ	impacts	organizations	 in	many	ways.	At	 the	operational	 level,	 it
affects	 customer	 satisfaction,	 increases	 operational	 expenses,	 and	 will	 lead	 to
lower	 employee	 job	 satisfaction.	 Similarly,	 at	 the	 strategic	 level,	 it	 affects	 the
quality	 of	 the	 decision-making	 process.	 The	 magnitude	 of	 DQ	 problems	 is
exacerbated	by	 the	exponential	 increase	 in	 the	size	of	databases.	This	qualifies
DQ	management	 as	 one	 of	 the	most	 important	 business	 challenges	 in	 today’s
data-based	economy.

4.1.3.1	Data	Quality	Dimensions

Data	quality	is	a	multidimensional	concept	in	which	each	dimension	represents	a
single	 aspect	 or	 construct,	 comprising	 both	 objective	 and	 subjective
perspectives.1	 Some	 aspects	 are	 absolute,	 whereas	 others	 depend	 on	 the	 task
and/or	experience	of	the	data	user.	Therefore,	it	is	useful	to	define	DQ	in	terms
of	its	dimensions.

A	DQ	 framework	 categorizes	 the	 different	 dimensions	 of	 data	 quality.
Different	DQ	frameworks	exist,	but	a	prevalent	one	is	 the	framework	given	by
Wang	 et	 al.2	 It	 is	 represented	 in	 Table	 4.1	 and	 shows	 the	 different	 DQ
dimensions	grouped	into	four	categories.3	The	motivation	behind	the	framework
was	to	capture	a	broad	conceptualization	of	DQ	as	perceived	by	data	consumers
(instead	 of	 ICT	 professionals)	 since	 they	 are	 the	 ones	 using	 the	 data.	 The
framework	provides	a	means	to	measure,	analyze,	and	improve	data	quality	in	a
valid	way.	It	was	built	using	a	two-stage	survey	combined	with	well-established
empirical	research	methods.

Table	4.1	Data	quality	dimensions

Category DQ
dimensions

Definitions

Intrinsic Accuracy The	extent	to	which	data	are	certified,
error-free,	correct,	flawless,	and	reliable

Objectivity The	extent	to	which	data	are	unbiased,
unprejudiced,	based	on	facts,	and
impartial

Reputation The	extent	to	which	data	are	highly
regarded	in	terms	of	their	sources	or
content

Contextual
Completeness The	extent	to	which	data	are	not	missing

and	cover	the	needs	of	the	tasks	and	are
of	sufficient	breadth	and	depth	for	the
task	at	hand

Appropriate-
amount

The	extent	to	which	the	volume	of	data	is
appropriate	for	the	task	at	hand

Value-added The	extent	to	which	data	are	beneficial
and	provide	advantages	from	their	use

Relevance The	extent	to	which	data	are	applicable
and	helpful	for	the	task	at	hand

Timeliness The	extent	to	which	data	are	sufficiently
up-to-date	for	the	task	at	hand

Actionable The	extent	to	which	data	are	ready	for	use

Representation Interpretable The	extent	to	which	data	are	in
appropriate	languages,	symbols,	and	the
definitions	are	clear

Easily
understandable

The	extent	to	which	data	are	easily
comprehended

Consistency The	extent	to	which	data	are	continuously
presented	in	the	same	format

Concisely
represented

The	extent	to	which	data	are	compactly
represented,	well	presented,	well
organized,	and	well	formatted

Alignment The	extent	to	which	data	are	reconcilable
(compatible)

Access Accessibility The	extent	to	which	data	are	available,	or
easily	and	swiftly	retrievable

Security The	extent	to	which	access	to	data	is
restricted	appropriately	to	maintain	their
security

Traceability The	extent	to	which	data	are	traceable	to
the	source

The	intrinsic	category	represents	the	extent	to	which	data	values	conform
to	 the	actual	or	 true	values.	 It	denotes	 that	data	 should	have	good	quality.	The
contextual	category	measures	 the	 extent	 to	which	 data	 are	 appropriate	 to	 the
task	 of	 the	 data	 consumer.	 Obviously,	 this	 can	 vary	 in	 time	 and	 across	 data
consumers.	The	representation	category	indicates	the	extent	to	which	data	are
presented	 in	 a	 consistent	 and	 interpretable	way.	Hence,	 it	 relates	 to	 the	 format
and	meaning	of	data.	The	access	category	 represents	 the	 extent	 to	which	data
are	available	and	obtainable	in	a	secure	manner.	This	is	especially	important	in
today’s	 networked	 environment,	 with	 data	 being	 distributed	 across	 various
platforms.	Each	category	has	multiple	dimensions,	as	is	illustrated	in	Table	4.1.
High-quality	data	should	be	 intrinsically	good,	contextually	appropriate	 for	 the
task,	clearly	represented,	and	accessible	to	the	data	consumer.

Some	 dimensions	 (e.g.,	 accuracy	 and	 objectivity)	 lend	 themselves	 to
objective	assessment	that	is	intrinsic	to	the	data	themselves,	independently	from
the	context	in	which	the	data	are	used.	Other	dimensions	cannot	be	measured	in
absolute	terms	and	vary	with	the	usage	context	or	task	at	hand.	We	now	discuss
some	of	the	most	important	DQ	dimensions	in	Table	4.1.

Accuracy

Accuracy	refers	 to	whether	 the	data	values	stored	for	an	object	are	 the	correct
values.	For	example,	suppose	the	value	for	birth	date	of	a	customer	is	February
27,	1975.	If	a	customer	database	has	a	BIRTH_DATE	data	element	that	expects
dates	in	US	format,	a	date	of	02/27/1975	would	be	correct.	A	date	of	02/27/1976
would	be	 incorrect	because	 it	 is	 the	wrong	value.	A	date	of	27/02/1975	would
also	be	incorrect	because	it	 follows	a	European	instead	of	a	US	representation.
This	 example	 also	 illustrates	 that	 the	 accuracy	 dimension	 is	 heavily	 correlated
with	 other	 DQ	 dimensions.	 Often,	 after	 root	 cause	 analysis,	 a	 quality	 issue
initially	labeled	as	an	accuracy	problem	will	turn	out,	for	example,	to	be	a	matter
of	 representation	 (e.g.,	 US	 versus	 European	 notation)	 or	 timeliness	 (e.g.,
customer	address	is	obsolete).

Completeness

Another	 crucial	 dimension	 is	 the	 completeness	 of	 data.	 The	 completeness
dimension	can	be	viewed	from	at	least	three	perspectives:	schema	completeness,
column	 completeness,	 and	 population	 completeness.	 By	 schema	 completeness,
we	mean	the	degree	 to	which	entity	 types	and	attribute	 types	are	missing	from
the	schema.	An	example	of	a	schema	completeness	problem	could	be	a	missing
ORDER	 entity	 type	 or	 a	 missing	 Email	 address	 attribute	 type.	 Column
completeness	 considers	 the	 degree	 to	 which	 there	 exist	 missing	 values	 in	 a
column	of	a	data	table.	An	example	of	a	column	completeness	problem	could	be
a	missing	value	 for	a	customer’s	birth	date.	Population	completeness	 indicates
the	degree	 to	which	 the	necessary	members	of	a	population	are	present	or	not.
An	 example	 of	 a	 population	 completeness	 problem	 could	 be	 that	 important
supplier	entities	are	missing	for	the	SUPPLIER	entity	type.

Table	 4.2	 gives	 an	 example	 of	 three	 column	 completeness	 problems.
Although	 the	 null	 values	 seem	 identical	 at	 first	 sight,	 there	 could	 be	 various
reasons	for	this.	For	example,	suppose	Wilfried	Lemahieu	has	no	email	address	–

then	this	is	not	then	an	incompleteness	problem.	If	Seppe	vanden	Broucke	has	an
email	 address,	 but	 it	 is	 not	 known,	 this	would	 be	 an	 incompleteness	 problem.
Finally,	we	do	not	know	if	John	Edward	has	an	email	address,	so	we	do	not	have
enough	information	to	determine	whether	this	is	an	incompleteness	problem.

Table	4.2	Column	completeness

ID Forename Surname Birth	date Email

1 Bart Baesens 27/02/1975 Bart.Baesens@kuleuven.be

2 Wilfried Lemahieu 08/03/1970 Null

3 Seppe vanden
Broucke

09/11/1986 Null

4 John Edward 14/20/1955 Null

Consistency

The	consistency	dimension	 can	 also	 be	 viewed	 from	 several	 perspectives.	 For
example,	one	can	be	concerned	about	the	consistency	of	redundant	or	duplicated
data	 in	one	 table	or	 in	multiple	 tables:	different	data	elements	 representing	 the
same	 real-world	 concept	 should	 be	 consistent	 with	 one	 another.	 Another
perspective	 would	 be	 the	 consistency	 between	 two	 related	 data	 elements.	 For
example,	 the	 name	 of	 the	 city	 and	 the	 postal	 code	 should	 be	 consistent.
Consistency	 can	 also	 refer	 to	 consistency	of	 format	 for	 the	 same	data	 element
used	 in	 different	 tables.	 Otherwise,	 two	 values	 can	 be	 both	 correct	 and
unambiguous,	but	still	cause	problems	–	for	example,	the	values	New	York	and
NY	 may	 both	 refer	 to	 the	 same	 city.	 These	 examples	 of	 inconsistencies	 will
typically	 be	 symptomatic	 for	 underlying	 problems	with	 other	DQ	 dimensions,
such	as	accuracy	or	completeness.

Accessibility

The	 accessibility	 dimension	 reflects	 the	 ease	 of	 retrieving	 the	 data	 from	 the
underlying	data	sources.	Often,	there	will	be	a	tradeoff	between	the	security	and
accessibility	 dimensions.	 The	more	measures	 are	 in	 place	 to	 enhance	 security,
the	more	obstacles	may	be	introduced	to	obtain	access	to	the	data.	Such	tradeoffs
are	common	between	DQ	dimensions.	Another	example	is	the	possible	tradeoff
between	timeliness	and	completeness;	the	higher	the	pressure	to	deliver	the	data
promptly,	the	fewer	measures	can	be	taken	to	detect	and	resolve	missing	values.

4.1.3.2	Data	Quality	Problems

Data	 quality	 is	 a	multidimensional	 concept.	Hence,	DQ	 problems	 can	 arise	 in
various	ways.	The	following	are	common	causes	of	poor	DQ:

Multiple	data	sources:	multiple	sources	with	the	same	data	may	produce
duplicates	–	a	problem	of	consistency.

Subjective	judgment	in	data	production:	data	production	using	human
judgment	(e.g.,	opinions)	can	cause	the	production	of	biased	information
–	a	problem	of	objectivity.

Limited	computing	resources:	lack	of	sufficient	computing	resources
and/or	digitalization	may	limit	the	accessibility	of	relevant	data	–	a
problem	of	accessibility.

Volume	of	data:	large	volumes	of	stored	data	make	it	difficult	to	access
needed	information	in	a	reasonable	time	–	a	problem	of	accessibility.

Changing	data	needs:	data	requirements	change	on	an	ongoing	basis	due
to	new	company	strategies	or	the	introduction	of	new	technologies	–	a
problem	of	relevance.

These	causes	of	DQ	problems	have	always	existed	to	a	certain	extent,	since
the	 beginning	 of	 the	 digital	 era.	 However,	 initially	 most	 data	 processing
applications	and	database	systems	existed	in	relative	isolation,	as	so-called	silos.
This	 was	 far	 from	 an	 ideal	 situation	 from	 a	 company-wide	 data-sharing
perspective,	but	at	least	the	producers	and	consumers	of	the	data	were	largely	the
same	 people	 or	 belonged	 to	 the	 same	 department	 or	 business	 unit.	 One	 was
mostly	aware	of	which	DQ	issues	existed	with	one’s	own	data	and	people	would
often	deal	with	 them	 in	 an	 ad-hoc	manner,	 based	 on	 familiarity	with	 the	 data.
However,	with	 the	advent	of	business	process	 integration,	company-wide	data-
sharing,	and	using	data	from	various	operational	systems	for	strategic	decision-
making,	 the	 data	 producers	 and	 consumers	 have	 been	 largely	 decoupled.
Therefore,	people	responsible	for	entering	the	data	are	not	fully	aware	of	the	DQ
requirements	of	the	people	using	the	data,	or	of	the	different	business	processes
in	which	 the	data	are	used.	Moreover,	different	 tasks	using	 the	same	data	may
have	very	distinct	DQ	requirements.

Different	processes	using	and	updating	the	same	data	–	a	problem	of
consistency.

4.1.4	Data	Governance

Due	to	the	DQ	problems	we	introduced	in	the	previous	section,	organizations	are
increasingly	 implementing	 company-wide	 data	 governance	 initiatives	 to
measure,	monitor,	and	improve	the	DQ	dimensions	that	are	relevant	to	them.	To
manage	 and	 safeguard	DQ,	 a	data	governance	 culture	 should	 be	 put	 in	 place
assigning	clear	roles	and	responsibilities.	The	aim	of	data	governance	is	to	set-up
a	company-wide	controlled	and	supported	approach	toward	DQ	accompanied	by
DQ	management	processes.	The	core	 idea	 is	 to	manage	data	as	an	asset	 rather
than	a	liability,	and	adopt	a	proactive	attitude	toward	data	quality.	To	succeed,	it
should	be	a	key	element	of	a	company’s	corporate	governance	and	supported	by
senior	management.	Worldwide	international	regulatory	institutions	have	further
amplified	 the	 importance	 of	 data	 governance	 through	 business-specific
compliance	 guidelines.	 For	 example,	 the	Basel	 and	 Solvency	Accords	 provide
clear	guidelines	for	data	governance	within	a	credit	risk	and	insurance	context.4

Different	 frameworks	 have	 been	 introduced	 for	 DQ	 management	 and
improvement.	 Some	 are	 rooted	 in	 (general)	 quality	 management	 while	 others
focus	explicitly	on	data	quality.	Another	category	of	frameworks	focuses	on	the
maturity	of	DQ	management	processes.	They	aim	at	assessing	the	maturity	level
of	 DQ	 management	 to	 understand	 best	 practices	 in	 mature	 organizations	 and
identify	areas	for	improvement.	Popular	examples	of	such	frameworks	include:
Total	Data	Quality	Management	 (TDQM),	Total	Quality	Management	 (TQM),
Capability	Maturity	Model	 Integration	 (CMMI),	 ISO	9000,	Control	Objectives
for	 Information	 and	 Related	 Technology	 (CobiT),	 Data	Management	 Body	 of
Knowledge	 (DMBOK),	 Information	 Technology	 Infrastructure	 Library	 (ITIL),
and	Six	 Sigma.	Most	 frameworks	 are	 scientifically	 grounded	 and	 consider	 the

perspective	 and	 knowledge	 of	 various	 data	 stakeholders	 across	 different
industries.

As	 an	 example,	 the	 TDQM	 framework	 is	 illustrated	 in	 Figure	 4.2.5	 A
TDQM	cycle	 consists	 of	 four	 steps	 –	define,	measure,	 analyze,	 and	 improve	 –
which	 are	 performed	 iteratively.	 The	 define	 step	 identifies	 the	 pertinent	 DQ
dimensions,	using,	e.g.,	the	framework	in	Table	4.1.	These	can	then	be	quantified
using	metrics	in	the	measure	step.	Some	example	metrics	are:	the	percentage	of
customer	records	with	incorrect	address	(accuracy);	the	percentage	of	customer
records	with	missing	birth	date	(completeness);	or	an	indicator	specifying	when
customer	data	were	 last	updated	(timeliness).	The	analyze	 step	 tries	 to	 identify
the	 root	cause	 for	 the	diagnosed	DQ	problems.	These	can	 then	be	 remedied	 in
the	improve	step.	Example	actions	could	be:	automatic	and	periodic	verification
of	 customer	 addresses,	 the	 addition	 of	 a	 constraint	 that	 makes	 birth	 date	 a
mandatory	data	field,	and	the	generation	of	alerts	when	customer	data	have	not
been	updated	during	the	previous	six	months.

Figure	4.2	Total	Data	Quality	Management.

If	actual	DQ	improvement	is	not	an	option	in	the	short	term	for	reasons	of
technical	constraints	or	 strategic	priorities,	 it	 is	 sometimes	a	partial	 solution	 to
annotate	the	data	with	explicit	information	about	its	quality.	Such	DQ	metadata
can	be	stored	in	the	catalog,	possibly	with	other	metadata.	In	this	way,	 the	DQ
issues	are	not	 resolved,	but	at	 least	data	consumers	across	 the	organization	are
aware	 of	 them	 and	 can	 take	 the	 necessary	 precautions	 as	 part	 of	 their	 task
execution.	For	example,	credit	 risk	models	could	 incorporate	an	additional	risk
factor	 to	 account	 for	 uncertainty	 in	 the	 data,	 derived	 from	 DQ	 metadata.
Unfortunately,	many	companies	 still	 ignore	DQ	problems	because	of	 a	 lack	of
perceived	added	value.	Hence,	many	data	governance	efforts	(if	any)	are	mostly
reactive	and	ad-hoc,	only	addressing	the	DQ	issues	as	they	occur.

Connections

Data	 quality	 and	 data	 governance	 are	 discussed	 further	 in	 Chapter	 18.
This	 chapter	 also	 zooms	 in	 on	 the	 realm	 of	 technologies	 that	 exist	 to
integrate	 data	 from	 multiple	 sources	 and	 the	 different	 tradeoffs	 these
technologies	entail	regarding	the	DQ	dimensions.

Retention	Questions

Discuss	some	of	the	key	dimensions	of	data	quality.

How	can	data	governance	contribute	to	better	data	quality?

4.2	Roles	in	Data	Management

In	 this	 section	 we	 discuss	 various	 job	 profiles	 within	 the	 context	 of	 data
management.	 We	 introduce	 the	 information	 architect,	 database	 designer,	 data
owner,	 data	 steward,	 database	 administrator,	 and	 data	 scientist.	 Each	 of	 these
roles	 are	 essential	 in	 ensuring	 high	 DQ	 and	 transforming	 data	 into	 actual
business	 value.	 Depending	 upon	 the	 size	 of	 the	 database	 and	 the	 company,
multiple	profiles	may	be	merged	into	one	job	description.

4.2.1	Information	Architect

The	 information	 architect	 (also	 called	 information	 analyst)	 designs	 the
conceptual	 data	model,	 preferably	 in	 dialogue	with	 the	 business	 users.	He/she
bridges	 the	 gap	 between	 the	 business	 processes	 and	 the	 IT	 environment	 and
closely	collaborates	with	the	database	designer,	who	may	assist	in	choosing	the
type	of	conceptual	data	model	 (e.g.,	EER	or	UML)	and	 the	database	modeling
tool.

4.2.2	Database	Designer

The	database	designer	 translates	 the	conceptual	data	model	 into	a	 logical	and
internal	 data	model.	He/she	 also	 assists	 the	application	developers	 in	 defining
the	 views	 of	 the	 external	 data	 model.	 To	 facilitate	 future	 maintenance	 of	 the
database	 applications,	 the	 database	 designer	 should	 define	 company-wide
uniform	naming	conventions	when	creating	the	various	data	models.

4.2.3	Data	Owner

Every	data	field	in	every	database	in	the	organization	should	be	owned	by	a	data
owner,	who	has	the	authority	to	ultimately	decide	on	the	access	to,	and	usage	of,
the	data.	The	data	owner	could	be	 the	original	producer	of	 the	data,	one	of	 its
consumers,	or	a	third	party.	The	data	owner	should	be	able	to	fill	in	or	update	its
value,	which	implies	the	data	owner	has	knowledge	of	the	meaning	of	the	field
and	has	 access	 to	 the	 current	 correct	 value	 (e.g.,	 by	 contacting	 a	 customer,	 by
looking	into	a	file,	etc.).	Data	owners	can	be	requested	by	data	stewards	(see	the
next	subsection)	to	check	or	complete	the	value	of	a	field,	as	such	correcting	a
DQ	issue.

4.2.4	Data	Steward

Data	stewards	are	the	DQ	experts	in	charge	of	ensuring	the	quality	of	both	the
actual	 business	 data	 and	 the	 corresponding	 metadata.	 They	 assess	 DQ	 by
performing	 extensive	 and	 regular	 data	 quality	 checks.	 These	 checks	 involve,
among	other	evaluation	steps,	the	application	or	calculation	of	DQ	indicators	and
metrics	for	the	most	relevant	DQ	dimensions.	They	are	also	in	charge	of	taking
initiative	and	further	acting	upon	the	results.	A	first	type	of	action	to	be	taken	is
the	application	of	corrective	measures.	However,	data	stewards	are	not	in	charge
of	 correcting	data	 themselves,	 as	 this	 is	 typically	 the	 responsibility	of	 the	data
owner.	 The	 second	 type	 of	 action	 to	 be	 taken	 upon	 the	 results	 of	 the	 DQ
assessment	involves	a	deeper	investigation	into	the	root	causes	of	the	DQ	issues
detected.	Understanding	these	causes	may	allow	designing	preventive	measures
that	 aim	 at	 eradicating	 DQ	 problems.	 Preventive	 measures	 may	 include
modifications	 to	 the	 operational	 information	 systems	where	 the	 data	 originate
(e.g.,	 making	 fields	 mandatory,	 providing	 drop-down	 lists	 of	 possible	 values,
rationalizing	 the	 interface,	 etc.).	 Also,	 values	 entered	 in	 the	 system	 may
immediately	 be	 checked	 for	 validity	 against	 predefined	 integrity	 rules	 and	 the
user	may	be	requested	to	correct	the	data	if	these	rules	are	violated.	For	instance,
a	corporate	 tax	portal	may	require	employees	 to	be	 identified	based	upon	 their
social	 security	 number,	 which	 can	 be	 checked	 in	 real-time	 by	 contacting	 the
social	 security	 number	 database.	 Implementing	 such	 preventive	 measures
requires	the	close	involvement	of	the	IT	department	in	charge	of	the	application.
Overall,	preventing	erroneous	data	from	entering	the	system	is	often	more	cost-
efficient	than	correcting	errors	afterwards.	However,	care	should	be	taken	not	to
slow	 down	 critical	 processes	 because	 of	 non-essential	 DQ	 issues	 in	 the	 input
data.

4.2.5	Database	Administrator

The	database	administrator	(DBA)	 is	 responsible	 for	 the	 implementation	and
monitoring	of	the	database.	Example	activities	include:	installing	and	upgrading
the	DBMS	software;	backup	and	recovery	management;	performance	tuning	and
monitoring;	 memory	 management;	 replication	 management;	 security	 and
authorization.	A	DBA	closely	collaborates	with	network	and	system	managers.
He/she	also	interacts	with	database	designers	to	reduce	operational	management
costs	 and	 guarantee	 agreed	 service	 levels	 (e.g.,	 response	 times	 and	 throughput
rates).

Drill	Down

The	 Bureau	 of	 Labor	 Statistics6	 shows	 that	 DBAs	 usually	 have	 a
bachelor’s	degree	in	an	information-	or	computer-related	subject	such	as
computer	 science.	 Their	 2015	 median	 pay	 was	 $81,710	 per	 year.
Triggered	 by	 the	massive	 growth	 in	 data,	 the	 employment	 of	DBAs	 is
projected	 to	 grow	 11%	 from	 2014	 to	 2024,	 which	 is	 faster	 than	 the
average	for	all	occupations.

4.2.6	Data	Scientist

Data	 scientist	 is	 a	 relatively	 new	 job	 profile	 within	 the	 context	 of	 data
management.	He/she	analyzes	data	using	state-of-the-art	analytical	techniques	to
provide	new	insights	into,	for	example,	customer	behavior.	A	data	scientist	has	a
multidisciplinary	 profile	 combining	 ICT	 skills	 (e.g.,	 programming)	 with
quantitative	modeling	 (e.g.,	 statistics),	business	understanding,	communication,
and	creativity.

Connections

We	discuss	data	science	further	 in	Chapter	20,	where	we	also	elaborate
more	on	the	skill	set	of	a	data	scientist.

Retention	Questions

Discuss	the	job	profiles	in	data	management.	Which	ones	can	be
combined?

What	differentiates	a	data	owner	from	a	data	steward?

What	are	the	key	characteristics	of	a	data	scientist?

Summary

In	this	chapter	we	zoomed	into	the	organizational	aspects	of	data	management.
We	clarified	 the	critical	 role	of	metadata	and	the	appropriate	modeling	 thereof.
We	reviewed	data	quality	and	illustrated	how	data	governance	can	contribute	to
it.	 We	 concluded	 by	 reviewing	 key	 roles	 in	 data	 management:	 information
architect,	 database	 designer,	 data	 owner,	 data	 steward,	 database	 administrator,
and	data	scientist.

Scenario	Conclusion

Now	that	Sober	has	a	better	idea	about	the	importance	of	good	metadata
and	data	quality,	it	has	put	in	place	a	data	governance	initiative	inspired
by	 the	Total	Data	Quality	Management	 framework.7	 It	will	 also	 assign
clear	 roles	 and	 responsibilities	 for	 data	 management.	 However,	 since
Sober	 is	 a	 startup	 company	 and	 has	 limited	 budgets,	 it	 must	 combine
some	of	 these.	 Sober	 hired	 two	 data	management	 profiles:	 one	will	 be
working	as	an	information	architect,	database	designer,	data	owner,	and
DBA;	the	second	will	take	on	the	roles	of	data	steward	and	data	scientist.
Both	will	be	combined	in	a	data	management	business	unit	and	will	need
to	collaborate	closely.

Key	Terms	List

access	category

accessibility

accuracy

catalog

completeness

consistency

contextual	category

data	governance

data	management

data	owner

data	quality	(DQ)

data	scientist

data	steward

database	administrator	(DBA)

database	designer

DQ	frameworks

information	analyst

information	architect

intrinsic	category

metamodel

representation	category

timeliness

Review	Questions

4.1.	Which	of	the	following	statements	is	correct?

a.	The	catalog	forms	the	heart	of	a	database.	It	can	be	an	integral	part
of	the	DBMS	or	a	standalone	component.

b.	The	catalog	makes	sure	the	database	continues	to	be	correct	by,
among	other	measures,	specifying	all	integrity	rules.

c.	The	catalog	describes	all	metadata	components	that	are	defined	in
the	metamodel.

d.	All	of	the	above	are	correct.

4.2.	A	data	steward	notices	that	part	of	the	database	contains	values	in	a
different	language.	Which	type	of	data	quality	error	is	this?

a.	Intrinsic.

b.	Contextual.

c.	Representational.

d.	Accessibility.

4.3.	Is	the	following	statement	true	or	false?	“The	accuracy	of	a	database
depends	on	its	representational	and	contextual	characteristics.”

a.	True.

b.	False.

4.4.	Why	can	data	incompleteness	prove	to	be	useful	information?

a.	We	can	track	down	faults	in	the	database	model,	such	as	updating
errors	that	cause	inconsistencies.

b.	We	can	track	down	the	source	of	the	incompleteness	and	thereby
eliminate	the	cause	thereof.

c.	We	can	track	down	certain	patterns	in	the	incomplete	fields,	which
can	lead	to	more	information	about	a	certain	user.

d.	All	of	the	above.

4.5.	Which	of	the	following	statements	is	not	correct?

a.	Subjectivity	can	cause	data	quality	issues.

b.	Consistency	issues	can	arise	due	to	sharing	data	across	multiple
departments.

c.	Data	quality	can	always	be	measured	objectively.

d.	All	aspects	of	data	quality	need	to	be	checked	regularly,	as	every
change	in	the	database	or	even	the	company	can	lead	to	unforeseen
issues.

Problems	and	Exercises

4.1E	Discuss	the	importance	of	metadata	modeling	and	catalogs.

4.2E	Define	data	quality	and	discuss	why	it	is	an	important	concept.	What	are
the	most	important	data	quality	dimensions?	Illustrate	with	examples.

4.3E	Discuss	the	Total	Data	Quality	Management	(TDQM)	data	governance
framework	and	illustrate	with	examples.

4.4E	Discuss	and	contrast	the	various	roles	in	data	management.	Clearly	indicate
the	key	activities	and	skills	required.	Discuss	which	job	profiles	can	be
combined.

1	Moges	H.T.,	Dejaeger	K.,	Lemahieu	W.,	Baesens	B.,	A	multidimensional
analysis	of	data	quality	for	credit	risk	management:	New	insights	and
challenges,	Information	and	Management,	2013;	50(1):	43–58.

2	Wang	R.Y.,	Strong,	D.M.	Beyond	accuracy:	What	data	quality	means	to	data
consumers,	Journal	of	Management	Information	Systems,	1996;	12(4).

3	The	actual	dimensions	within	these	categories	differ	slightly	from	the
original	framework	and	are	based	on	the	work	of	Moges	et	al.	(2013).

4	Baesens	B.,	Roesch	D.,	Scheule	H.,	Credit	Risk	Analytics:	Measurement
Techniques,	Applications	and	Examples	in	SAS,	Wiley,	2016.

5	Wang	R.Y.	A	product	perspective	on	Total	Data	Quality	Management.
Communications	of	the	ACM,	1998;	41(2).

6	www.bls.gov/ooh/computer-and-information-technology/database-
administrators.htm.

7	Wang	R.Y.,	A	product	perspective	on	Total	Data	Quality	Management.
Communications	of	the	ACM,	1998;	41(2).

https://www.bls.gov/ooh/computer-and-information-technology/database-administrators.htm

Part	II
◈

Types	of	Database	Systems

5 Legacy	Databases

6 Relational	Databases:	The	Relational	Model

7 Relational	Databases:	Structured	Query	Language	(SQL)

8 Object-Oriented	Databases	and	Object	Persistence

9 Extended	Relational	Databases

10 XML	Databases

11 NoSQL	Databases

5

Legacy	Databases
◈

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

Opening	Scenario

Sober	 purchased	 the	 customer	 database	 of	 Mellow	 Cab,	 who	 recently
stepped	 out	 of	 the	 taxi	 business	 after	 many	 years	 at	 the	 top.	 Since
Mellow	Cab	started	in	the	mid-1970s,	it	was	still	using	outdated	database
technology.	 It	 used	CODASYL	 to	 store	 and	manage	 its	 customer	 data.

understand	why	it	is	important	to	know	the	basic	concepts	of	legacy
databases;

identify	the	basic	building	blocks	and	limitations	of	the	hierarchical
model;

identify	the	basic	building	blocks	and	limitations	of	the	CODASYL
model.

Sober	 is	 not	 familiar	with	 this	 technology	 and	wants	 to	 understand	 its

limitations	 before	 deciding	 to	 either	 continue	 with	 it	 or	 invest	 in	 a
modern	DBMS.

In	 this	 chapter	 we	 briefly	 zoom	 into	 legacy	 database	 technologies	 and	 their
logical	 data	 models.	 Although	 these	 are	 outdated	 and	 semantically	 inferior	 to
modern	 database	 technologies,	 there	 are	 three	 reasons	 to	 review	 them.	 Firstly,
many	firms	still	struggle	with	legacy	databases	due	to	historical	implementations
and	 limited	 IT	 budgets	 –	 hence,	 knowing	 the	 basic	 characteristics	 of	 these
models	 is	 essential	 to	 the	 maintenance	 of	 the	 corresponding	 database
applications	 and	 the	 potential	 migration	 to	 modern	 DBMSs.	 Secondly,
understanding	 the	 basics	 of	 these	 legacy	 models	 will	 contribute	 to	 better
understanding	 the	 semantical	 richness	 of	 newer	database	 technologies.	Finally,
the	concept	of	procedural	DML	and	navigational	access	originally	introduced	by
these	 legacy	models	 has	 also	 been	 adopted	 by	more	 recent	 databases	 such	 as
OODBMSs.

In	this	chapter	we	cover	both	the	hierarchical	and	CODASYL	data	models.
Throughout	 the	 discussion,	 we	 extensively	 discuss	 the	 expressive	 power	 and
limitations	of	both	models.

5.1	The	Hierarchical	Model

The	hierarchical	model	 is	 one	of	 the	 first	 data	models	 developed.	The	model
originated	during	 the	Apollo	moon	missions	program	conducted	by	NASA.	To
manage	 the	 huge	 amount	 of	 data	 collected,	 IBM	 developed	 the	 Information
Management	 System	 or	 IMS	 DBMS	 (1966–1968).	 There	 is	 no	 formal
description	 available	 and	 it	 has	 lots	 of	 structural	 limitations.	 Therefore,	 it	 is
considered	legacy.

The	two	key	building	blocks	of	the	hierarchical	model	are	record	types	and
relationship	types.	A	record	type	 is	a	set	of	records	describing	similar	entities.
Think	about	a	product	record	type	or	a	supplier	record	type.	A	record	type	has
zero,	one,	or	more	records.	It	consists	of	fields	or	data	items.	A	product	record
type	has	a	field	product	number,	a	field	product	name,	a	field	product	color,	etc.

A	relationship	type	connects	two	record	types.	It	models	the	relationships
between	 record	 types.	 Only	 hierarchical	 structures	 are	 allowed	 –	 or	 in	 other
words	only	1:N	relationship	 types	can	be	modeled.	Hence,	a	parent	 record	can
have	multiple	child	records	according	to	the	same	relationship	type,	but	a	child
record	has	at	most	one	parent	record.	A	record	type	can	be	a	parent	in	multiple
parent–child	relationship	types,	but	it	can	participate	in	at	most	one	relationship
type	as	a	child.	Relationship	types	can	be	nested	(i.e.,	a	child	record	type	can	be
a	 parent	 in	 another	 parent–child	 relationship	 type,	 which	 allows	 building
hierarchical	structures).	The	root	record	type	is	the	record	type	that	sits	at	the	top
of	the	hierarchy,	whereas	a	leaf	record	type	sits	at	the	bottom	of	the	hierarchy.

Figure	5.1	shows	an	example	of	a	parent–child	relationship	type.	A	parent
record	 can	 be	 connected	 to	minimal	 0	 and	maximal	 N	 child	 records.	 A	 child
record	 can	be	 connected	 to	minimum	one	 and	maximum	one	parent.	Hence,	 a

child	record	is	always	connected	to	exactly	one	parent.	No	other	cardinalities	are
supported	in	the	hierarchical	model,	which	makes	it	very	restrictive	in	terms	of
expressive	power.	Remember	 that	 a	 relationship	 type	 is	 always	 summarized	 in
terms	of	its	maximum	cardinalities.	In	our	case,	we	can	say	that	the	hierarchical
model	supports	only	1:N	relationship	types.

Figure	5.1	Parent–child	relationship	type.

Figure	5.2	shows	an	example	of	a	simple	hierarchical	model.	We	have	three
record	types:	department,	employee,	and	project.	The	department	record	type	has
three	data	fields:	department	number,	department	name,	and	department	location.
The	department	record	type	participates	in	two	parent–child	relationship	types.	A
department	can	have	zero	to	N	employees.	An	employee	is	always	connected	to
one	 department.	 A	 department	 can	 work	 on	 zero	 to	 N	 projects.	 A	 project	 is
always	worked	on	by	exactly	one	department.	This	is	a	very	simple	hierarchical
structure.	Department	is	the	root	record	type,	and	both	employee	and	project	are
the	leaf	record	types.

Figure	5.2	Example	of	a	parent–child	relationship	type.

In	the	hierarchical	model,	all	record	data	need	to	be	retrieved	by	navigating
down	from	the	root	node	of	the	hierarchical	structure.	In	other	words,	the	DML
adopted	is	procedural,	which	is	not	efficient.	The	hierarchical	model	is	also	very
rigid	and	limited	in	expressive	power	since	it	allows	only	1:N	relationship	types.
There	is	no	support	to	model	N:M	or	1:1	relationship	types.	Hence,	these	must
be	implemented	using	workarounds.	To	implement	an	N:M	relationship	type,	we
can	assign	one	record	type	as	the	parent	and	the	other	as	the	child	record	type.	In
other	words,	we	transform	the	network	structure	into	a	tree	structure,	which	will
obviously	 involve	 a	 loss	 of	 semantics.	 Any	 relationship	 type	 attributes	 (e.g.,
number	 of	 hours	 an	 employee	 worked	 on	 a	 project)	 will	 be	 put	 in	 the	 child
record	 type.	This	 solution	 creates	redundancy,	which	 is	 dependent	 upon	 both
the	 amount	 of	 data	 in	 the	 child	 record	 type	 and	 the	 value	 of	 the	 maximum
cardinality	 of	 the	 “child	 to	 parent”	 role	 in	 the	 original	N:M	 relationship	 type.
Let’s	illustrate	this	with	an	example:	we	have	an	N:M	relationship	type	between
project	 and	 employee.	 Put	 differently,	 an	 employee	 can	 work	 on	 zero	 to	 N
projects,	 whereas	 a	 project	 can	 be	worked	 upon	 by	 zero	 to	M	 employees.	 To
implement	this	in	the	hierarchical	model,	we	need	to	map	it	to	a	1:N	relationship
type,	which	is	obviously	not	ideal.	Hence,	we	can	opt	to	make	project	the	parent
and	employee	the	child	record	type.	Figure	5.3	shows	some	example	records	for
this	implementation.

Figure	5.3	Implementing	N:M	relationship	types	in	the	hierarchical	model.

Connections

Chapter	2	discusses	 the	differences	between	procedural	 and	declarative
DML.

Project	 number	 10	 has	 three	 employees	 working	 on	 it:	 employee	 110,
employee	120,	and	employee	145.	You	can	also	see	that	employee	110	works	on
all	three	projects	–	projects	10,	15,	and	20.	Hence,	the	data	of	employee	110	are
replicated	for	each	project	she	works	on,	which	is	inefficient	from	both	a	storage
and	 maintenance	 perspective.	 If	 the	 data	 of	 employee	 110	 is	 updated	 in	 one
relation,	 it	must	also	be	updated	 in	 the	other	 relations	or	 inconsistent	data	will
occur.	Note	 that	 the	number	of	hours	an	employee	worked	on	a	project	can	be
put	in	the	child	record	type.

An	alternative	 to	 implementing	 an	N:M	 relationship	 type	 is	 to	 create	 two
hierarchical	structures	and	connect	them	using	a	virtual	child	record	type	and	a
virtual	parent–child	relationship	type.	Pointers	 can	 then	be	used	 to	 navigate
between	both	structures.	The	relationship	type	attributes	can	be	put	in	the	virtual
child	 record	 type.	This	solution	has	no	more	 redundancy	since	multiple	virtual
children	can	refer	to	one	parent.

Figure	5.4	 illustrates	our	 earlier	N:M	 relationship	 type	between	employee
and	project,	but	now	implemented	using	virtual	child	and	virtual	parent	record

types.	 The	 virtual	 children	 have	 pointers	 to	 virtual	 parents.	 Although	 this
solution	has	no	more	redundancy,	it	is	rather	artificial	and	difficult	to	maintain.

Figure	5.4	Virtual	child	and	virtual	parents	for	N:M	relationship	types.

The	1:1	relationship	types	are	a	special	case	of	a	1:N	relationship	type	with
N	 equal	 to	 1.	 This	 cardinality	 cannot	 be	 enforced	 as	 such	 in	 the	 hierarchical
model.	Hence,	 the	 application	 programs	 should	 take	 care	 of	 this,	which	 is	 not
efficient	because	we	are	now	forced	to	include	part	of	the	data	definitions	in	our
applications,	 which	 hampers	 maintenance	 and	 consistency.	 The	 hierarchical
model	 only	 allows	 relationship	 types	 of	 degree	 2,	 or	 in	 other	words	with	 two
participating	record	types.	Recursive	(or	unary)	relationship	types	with	degree	1
or	 relationship	 types	with	more	 than	 two	record	 types	need	 to	be	 implemented
using	virtual	child	record	types.	Finally,	the	maximum	and	minimum	cardinality
from	 child	 to	 parent	 is	 1.	 A	 child	 therefore	 cannot	 be	 disconnected	 from	 its
parent.	 This	 implies	 that	 once	 a	 parent	 record	 is	 removed,	 then	 all	 connected
child	records	are	also	removed,	creating	an	“on	delete	cascade”	effect.

Connections

Cascading	deletes	are	discussed	in	more	detail	in	the	context	of	SQL	in
Chapter	7.

Figure	 5.5	 shows	 an	 example	 of	 a	 hierarchical	 data	 model	 for	 an	 HR
administration	 business	 process.	 It	 includes	 two	 connected	 hierarchical
structures.	Department	is	the	root	record	type	of	the	first	hierarchy	and	employee
of	the	second	hierarchy.	A	department	can	work	on	zero	to	N	projects.	A	project
is	 being	worked	on	by	 exactly	one	department.	The	works	on	 record	 type	 is	 a
virtual	 child	 to	 implement	 the	 N:M	 relationship	 type	 between	 project	 and
employee.	 It	 also	 includes	 the	 hours	 worked	 data	 item,	 which	 represents	 the
number	of	hours	an	employee	spent	working	on	a	project.	The	manager	virtual
child	record	type	refers	to	the	employee	record	type.	Note	that	according	to	this
implementation,	 a	 department	 can	 have	 more	 than	 one	 manager	 since	 a
department	parent	record	can	be	connected	to	between	zero	and	N	manager	child
records.	 The	 works	 at	 virtual	 child	 models	 the	 relationship	 type	 between
department	and	employee.	Zero	to	N	employees	can	work	in	a	department.	The
manages	 virtual	 child	models	 a	 recursive	 relationship	 type	which	 specifies	 the
supervision	relationships	among	employees.	An	employee	can	manage	zero	to	N
other	employees.

Figure	5.5	Hierarchical	model	for	HR	administration.

This	 model	 is	 not	 user-friendly	 and	 is	 difficult	 to	 interpret.	 It	 also	 has
various	model	limitations.	More	specifically,	our	model	does	not	guarantee	that
each	department	has	exactly	one	manager.	According	to	our	model,	a	department
can	have	zero	managers	or	more	than	one	manager.	We	also	cannot	enforce	that
a	 department	 has	 at	 least	 one	 employee	 since	 it	 is	 possible	 that	 a	 department
parent	record	has	zero	works	at	child	records.	Hence,	according	to	our	model,	it
is	possible	 that	 a	department	has	 zero	employees.	Most	of	 these	constraints	or
rules	 have	 to	 be	 directly	 embedded	 in	 the	 application	 programs,	 which	 is	 not
optimal.

Drill	Down

On	May	25,	1961,	President	 John	F.	Kennedy	declared	his	 ambition	 to
put	 an	 American	 on	 the	 moon	 by	 the	 end	 of	 the	 decade.	 The	 Apollo
program	was	launched	and	various	firms	collaborated	to	accomplish	the
mission.	North	American	Aviation,	 together	with	 IBM,	were	 tasked	 to
build	 an	 automated	 system	 capable	 of	managing	 large	 bills	 of	material
for	 the	 construction	 of	 the	 spacecraft.	 To	 this	 end,	 they	 developed	 a
hierarchical	 database	 system	 called	 Information	 Control	 System	 and
Data	 Language/Interface	 (ICS/DL/I).	 After	 Apollo	 11	 landed	 on	 the
moon	on	July	20,	1969,	ICS	was	rebranded	as	Information	Management
System/360	(IMS/360)	and	made	available	to	the	industry.

Retention	Questions

What	are	the	key	concepts	of	the	hierarchical	model?

What	cardinalities	are	supported	when	modeling	relationship	types?

What	are	the	limitations	of	the	hierarchical	model?

5.2	The	CODASYL	Model

The	CODASYL	model	was	 the	 next	 data	model	 developed	 by	 the	Data	 Base
Task	Group	of	the	COnference	on	DAta	SYstem	Languages	in	1969,	so	not	that
much	 later	 than	 the	 hierarchical	 model.	 It	 has	 various	 popular	 software
implementations,	 such	 as	 IDMS	 from	 Cullinet	 Software,	 which	 was	 later
acquired	 by	 Computer	 Associates	 and	 rebranded	 as	 CA-IDMS.	 It	 is	 an
implementation	of	 the	network	model	 that	originally	 included	record	 types	and
links,	 and	 supported	 1:1,	 1:N,	 and	 N:M	 relationship	 types.	 However,	 the
CODASYL	model	 only	 includes	 record	 types,	 set	 types,	 and	 1:N	 relationship
types.	Although	 this	may	sound	similar	 to	 the	hierarchical	model	at	 first	 sight,
there	 are	 some	 clear	 differences,	 which	 we	 will	 illustrate.	 Similar	 to	 the
hierarchical	model,	the	CODASYL	model	is	considered	to	be	legacy	and	has	lots
of	structural	limitations.

The	two	key	building	blocks	of	the	CODASYL	model	are	record	types	and
set	 types.	 Just	 as	 in	 the	 hierarchical	 model,	 a	 record	 type	 is	 a	 set	 of	 records
describing	 similar	 entities.	 It	 has	 zero,	 one,	 or	 more	 records	 or	 record
occurrences.	It	consists	of	various	data	items.	As	an	example,	a	supplier	record
type	 can	 have	 data	 items	 such	 as	 supplier	 number,	 supplier	 name,	 etc.	 The
CODASYL	 model	 provides	 support	 for	 both	 vectors	 and	 repeated	 groups.	 A
vector	 is	 a	 multi-valued	 attribute	 type	 (i.e.,	 an	 atomic	 data	 item	 for	 which	 a
record	can	have	multiple	values).	For	example,	 if	 a	 supplier	can	have	multiple
email	addresses,	then	this	can	be	modeled	using	a	vector.	A	repeated	group	is	a
composite	data	item	for	which	a	record	can	have	multiple	values	or	a	composite
multi-valued	 attribute	 type.	 For	 example,	 if	 a	 supplier	 can	 have	 multiple
addresses	each	with	their	street	name,	number,	zip	code,	city,	and	country,	then

this	can	be	modeled	using	a	repeated	group.	The	support	for	vectors	and	repeated
groups	is	the	first	difference	with	the	hierarchical	model.

A	set	type	models	a	1:N	relationship	type	between	an	owner	record	type
and	 a	member	 record	 type.	 A	 set	 type	 has	 a	 set	 occurrence	 for	 each	 record
occurrence	of	the	owner	record	type,	together	with	all	member	records.	Hence,	a
set	occurrence	has	one	owner	record	and	zero,	one,	or	more	member	records.	It
is	 important	 to	 note	 that	 the	 CODASYL	 interpretation	 of	 a	 set	 does	 not
completely	 correspond	 to	 the	 concept	 of	 a	 set	 as	we	 know	 it	 in	mathematics.
Remember,	in	mathematics	a	set	is	defined	as	a	collection	with	similar	elements
and	without	ordering.	However,	a	CODASYL	set	has	both	owner	and	member
records	and	it	is	also	possible	to	order	the	member	records.

Figure	 5.6	 shows	 a	 CODASYL	 set	 type	 with	 the	 corresponding
cardinalities.	 An	 owner	 record	 can	 be	 connected	 to	 a	 minimum	 of	 zero	 and
maximum	 of	 N	 member	 records.	 A	 member	 record	 can	 be	 connected	 to	 a
minimum	of	zero	and	maximum	of	one	owner	records.1	Hence,	a	member	record
can	 exist	without	 being	 connected	 to	 an	 owner	 record	 or	 can	 be	 disconnected
from	 its	 owner.	This	 is	 a	 key	difference	with	 the	hierarchical	model.	A	 record
type	 can	 be	 a	 member	 record	 type	 in	 multiple	 set	 types,	 which	 allows	 the
creation	of	network	structures.	In	the	hierarchical	model,	a	child	record	type	can
only	be	connected	to	one	parent	record	type.	Finally,	multiple	set	types	may	be
defined	 between	 the	 same	 record	 types,	 which	 is	 another	 difference	 to	 the
hierarchical	model.

Figure	5.6	CODASYL	set	type.

CODASYL	 data	 models	 are	 usually	 represented	 using	 a	 network	 or
Bachman	diagram.	Charles	Bachman	was	one	of	the	important	contributors	of
the	CODASYL	model.

Figure	 5.7	 shows	 an	 example.	 We	 have	 three	 record	 types:	 department,
employee,	 and	 project.	 A	 department	 has	 zero	 to	 N	 employees.	 An	 employee
works	in	a	minimum	of	zero	and	maximum	of	one	department.	A	department	can
work	 on	 zero	 to	 N	 projects.	 A	 project	 is	 assigned	 to	 a	minimum	 of	 zero	 and
maximum	of	one	department.

Figure	5.7	Bachman	diagram.

As	with	the	hierarchical	model,	1:1	relationship	types	must	be	enforced	or
modeled	in	the	application	programs,	which	should	enforce	that	an	owner	record
can	only	be	connected	 to	at	most	one	member	record.	As	with	 the	hierarchical
model,	the	addition	of	these	semantic	constraints	to	the	application	programs	is
not	 desirable	 from	 a	 maintenance	 perspective	 (see	 also	 Chapter	 1).	 N:M
relationship	types	need	to	be	also	modeled	using	a	workaround.	As	an	example,
consider	 the	N:M	 relationship	 type	 between	 employee	 and	 project	 (see	 Figure
5.8).	Remember,	an	employee	can	work	on	zero	to	M	projects,	whereas	a	project
can	be	allocated	to	zero	to	N	employees.	A	member	record	(e.g.,	a	project)	can
only	belong	 to	one	 set	 occurrence	of	 a	 specific	 set	 type,	 hence	we	cannot	 just
define	 a	 set	 type	 between	 the	 corresponding	 record	 types	 (e.g.,	 employee	 and
project).	One	option	is	to	introduce	a	dummy	record	type	 that	is	included	as	a
member	 record	 type	 in	 two	set	 types	having	as	owners	 the	 record	 types	of	 the
original	N:M	relationship	 type.	This	dummy	record	 type	can	 then	also	contain
the	attributes	of	the	relationship	type,	if	any.

Figure	5.8	Implementing	N:M	relationship	types	in	CODASYL.

Figure	5.8	illustrates	how	the	N:M	relationship	type	between	employee	and
project	 can	 be	 modeled	 in	 CODASYL	 by	 introducing	 a	 dummy	 record	 type,
works	 on,	 which	 also	 includes	 the	 attribute	 type	 of	 the	 relationship,	 hours
worked,	representing	the	number	of	hours	that	an	employee	worked	on	a	project.

Figure	5.9	illustrates	how	this	works	with	some	example	records.	You	can
see	that	employee	120	only	works	on	project	10,	whereas	employee	150	works
on	projects	15	and	20.	You	can	also	see	that	project	15	is	allocated	to	employees
110	and	150.

Figure	5.9	Implementing	N:M	relationship	types	in	CODASYL:	example
records.

This	implementation	of	N:M	relationship	types	has	serious	implications	for
data	usage.	Suppose	we	have	a	query	 that	 asks	 for	 all	projects	 an	employee	 is
working	 on.	 To	 solve	 this	 query,	 we	 first	 need	 to	 select	 a	 set	 in	 the	 set	 type
between	 employee	 and	works	 on.	 For	 each	 member	 record,	 we	 then	 need	 to
determine	 the	 owner	 record	 in	 the	 set	 type	 between	 project	 and	works	 on.	 If
another	 query	 asks	 for	 all	 employees	working	on	 a	 particular	 project,	 then	we
need	to	navigate	the	other	way	around.	Again,	this	is	an	example	of	procedural
DML	 since	 we	 must	 explicitly	 work	 out	 a	 procedure	 to	 solve	 our	 query	 by
working	with	one	record	at	a	time.

As	 we	 already	 mentioned,	 CODASYL	 allows	 logical	 ordering	 of	 the
member	 records	 of	 a	 set.	 An	 example	 order	 could	 be	 alphabetically,	 or	 based

upon	birth	date.	This	can	be	useful	for	data	manipulation.	For	the	root	member
record	type,	the	system	can	act	as	the	owner,	which	is	then	called	a	singular	or
system	owned	set	type	with	only	one	set	occurrence.

CODASYL	 provides	 no	 support	 for	 recursive	 set	 types	 with	 only	 one
participating	 record	 type.	A	dummy	 record	 type	needs	 to	be	 introduced	 that	 is
then	defined	as	a	member	in	two	set	types,	each	having	as	owner	the	record	type
of	the	recursive	relationship.	Note	this	again	implies	extensive	navigation	when
manipulating	 the	 data.	 Additionally,	 no	 set	 types	 with	 more	 than	 two
participating	record	types	are	supported.

Figure	 5.10	 shows	 the	 CODASYL	 implementation	 of	 our	 HR
administration	 example.	 The	 works	 on	 dummy	 record	 type	 models	 the	 N:M
relationship	 type	 between	 employee	 and	project.	The	hierarchy	 dummy	 record
type	 implements	 a	 recursive	 relationship	 type	 modeling	 the	 supervision
relationships	 between	 employees.	 The	 set	 type	 supervises	 models	 which
colleagues	 an	 employee	 supervises.	 The	 set	 type	 supervised	 by	 represents	 the
supervisor	 of	 an	 employee.	 Two	 set	 types	 are	 defined	 between	 employee	 and
department.	 The	 works	 in	 set	 type	 models	 which	 employee	 works	 in	 what
department.	 The	 manages	 set	 type	 models	 which	 employee	 manages	 what
department.	 Finally,	 the	 set	 type	 in	 charge	of	 between	 department	 and	 project
models	which	projects	a	department	works	on.

Figure	5.10	CODASYL	model	for	HR	administration.

Figure	5.11	shows	the	cardinalities	as	we	ideally	would	like	them	to	be.	The
underlined	cardinalities	cannot	be	enforced	by	the	CODASYL	model.

Figure	5.11	CODASYL	model	for	HR	administration:	desired	cardinalities.

Again,	 our	 CODASYL	model	 has	 some	 important	 shortcomings	 to	 note.
According	 to	our	CODASYL	model	an	employee	can	be	managed	by	multiple
employees,	which	is	not	desirable.	The	model	does	not	enforce	that	an	employee

can	manage	at	most	one	department.	It	also	does	not	enforce	that	a	department
has	a	minimum	of	one	employee.	Unfortunately,	all	of	these	constraints	and	rules
need	to	be	embedded	in	the	application	programs.

Drill	Down

The	 website	 http://db-engines.com	 provides	 monthly	 rankings	 of
database	management	systems	according	to	their	popularity.	It	illustrates
that	 both	 IMS	 (hierarchical	DBMS)	 and	 IDBMS	 (CODASYL	DBMS),
although	declining	 in	popularity,	 are	 still	 relevant	 nowadays,	with	 IMS
ranking	higher	than	IDMS.

Retention	Questions

What	are	the	key	concepts	of	the	CODASYL	model?

What	cardinalities	are	supported	when	modeling	relationship	types?

What	are	the	limitations	of	the	CODASYL	model?

http://db-engines.com

Summary

In	 this	chapter	we	 reviewed	 legacy	database	 technology.	We	discussed	 the	key
building	blocks	and	limitations	of	the	hierarchical	and	CODASYL	data	models.
The	semantics	of	both	of	 these	models	are	 too	restricted	for	efficient	modeling
(e.g.,	1:1,	N:M,	and	recursive	relationship	types).	This	shortcoming	has	serious
implications	 for	 the	 development	 of	 the	 application	 programs	 that	 are	 now
responsible	 for	some	of	 the	data	constraints.	As	discussed	 in	Chapter	1,	 this	 is
not	 a	 desirable	 or	 efficient	way	 of	working.	 In	 later	 chapters	we	 review	more
advanced	database	paradigms.

Scenario	Conclusion

Sober	reviewed	the	CODASYL	database	model	of	Mellow	Cab	in	detail.
It	 included	 record	 types	 for	 customer,	 cab	 ride,	 and	 car.	 The	 company
saw	how	 the	N:M	relationship	 type	between	customer	and	cab	 ride	 for
ride-sharing	(a	customer	can	book	zero	to	N	cab	rides	and	a	cab	ride	can
be	booked	or	shared	by	zero	to	M	customers)	had	to	be	mapped	using	an
extra	dummy	record	type.	Also,	the	set	type	between	cab	ride	and	car	did
not	allow	enforcing	that	a	cab	ride	should	be	serviced	by	exactly	one	car.
Furthermore,	all	data	need	to	be	retrieved	using	procedural	DML,	which
is	not	efficient.	Given	all	these	shortcomings,	Sober	has	decided	to	invest
in	a	more	sophisticated	DBMS.

Key	Terms	List

Bachman	diagram

CODASYL	model

dummy	record	type

hierarchical	model

legacy

member	record	type

owner	record	type

record	type

redundancy

relationship	type

repeated	group

set	type

vector

virtual	child	record	type

virtual	parent	record	type

virtual	parent–child	relationship	type

Review	Questions

5.1.	A	bank	needs	to	store	the	following	information:	customer	names,
customer	addresses,	city	of	a	branch,	number	of	accounts,	account	IDs,

and	account	balances.	How	many	record	types	do	you	need	to	construct	a
hierarchical	database	with	this	information?

a.	One.

b.	Three.

c.	Four.

d.	Five.

5.2.	If	a	hierarchical	model	contains	N:M	relationship	types	that	have
been	integrated	by	repeating	the	child	nodes	where	necessary,	what	are
the	dangers	of	updating	the	database?

a.	Slower	retrieval	of	data.

b.	Creating	data	inconsistency.

c.	Creating	unnecessary	records.

d.	All	of	the	above.

5.3.	The	human	resources	department	of	a	university	wants	to	make	sure
that	every	course	has	exactly	one	main	professor.	How	can	they
implement	this	constraint	using	the	CODASYL	framework?

a.	They	introduce	an	extra	set	type	called	“is-main-professor-of”
between	record	types	“professor”	and	“course”.

b.	They	introduce	an	“is-main-professor”	record	type	between	record
types	“professor”	and	“course”	to	model	the	correct	relationship.

c.	They	introduce	“main	professor”	as	a	data	item	in	the	record	type
“professor”.

d.	It	is	impossible	to	model	this	constraint	in	CODASYL.

5.4.	In	CODASYL,	a	multi-valued	composite	attribute	type	can	be
represented	as	a	…

a.	record	type.

b.	data	item.

c.	vector.

d.	repeated	group.

5.5.	How	can	the	CODASYL	framework	correctly	model	a	family	tree,
taking	into	account	that	every	child	has	to	have	(at	least)	two	parents?

a.	Use	a	set	type	“is	parent	of”	between	record	types	“parent”	and
“child”.

b.	Use	a	dummy	record	type	“is	parent	of”	between	record	types
“parent”	and	“child”.

c.	List	the	parents	as	a	vector	in	the	data	item	set	of	every	child.

d.	We	cannot	model	this	constraint	with	the	CODASYL	framework.

Problems	and	Exercises

5.1E	Contrast	the	hierarchical	model	with	the	CODASYL	model	in	terms	of

5.2E	Make	a	hierarchical	and	CODASYL	model	for	the	fitness	company
“Conan”	discussed	in	Chapter	3.	Contrast	both	models	and	discuss	their
limitations.	Give	examples	of	semantics	that	cannot	be	enforced.	Compare	the
models	with	the	ER,	EER,	and	UML	models	of	Chapter	3.

1	Note	that	CODASYL	can	also	support	a	minimum	cardinality	of	1	using
specific	DDL	options.

attribute	types	supported;

relationship	types	and	cardinalities	supported.

6

Relational	Databases
◈

The	Relational	Model

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

Opening	Scenario

understand	the	basic	concepts	of	the	relational	model;

differentiate	between	different	types	of	keys	and	identify	their	role	in
the	relational	model;

understand	how	normalization	can	be	used	to	make	sure	a	relational
data	model	has	no	redundancies	or	inconsistencies;

map	a	conceptual	ER	model	to	a	relational	model	and	identify	any	loss
of	semantics;

map	a	conceptual	EER	model	to	a	relational	model	and	identify	any
loss	of	semantics.

Starting	 from	 the	EER	 conceptual	 data	model	 developed	 in	Chapter	3,
Sober	wants	to	proceed	to	the	next	step	of	database	design.	The	company
wants	to	map	the	EER	model	to	a	logical	relational	model	and	needs	to
understand	what	semantics	gets	lost	in	the	mapping	process.

Relational	databases	 implement	 the	 relational	model,	which	 is	one	of	 the	most
popular	logical	and	internal	data	models	in	use	nowadays.	It	was	first	formalized
by	 Edgar	 F.	 Codd	 in	 his	 seminal	 paper	 “A	 relational	 model	 of	 data	 for	 large
shared	 data	 banks”,	 which	 appeared	 in	 the	 well-respected	 journal
Communications	of	the	ACM	in	1970.	In	this	chapter	we	first	introduce	the	basic
concepts	 of	 the	 relational	 model	 and	 then	 formally	 define	 them	 in	 the	 next
section.	This	is	followed	by	an	overview	of	the	different	types	of	keys,	which	are
an	essential	building	block	of	the	relational	model.	The	relational	constraints	are
summarized	 next,	 followed	 by	 an	 example	 of	 a	 relational	 data	 model.
Normalization	will	also	be	reviewed	as	a	procedure	to	remove	redundancies	and
anomalies	 from	 a	 relational	 data	model.	 After	 having	 introduced	 the	 need	 for
normalization	 and	 some	 informal	 guidelines,	 we	 zoom	 into	 functional
dependencies	and	prime	attribute	types	and	discuss	how	both	can	be	used	during
a	multi-step	normalization	procedure.	To	conclude,	we	discuss	how	to	map	both
ER	and	EER	conceptual	data	models	to	a	logical	relational	data	model.	The	next
chapter	 then	 zooms	 into	SQL,	which	 is	 the	DDL	and	DML	used	 by	 relational
databases.

Drill	Down

Edgar	F.	Codd	was	 an	English	 computer	 scientist	 (19	August	 1923–18
April	 2003)	 who	 laid	 the	 foundation	 of	 the	 relational	 model	 while
working	 for	 IBM.	 He	 received	 the	 Turing	 Award	 in	 1981	 and	 was

inducted	 as	 a	 Fellow	 of	 the	 Association	 for	 Computing	 Machinery
(ACM)	in	1994.	His	seminal	paper,	“A	relational	model	of	data	for	large
shared	 data	 banks”,	 was	 published	 in	Communications	 of	 the	 ACM	 in
1970	 and	 laid	 the	 foundations	 of	 the	 relational	 model	 as	 we	 know	 it
today.	 IBM	was	 initially	 reluctant	 to	 implement	 the	 relational	model	as
they	 feared	 it	 would	 cannibalize	 its	 revenue	 from	 its	 hierarchical	 IMS
DBMS.	Codd	managed	 to	 convince	 some	of	 the	 IBM	customers	 about
the	potential	of	the	relational	model	such	that	they	put	pressure	on	IBM
for	a	commercial	implementation	of	it.	After	some	first	implementations
that	were	not	 fully	compliant	with	Codd’s	original	 ideas,	 IBM	released
SQL/DS	 (Structured	Query	Language/Data	System)	 in	 1981	 as	 its	 first
commercial	 SQL-based	 RDBMS.	 Codd	 also	 coined	 the	 term	 on-line
analytical	processing	(OLAP),	which	we	introduced	in	Chapter	1.

6.1	The	Relational	Model

The	 relational	 model	 is	 a	 formal	 data	 model	 with	 a	 sound	 mathematical
foundation,	based	on	set	 theory	and	 first-order	predicate	 logic.1	Unlike	 the	ER
and	EER	models,	the	relational	model	has	no	standard	graphical	representation,
which	makes	it	unsuitable	as	a	conceptual	data	model.	Given	its	solid	theoretical
underpinning,	 the	 relational	model	 is	 commonly	 adopted	 to	 build	 both	 logical
and	 internal	 data	models.	Many	 commercial	 RDBMSs	 exist	 which	 implement
the	 relational	model.	 Popular	 examples	 are	Microsoft	 SQL	 Server,	 IBM	DB2,
and	 Oracle.	 In	 what	 follows,	 we	 discuss	 its	 basic	 concepts	 and	 formal
definitions.	We	also	elaborate	on	keys,	which	are	a	fundamental	building	block
of	 the	 relational	model	 and	 summarize	 the	 relational	 constraints.	We	 conclude
with	an	example	of	a	relational	data	model.

Drill	Down

The	 top	 ten	 DBMSs	 in	 use	 according	 to	 http://db-engines.com	 are
usually	 dominated	 by	RDBMSs	 such	 as	Oracle	 (commercial),	MySQL
(open-source),	Microsoft	SQL	Server	 (commercial),	PostgreSQL	(open-
source),	IBM’s	DB2	(commercial),	Microsoft	Access	(commercial),	and
SQLite	 (open-source).	 Other	 popular	 RDBMSs	 are	 Teradata
(commercial),	 SAP	 Adaptive	 Server	 (commercial),	 and	 FileMaker
(commercial).

http://db-engines.com

6.1.1	Basic	Concepts

In	the	relational	model,	a	database	is	represented	as	a	collection	of	relations.	A
relation	 is	 defined	 as	 a	 set	 of	 tuples	 that	 each	 represent	 a	 similar	 real-world
entity	such	as	a	product,	a	supplier,	an	employee,	etc.	(see	Figure	6.1).	A	tuple	is
an	ordered	list	of	attribute	values	that	each	describe	an	aspect	of	this	entity,	such
as	supplier	number,	supplier	name,	supplier	address,	etc.

Figure	6.1	Basic	concepts	of	the	relational	model.

A	 relation	 can	 be	 visualized	 as	 a	 table	 of	 values.	 Figure	 6.1	 illustrates	 a
relation	 SUPPLIER.	 Table	 names	 (e.g.,	 SUPPLIER)	 and	 column	 names	 (e.g.,
SUPNR,	SUPNAME)	are	used	to	help	in	interpreting	the	meaning	of	the	values
in	each	row.	Each	tuple	corresponds	to	a	row	in	the	table.	An	example	of	a	tuple
for	the	SUPPLIER	relation	in	Figure	6.1	is	(21,	Deliwines,	“240,	Avenue	of	the
Americas”,	“New	York”,	20).

Attribute	 types	 (e.g.,	 SUPNR,	 SUPNAME)	 can	 be	 seen	 as	 the	 column
names.	Each	attribute	corresponds	to	a	single	cell.	A	relation	corresponds	to	an
entity	type	in	the	EER	model,	a	tuple	to	an	entity,	an	attribute	type	to	a	column
and	 an	 attribute	 to	 a	 single	 cell.	 The	 correspondence	 between	 the	 ER	 and
relational	model	is	summarized	in	Table	6.1.

Table	6.1	Correspondence	between	EER	model	and	relational	model

ER	model Relational

model

Entity	type Relation

Entity Tuple

Attribute	type Column	name

Attribute Cell

To	facilitate	understanding,	it	is	recommended	to	use	meaningful	names	for
each	 relation	 and	 its	 attribute	 types.	 Here	 you	 can	 see	 some	 examples	 of
relations:

Student	(Studentnr,	Name,	HomePhone,	Address)	
Professor	(SSN,	Name,	HomePhone,	OfficePhone,	Email)	
Course	(CourseNo,	CourseName)

The	student	relation	has	attribute	types	Studentnr,	Name,	HomePhone,	and
Address;	 the	 professor	 relation	 has	 attribute	 types	 SSN,	 Name,	 HomePhone,
OfficePhone	and	Email;	and	the	course	relation	has	attribute	types	CourseNo	and
CourseName.	The	meaning	of	the	relations	and	their	attribute	types	is	clear	from
the	naming.

6.1.2	Formal	Definitions

Before	we	can	formally	define	a	relation,	we	need	to	introduce	the	concept	of	a
domain.	A	domain	specifies	the	range	of	admissible	values	for	an	attribute	type.
For	example,	a	domain	can	consist	of	all	integer	values	between	1	and	9999	and
can	be	used	 to	define	 the	 attribute	 type	SUPNR.	Other	 examples	 are	 a	 gender
domain,	which	contains	 the	values	male	and	female,	and	a	 time	domain	which
defines	 time	 as	 day	 (e.g.,	 27)	 followed	 by	month	 (e.g.,	 02)	 followed	 by	 year
(e.g.,	 1975).	Each	 attribute	 type	of	 a	 relation	 is	 defined	using	 a	 corresponding
domain.

A	 domain	 can	 be	 used	multiple	 times	 in	 a	 relation.	 Assume	we	 define	 a
domain	representing	integer	values	between	1	and	9999.	Let’s	say	we	then	want
to	 build	 a	 relation	 BillOfMaterial	 representing	 which	 product	 is	 made	 up	 of
which	other	product	in	what	quantity.	Think	of	a	bike	(with	product	number	5)
consisting	of	two	wheels	(product	number	10),	a	wheel	in	turn	consisting	of	30
spokes	 (product	 number	 15),	 etc.	 This	 can	 be	 represented	 as	 a	 relation
BillOfMaterial	 with	 majorprodnr,	 representing	 the	 composite	 object,
minorprodnr,	representing	the	part	object,	and	the	quantity	as	follows:

BillOfMaterial(majorprodnr,	minorprodnr,	quantity)

with	corresponding	tuples	(Figure	6.2).

Figure	6.2	Example	tuples	for	BillOfMaterial	relation.

Our	domain	can	now	be	used	to	define	the	attribute	types	majorprodnr	and
minorprodnr.	An	advantage	of	using	a	domain	here	is	that	if	the	product	numbers
ever	have	to	change,	such	as	between	1	and	99999,	then	this	change	should	only
be	 done	 in	 the	 domain	 definition,	 which	 significantly	 improves	 the
maintainability	of	our	relational	model.

A	 relation	 R(A1,	 A2,	 A3,	…	An)	 (e.g.,	 SUPPLIER(SUPNR,	 SUPNAME,
…))	 can	 now	 be	 formally	 defined	 as	 a	 set	 of	m	 tuples	 r	 =	 {t1,	 t2,	 t3,…	 tm}
whereby	 each	 tuple	 t	 is	 an	 ordered	 list	 of	 n	 values	 t	 =	 <v1,	 v2,	 v3,…	 vn>
corresponding	to	a	particular	entity	(e.g.,	a	particular	supplier).	Each	value	vi	 is
an	element	of	the	corresponding	domain,	dom(Ai),	or	is	a	special	NULL	value.	A
NULL	value	means	that	the	value	is	missing,	irrelevant,	or	not	applicable.	Some
example	tuples	for	the	student,	professor,	and	course	relations	are	as	follows:

Student(100,	Michael	Johnson,	123	456	789,	532	Seventh	Avenue)
Professor(50,	Bart	Baesens,	NULL,	876	543	210,	
Bart.Baesens@kuleuven.be)
Course(10,	Principles	of	Database	Management)

It	 is	 important	 to	 note	 that	 a	 relation	 essentially	 represents	 a	 set.	 Hence,
there	is	no	logical	ordering	of	tuples	in	a	relation.	A	relation	also	does	not	have
any	duplicate	tuples.	There	is,	however,	an	ordering	to	the	values	within	a	tuple
based	upon	how	the	relation	was	defined.

The	domain	constraint	of	the	relational	model	states	that	the	value	of	each
attribute	 type	A	must	be	an	atomic	and	single	value	 from	 the	domain	dom(A).
Suppose	we	have	a	relation	COURSE	with	attribute	types	coursenr,	coursename,
and	study	points:

COURSE(coursenr,	coursename,	study	points)

Two	example	tuples	could	be:

(10,	Principles	of	Database	Management,	6)
(10,	{Principles	of	Database	Management,	Database	Modeling},	6)

The	 first	 tuple	 is	 correct,	 specifying	 coursenr	 10,	 Principles	 of	 Database
Management	with	6	study	points.	The	second	tuple	is	incorrect,	as	it	specifies	2
values	 for	 the	 coursename:	 Principles	 of	 Database	Management	 and	Database
Modeling.

A	relation	R	of	degree	n	on	the	domains	dom(A1),	dom(A2),	dom(A3),	…,
dom(An)	can	also	be	alternatively	defined	as	a	subset	of	the	Cartesian	product	of
the	 domains	 that	 define	 each	 of	 the	 attribute	 types.	 Remember,	 the	Cartesian
product	 specifies	 all	 possible	 combinations	 of	 values	 from	 the	 underlying
domains.	Of	all	these	possible	combinations,	the	current	relation	state	represents
only	the	valid	tuples	that	represent	a	specific	state	of	the	real	world.

You	 can	 see	 this	 illustrated	 in	 Figure	 6.3.	 We	 have	 three	 domains:
productID	defined	as	an	 integer	between	1	and	9999,	product	color	defined	as
either	blue,	red,	or	black,	and	product	category	defined	as	either	A,	B,	or	C.	The
Cartesian	 product	 of	 these	 three	 domains	 then	 simply	 lists	 all	 possible
combinations	as	shown	in	the	bottom	table.	Our	relation	R	will	then	be	a	subset
of	all	these	combinations.

Figure	6.3	A	relation	is	a	subset	of	the	Cartesian	product	of	its	domains.

6.1.3	Types	of	Keys

Keys	are	a	very	 important	concept	 in	 the	 relational	model	 to	uniquely	 identify
tuples	as	well	as	to	establish	relationships	between	relations.	In	what	follows,	we
discuss	different	types	of	keys	and	their	usage.

6.1.3.1	Superkeys	and	Keys

As	 we	 already	 mentioned,	 a	 relation	 is	 a	 set	 of	 tuples.	 Hence,	 per	 the
mathematical	definition	of	a	set,	all	tuples	in	a	relation	must	be	distinct.	No	two
tuples	can	have	 the	 same	combination	of	values	 for	 all	 their	 attribute	 types.	A
superkey	 is	 defined	 as	 a	 subset	 of	 attribute	 types	 of	 a	 relation	 R	 with	 the
property	 that	 no	 two	 tuples	 in	 any	 relation	 state	 should	 have	 the	 same
combination	 of	 values	 for	 these	 attribute	 types.	 In	 other	 words,	 a	 superkey
specifies	a	uniqueness	constraint	in	the	sense	that	no	two	distinct	tuples	in	a	state
can	have	the	same	value	for	the	superkey.	Every	relation	has	at	least	one	default
superkey	 –	 the	 set	 of	 all	 its	 attribute	 types.	 A	 superkey	 can	 have	 redundant
attribute	 types.	 As	 an	 example,	 for	 the	 relation	 Student,	 (Studentnr,	 Name,
HomePhone)	 is	 a	 superkey,	 but	 note	 that	 both	 Name	 and	 HomePhone	 are
redundant	and	Studentnr	is	a	superkey	as	such.

A	 key	 K	 of	 a	 relation	 scheme	 R	 is	 a	 superkey	 of	 R	 with	 the	 additional
property	that	removing	any	attribute	type	from	K	leaves	a	set	of	attribute	types
that	 is	 no	 superkey	 of	R.	Hence,	 a	 key	 does	 not	 have	 any	 redundant	 attribute
types	and	is	also	called	a	minimal	superkey.	For	our	student	relation,	Studentnr	is
a	key.	The	key	 constraint	 states	 that	 every	 relation	must	 have	 at	 least	 one	key
that	allows	one	to	uniquely	identify	its	tuples.

6.1.3.2	Candidate	Keys,	Primary	Keys,	and	Alternative	Keys

In	 general,	 a	 relation	may	have	more	 than	one	 key.	As	 an	 example,	 a	 product
relation	may	 have	 both	 a	 unique	 product	 number	 and	 a	 unique	 product	 name.
Each	of	these	keys	is	called	a	candidate	key.	One	of	them	is	designated	as	the
primary	key	of	 the	 relation.	 In	our	product	example,	we	can	make	prodnr	 the
primary	 key.	 The	 primary	 key	 is	 used	 to	 identify	 tuples	 in	 the	 relation	 and	 to
establish	connections	to	other	relations	(see	Section	6.1.3.3).	It	can	also	be	used
for	 storage	 purposes	 and	 to	 define	 indexes	 in	 the	 internal	 data	 model	 (see
Chapter	 13).	 The	 attribute	 types	 that	make	 up	 the	 primary	 key	 should	 always
satisfy	a	NOT	NULL	constraint.	Otherwise,	it	would	not	be	possible	to	identify
some	 tuples.	 This	 is	 called	 the	 entity	 integrity	 constraint.	 The	 other	 candidate
keys	are	then	referred	to	as	alternative	keys.	In	our	example,	productname	can
be	defined	as	an	alternative	key.	Optionally,	a	NOT	NULL	constraint	can	also	be
specified	for	the	other	attribute	types,	such	as	the	alternative	keys.

Connections

In	 Chapters	 12	 and	 13	 we	 discuss	 how	 primary	 keys	 can	 be	 used	 to
define	indexes	as	part	of	the	internal	data	model.

6.1.3.3	Foreign	Keys

Like	relationship	types	in	 the	EER	model,	relations	in	 the	relational	model	can
be	 connected.	 These	 connections	 are	 established	 through	 the	 concept	 of	 a
foreign	key.	A	set	of	attribute	types	FK	in	a	relation	R1	is	a	foreign	key	of	R1	if
two	 conditions	 are	 satisfied.	 First,	 the	 attribute	 types	 in	 FK	 have	 the	 same
domains	as	the	primary	key	attribute	types	PK	of	a	relation	R2.	Next,	a	value	FK
in	a	tuple	t1	of	the	current	state	r1	either	occurs	as	a	value	of	PK	for	some	tuple	t2

in	the	current	state	r2	or	is	NULL.	These	conditions	for	a	foreign	key	specify	a
so-called	referential	integrity	constraint	between	two	relations	R1	and	R2.

On	 the	 left	 in	 Figure	 6.4,	 you	 can	 see	 our	 EER	 relationship	 type
ON_ORDER,	which	says:	A	supplier	can	have	minimum	zero	and	maximum	N
purchase	orders,	whereas	a	purchase	order	is	always	connected	to	a	minimum	of
one	and	maximum	of	one	–	or	 in	other	words	exactly	one	–	supplier.	How	can
we	now	map	this	EER	relationship	type	to	the	relational	model?	A	first	attempt
could	be	to	add	purchase	order	number	as	a	foreign	key	to	the	SUPPLIER	table.
However,	since	a	supplier	can	have	multiple	purchase	orders,	this	would	create	a
multi-valued	attribute	type,	which	is	not	allowed	in	the	relational	model.	A	better
option	 is	 to	 include	 supplier	 number	 as	 a	 foreign	 key	 in	 the
PURCHASE_ORDER	table,	since	every	purchase	order	is	connected	to	exactly
one	 supplier.	 Since	 the	 minimum	 cardinality	 is	 1,	 this	 foreign	 key	 should	 be
declared	 as	 NOT	 NULL.	 In	 our	 example,	 you	 can	 see	 that	 purchase	 order
number	1511	is	supplied	by	supplier	number	37	whose	name	is	Ad	Fundum,	and
purchase	 order	 number	 1512	 is	 supplied	 by	 supplier	 number	 94	which	 is	 The
Wine	Crate.

Figure	6.4	Foreign	keys:	example	1.

Figure	 6.5	 shows	 another	 example.	 We	 have	 an	 N:M	 relationship	 type
between	SUPPLIER	and	PRODUCT.	A	supplier	can	supply	zero	to	N	products,

whereas	a	product	can	be	supplied	by	zero	to	M	suppliers.	How	can	we	map	this
N:M	 relationship	 type	 to	 the	 relational	 model?	 We	 could	 add	 a	 foreign	 key
PRODNR	 to	 the	 SUPPLIER	 table.	 However,	 since	 a	 supplier	 can	 supply
multiple	products,	 this	would	create	a	multi-valued	attribute	 type,	which	 is	not
allowed.	 Alternatively,	 we	 could	 also	 add	 SUPNR	 as	 a	 foreign	 key	 to	 the
PRODUCT	relation.	Unfortunately,	the	same	problem	arises	since	a	product	can
be	supplied	by	multiple	suppliers.

Figure	6.5	Foreign	keys:	example	2.

The	 solution	 is	 to	 create	 a	 new	 relation	 SUPPLIES,	 which	 includes	 two
foreign	keys,	SUPNR	and	PRODNR,	that	together	make	up	the	primary	key	of
the	relation	as	illustrated	in	Figure	6.6.

Figure	6.6	Foreign	keys:	example	3.

Note	that	we	also	added	the	attribute	types	of	the	EER	relationship	type	to
this	relation:	PURCHASE_PRICE	and	DELIV_PERIOD.	You	can	see	 that	 this
relation	perfectly	models	the	N:M	cardinalities.	Supplier	number	21	can	supply
product	 numbers	 289,	 327,	 and	 347.	 Vice	 versa,	 product	 number	 347	 can	 be
supplied	by	supplier	numbers	21,	69,	and	84.

6.1.4	Relational	Constraints

The	relational	model	supports	various	integrity	constraints	on	the	values	of	 the
attribute	types.	These	constraints	aim	to	ensure	that	 the	data	are	always	correct
and	consistent.	The	RDBMS	will	have	to	take	care	that	the	integrity	constraints
are	always	checked	and	violations	reported	if	the	database	state	is	updated.	Table
6.2	summarizes	all	relational	constraints	we	have	discussed	thus	far.

Table	6.2	Overview	of	relational	constraints

Domain
constraint

The	value	of	each	attribute	type	A	must	be	an	atomic	and
single	value	from	the	domain	dom(A).

Key	constraint Every	relation	has	a	key	that	allows	one	to	uniquely
identify	its	tuples.

Entity	integrity
constraint

The	attribute	types	that	make	up	the	primary	key	should
always	satisfy	a	NOT	NULL	constraint.

Referential
integrity
constraint

A	foreign	key	FK	has	the	same	domain	as	the	primary	key
PK	attribute	type(s)	it	refers	to	and	occurs	as	a	value	of
either	PK	or	NULL.

Connections

In	Chapter	9	we	discuss	how	triggers	and	stored	procedures	can	be	used
to	implement	more	advanced	types	of	constraints.

6.1.5	Example	Relational	Data	Model

Here	you	can	see	an	example	of	a	relational	data	model	for	 the	purchase	order
administration	discussed	in	Chapter	3:

SUPPLIER(SUPNR,	SUPNAME,	SUPADDRESS,	SUPCITY,	
SUPSTATUS)
PRODUCT(PRODNR,	PRODNAME,	PRODTYPE,	AVAILABLE	
QUANTITY)
SUPPLIES(SUPNR,	PRODNR,	PURCHASE_PRICE,	
DELIV_PERIOD)
PURCHASE_ORDER(PONR,	PODATE,	SUPNR)
PO_LINE(PONR,	PRODNR,	QUANTITY)

The	 relational	 model	 includes	 five	 relations:	 SUPPLIER,	 PRODUCT,
SUPPLIES,	 PURCHASE_ORDER,	 and	 PO_LINE.	 Each	 relation	 has	 a	 set	 of
corresponding	attribute	types.	Note	that	primary	keys	are	underlined	and	foreign
keys	 have	 been	 put	 in	 italics.	 As	 an	 example,	 the	 foreign	 keys	 SUPNR	 and
PRODNR	 in	 the	 SUPPLIES	 relation	 refer	 to	 the	 primary	 keys	 SUPNR	 and
PRODNR	 in	 the	 SUPPLIER	 and	 PRODUCT	 relation,	 respectively.	 In	 Section
6.4	we	discuss	in	detail	how	to	map	the	conceptual	ER	model	of	Figure	3.22	to
the	 above	 relational	 model.	 Figure	 6.7	 shows	 an	 example	 of	 a	 corresponding
relational	database	state.	Note	 that	each	 tuple	has	atomic	and	single	values	 for
each	of	its	attribute	types	as	required	by	the	domain	constraint.

Figure	6.7	Example	relational	database	state.

Retention	Questions

Discuss	the	similarities	and	differences	between	the	EER	and	the
relational	model.

What	are	the	different	types	of	keys	in	the	relational	model?	Why	are
they	needed?	Illustrate	with	examples.

What	are	the	most	important	relational	constraints?	Illustrate	with
examples.

6.2	Normalization

Normalization	of	a	relational	model	is	a	process	of	analyzing	the	given	relations
to	ensure	they	do	not	contain	any	redundant	data.	The	goal	of	normalization	is	to
ensure	that	no	anomalies	can	occur	during	data	insertion,	deletion,	or	update.	A
step-by-step	 procedure	 needs	 to	 be	 followed	 to	 transform	 an	 unnormalized
relational	model	to	a	normalized	relational	model.	In	what	follows,	we	start	by
discussing	 the	 data	 anomalies	 that	 can	 occur	 when	 working	 with	 an
unnormalized	 relational	model.	Next,	we	 outline	 some	 informal	 normalization
guidelines.	 This	 is	 followed	 by	 defining	 two	 concepts	 that	 are	 fundamental
building	 blocks	 of	 a	 normalization	 procedure:	 functional	 dependencies	 and
prime	 attribute	 types.	 Both	will	 then	 be	 extensively	 used	when	 discussing	 the
normalization	forms	in	Section	6.2.3.

6.2.1	Insertion,	Deletion,	and	Update	Anomalies	in	an	Unnormalized
Relational	Model

Figure	6.8	shows	an	example	of	a	relational	data	model	in	which	we	only	have
two	relations	with	all	the	information.	The	SUPPLIES	relation	also	includes	all
the	attribute	types	for	SUPPLIER,	such	as	supplier	name,	supplier	address,	etc.,
and	all	the	attribute	types	for	PRODUCT,	such	as	product	number,	product	type,
etc.	You	 can	 also	 see	 that	 the	PO_LINE	 relation	 now	 includes	 purchase	 order
date	and	supplier	number.	Both	relations	contain	duplicate	information	that	may
easily	lead	to	inconsistencies.	In	the	SUPPLIES	table,	for	example,	all	supplier
and	 product	 information	 is	 repeated	 for	 each	 tuple,	 which	 creates	 a	 lot	 of
redundant	 information.	 Because	 of	 this	 redundant	 information,	 this	 relational
model	 is	 called	 an	 unnormalized	 relational	 model.	 At	 least	 three	 types	 of
anomaly	 may	 arise	 when	 working	 with	 an	 unnormalized	 relational	 model:	 an
insertion	anomaly,	a	deletion	anomaly,	and	an	update	anomaly.

Figure	6.8	Unnormalized	relational	data	model.

An	insertion	anomaly	can	occur	when	we	wish	to	insert	a	new	tuple	in	the
SUPPLIES	 relation.	 We	 must	 then	 be	 sure	 to	 each	 time	 include	 the	 correct
supplier	 (e.g.,	 SUPNR,	 SUPNAME,	 SUPADDRESS,	 etc.)	 and	 product	 (e.g.,
PRODNR,	PRODNAME,	PRODTYPE,	 etc.)	 information.	 Furthermore,	 in	 this
unnormalized	 relational	model,	 it	 is	difficult	 to	 insert	a	new	product	 for	which

there	are	no	suppliers	yet,	or	a	new	supplier	who	does	not	supply	anything	yet
since	 the	 primary	 key	 is	 a	 combination	 of	 SUPNR	 and	 PRODNR,	which	 can
thus	 both	 not	 be	 NULL	 (entity	 integrity	 constraint).	 A	deletion	 anomaly	 can
occur	 if	 we	were	 to	 delete	 a	 particular	 supplier	 from	 the	 SUPPLIES	 relation.
Consequently,	all	corresponding	product	data	may	get	lost	as	well,	which	is	not
desirable.	An	update	anomaly	can	occur	when	we	wish	 to	update	 the	supplier
address	in	the	SUPPLIES	relation.	This	would	necessitate	multiple	updates	with
the	risk	of	inconsistency.

Figure	6.9	 shows	 another	 example	 relational	 data	model	 and	 state	 for	 the
purchase	order	administration.	Let’s	see	how	our	insertion,	deletion,	and	update
operations	work	out	here.	Inserting	a	new	tuple	in	the	SUPPLIES	relation	can	be
easily	done	since	the	supplier	name,	address,	etc.	and	the	product	name,	product
type,	 etc.	 are	 only	 stored	 once	 in	 the	 relations	 SUPPLIER	 and	 PRODUCT.
Inserting	a	new	product	 for	which	 there	are	no	supplies	yet,	or	a	new	supplier
who	does	not	supply	anything	yet,	can	be	accomplished	by	adding	new	tuples	to
the	PRODUCT	and	SUPPLIER	relation.	Deleting	a	 tuple	 from	 the	SUPPLIER
relation	will	not	affect	any	product	tuples	in	the	PRODUCT	relation.	Finally,	if
we	wish	to	update	the	supplier	address,	we	only	need	to	do	one	single	update	in
the	SUPPLIER	table.	As	there	are	no	inconsistencies	or	duplicate	information	in
this	relational	model,	it	is	also	called	a	normalized	relational	model.

Figure	6.9	Normalized	relational	data	model.

To	have	a	good	relational	data	model,	all	relations	in	the	model	should	be
normalized.	A	 formal	 normalization	 procedure	 can	 be	 applied	 to	 transform	 an
unnormalized	 relational	 model	 into	 a	 normalized	 form.	 The	 advantages	 are
twofold.	At	the	logical	level,	the	users	can	easily	understand	the	meaning	of	the
data	and	formulate	correct	queries	(see	Chapter	7).	At	the	implementation	level,
the	 storage	 space	 is	 used	 efficiently	 and	 the	 risk	 of	 inconsistent	 updates	 is
reduced.

6.2.2	Informal	Normalization	Guidelines

Before	we	start	discussing	a	 formal	step-by-step	normalization	procedure,	 let’s
review	some	informal	normalization	guidelines.	First,	it	is	important	to	design	a
relational	model	in	such	a	way	that	it	is	easy	to	explain	its	meaning.	Consider	the
following	example:

MYRELATION123(SUPNR,	SUPNAME,	SUPTWITTER,	
PRODNR,	PRODNAME,	…)

The	 name	 of	 the	 relation	 is	 not	 very	 meaningful.	 Hence,	 a	 better	 alternative
would	be:

SUPPLIER(SUPNR,	SUPNAME,	SUPTWITTER,	PRODNR,	
PRODNAME,	…)

Next,	attribute	types	from	multiple	entity	types	should	not	be	combined	in	a
single	 relation,	 so	 as	 to	 not	 cloud	 its	 interpretation.	When	 looking	 back	 at	 the
above	relation,	both	supplier	and	product	information	are	mixed.	Hence,	a	better
alternative	 would	 be	 to	 create	 two	 relations,	 SUPPLIER	 and	 PRODUCT,
whereby	the	former	looks	like:

SUPPLIER(SUPNR,	SUPNAME,	SUPTWITTER,…)

Finally,	 avoid	 excessive	 amounts	 of	 NULL	 values	 in	 a	 relation.	 For
example,	assume	that	SUPTWITTER	has	many	NULL	values	because	not	many
suppliers	 have	 a	Twitter	 account.	Hence,	 keeping	 it	 in	 the	SUPPLIER	 relation
implies	 a	 waste	 of	 storage	 capacity.	 A	 better	 option	 might	 be	 to	 split	 up	 the
SUPPLIER	 relation	 in	 two	 relations:	 SUPPLIER	 and	 SUPPLIER-TWITTER,

whereby	 the	 latter	 includes	 supplier	 number	 as	 a	 foreign	 and	primary	key	 and
SUPTWITTER	as	follows:

SUPPLIER(SUPNR,	SUPNAME,	…)
SUPPLIER-TWITTER(SUPNR,	SUPTWITTER)

As	we	discuss	 in	Chapter	7,	 both	 relations	 can	 then	be	 joined	 in	 case	we
want	combined	information	from	a	supplier.

Connections

Chapter	7	discusses	join	queries	which	allow	combination	of	information
from	two	or	more	relations.

6.2.3	Functional	Dependencies	and	Prime	Attribute	Types

Before	we	can	start	discussing	various	normalization	steps,	we	need	to	introduce
two	important	concepts:	functional	dependency	and	prime	attribute	type.

A	functional	dependency	X	→	Y	between	two	sets	of	attribute	types	X	and
Y	implies	that	a	value	of	X	uniquely	determines	a	value	of	Y.	We	also	say	that
there	is	a	functional	dependency	from	X	to	Y	or	that	Y	is	functionally	dependent
on	X.	As	 an	 example,	 the	 employee	 name	 is	 functionally	 dependent	 upon	 the
social	security	number:

SSN	→	ENAME

In	other	words,	a	social	security	number	uniquely	determines	an	employee	name.
The	other	way	around	does	not	necessarily	apply,	since	multiple	employees	can
share	 the	 same	 name,	 hence	 one	 employee	 name	may	 correspond	 to	 multiple
social	security	numbers.	A	project	number	uniquely	determines	a	project	name
and	a	project	location:

PNUMBER	→	{PNAME,	PLOCATION}

Project	name	and	project	 location	are	 thus	functionally	dependent	upon	project
number.	The	number	of	hours	an	employee	worked	on	a	project	is	functionally
dependent	upon	both	the	social	security	number	and	the	project	number

{SSN,	PNUMBER}	→	HOURS

Note	 that	 if	 X	 is	 a	 candidate	 key	 of	 a	 relation	 R,	 this	 implies	 that	 Y	 is
functionally	dependent	on	X	for	any	subset	of	attribute	types	Y	of	R.

A	prime	attribute	type	is	another	 important	concept	 that	 is	needed	in	 the
normalization	process.	A	prime	attribute	type	is	an	attribute	type	that	is	part	of	a

candidate	key.	Consider	the	following	relation:

R1(SSN,	PNUMBER,	PNAME,	HOURS)

The	key	of	the	relation	is	a	combination	of	SSN	and	PNUMBER.	Both	SSN
and	 PNUMBER	 are	 prime	 attribute	 types,	 whereas	 PNAME	 and	 HOURS	 are
non-prime	attribute	types.

6.2.4	Normalization	Forms

Normalization	of	a	relational	model	is	a	process	of	analyzing	the	given	relations
based	 on	 their	 functional	 dependencies	 and	 candidate	 keys	 to	 minimize
redundancy	 and	 insertion,	 deletion,	 and	 update	 anomalies.	 The	 normalization
procedure	 entails	 various	 normal	 form	 tests	 which	 are	 typically	 sequentially
evaluated.	Unsatisfactory	 relations	 that	 do	 not	meet	 the	 normal	 form	 tests	 are
decomposed	into	smaller	relations.

6.2.4.1	First	Normal	Form	(1	NF)

The	first	normal	form	(1	NF)	states	that	every	attribute	type	of	a	relation	must
be	 atomic	 and	 single-valued.	 Hence,	 no	 composite	 or	 multi-valued	 attribute
types	 are	 tolerated.	 This	 is	 the	 same	 as	 the	 domain	 constraint	 we	 introduced
earlier.

Consider	the	following	example:

SUPPLIER(SUPNR,	NAME(FIRST	NAME,	LAST	NAME),	
SUPSTATUS)

This	relation	is	not	in	1	NF	as	it	contains	a	composite	attribute	type	NAME	that
consists	of	the	attribute	types	FIRST	NAME	and	LAST	NAME.	We	can	bring	it
in	1	NF	as	follows:

SUPPLIER(SUPNR,	FIRST	NAME,	LAST	NAME,	SUPSTATUS)

In	other	words,	composite	attribute	types	need	to	be	decomposed	in	their	parts	to
bring	the	relation	in	1	NF.

Suppose	we	have	a	relation	DEPARTMENT.	It	has	a	department	number,	a
department	location	and	a	foreign	key	referring	to	the	social	security	number	of

the	employee	who	manages	the	department:

DEPARTMENT(DNUMBER,	DLOCATION,	DMGRSSN)

Assume	 now	 that	 a	 department	 can	 have	multiple	 locations	 and	 that	 multiple
departments	are	possible	at	 a	given	 location.	The	 relation	 is	not	 in	1	NF	since
DLOCATION	 is	 a	 multi-valued	 attribute	 type.	 We	 can	 bring	 it	 in	 1	 NF	 by
removing	 DLOCATION	 from	 department	 and	 putting	 it	 into	 a	 new	 relation
DEP-LOCATION	together	with	DNUMBER	as	a	foreign	key:

DEPARTMENT(DNUMBER,	DMGRSSN)
DEP-LOCATION(DNUMBER,	DLOCATION)

The	primary	key	of	this	new	relation	is	then	the	combination	of	both,	since
a	department	can	have	multiple	locations	and	multiple	departments	can	share	a
location.	 Figure	 6.10	 illustrates	 some	 example	 tuples.	 You	 can	 see	 that
department	 number	 15	 has	 two	 locations:	 New	 York	 and	 San	 Francisco.
Department	 number	 30	 also	 has	 two	 locations:	 Chicago	 and	 Boston.	 The	 two
lower	 tables	bring	 it	 in	 the	1	NF	since	every	attribute	 type	of	both	 relations	 is
now	atomic	and	single-valued.	To	summarize,	multi-valued	attribute	types	(e.g.,
DLOCATION)	 should	 be	 removed	 and	 put	 in	 a	 separate	 relation	 (e.g.,	 DEP-
LOCATION)	 along	 with	 the	 primary	 key	 (e.g.,	 DNUMBER)	 of	 the	 original
relation	 (e.g.,	 DEPARTMENT)	 as	 a	 foreign	 key.	 The	 primary	 key	 of	 the	 new
relation	 is	 then	 the	 combination	 of	 the	 multi-valued	 attribute	 type	 and	 the
primary	key	of	the	original	relation	(e.g.,	DNUMBER	and	DLOCATION).

Figure	6.10	First	normal	form:	the	unnormalized	relation	(above)	is
decomposed	into	two	relations	(below)	by	ensuring	there	are	no	composite	or
multi-valued	attribute	types.

Let’s	 give	 another	 example.	 Say	 we	 have	 a	 relation	 R1	 with	 employee
information	 such	 as	 SSN,	 ENAME,	 DNUMBER,	 DNAME,	 and	 PROJECT,
which	 is	 a	 composite	 attribute	 type	 consisting	 of	 PNUMBER,	 PNAME	 and
HOURS:

R1(SSN,	ENAME,	DNUMBER,	DNAME,	PROJECT(PNUMBER,	
PNAME,	HOURS))

We	 assume	 an	 employee	 can	 work	 on	 multiple	 projects	 and	 multiple
employees	 can	 work	 on	 the	 same	 project.	 Hence,	 we	 have	 a	 multi-valued
composite	 attribute	 type	 PROJECT	 in	 our	 relation	 R1.	 In	 other	 words,	 both
conditions	of	the	first	normal	form	are	clearly	violated.	To	bring	it	in	first	normal
form,	we	create	two	relations	R11	and	R12	where	the	latter	includes	the	project
attribute	types	together	with	SSN	as	a	foreign	key:

R11(SSN,	ENAME,	DNUMBER,	DNAME)

R12(SSN,	PNUMBER,	PNAME,	HOURS)

The	primary	key	of	R12	is	then	the	combination	of	SSN	and	PNUMBER,
since	 an	 employee	 can	work	 on	multiple	 projects	 and	multiple	 employees	 can
work	on	a	project.

6.2.4.2	Second	Normal	Form	(2	NF)

Before	 we	 can	 start	 discussing	 the	 second	 normal	 form	 (2	 NF),	 we	 need	 to
introduce	 the	 concepts	 of	 full	 and	 partial	 functional	 dependency.	 A	 functional
dependency	X	→	Y	is	a	full	functional	dependency	if	removal	of	any	attribute
type	A	from	X	means	that	the	dependency	does	not	hold	anymore.	For	example,
HOURS	is	fully	functionally	dependent	upon	both	SSN	and	PNUMBER:

SSN,	PNUMBER	→	HOURS

More	specifically,	to	know	the	number	of	hours	an	employee	worked	on	a
project,	we	need	to	know	both	the	SSN	of	the	employee	and	the	project	number.
Likewise,	project	name	is	fully	functionally	dependent	upon	project	number:

PNUMBER	→	PNAME

A	functional	dependency	X	→	Y	is	a	partial	dependency	if	an	attribute	type
A	 from	 X	 can	 be	 removed	 from	 X	 and	 the	 dependency	 still	 holds.	 As	 an
example,	 PNAME	 is	 partially	 functionally	 dependent	 upon	 SSN	 and
PNUMBER:

SSN,	PNUMBER	→	PNAME

It	only	depends	upon	PNUMBER,	not	on	SSN.

A	relation	R	is	in	the	2	NF	if	it	satisfies	1	NF	and	every	non-prime	attribute
type	A	in	R	is	fully	functionally	dependent	on	any	key	of	R.	In	case	the	relation
is	not	 in	second	normal	form,	we	must	decompose	it	and	set	up	a	new	relation
for	 each	 partial	 key	 together	 with	 its	 dependent	 attribute	 types.	 Also,	 it	 is
important	to	keep	a	relation	with	the	original	primary	key	and	any	attribute	types
that	are	fully	functionally	dependent	on	it.	Let’s	illustrate	this	with	an	example.

Say	we	have	a	relation	R1	with	attribute	types	SSN,	PNUMBER,	PNAME,
HOURS:

R1(SSN,	PNUMBER,	PNAME,	HOURS)

It	 contains	 both	 project	 information	 and	 information	 about	 which	 employee
worked	on	what	project	for	how	many	hours.	The	assumptions	are	as	follows:	an
employee	 can	work	on	multiple	projects;	multiple	 employees	 can	work	on	 the
same	project;	and	a	project	has	a	unique	name.	The	relation	R1	is	in	1	NF	since
there	 are	 no	 multi-valued	 or	 composite	 attribute	 types.	 However,	 it	 is	 not	 in
2	 NF.	 The	 primary	 key	 of	 the	 relation	 R1	 is	 a	 combination	 of	 SSN	 and
PNUMBER.	The	attribute	 type	PNAME	is	not	 fully	 functionally	dependent	on
the	 primary	 key,	 it	 only	 depends	 on	 PNUMBER.	 HOURS,	 however,	 is	 fully
functionally	 dependent	 upon	 both	 SSN	 and	 PNUMBER.	 Hence,	 we	 need	 to
remove	the	attribute	type	PNAME	and	put	it	in	a	new	relation	R12,	together	with
PNUMBER:

R11(SSN,	PNUMBER,	HOURS)
R12(PNUMBER,	PNAME)

The	 relation	 R11	 can	 then	 be	 called	 WORKS-ON(SSN,	 PNUMBER,
HOURS)	 and	 the	 relation	 R12	 can	 be	 referred	 to	 as	 PROJECT(PNUMBER,
PNAME).

Figure	6.11	illustrates	how	to	bring	a	relation	into	2	NF	with	some	example
tuples.	 Note	 the	 redundancy	 in	 the	 original	 relation.	 The	 name	 “Hadoop”	 is
repeated	multiple	times,	which	is	not	desirable	from	a	storage	perspective.	Also,
if	we	would	like	to	update	it	(e.g.,	from	“Hadoop”	to	“Big	Data”),	then	multiple
changes	need	to	take	place.	This	is	not	the	case	for	the	two	normalized	relations
at	 the	 bottom,	 where	 the	 update	 should	 only	 be	 done	 once	 in	 the	 PROJECT
relation.

Figure	6.11	Second	normal	form:	the	unnormalized	relation	(above)	is
decomposed	into	two	relations	(below)	by	ensuring	every	non-prime	attribute
type	is	fully	functionally	dependent	on	the	primary	key.

6.2.4.3	Third	Normal	Form	(3	NF)

To	discuss	the	third	normal	form	(3	NF),	we	need	to	introduce	the	concept	of
transitive	dependency.	 A	 functional	 dependency	X	→	Y	 in	 a	 relation	R	 is	 a
transitive	 dependency	 if	 there	 is	 a	 set	 of	 attribute	 types	 Z	 that	 is	 neither	 a
candidate	key	nor	a	subset	of	any	key	of	R,	and	both	X	→	Z	and	Z	→	Y	hold.	A
relation	is	in	the	3	NF	if	it	satisfies	2	NF	and	no	non-prime	attribute	type	of	R	is
transitively	 dependent	 on	 the	 primary	 key.	 If	 this	 is	 not	 the	 case,	 we	 need	 to

decompose	the	relation	R	and	set	up	a	relation	that	includes	the	non-key	attribute
types	 that	 functionally	determine	 the	other	non-key	attribute	 types.	Let’s	work
out	an	example	to	illustrate	this.

The	relation	R1	contains	information	about	employees	and	departments	as
follows:

R1(SSN,	ENAME,	DNUMBER,	DNAME,	DMGRSSN)

The	SSN	attribute	type	is	the	primary	key	of	the	relation.	The	assumptions	are	as
follows:	an	employee	works	in	one	department;	a	department	can	have	multiple
employees;	 and	 a	 department	 has	 one	 manager.	 Given	 these	 assumptions,	 we
have	 two	 transitive	 dependencies	 in	 R.	 DNAME	 is	 transitively	 dependent	 on
SSN	via	DNUMBER.	In	other	words,	DNUMBER	is	functionally	dependent	on
SSN,	 and	 DNAME	 is	 functionally	 dependent	 on	 DNUMBER.	 Likewise,
DMGRSSN	is	 transitively	dependent	on	SSN	via	DNUMBER.	In	other	words,
DNUMBER	 is	 functionally	dependent	on	SSN	and	DMGRSSN	 is	 functionally
dependent	on	DNUMBER.	DNUMBER	is	not	a	candidate	key	nor	a	subset	of	a
key.	 Hence,	 the	 relation	 is	 not	 in	 3	 NF.	 To	 bring	 it	 in	 3	 NF,	 we	 remove	 the
attribute	 types	DNAME	 and	DMGRSSN	 and	 put	 them	 in	 a	 new	 relation	R12
together	with	DNUMBER	as	its	primary	key:

R11(SSN,	ENAME,	DNUMBER)
R12(DNUMBER,	DNAME,	DMGRSSN)

The	relation	R11	can	be	called	EMPLOYEE(SSN,	ENAME,	DNUMBER)	and
the	 relation	R12	can	be	 referred	 to	 as	DEPARTMENT(DNUMBER,	DNAME,
DMGRSSN).

Figure	 6.12	 shows	 some	 example	 tuples	 for	 both	 the	 unnormalized	 and
normalized	relations.	Note	the	redundancy	in	the	unnormalized	case,	where	the

values	 “marketing”	 for	 DNAME	 and	 “210”	 for	 DMGRSSN	 are	 repeated
multiple	 times.	 This	 is	 not	 the	 case	 for	 the	 normalized	 relations	 where	 these
values	are	only	stored	once.

Figure	6.12	Third	normal	form:	the	unnormalized	relation	(above)	is
decomposed	into	two	relations	(below)	by	ensuring	no	non-prime	attribute
types	are	transitively	dependent	on	the	primary	key.

6.2.4.4	Boyce–Codd	Normal	Form	(BCNF)

We	can	now	discuss	the	Boyce–Codd	normal	form	(BCNF),	also	referred	to	as
the	3.5	normal	form	(3.5	NF).	Let’s	first	introduce	another	concept.	A	functional
dependency	X	→	Y	is	called	a	trivial	functional	dependency	if	Y	is	a	subset	of
X.	An	example	of	a	trivial	functional	dependency	is	between	SSN	and	NAME,
and	SSN:

SSN,	NAME	→	SSN

A	 relation	 R	 is	 in	 the	 BCNF	 provided	 that	 for	 each	 of	 its	 non-trivial
functional	dependencies	X	→	Y,	X	is	a	superkey	–	that	is,	X	is	either	a	candidate
key	 or	 a	 superset	 thereof.	 It	 can	 be	 shown	 that	 the	 BCNF	 is	 stricter	 than	 the

3	NF.	Hence,	 every	 relation	 in	BCNF	 is	 also	 in	 3	NF.	However,	 a	 relation	 in
3	NF	is	not	necessarily	in	BCNF.	Let’s	give	an	example.

Suppose	we	have	a	 relation	R1	with	attribute	 types	SUPNR,	SUPNAME,
PRODNR,	and	QUANTITY:

R1(SUPNR,	SUPNAME,	PRODNR,	QUANTITY)

It	models	 information	 about	which	 supplier	 can	 supply	what	 products	 in	what
quantities.	 The	 assumptions	 are	 as	 follows:	 a	 supplier	 can	 supply	 multiple
products;	a	product	can	be	supplied	by	multiple	suppliers;	and	a	supplier	has	a
unique	name.	Therefore,	SUPNR	and	PRODNR	are	a	superkey	of	 the	relation.
Further,	 we	 have	 a	 non-trivial	 functional	 dependency	 between	 SUPNR	 and
SUPNAME.	The	relation	is	thus	not	in	BCNF.	To	bring	it	in	BCNF	we	remove
SUPNAME	from	R1	and	put	it	in	a	new	relation	R12	together	with	SUPNR	as
the	primary	key:

R11(SUPNR,	PRODNR,	QUANTITY)
R12(SUPNR,	SUPNAME)

The	relation	R11	can	be	called	SUPPLIES	and	the	relation	R12	can	be	referred
to	as	SUPPLIER.

Drill	Down

The	Boyce–Codd	normal	 form	was	 developed	 in	 1974	by	Raymond	F.
Boyce	and	Edgar	F.	Codd.

6.2.4.5	Fourth	Normal	Form	(4	NF)

We	 can	 conclude	 by	 discussing	 the	 fourth	 normal	 form	 (4	 NF).	 First,	 we
introduce	 the	 concept	 of	 a	multi-valued	dependency.	 There	 is	 a	multi-valued
dependency	 from	 X	 to	 Y,	 X	 →→	 Y,	 if	 and	 only	 if	 each	 X	 value	 exactly
determines	 a	 set	 of	 Y	 values,	 independently	 of	 the	 other	 attribute	 types.	 A
relation	is	in	the	4	NF	if	it	is	in	BCNF	and	for	every	one	of	its	non-trivial	multi-
valued	dependencies	X	→→	Y,	X	is	a	superkey	–	that	is,	X	is	either	a	candidate
key	or	a	superset	thereof.	Let’s	illustrate	it	with	an	example.

Suppose	 we	 have	 a	 relation	 R1	 including	 information	 about	 courses,
instructors	and	textbooks:

R1(course,	instructor,	textbook)

The	 assumptions	 are	 as	 follows:	 a	 course	 can	 be	 taught	 by	 different
instructors;	 and	 a	 course	 uses	 the	 same	 set	 of	 textbooks	 for	 each	 instructor.
Hence,	 we	 have	 a	 multi-valued	 dependency	 between	 course	 and	 textbook.	 In
other	words,	each	course	exactly	determines	a	set	of	textbooks,	independently	of
the	instructor.	To	bring	it	in	4	NF,	we	create	two	relations:	R11	with	course	and
textbook;	and	R12	with	course	and	instructor:

R11(course,	textbook)
R12(course,	instructor)

Figure	 6.13	 shows	 some	 example	 tuples	 for	 the	 unnormalized	 and
normalized	relations.	You	can	spot	the	redundancy	in	the	former	case.	Suppose	a
new	 textbook	 were	 added	 to	 the	 course	 Database	 Management.	 In	 the
unnormalized	 case,	 this	 would	 imply	 adding	 as	 many	 tuples	 as	 there	 are
instructors	teaching	it,	or	two	in	our	case.	In	the	normalized	case,	only	one	tuple
needs	to	be	added.

Figure	6.13	Fourth	normal	form:	the	unnormalized	relation	(above)	is
decomposed	into	two	relations	(below)	by	ensuring	that	for	every	one	of	the
non-trivial	multi-valued	dependencies	X	→→	Y,	X	is	a	superkey.

Table	 6.3	 concludes	 this	 section	 by	 reviewing	 the	 various	 normalization
steps	and	the	types	of	dependencies	considered.

Table	6.3	Overview	of	normalization	steps	and	dependency

Normal
form

Type	of
dependency Description

2	NF Full
functional
dependency

A	functional	dependency	X	→	Y	is	a	full	functional
dependency	if	removal	of	any	attribute	type	A	from
X	means	that	the	dependency	does	not	hold
anymore.

3	NF Transitive
functional
dependency

A	functional	dependency	X	→	Y	in	a	relation	R	is	a
transitive	dependency	if	there	is	a	set	of	attribute
types	Z	that	is	neither	a	candidate	key	nor	a	subset
of	any	key	of	R,	and	both	X	→	Z	and	Z	→	Y	hold.

BCNF Trivial
functional
dependency

A	functional	dependency	X	→	Y	is	called	trivial	if
Y	is	a	subset	of	X.

4	NF Multi-valued
dependency

A	dependency	X	→→	Y	is	multi-valued	if	and	only
if	each	X	value	exactly	determines	a	set	of	Y
values,	independently	of	the	other	attribute	types.

Connections

In	Chapter	 17,	 we	 come	 back	 to	 normalization	 in	 the	 context	 of	 data
warehousing.	 We	 discuss	 there	 how	 a	 controlled	 degree	 of
denormalization	can	be	 tolerated	 to	 improve	data	 retrieval	performance
in	this	type	of	setting.

Retention	Questions

What	is	normalization	and	why	is	it	needed?

Discuss	the	various	normalization	forms	and	illustrate	with	examples.

6.3	Mapping	a	Conceptual	ER	Model	to	a
Relational	Model

There	 exists	 a	 plethora	 of	 database	 modeling	 tools	 that	 allow	 the	 database
designer	 to	 draw	an	 (E)ER	model	 and	 automatically	 generate	 a	 relational	 data
model	from	it.	If	the	correct	translation	rules	are	applied,	the	resulting	relational
model	will	automatically	be	normalized.	Therefore,	although	the	translation	can
be	 automated,	 it	 is	 useful	 to	 study	 these	 rules	 in	 detail.	 They	 provide	 us	with
valuable	 insights	 into	 the	 intricacies	 of	 good	 database	 design	 and	 the
consequences	of	certain	design	decisions,	by	linking	relational	concepts	to	their
(E)ER	 counterparts.	 In	 this	 section,	 we	 discuss	 how	 to	 map	 a	 conceptual	 ER
model	to	a	relational	model.	After	that,	we	move	on	to	mapping	EER	constructs.

6.3.1	Mapping	Entity	Types

The	first	step	is	to	map	each	entity	type	into	a	relation.	Simple	attribute	types	can
be	directly	mapped.	A	composite	attribute	type	needs	to	be	decomposed	into	its
component	attribute	types.	One	of	the	key	attribute	types	of	the	entity	type	can
be	set	as	the	primary	key	of	the	relation.

You	 can	 see	 this	 illustrated	 in	 Figure	 6.14.	 We	 have	 two	 entity	 types:
EMPLOYEE	and	PROJECT.	We	create	relations	for	both:

EMPLOYEE(SSN,	address,	first	name,	last	name)
PROJECT(PNR,	pname,	pduration)

Figure	6.14	Mapping	entity	types	to	relations.

The	EMPLOYEE	entity	 type	 has	 three	 attribute	 types:	SSN,	which	 is	 the
key	attribute	type;	address,	which	is	considered	as	an	atomic	attribute	type;	and
ename,	 which	 is	 a	 composite	 attribute	 type	 consisting	 of	 first	 name	 and	 last
name.	The	PROJECT	entity	 type	also	has	 three	attribute	 types:	PNR,	which	 is
the	key	attribute	type;	pname;	and	pduration.	You	can	see	that	both	key	attribute
types	SSN	and	PNR	have	been	mapped	 to	 the	 primary	keys	 of	 both	 relations.
Also,	 note	 that	 the	 ename	 composite	 attribute	 type	 has	 been	 decomposed	 into
first	name	and	last	name	in	the	relation	EMPLOYEE.

6.3.2	Mapping	Relationship	Types

Once	we	 have	mapped	 the	 entity	 types,	we	 can	 continue	with	 the	 relationship
types.	The	mapping	depends	upon	the	degree	and	cardinalities,	as	we	illustrate	in
what	follows.

6.3.2.1	Mapping	a	Binary	1:1	Relationship	type

For	a	binary	1:1	relationship	type,	we	create	two	relations	–	one	for	each	entity
type	 participating	 in	 the	 relationship	 type.	 The	 connection	 can	 be	 made	 by
including	a	foreign	key	in	one	of	the	relations	to	the	primary	key	of	the	other.	In
case	of	existence	dependency,	we	put	the	foreign	key	in	the	existence-dependent
relation	and	declare	it	as	NOT	NULL.	The	attribute	types	of	the	1:1	relationship
type	can	then	be	added	to	the	relation	with	the	foreign	key.

Let’s	consider	the	MANAGES	relationship	type	between	EMPLOYEE	and
DEPARTMENT,	as	depicted	in	Figure	6.15.

Figure	6.15	Mapping	1:1	ER	relationship	types	to	the	relational	model.

Remember,	an	employee	manages	either	zero	or	one	department,	whereas	a
department	is	managed	by	exactly	one	employee,	which	means	DEPARTMENT
is	existence-dependent	on	EMPLOYEE.	We	create	relations	for	both	entity	types
and	add	the	corresponding	attribute	types	as	follows:

EMPLOYEE(SSN,	ename,	address)
DEPARTMENT(DNR,	dname,	dlocation)

The	 question	 now	 is:	How	 do	we	map	 the	 relationship	 type?	One	 option
would	be	to	add	a	foreign	key	DNR	to	the	EMPLOYEE	relation,	which	refers	to
the	primary	key	DNR	in	DEPARTMENT	as	follows:

EMPLOYEE(SSN,	ename,	address,	DNR)
DEPARTMENT(DNR,	dname,	dlocation)

This	 foreign	 key	 can	 be	 NULL,	 since	 not	 every	 employee	 manages	 a
department.	 Let’s	 now	 find	 out	 how	 many	 of	 the	 four	 cardinalities	 of	 the
relationship	type	are	correctly	modeled,	using	Figure	6.16.

Figure	6.16	Example	tuples	for	mapping	a	1:1	relationship	type.

We	start	from	DEPARTMENT.	Can	a	department	have	zero	managers?	Yes,
this	is	the	case	for	department	number	2,	the	Call	Center,	which	has	no	manager
assigned	as	 its	department	number	002	does	not	appear	 in	 the	DNR	column	of
the	 EMPLOYEE	 table.	 Also,	 the	 ICT	 department	 has	 no	 manager.	 Can	 a
department	 have	more	 than	 one	manager?	Yes,	 this	 is	 the	 case	 for	 department
number	 001,	marketing,	which	 has	 two	managers:	 employee	 511,	 John	Smith,
and	employee	564,	Sarah	Adams.	Can	an	employee	manage	zero	departments?
Yes,	 this	 is	 the	 case	 for	Emma	Lucas	 and	Michael	 Johnson.	Can	 an	 employee
manage	 more	 than	 one	 department?	 No,	 since	 the	 EMPLOYEE	 relation	 is
normalized	and	the	foreign	key	DNR	should	 thus	be	single-valued,	as	required
by	 the	first	normal	 form.	To	summarize,	out	of	 the	four	cardinalities,	only	 two
are	 supported.	 Moreover,	 this	 option	 generates	 a	 lot	 of	 NULL	 values	 for	 the
DNR	foreign	key,	as	there	are	typically	many	employees	who	are	not	managing
any	department.

Another	 option	 would	 be	 to	 include	 SSN	 as	 a	 foreign	 key	 in
DEPARTMENT,	referring	to	SSN	in	EMPLOYEE:

EMPLOYEE(SSN,	ename,	address)
DEPARTMENT(DNR,	dname,	dlocation,	SSN)

This	foreign	key	should	be	declared	as	NOT	NULL,	since	every	department
should	have	exactly	one	manager.	Let’s	now	also	look	at	the	other	cardinalities,
using	Figure	6.17.

Figure	6.17	Example	tuples	for	mapping	a	1:1	relationship	type.

Can	 you	 have	 employees	 that	manage	 zero	 departments?	 Yes,	 this	 is	 the
case	for	Emma	Lucas	since	her	SSN	356	does	not	appear	in	the	SSN	column	of
the	DEPARTMENT	table.	Can	we	make	sure	that	an	employee	manages	at	most
one	department?	In	fact,	we	cannot!	As	you	can	see,	John	Smith	manages	three
departments.	 Hence,	 out	 of	 the	 four	 cardinalities,	 three	 are	 supported.	 This
option	is	to	be	preferred	above	the	previous	one,	although	it	is	not	perfect.	The
semantics	 lost	 in	 the	 mapping	 should	 be	 documented	 and	 followed	 up	 using
application	code.

6.3.2.2	Mapping	a	Binary	1:N	Relationship	Type

Binary	1:N	relationship	types	can	be	mapped	by	including	a	foreign	key	in	the
relation	 corresponding	 to	 the	 participating	 entity	 type	 at	 the	 N-side	 of	 the
relationship	type	(e.g.,	the	EMPLOYEE	relation	in	Figure	6.18).	The	foreign	key
refers	to	the	primary	key	of	the	relation	corresponding	to	the	entity	type	at	the	1-
side	of	 the	relationship	 type	(e.g.,	 the	DEPARTMENT	relation	 in	Figure	6.18).
Depending	 upon	 the	minimum	 cardinality,	 the	 foreign	 key	 can	 be	 declared	 as
NOT	 NULL	 or	 NULL	 ALLOWED.	 The	 attribute	 types	 (e.g.,	 starting	 date	 in

Figure	 6.18)	 of	 the	 1:N	 relationship	 type	 can	 be	 added	 to	 the	 relation
corresponding	to	the	participating	entity	type.

Figure	6.18	Mapping	1:N	ER	relationship	types	to	the	relational	model.

The	WORKS_IN	relationship	type	is	an	example	of	a	1:N	relationship	type.
An	employee	works	in	exactly	one	department,	whereas	a	department	can	have
one	to	N	employees	working	in	it.	The	attribute	type	starting	date	represents	the
date	 at	 which	 an	 employee	 started	 working	 in	 a	 department.	 As	 with	 1:1
relationships,	we	first	create	the	relations	EMPLOYEE	and	DEPARTMENT	for
both	entity	types:

EMPLOYEE(SSN,	ename,	address)
DEPARTMENT(DNR,	dname,	dlocation)

We	can	again	explore	 two	options	 to	establish	 the	 relationship	 type	 in	 the
relational	model.	 Since	 a	 department	 can	 have	multiple	 employees,	we	 cannot
add	a	foreign	key	to	it	as	this	would	create	a	multi-valued	attribute	type,	which	is

not	tolerated	in	the	relational	model.	That’s	why	we	add	DNR	as	a	foreign	key	to
the	EMPLOYEE	relation.

EMPLOYEE(SSN,	ename,	address,	starting	date,	DNR)
DEPARTMENT(DNR,	dname,	dlocation)

Since	 the	minimum	cardinality	 is	one,	 this	 foreign	key	 is	defined	as	NOT
NULL,	ensuring	that	an	employee	works	in	exactly	one	department.	What	about
the	other	cardinalities?	We	can	find	out	using	Figure	6.19.

Figure	6.19	Example	tuples	for	mapping	a	1:N	relationship	type.

Can	a	department	have	more	 than	one	employee?	Yes,	 this	 is	 the	case	for
the	 marketing	 department,	 which	 has	 two	 employees	 –	 John	 Smith	 and	 Paul
Barker.	Can	we	guarantee	 that	every	department	has	at	 least	one	employee?	In
fact,	we	cannot.	The	finance	and	ICT	departments	have	no	employees.	Out	of	the
four	cardinalities,	 three	are	supported.	Note	 that	 the	attribute	 type	starting	date
has	also	been	added	to	the	EMPLOYEE	relation.

6.3.2.3	Mapping	a	Binary	M:N	Relationship	Type

M:N	 relationship	 types	 are	 mapped	 by	 introducing	 a	 new	 relation	 R.	 The
primary	key	of	R	is	a	combination	of	foreign	keys	referring	to	the	primary	keys

of	 the	 relations	 corresponding	 to	 the	 participating	 entity	 types.	 The	 attribute
types	of	the	M:N	relationship	type	can	also	be	added	to	R.

The	WORKS_ON	relationship	type	shown	in	Figure	6.20	is	an	example	of
an	M:N	relationship	type.	An	employee	works	on	zero	to	N	projects,	whereas	a
project	 is	 being	 worked	 on	 by	 zero	 to	 M	 employees.	 We	 start	 by	 creating
relations	for	both	entity	types.	We	cannot	add	a	foreign	key	to	the	EMPLOYEE
relation	 as	 this	would	 give	 us	 a	multi-valued	 attribute	 type	 since	 an	 employee
can	work	 on	multiple	 projects.	 Likewise,	 we	 cannot	 add	 a	 foreign	 key	 to	 the
project	relation,	as	a	project	is	being	worked	on	by	multiple	employees.	In	other
words,	 we	 need	 to	 create	 a	 new	 relation	 to	 map	 the	 ER	 relationship	 type
WORKS_ON:

EMPLOYEE(SSN,	ename,	address)
PROJECT(PNR,	pname,	pduration)
WORKS_ON(SSN,	PNR,	hours)

Figure	6.20	Mapping	M:N	ER	relationship	types	to	the	relational	model.

The	 WORKS_ON	 relation	 has	 two	 foreign	 keys,	 SSN	 and	 PNR,	 which
together	 make	 up	 the	 primary	 key	 and,	 therefore,	 cannot	 be	 NULL	 (entity
integrity	constraint).	The	hours	attribute	type	is	also	added	to	this	relation.

Figure	 6.21	 shows	 some	 example	 tuples	 of	 the	 EMPLOYEE,	 PROJECT,
and	WORKS_ON	relations.

Figure	6.21	Example	tuples	for	mapping	an	M:N	relationship	type.

All	four	cardinalities	are	successfully	modeled.	Emma	Lucas	does	not	work
on	any	projects,	whereas	Paul	Barker	works	on	two	projects.	Projects	1002	and
1004	 have	 no	 employees	 assigned,	 whereas	 project	 1001	 has	 two	 employees
assigned.

Now	let’s	 see	what	 happens	 if	we	 change	 the	 assumptions	 as	 follows:	 an
employee	works	on	at	 least	one	project	and	a	project	 is	being	worked	on	by	at
least	one	employee.	 In	other	words,	 the	minimum	cardinalities	 change	 to	1	on
both	sides.	Essentially,	the	solution	remains	the	same	and	you	can	see	that	none
of	the	minimum	cardinalities	are	supported	since	Emma	Lucas	is	not	working	on
any	projects	and	projects	1002	and	1004	have	no	employees	assigned.	Out	of	the
four	 cardinalities,	 only	 two	 are	 supported!	 This	 will	 require	 close	 follow-up
during	 application	 development	 to	 make	 sure	 these	 missing	 cardinalities	 are
enforced	by	the	applications	instead	of	the	data	model.

6.3.2.4	Mapping	Unary	Relationship	Types

Unary	 or	 recursive	 relationship	 types	 can	 be	 mapped	 depending	 upon	 the
cardinality.	 A	 recursive	 1:1	 or	 1:N	 relationship	 type	 can	 be	 implemented	 by
adding	a	 foreign	key	 referring	 to	 the	primary	key	of	 the	 same	 relation.	For	 an
N:M	recursive	relationship	type,	a	new	relation	R	needs	to	be	created	with	two
NOT	NULL	foreign	keys	referring	to	the	original	relation.	It	is	recommended	to

use	 role	 names	 to	 clarify	 the	meaning	 of	 the	 foreign	 keys.	Let’s	 illustrate	 this
with	some	examples.

Figure	6.22	shows	a	1:1	unary	 relationship	 type	modeling	 the	supervision
relationships	between	employees.	It	can	be	implemented	in	the	relational	model
by	adding	a	foreign	key	–	supervisor	–	to	the	EMPLOYEE	relation,	which	refers
to	its	primary	key	–	SSN	–	as	follows:

EMPLOYEE(SSN,	ename,	address,	supervisor)

Figure	6.22	Mapping	unary	relationship	types	to	the	relational	model.

The	 foreign	 key	 can	 be	 NULL	 since,	 according	 to	 the	 ER	 model,	 it	 is
possible	 that	 an	 employee	 is	 supervised	 by	 zero	 other	 employees.	 Since	 the
foreign	key	cannot	be	multi-valued,	an	employee	cannot	be	supervised	by	more
than	one	other	employee.	This	is	illustrated	in	Figure	6.23.

Figure	6.23	Example	tuples	for	mapping	a	unary	1:1	relationship	type.

Some	 employees	 do	 not	 supervise	 other	 employees,	 like	 Emma	 Lucas.
However,	 some	 employees	 supervise	more	 than	one	other	 employee,	 like	Paul
Barker	who	supervises	both	John	Smith	and	Emma	Lucas.	To	summarize,	out	of
the	four	cardinalities,	three	are	supported	by	our	model.

Let’s	now	change	one	assumption	as	follows:	an	employee	can	supervise	at
least	zero,	at	most	N	other	employees.	The	relational	model	stays	the	same,	with
supervisor	as	the	foreign	key	referring	to	SSN:

EMPLOYEE(SSN,	ename,	address,	supervisor)

In	this	case,	all	four	cardinalities	can	be	perfectly	captured	by	our	relational
model.

Let’s	 now	 set	 both	 maximum	 cardinalities	 to	 N	 and	 M,	 respectively.	 In
other	 words,	 an	 employee	 can	 supervise	 zero	 to	 N	 employees,	 whereas	 an
employee	can	be	supervised	by	zero	 to	M	employees.	We	can	no	 longer	add	a
foreign	key	 to	 the	EMPLOYEE	 relation	 as	 this	would	 result	 in	 a	multi-valued
attribute	 type.	Hence,	we	 need	 to	 create	 a	 new	 relation,	 SUPERVISION,	with
two	 foreign	 keys,	 Supervisor	 and	 Supervisee,	 which	 both	 refer	 to	 SSN	 in
EMPLOYEE:

EMPLOYEE(SSN,	ename,	address)
SUPERVISION(Supervisor,	Supervisee)

Since	both	foreign	keys	make	up	the	primary	key,	they	cannot	be	NULL.
All	 four	 cardinalities	 are	 perfectly	 supported	 (see	 Figure	 6.24).	 Emma

Lucas	and	John	Smith	are	not	 supervising	anyone,	and	Dan	Kelly	 is	not	being
supervised	 by	 anyone	 (both	minimum	cardinalities	 =	 0).	 Paul	Barker	 and	Dan
Kelly	supervise	two	employees	each	(maximum	cardinality	N)	and	John	Smith	is
being	supervised	by	both	Paul	Barker	and	Dan	Kelly	(maximum	cardinality	M).

Note,	however,	 that	 if	one	or	both	minimum	cardinalities	had	been	1,	 then	 the
relational	model	would	have	essentially	 stayed	 the	 same	 such	 that	 it	 could	not
accommodate	this.	Hence,	these	minimum	cardinalities	would	again	have	to	be
enforced	by	the	application	programs,	which	is	not	an	efficient	solution.

Figure	6.24	Example	tuples	for	mapping	a	unary	N:M	relationship	type.

6.3.2.5	Mapping	n-ary	Relationship	Types

To	map	an	n-ary	relationship	type,	we	first	create	relations	for	each	participating
entity	type.	We	then	also	define	one	additional	relation	R	to	represent	the	n-ary
relationship	type	and	add	foreign	keys	referring	to	 the	primary	keys	of	each	of
the	relations	corresponding	to	the	participating	entity	types.	The	primary	key	of
R	is	the	combination	of	all	foreign	keys	which	are	all	NOT	NULL.	Any	attribute
type	of	the	n-ary	relationship	can	also	be	added	to	R.	Let’s	illustrate	this	with	an
example.

The	 relationship	 type	 BOOKING	 (Figure	 6.25)	 is	 a	 ternary	 relationship
type	 between	 TOURIST,	 BOOKING,	 and	 TRAVEL	 AGENCY.	 It	 has	 one
attribute	 type:	 price.	 The	 relational	 model	 has	 relations	 for	 each	 of	 the	 three
entity	types	together	with	a	relation	BOOKING	for	the	relationship	type:

TOURIST(TNR,	…)
TRAVEL_AGENCY(ANR,	…)
HOTEL(HNR,	…)
BOOKING(TNR,	ANR,	HNR,	price)

The	 primary	 key	 of	 the	 BOOKING	 relation	 is	 the	 combination	 of	 the	 three
foreign	 keys,	 as	 illustrated.	 It	 also	 includes	 the	 price	 attribute.	 All	 six
cardinalities	are	perfectly	represented	in	the	relational	model.

Figure	6.25	Mapping	n-ary	relationship	types	to	the	relational	model.

The	relationship	type	OFFERS	(Figure	6.26)	 is	a	 ternary	relationship	 type
between	 Instructor,	Course,	 and	Semester.	An	 instructor	offers	 a	 course	during
zero	 to	N	semesters.	During	a	 semester,	 a	course	 should	be	offered	by	at	 least
one	and	at	most	N	instructors.	During	a	semester,	an	instructor	can	offer	zero	to
N	courses.	As	with	the	previous	example,	the	relational	model	has	one	relation
per	entity	type	and	one	relation	for	the	relationship	type:

INSTRUCTOR(INR,	…)
COURSE(CNR,	…)
SEMESTER(SEM-YEAR,	…)
OFFERS(INR,CNR,SEM-YEAR)

Figure	6.26	Mapping	n-ary	relationship	types	to	the	relational	model.

Let’s	 have	 a	 look	 at	 the	 cardinalities.	 Figure	 6.27	 shows	 some	 example
tuples.	 Note	 that	 course	 number	 110,	 Analytics,	 is	 not	 offered	 during	 any
semester.	 Some	 other	 courses	 are	 not	 offered	 in	 all	 semesters.	 Hence,	 the
minimum	 cardinality	 of	 1,	 stating	 that	 during	 a	 semester	 a	 course	 should	 be
offered	by	at	least	one	instructor,	cannot	be	guaranteed	by	the	relational	model.

Figure	6.27	Example	tuples	for	mapping	an	n-ary	relationship	type.

6.3.3	Mapping	Multi-Valued	Attribute	Types

For	 each	multi-valued	 attribute	 type,	 we	 create	 a	 new	 relation	 R.	We	 put	 the
multi-valued	 attribute	 type	 in	 R	 together	 with	 a	 foreign	 key	 referring	 to	 the
primary	key	of	 the	original	relation.	Multi-valued	composite	attribute	types	are
again	decomposed	into	their	components.	The	primary	key	can	then	be	set	based
upon	the	assumptions.

Let’s	 say	 we	 have	 a	 multi-valued	 attribute	 type	 phone	 number	 (Figure
6.28).	An	employee	can	have	multiple	phones.	We	create	a	new	relation	EMP-
PHONE:

EMPLOYEE(SSN,	ename,	address)
EMP-PHONE(PhoneNr,	SSN)

It	has	two	attribute	types:	PhoneNr	and	SSN.	The	latter	is	a	foreign	key	referring
to	the	EMPLOYEE	relation.	If	we	assume	that	each	phone	number	is	assigned	to
only	one	employee,	then	the	attribute	type	PhoneNr	suffices	as	a	primary	key	of
the	relation	EMP-PHONE.

Figure	6.28	Mapping	multi-valued	attribute	types	to	the	relational	model.

Let’s	now	change	the	assumption	such	that	a	phone	number	can	be	shared
by	multiple	 employees.	Hence,	PhoneNr	 is	no	 longer	 appropriate	 as	 a	primary

key	 of	 the	 relation.	 Also,	 SSN	 cannot	 be	 assigned	 as	 a	 primary	 key	 since	 an
employee	 can	have	multiple	phone	numbers.	Hence,	 the	primary	key	becomes
the	combination	of	both	PhoneNr	and	SSN:

EMPLOYEE(SSN,	ename,	address)
EMP-PHONE(PhoneNr,	SSN)

Some	example	 tuples	are	depicted	 in	Figure	6.29,	where	you	can	 see	 that
tuples	1	and	2	of	 the	EMP-PHONE	relation	have	 the	same	value	for	PhoneNr,
whereas	 tuples	2	and	3	have	 the	 same	value	 for	SSN.	This	 example	 illustrates
how	the	business	specifics	can	help	define	the	primary	key	of	a	relation.

Figure	6.29	Example	tuples	for	mapping	a	multi-valued	attribute	type.

6.3.4	Mapping	Weak	Entity	Types

Remember,	a	weak	entity	type	is	an	entity	type	that	cannot	produce	its	own	key
attribute	 type	and	 is	existence-dependent	on	an	owner	entity	 type.	 It	 should	be
mapped	 into	 a	 relation	 R	 with	 all	 its	 corresponding	 attribute	 types.	 Next,	 a
foreign	 key	 must	 be	 added	 referring	 to	 the	 primary	 key	 of	 the	 relation
corresponding	to	the	owner	entity	type.	Because	of	the	existence	dependency,	the
foreign	 key	 is	 declared	 as	 NOT	 NULL.	 The	 primary	 key	 of	 R	 is	 then	 the
combination	of	the	partial	key	and	the	foreign	key.

Figure	6.30	illustrates	our	earlier	example.	Room	is	a	weak	entity	type	and
needs	 to	 borrow	HNR	 from	Hotel	 to	 define	 a	 key	 attribute	 type,	which	 is	 the
combination	of	RNR	and	HNR.

Figure	6.30	Mapping	weak	entity	types	to	the	relational	model.

We	can	map	both	entity	types	to	the	relational	model	as	follows:

Hotel	(HNR,	Hname)
Room	(RNR,	HNR,	beds)

Room	has	a	 foreign	key,	HNR,	which	 is	declared	as	NOT	NULL	and	refers	 to
Hotel.	Its	primary	key	is	the	combination	of	RNR	and	HNR.

Some	example	tuples	are	depicted	in	Figure	6.31.	All	four	cardinalities	are
nicely	supported	by	the	relational	model.

Figure	6.31	Example	tuples	for	mapping	a	weak	entity	type.

6.3.5	Putting	it	All	Together

Up	 to	 now	 we	 have	 extensively	 discussed	 how	 to	 map	 the	 ER	 model	 to	 a
relational	model.	Table	6.4	summarizes	how	the	key	concepts	of	both	models	are
related.

Table	6.4	Mapping	an	ER	model	to	a	relational	model

ER	model Relational	model

Entity	type Relation

Weak	entity	type Foreign	key

1:1	or	1:N	relationship	type Foreign	key

M:N	relationship	type New	relation	with
two	foreign	keys

n-ary	relationship	type New	relation	with	n
foreign	keys

Simple	attribute	type Attribute	type

Composite	attribute	type Component	attribute
types

Multi-valued	attribute	type Relation	and	foreign
key

Key	attribute	type Primary	or
alternative	key

Here	 you	 can	 see	 the	 resulting	 relational	 model	 for	 our	 employee
administration	ER	model	as	discussed	in	Chapter	3:

Let’s	 briefly	 discuss	 it.	 The	 primary	 key	 of	 the	 EMPLOYEE	 relation	 is
SSN.	 It	has	 two	 foreign	keys:	MNR,	which	 refers	 to	SSN	and	 implements	 the
recursive	 SUPERVISED	 BY	 relationship	 type;	 and	 DNR,	 which	 refers	 to
DEPARTMENT	and	implements	the	WORKS_IN	relationship	type.	The	former
is	 NULL	 ALLOWED,	 whereas	 the	 latter	 is	 not.	 The	 primary	 key	 of
DEPARTMENT	is	DNR.	It	has	one	foreign	key	MGNR	which	refers	to	SSN	in
EMPLOYEE	 and	 implements	 the	 MANAGES	 relationship	 type.	 It	 cannot	 be
NULL.	The	primary	key	of	PROJECT	is	PNR.	The	foreign	key	DNR	refers	 to
DEPARTMENT.	 It	 implements	 the	 IN	 CHARGE	 OF	 relationship	 type	 and
cannot	 be	NULL.	The	WORKS_ON	 relation	 is	 needed	 to	 implement	 the	M:N
relationship	type	between	EMPLOYEE	and	PROJECT.	Its	primary	key	is	made

EMPLOYEE	(SSN,	ename,	streetaddress,	city,	sex,	dateofbirth,	MNR,
DNR)

–	MNR	foreign	key	refers	to	SSN	in	EMPLOYEE,	NULL	ALLOWED

–	DNR	foreign	key	refers	to	DNR	in	DEPARTMENT,	NOT	NULL

DEPARTMENT	(DNR,	dname,	dlocation,	MGNR)

–	MGNR:	foreign	key	refers	to	SSN	in	EMPLOYEE,	NOT	NULL

PROJECT	(PNR,	pname,	pduration,	DNR)

–	DNR:	foreign	key	refers	to	DNR	in	DEPARTMENT,	NOT	NULL

WORKS_ON	(SSN,	PNR,	HOURS)

–	SSN	foreign	key	refers	to	SSN	in	EMPLOYEE,	NOT	NULL

–	PNR	foreign	key	refers	to	PNR	in	PROJECT,	NOT	NULL

up	of	two	foreign	keys	referring	to	EMPLOYEE	and	PROJECT	respectively.	It
also	 includes	 the	 relationship	 type	 attribute	 HOURS	 representing	 how	 many
hours	an	employee	worked	on	a	project.

Our	 relational	model	 is	not	a	perfect	mapping	of	our	ER	model.	Some	of
the	cardinalities	have	not	been	perfectly	translated.	More	specifically,	we	cannot
guarantee	 that	 a	 department	 has	 at	 minimum	 one	 employee	 (not	 counting	 the
manager).	 Another	 example	 is	 that	 the	 same	 employee	 can	 be	 a	 manager	 of
multiple	 departments.	 Some	 of	 the	 earlier-mentioned	 shortcomings	 for	 the	 ER
model	still	apply	here.	We	cannot	guarantee	that	a	manager	of	a	department	also
works	in	the	department.	We	also	cannot	enforce	that	employees	should	work	on
projects	assigned	to	departments	to	which	they	belong.

Retention	Questions

Illustrate	how	an	ER	entity	type	can	be	mapped	to	the	relational
model.

Illustrate	how	ER	relationship	types	with	varying	degrees	and
cardinalities	can	be	mapped	to	the	relational	model.	Discuss	the	loss	of
semantics	where	appropriate.

6.4	Mapping	a	Conceptual	EER	Model	to	a
Relational	Model

The	EER	model	builds	upon	the	ER	model	by	introducing	additional	modeling
constructs	 such	 as	 specialization,	 categorization,	 and	 aggregation	 (see	Chapter
3).	In	this	section	we	discuss	how	these	can	be	mapped	to	the	relational	model.

6.4.1	Mapping	an	EER	Specialization

EER	specializations	can	be	mapped	in	various	ways.	A	first	option	is	to	create	a
relation	 for	 the	 superclass	and	each	 subclass,	 and	 link	 them	with	 foreign	keys.
An	 alternative	 is	 to	 create	 a	 relation	 for	 each	 subclass	 and	 none	 for	 the
superclass.	 Finally,	 we	 can	 create	 one	 relation	 with	 all	 attribute	 types	 of	 the
superclass	 and	 subclasses	 and	 add	 a	 special	 attribute	 type.	Let’s	 explore	 these
options	in	more	detail,	with	some	examples.

Figure	 6.32	 shows	 an	 EER	 specialization	 of	 ARTIST	 into	 SINGER	 and
ACTOR.	The	specialization	is	partial	since	not	all	artists	are	either	a	singer	or	an
actor.	It	also	has	overlap,	since	some	singers	can	also	be	actors.	An	artist	has	an
artist	number	and	an	artist	name.	A	singer	has	a	music	style.

Figure	6.32	Example	EER	specialization	with	superclass	ARTIST	and
subclasses	SINGER	and	ACTOR.

In	 our	 first	 option	 (option	 1),	 we	 create	 three	 relations:	 one	 for	 the
superclass	and	two	for	the	subclasses:

ARTIST(ANR,	aname,	…)
SINGER(ANR,	music	style,	…)
ACTOR(ANR,	…)

We	add	a	foreign	key	ANR	to	each	subclass	relation	that	refers	to	the	superclass
relation.	These	foreign	keys	then	also	serve	as	primary	keys.

Figure	 6.33	 illustrates	 option	 1	 with	 some	 example	 tuples.	 This	 solution
works	 well	 if	 the	 specialization	 is	 partial.	 Not	 all	 artists	 are	 included	 in	 the
subclass	relations.	For	example,	Claude	Monet	is	only	included	in	the	superclass
relation	and	not	referred	to	in	any	of	the	subclass	relations.	In	the	case	that	the
specialization	had	been	total	instead	of	partial,	then	we	could	not	have	enforced
it	with	this	solution.	The	overlap	characteristic	is	also	nicely	modeled.	You	can
see	that	Madonna	is	referenced	both	in	the	SINGER	and	ACTOR	relations.	If	the
specialization	had	been	disjoint	instead	of	overlap,	then	again	we	could	not	have
enforced	it	with	this	solution.

Figure	6.33	Example	tuples	for	option	1.

Let’s	 now	 change	 the	 specialization	 to	 total	 instead	 of	 partial.	 In	 other
words,	 we	 assume	 all	 artists	 are	 either	 singers	 or	 actors.	 Option	 1	 would	 not
work	well	for	this	since	there	could	be	ARTIST	tuples	which	are	not	referenced
in	either	the	SINGER	or	ACTOR	relation.	In	this	case,	a	better	option	(option	2)
to	 map	 this	 EER	 specialization	 only	 creates	 relations	 for	 the	 subclasses	 as
follows:

SINGER(ANR,	aname,	music	style,	…)
ACTOR(ANR,	aname,	…)

The	 attribute	 types	 of	 the	 superclass	 have	 been	 added	 to	 each	 of	 the	 subclass
relations.

Figure	6.34	illustrates	some	example	tuples	for	option	2.	This	solution	only
works	for	a	total	specialization.	The	overlap	characteristic	can	also	be	supported.
You	can	see	that	Madonna	is	included	in	both	relations.	Note,	however,	that	this
creates	redundancy.	If	we	would	also	store	her	biography,	picture,	etc.,	then	this
information	needs	to	be	added	to	both	relations,	which	is	not	very	efficient	from
a	 storage	 perspective.	 This	 approach	 cannot	 enforce	 a	 specialization	 to	 be
disjoint	since	the	tuples	in	both	relations	can	overlap.

Figure	6.34	Example	tuples	for	option	2.

Another	option	(option	3)	is	to	store	all	superclass	and	subclass	information
into	one	relation:

ARTIST(ANR,	aname,	music	style,	…,	discipline)

An	attribute	type	discipline	is	then	added	to	the	relation	to	indicate	the	subclass.
Figure	6.35	shows	some	example	tuples	for	option	3.	The	values	that	can	be

assigned	 to	 the	 attribute	 type	 discipline	 depend	 upon	 the	 characteristics	 of	 the
specialization.	 Hence,	 all	 specialization	 options	 are	 supported.	 Note	 that	 this
approach	can	generate	 a	 lot	of	NULL	values	 for	 the	 subclass-specific	 attribute
types	(music	style	in	our	case).

Figure	6.35	Example	tuples	for	option	3.

In	a	specialization	lattice,	a	subclass	can	have	more	than	one	superclass	as
you	can	see	illustrated	in	Figure	6.36.	A	PhD	student	is	both	an	employee	and	a
student.	 This	 can	 be	 implemented	 in	 the	 relational	 model	 by	 defining	 three
relations:	EMPLOYEE,	STUDENT,	and	PHD-STUDENT:

EMPLOYEE(SSN,	…)
STUDENT(SNR,	…)
PHD-STUDENT(SSN,	SNR,	…)

Figure	6.36	Example	of	an	EER	specialization	lattice.

The	primary	key	of	the	latter	is	a	combination	of	two	foreign	keys	referring
to	 EMPLOYEE	 and	 STUDENT,	 respectively.	 This	 solution	 does	 not	 support
total	specialization,	since	we	cannot	enforce	that	all	employee	and	student	tuples
are	referenced	in	the	PHD-STUDENT	relation.

6.4.2	Mapping	an	EER	Categorization

Another	extension	provided	by	the	EER	model	is	the	concept	of	a	categorization.
As	shown	in	Figure	6.37,	 the	category	 subclass	 is	 a	 subset	of	 the	union	of	 the
entities	of	the	superclasses.

Figure	6.37	Example	of	an	EER	categorization	with	superclasses	PERSON
and	COMPANY,	and	category	ACCOUNT	HOLDER.

Therefore,	an	account	holder	can	be	either	a	person	or	a	company.	This	can
be	implemented	in	the	relational	model	by	creating	a	new	relation	ACCOUNT-
HOLDER	 that	 corresponds	 to	 the	 category	 and	 adding	 the	 corresponding
attribute	types	to	it	as	follows:

PERSON(PNR,	…,	CustNo)
COMPANY(CNR,	…,	CustNo)
ACCOUNT-HOLDER(CustNo,	…)

We	then	define	a	new	primary	key	attribute,	CustNo,	also	called	a	surrogate
key,	for	the	relation	that	corresponds	to	the	category.	This	surrogate	key	is	then
added	 as	 a	 foreign	 key	 to	 each	 relation	 corresponding	 to	 a	 superclass	 of	 the
category.	This	foreign	key	is	declared	as	NOT	NULL	for	a	 total	categorization
and	 NULL	 ALLOWED	 for	 a	 partial	 categorization.	 In	 the	 case	 that	 the

superclasses	happen	 to	 share	 the	 same	key	attribute	 type,	 this	one	can	be	used
and	there	is	no	need	to	define	a	surrogate	key.

This	 is	 illustrated	 in	 Figure	6.38.	 In	 our	 case	 the	 categorization	 is	 partial
since	Wilfried	and	Microsoft	are	not	account	holders,	hence	 the	NULL	values.
This	solution	is	not	perfect:	we	cannot	guarantee	that	the	tuples	of	the	category
relation	 are	 a	 subset	 of	 the	 union	 of	 the	 tuples	 of	 the	 superclasses.	 As	 an
example,	 customer	 number	 12	 in	 the	 ACCOUNT-HOLDER	 relation	 does	 not
appear	in	either	the	PERSON	or	the	COMPANY	relation.	Moreover,	we	cannot
avoid	that	a	tuple	in	the	PERSON	relation	and	a	tuple	in	the	COMPANY	relation
would	 have	 the	 same	 value	 for	CustNo,	which	means	 they	would	 refer	 to	 the
same	ACCOUNT-HOLDER	tuple.	In	that	case,	 this	account	holder	would	be	a
person	and	a	company	at	the	same	time,	which	is	incorrect	as	well.

Figure	6.38	Example	tuples	for	mapping	a	categorization.

6.4.3	Mapping	an	EER	Aggregation

Aggregation	 is	 the	 third	extension	provided	by	 the	EER	model.	 In	Figure	6.39
we	 have	 aggregated	 the	 two	 entity	 types	 CONSULTANT	 and	 PROJECT	 and
their	relationship	type	into	an	aggregate	called	PARTICIPATION.	This	aggregate
has	 an	 attribute	 type	 date	 and	 participates	 in	 a	 1:M	 relationship	 type	with	 the
entity	type	CONTRACT.

Figure	6.39	Example	of	an	EER	aggregation.

This	can	be	implemented	in	the	relational	model	by	creating	four	relations:
CONSULTANT,	PROJECT,	PARTICIPATION,	and	CONTRACT:

CONSULTANT(CNR,	…)
PROJECT(PNR,	…)
PARTICIPATION(CNR,	PNR,	CONTNR,	date)
CONTRACT(CONTNR,	…)

The	PARTICIPATION	relation	models	the	aggregation.	Its	primary	key	is	a
combination	of	two	foreign	keys	referring	to	the	CONSULTANT	and	PROJECT
relations.	 It	 includes	a	NOT	NULL	foreign	key	 to	 the	CONTRACT	relation	 to
model	the	relationship	type.	It	also	includes	the	attribute	type	date.

Retention	Questions

Discuss	how	the	EER	concepts	of	specialization,	categorization,	and
aggregation	can	be	mapped	to	the	relational	model.	Illustrate	with
examples	and	clarify	what	semantics	may	get	lost	in	the	mapping.

Summary

In	this	chapter	we	have	discussed	the	relational	model	as	one	of	the	most	popular
data	 models	 used	 in	 the	 industry	 today.	 After	 formally	 introducing	 its	 basic
building	 blocks,	 we	 elaborated	 on	 different	 types	 of	 keys.	 Next,	 we	 reviewed
various	relational	constraints	that	ensure	the	data	in	the	relational	database	have
the	 desired	 properties.	 Normalization	 was	 extensively	 covered.	 First,	 we
illustrated	the	need	to	guarantee	no	redundancy	or	anomalies	in	the	data	model.
Functional	dependencies	and	prime	attribute	types	were	introduced	as	important
concepts	during	 the	normalization	procedure,	which	brings	 the	data	model	 into
the	 first	 normal	 form,	 second	 normal	 form,	 third	 normal	 form,	 Boyce–Codd
normal	form,	and	fourth	normal	form.	We	concluded	by	discussing	how	both	ER
and	EER	conceptual	data	models	can	be	mapped	 to	a	 logical	 relational	model.
We	 extensively	 discussed	 the	 semantics	 that	 get	 lost	 during	 the	 mapping	 by
using	plenty	of	 examples.	 In	 the	next	chapter,	we	zoom	 into	Structured	Query
Language	(SQL),	which	is	the	DDL	and	DML	of	choice	for	relational	databases.

Scenario	Conclusion

Following	 the	 mapping	 procedure	 outlined	 in	 this	 chapter,	 the	 EER
conceptual	data	model	for	Sober	can	be	mapped	to	the	following	logical
relational	 model	 (primary	 keys	 are	 underlined;	 foreign	 keys	 are	 in
italics):

CAR	(CAR-NR,	CARTYPE)

SOBER	CAR	(S-CAR-NR)

FOREIGN	KEY	S-CAR-NR	refers	to	CAR-NR	in	CAR;
NULL	NOT	ALLOWED

OTHER	CAR	(O-CAR-NR,	O-CUST-NR)

FOREIGN	KEY	O-CAR-NR	refers	to	CAR-NR	in	CAR;
NULL	NOT	ALLOWED

FOREIGN	KEY	O-CUST-NR	refers	to	CUST-NR	in
CUSTOMER;	NULL	NOT	ALLOWED

ACCIDENT	(ACC-NR,	ACC-DATE-TIME,	ACC-LOCATION)

INVOLVED	(I-CAR-NR,	I-ACC-NR,	DAMAGE	AMOUNT)

FOREIGN	KEY	I-CAR-NR	refers	to	CAR-NR	in	CAR;	NULL
NOT	ALLOWED

FOREIGN	KEY	I-ACC-NR	refers	to	ACC-NR	in
ACCIDENT;	NULL	NOT	ALLOWED

RIDE	(RIDE-NR,	PICKUP-DATE-TIME,	DROPOFF-DATE-TIME,
DURATION,	PICKUP-LOC,	DROPOFF-LOC,	DISTANCE,	FEE,	R-
CAR-NR)

FOREIGN	KEY	R-CAR-NR	refers	to	CAR-NR	in	CAR;
NULL	NOT	ALLOWED

RIDE	HAILING	(H-RIDE-NR,	PASSENGERS,	WAIT-TIME,
REQUEST-TYPE,	H-CUST-NR)

FOREIGN	KEY	H-RIDE-NR	refers	to	RIDE-NR	in	RIDE;
NULL	NOT	ALLOWED

FOREIGN	KEY	H-CUST-NR	refers	to	CUST-NR	in
CUSTOMER;	NULL	NOT	ALLOWED

The	 relational	 model	 has	 ten	 relations.	 Both	 EER	 specializations
(RIDE	 into	RIDE	HAILING	and	RIDE	SHARING;	CAR	 into	SOBER
CAR	and	OTHER	CAR)	have	been	mapped	using	option	1;	 a	 separate
relation	was	introduced	for	the	superclass	and	for	each	of	the	subclasses.
The	 reason	we	 chose	 option	 1	 is	 that	 both	 superclasses	 participated	 in
relationship	 types:	 RIDE	 with	 CAR	 and	 CAR	 with	 ACCIDENT.
Although	 both	 specializations	 are	 total	 and	 disjoint	 in	 the	EER	model,
this	cannot	be	enforced	 in	 the	 relational	model.	Hence,	 it	 is	possible	 to
have	 a	 tuple	 in	 the	CAR	 relation	which	 is	 not	 referenced	 in	 either	 the
SOBER	CAR	or	OTHER	CAR	relation,	which	makes	the	specialization
partial.	 Likewise,	 it	 is	 perfectly	 possible	 to	 have	 the	 same	 CAR
referenced	both	in	the	SOBER	CAR	and	OTHER	CAR	relations,	which
makes	 the	 specialization	 overlap.	 The	 four	 EER	 cardinalities	 of	 the
OPERATED	 BY,	 LEAD	 CUSTOMER,	 and	 OWNS	 relationship	 types
can	 be	 perfectly	 mapped	 to	 the	 relational	 model.	 The	 minimum
cardinalities	of	1	of	the	EER	relationship	types	BOOK	and	INVOLVED
cannot	be	enforced	 in	 the	 relational	model.	For	example,	 it	 is	perfectly

RIDE	SHARING	(S-RIDE-NR)

FOREIGN	KEY	S-RIDE-NR	refers	to	RIDE-NR	in	RIDE;
NULL	NOT	ALLOWED

CUSTOMER	(CUST-NR,	CUST-NAME)

BOOK	(B-CUST-NR,	B-S-RIDE-NR)

FOREIGN	KEY	B-CUST-NR	refers	to	CUST-NR	in
CUSTOMER;	NULL	NOT	ALLOWED

FOREIGN	KEY	B-S-RIDE-NR	refers	to	S-RIDE-NR	in	RIDE
SHARING;	NULL	NOT	ALLOWED

possible	 to	 define	 an	 accident,	 by	 adding	 a	 new	 tuple	 to	ACCIDENT,
without	any	car	involved.

Key	Terms	List

alternative	keys

Boyce–Codd	normal	form	(BCNF)

candidate	key

deletion	anomaly

domain

first	normal	form	(1	NF)

foreign	key

fourth	normal	form	(4	NF)

full	functional	dependency

functional	dependency

insertion	anomaly

multi-valued	dependency

normalization

primary	key

prime	attribute	type

relation

relational	model

second	normal	form	(2	NF)

superkey

third	normal	form	(3	NF)

transitive	dependency

trivial	functional	dependency

tuple

update	anomaly

Review	Questions

6.1.	Consider	the	following	(normalized)	relational	model	(primary	keys
are	underlined,	foreign	keys	are	in	italics).

EMPLOYEE(SSN,	ENAME,	EADDRESS,	SEX,
DATE_OF_BIRTH,	SUPERVISOR,	DNR)

						S U P ERV I SOR :	foreign	key	refers	to	SSN	in	EMPLOYEE,
NULL	value	allowed

						DNR :	foreign	key	refers	to	DNR	in	DEPARTMENT,	NULL
value	not	allowed

DEPARTMENT(DNR,	DNAME,	DLOCATION,	MGNR)

						MGNR:	foreign	key	refers	to	SSN	in	EMPLOYEE,	NULL
value	not	allowed

PROJECT(PNR,	PNAME,	PDURATION,	DNR)

						DNR:	foreign	key	refers	to	DNR	in	DEPARTMENT,	NULL
value	not	allowed

WORKS_ON(SSN,	PNR,	HOURS)

						SSN:	foreign	key	refers	to	SSN	in	EMPLOYEE,	NULL
value	not	allowed

						PNR:	foreign	key	refers	to	PNR	in	PROJECT,	NULL	value
not	allowed

Which	statement	is	correct?

a.	According	to	the	model,	a	supervisor	cannot	supervise	more	than
one	employee.

b.	According	to	the	model,	an	employee	can	manage	multiple
departments.

c.	According	to	the	model,	an	employee	can	work	in	multiple
departments.

d.	According	to	the	model,	an	employee	should	always	work	on
projects	assigned	to	his/her	department.

6.2.	Which	of	the	following	statements	is	correct?

a.	A	foreign	key	of	a	relation	A	cannot	refer	to	the	primary	key	of	the
same	relation	A.

b.	A	relation	cannot	have	more	than	one	foreign	key.

c.	Every	relation	must	have	a	foreign	key.

d.	A	foreign	key	can	be	NULL.

6.3.	Consider	a	data	model	for	the	Olympics	storing	information	about
countries	and	athletes.	There	is	a	1:N	relationship	type	between	country
and	athlete	and	an	athlete	always	has	to	belong	to	exactly	one	country.	A
relational	data	model	containing	only	one	table	leads	to:

a.	Unnecessary	replication	of	data	about	athletes.

b.	Unnecessary	replication	of	data	about	countries.

c.	Unnecessary	replication	of	data	about	athletes	and	countries.

d.	No	unnecessary	replication	of	data.

6.4.	The	following	relational	model	represents	an	HRM	system	of	a
consultancy	firm.	The	primary	keys	are	underlined;	foreign	keys	are	in
italic	font.

Consultant	(ConsultantID,	Date	of	Birth,	Expertise)

Assigned_to	(ConsultantID,	ProjectID)	ConsultantID	refers	to
ConsultantID	in	Consultant;	ProjectID	refers	to	ProjectID	in	Project

Project	(ProjectID,	Description,	Type,	Company)	Company	refers	to
Name	in	Company

Company	(Name,	Location)

Suppose	a	new	consultant	is	hired	and	immediately	assigned	to	a	new
training	project	at	a	new	firm	and	to	two	other,	already-existing	projects.
How	many	rows	(tuples)	must	be	added	to	the	database	to	reflect	this
change?

a.	1.

b.	3.

c.	5.

d.	6.

6.5.	Consider	the	following	(normalized)	relational	model	(primary	keys
underlined;	foreign	keys	in	italics):

EMPLOYEE	(SSN,	ENAME,	EADDRESS,	SEX,
DATE_OF_BIRTH,	SUPERVISOR,	DNR)

						SUPERVISOR:	foreign	key,	refers	to	SSN	in	EMPLOYEE,
NULL	value	allowed

						DNR:	foreign	key,	refers	to	DNR	in	DEPARTMENT,
NULL	value	not	allowed

DEPARTMENT	(DNR,	DNAME,	DLOCATION,	MGNR)

						MGNR:	foreign	key,	refers	to	SSN	in	EMPLOYEE,	NULL
value	not	allowed

PROJECT	(PNR,	PNAME,	PDURATION,	DNR)

						DNR:	foreign	key,	refers	to	DNR	in	DEPARTMENT,
NULL	value	not	allowed

WORKS_ON	(SSN,	PNR,	HOURS)

						SSN:	foreign	key,	refers	to	SSN	in	EMPLOYEE,	NULL
value	not	allowed

						PNR:	foreign	key,	refers	to	PNR	in	PROJECT,	NULL	value
not	allowed

Which	statement	is	not	correct?

a.	A	department	always	has	exactly	one	manager.

b.	Every	employee	must	always	be	supervised	by	exactly	one	other
employee.

c.	Every	project	is	always	assigned	to	exactly	one	department.

d.	According	to	the	model,	an	employee	can	work	in	another
department	than	he/she	manages.

6.6.	Consider	the	following	relational	model	(primary	keys	are
underlined,	foreign	keys	in	italics):

STUDENT	(student	number,	student	name,	street	name,	street
number,	zip	code,	city)

ENROLLED	(student	number,	course	number)

COURSE	(course	number,	course	name)

PROFESSOR	(professor	number,	professor	name)

TEACHES	(course	number,	professor	number)

Which	statement	is	correct?

a.	The	model	does	not	allow	a	course	to	be	taught	by	multiple
professors.

b.	The	model	can	be	further	normalized.

c.	The	model	does	not	allow	a	professor	to	teach	multiple	courses.

d.	The	model	does	not	allow	a	course	to	be	followed	by	multiple
students.

6.7.	A	relation	is	in	3	NF	if	it	satisfies	2	NF	and	…

a.	no	non-prime	attribute	type	of	R	is	transitively	dependent	on	the
primary	key.

b.	no	prime	attribute	type	of	R	is	transitively	dependent	on	the	primary
key.

c.	no	primary	key	of	R	is	transitively	dependent	on	a	prime	attribute
type.

d.	no	non-primary	key	of	R	is	transitively	dependent	on	a	prime
attribute	type.

6.8.	Which	statement	is	correct?

a.	The	Boyce–Codd	normal	form	is	more	strict	than	the	fourth	normal
form.

b.	The	Boyce–Codd	normal	form	is	more	strict	than	the	third	normal
form.

c.	The	second	normal	form	is	more	strict	than	the	Boyce–Codd	normal
form.

d.	The	first	normal	form	is	more	strict	than	the	Boyce–Codd	normal
form.

6.9.	Consider	the	following	generalization/specialization.

Suppose	we	represent	this	generalization/specialization	by	the	following
relational	model:

Discipline	(Disciplinenr,	Name)

Individual	sport	(Disciplinenr)	Disciplinenr	refers	to	Disciplinenr	in
Discipline

Teamsport	(Disciplinenr,	Number	players)	Disciplinenr	refers	to
Disciplinenr	in	Discipline

Consider	the	following	four	statements:

1.	The	relational	model	does	not	allow	one	to	enforce	the
completeness	constraint;	the	disjointness	constraint	can	be	enforced.

2.	The	relational	model	does	not	allow	one	to	enforce	both	the
completeness	constraint	and	the	disjointness	constraint.

3.	By	dropping	the	relation	“Discipline”	in	the	relational	model,	the
completeness	constraint	can	be	enforced.

4.	The	relational	model	allows	the	specialization	to	be	partial.

Which	of	the	following	options	is	correct?

a.	Statements	1	and	2	are	both	correct.

b.	Statements	1	and	4	are	both	incorrect.

c.	Only	statement	1	is	incorrect,	the	other	statements	are	correct.

d.	Only	statement	4	is	incorrect,	the	other	statements	are	correct.

6.10.	Consider	the	following	EER	model.

Which	statement	is	correct?

a.	When	mapping	the	EER	relationship	type	IS_ENROLLED	between
COURSE	and	STUDENT	to	the	relational	model,	a	new	relation	needs
to	be	introduced.	The	relation	is	identified	by	GRADE	as	its	primary
key.

b.	When	mapping	the	EER	relationship	type	INVOLVE	between
COURSE	and	ASSIGNMENT	to	the	relational	model,	a	new	relation
needs	to	be	introduced.	The	1..1	cardinalities	of	this	relationship	type
cannot	be	enforced	in	the	relational	model.

c.	When	mapping	the	EER	relationship	type	PARTICIPATE	between
GROUP	ASSIGNMENT	and	STUDENT	to	the	relational	model,	a
new	relation	needs	to	be	introduced.	The	four	cardinalities	of	this	EER
relationship	type	can	be	perfectly	mapped	to	the	relational	model.

d.	The	partial	inheritance	relationship	between	STUDENT	and
REPRESENTATIVE	can	be	perfectly	mapped	to	the	relational	model
by	the	following	two	relations:	STUDENT(StudentID,	FirstName,
LastName)	and	REPRESENTATIVE	(S-StudentID,	Email)	whereby
S-StudentID	refers	to	StudentID	in	STUDENT.

6.11.	Consider	the	following	ER	model	for	a	course	administration.

Which	statement	is	not	correct?

a.	When	mapping	the	ER	relationship	type	teaches	between	Session
and	Teacher	to	the	relational	model,	a	new	relation	needs	to	be
introduced.	The	four	cardinalities	of	this	ER	relationship	type	can	be
perfectly	mapped	to	the	relational	model.

b.	When	mapping	the	ER	relationship	type	organizes	between	Course
and	Session	to	the	relational	model,	the	primary	key	“cnb”	of	the
Course	relation	will	be	included	as	a	NOT	NULL	foreign	key	in	the
Session	relation.	The	four	cardinalities	of	this	ER	relationship	type	can
be	perfectly	mapped	to	the	relational	model.

c.	When	mapping	the	ER	relationship	type	enrollment	between
Session	and	Student	to	the	relational	model,	a	new	relation	needs	to	be
introduced.	The	four	cardinalities	of	this	ER	relationship	type	can	be
perfectly	mapped	to	the	relational	model.

d.	Both	the	ER	and	the	relational	model	cannot	enforce	that	a	teacher
can	only	teach	sessions	of	courses	for	which	he/she	is	qualified.

Problems	and	Exercises

6.1E	A	library	database	records	the	authors	and	the	publisher	of	each	book.
Normalize	the	following	relation	and	indicate	the	primary	and	foreign	key
attribute	types:

R	(ISBN,	title,	author(name,	date_of_birth),	publisher(name,
address(streetnr,	streetname,	zipcode,	city)),	pages,	price)

The	assumptions	are:

Suppose	that	one	book	can	have	multiple	publishers.	How	can	you	extend	your
model	to	accommodate	this?	Where	would	you	put	the	attribute	type
“number_of_copies”?

6.2E	Given	the	following	assumptions:

each	book	has	a	unique	ISBN	number;

each	author	has	a	unique	name;

each	publisher	has	a	unique	name;

a	book	can	have	multiple	authors;

an	author	can	write	more	than	one	book;

a	publisher	can	publish	more	than	one	book;

a	book	has	only	one	publisher;

a	publisher	has	only	one	address.

normalize	the	following	relation:

Flight	(Flightnumber,	Flighttime,	airline	(airlinename),	passenger
(passengername,	gender,	date	of	birth),	pilot	(pilotname,	gender,	date	of
birth),	departure_city,	arrival_city,	airplane	(planeID,	type,	seats))

6.3E	Given	the	following	EER	model	for	an	electricity	market:

a	flight	has	a	unique	flight	number,	a	passenger	has	a	unique	name,	a
pilot	has	a	unique	name;

a	flight	is	always	handled	by	one	airline;

a	flight	can	have	multiple	passengers,	a	passenger	can	be	on	multiple
flights;

a	flight	has	one	pilot,	a	pilot	can	operate	multiple	flights;

a	flight	is	always	handled	by	exactly	one	airplane;

discuss	some	examples	of	semantics	that	cannot	be	enforced	by	the	EER
model;

6.4E	Given	the	following	EER	model	for	an	airline	business:

6.5E	Given	the	following	EER	model	for	a	driving	school	company:

map	the	model	to	a	relational	model	representation.	Discuss	the	possible
loss	of	semantics.	Clearly	indicate	the	primary–foreign	key	relationships
and	specify	NOT	NULL	declarations	where	necessary.

discuss	some	examples	of	semantics	that	cannot	be	enforced	by	the	EER
model;

map	the	model	to	a	relational	model	representation.	Discuss	the	possible
loss	of	semantics.	Clearly	indicate	the	primary–foreign	key	relationships
and	specify	NOT	NULL	declarations	where	necessary.

1	See	the	online	appendix	at	www.pdbmbook.com	for	a	discussion	on
relational	algebra	and	relational	calculus,	which	are	two	formal	languages
underlying	the	relational	model.

discuss	some	examples	of	semantics	that	cannot	be	enforced	by	the	EER
model;

map	the	model	to	a	relational	model	representation.	Discuss	the	possible
loss	of	semantics.	Clearly	indicate	the	primary–foreign	key	relationships
and	specify	NOT	NULL	declarations	where	necessary.

http://www.pdbmbook.com

7

Relational	Databases
◈

Structured	Query	Language	(SQL)

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

Opening	Scenario

understand	the	importance	of	SQL	in	an	RDBMS	environment;

use	SQL	as	a	data	definition	language	(DDL);

use	SQL	as	a	data	manipulation	language	(DML)	for	retrieving,
inserting,	deleting,	and	updating	data;

define	and	use	views	in	SQL;

define	indexes	in	SQL;

use	SQL	for	granting	and	revoking	privileges;

understand	how	SQL	can	be	used	to	manage	metadata.

The	 relational	 model	 adopted	 by	 Sober	 needs	 to	 serve	 various
information	 needs.	 For	 example,	 the	 insurance	 firm	 of	 the	 company
requests	an	overview	of	all	accidents	together	with	the	number	of	Sober
cars	involved	and	the	average	damage	amount	per	accident.	As	part	of	its
customer	relationship	management	(CRM)	program,	the	company	wants
to	 retrieve	 the	customer	with	 the	maximum	wait	 time	and	offer	him	or
her	a	free	ride-hailing	service.	Furthermore,	Sober	also	would	like	to	find
out	which	 customers	 have	 never	 booked	 any	 of	 its	 services	 and	 target
them	 with	 a	 promotion	 campaign.	 To	 implement	 its	 eco-friendly	 tree-
planting	program,	Sober	needs	 to	know	which	 customers	booked	more
than	 20	 Sober	 ride-sharing	 services.	 Finally,	 the	 company	 remembers
that	one	of	the	limitations	of	the	EER	conceptual	data	model	was	that	it
is	 perfectly	 possible	 that	 customers	 book	 either	 a	 ride-hailing	 or	 ride-
sharing	 service	with	 their	own	car.	To	 safeguard	 its	data	quality,	Sober
wants	 to	 periodically	 check	 that	 this	 is	 not	 the	 case	 in	 its	 relational
database.

In	 the	 previous	 chapter,	 we	 dealt	 with	 the	 modeling	 aspects	 of	 relational
databases.	 In	 this	 chapter,	we	 elaborate	on	SQL,	which	 is	 the	 lingua	 franca	of
RDBMSs	 and	 one	 of	 the	 most	 popular	 data	 definition	 and	 manipulation
languages	in	use	in	the	industry	nowadays.	Its	core	functionality	is	implemented,
with	only	some	minor	variations,	 throughout	all	RDBMS	products.	We	discuss
the	 SQL	 language	 constructs	 to	 express	 a	 relational	 model	 and	 to	 formulate
queries	that	retrieve	and	modify	the	data	in	a	relational	database.

First,	we	 provide	 an	 overview	of	 the	 SQL	data	 definition	 language	 (SQL
DDL)	 to	 define	 a	 relational	 data	 model.	 We	 also	 discuss	 how	 the	 SQL	 data
manipulation	 language	 (SQL	DML)	can	be	used	for	data	manipulation	such	as

retrieving	data,	updating	data,	inserting	new	data	and	deleting	existing	data.	We
then	elaborate	on	SQL	views	and	SQL	 indexes,	which	are	part	 of	 the	 external
and	internal	data	model,	respectively.	We	also	illustrate	how	SQL	can	be	used	for
authorization	by	granting	or	 revoking	privileges	 to	 users	 or	 user	 accounts.	We
conclude	by	illustrating	how	SQL	can	be	used	for	managing	metadata.

7.1	Relational	Database	Management	Systems
and	SQL

As	 explained	 in	 the	 previous	 chapter,	 relational	 databases	 are	 based	 upon	 the
relational	 data	 model	 and	 managed	 by	 a	 relational	 database	 management
system,	 or	RDBMS.	Structured	Query	Language,	 or	SQL,1	 is	 the	 language
used	for	both	data	definition	and	data	manipulation.	It	is	one	of	the	most	popular
database	languages	currently	in	use	in	the	industry.	It	what	follows,	we	elaborate
on	 its	 key	 characteristics	 and	 position	 it	 in	 terms	 of	 the	 three-layer	 database
architecture	discussed	in	Chapter	1.

7.1.1	Key	Characteristics	of	SQL

Various	 versions	 of	 the	 SQL	 standard	 have	 been	 introduced,	 starting	with	 the
first,	 SQL-86	 in	 1986,	 and	 the	 most	 recent	 one	 in	 2016	 (SQL:2016).	 It	 was
accepted	 as	 a	 standard	 for	 relational	 data	 definition	 and	 manipulation	 by	 the
American	National	Standards	Institute	(ANSI)	in	1986	and	by	the	International
Organization	 for	 Standardization	 (ISO)	 in	 1987.	 Note	 that	 each	 relational
database	 vendor	 provides	 its	 own	 implementation	 (also	 called	 SQL	dialect)	 of
SQL,	 in	 which	 the	 bulk	 of	 the	 standard	 is	 typically	 implemented	 and
complemented	with	some	vendor-specific	add-ons.

SQL	 is	 primarily	 set-oriented	 and	 declarative	 (see	 Chapter	 2).	 In	 other
words,	as	opposed	to	record-oriented	database	languages,	SQL	can	retrieve	and
manipulate	many	records	at	a	time	(i.e.,	it	operates	on	sets	of	records	instead	of
individual	 records).	 Furthermore,	 you	 only	 need	 to	 specify	 which	 data	 to
retrieve,	in	contrast	to	procedural	database	languages,	which	also	require	you	to
explicitly	define	the	navigational	access	path	to	the	data.

Connections

In	Chapter	2	we	discussed	the	difference	between	procedural,	record-at-
a-time	 DML	 (as	 is	 used	 in	 hierarchical	 and	 CODASYL	 DBMSs)	 and
declarative,	set-at-a-time	DML	(as	is	used	in	SQL-based	RDBMSs).

SQL	can	be	used	both	interactively	from	a	command	prompt	or	executed	by
a	 program,	 written	 in	 a	 particular	 programming	 language	 (Java,	 Python,	 and
many	others).	In	that	case,	the	general-purpose	programming	language	is	called
the	host	language	to	the	SQL	code.	Figure	7.1	shows	an	example	of	using	SQL

interactively	in	a	MySQL	environment.	MySQL	is	an	open-source	RDBMS	that
can	be	freely	downloaded	from	the	web.	It	is	very	popular	in	the	industry.	In	this
screenshot	you	can	see	that	a	query	has	been	entered	in	the	query	window	at	the
top.	We	explain	in	Section	7.3.1.7	how	this	query	works,	but	it	basically	selects
all	 product	 numbers	 and	 product	 names	 of	 products	 for	which	more	 than	 one
order	 line	 is	 outstanding.	 The	 query	 can	 then	 be	 executed	 and	 the	 result
displayed	in	the	result	window	below.	Other	RDBMSs,	such	as	Microsoft	SQL
Server,	Oracle,	 and	 IBM	DB2,	 also	 provide	 facilities	 to	 execute	 queries	 in	 an
interactive	way	whereby	a	user	can	enter	SQL	queries,	 run	 them,	and	evaluate
the	results.

Figure	7.1	Example	of	interactive	SQL.

Figure	7.2	illustrates	the	same	query,	but	now	executed	by	a	host	language
–	 Java	 in	 this	 case.	 You	 can	 see	 the	 Java	 program	 at	 the	 top	 and	 the
corresponding	 results	 in	 the	 console	 window	 below.	 DBMSs	 typically	 expose
many	 application	 programming	 interfaces	 (APIs)	 through	 which	 client-
applications	 (written	 in	 Java,	 for	 example)	 that	 wish	 to	 utilize	 the	 services
provided	by	a	DBMS	can	access	and	query	a	DBMS.	Chapter	15	takes	a	detailed

look	at	 such	APIs.	For	now,	 it	 is	 important	 to	keep	 in	mind	 that	most	of	 these
rely	on	SQL	as	the	main	language	to	express	queries	to	be	sent	to	the	DBMS.

Figure	7.2	Example	of	a	Java	program	with	an	SQL	statement.

Connections

Chapter	15	takes	a	closer	look	at	the	various	ways	of	accessing	database
systems	 using	 different	 types	 of	 database	 application	 programming
interfaces,	or	APIs.

In	 most	 RDBMS	 environments,	 SQL	 is	 implemented	 as	 a	 free-form
language.	 In	 other	words,	 no	 special	 indentation	 is	 required	 as	 is	 the	 case	 for
languages	 such	 as	 Python	 or	 COBOL.	 Most	 SQL	 implementations	 are	 case
insensitive.	 It	 is,	however,	 recommended	 to	adopt	a	consistent	 formatting	style
(e.g.,	always	write	table	names	in	uppercase)	to	facilitate	the	understanding	and
maintenance	of	your	SQL	queries.

Drill	Down

In	2015,	Stack	Overflow	(www.stackoverflow.com)	conducted	a	survey
about	the	most	popular	application	development	languages.	Based	upon
26,086	 respondents,	 it	was	 shown	 that	SQL	ranked	second,	 just	behind
JavaScript.	The	survey	clearly	illustrated	that	despite	continuous	threats
from	 new	 technologies	 (e.g.,	 NoSQL;	 see	 Chapter	 11),	 SQL	 is	 still
standing	 its	 ground	 as	 the	 most	 important	 data	 definition	 and
manipulation	 language.	 It	 also	 showed	 that	 knowledge	 of	 SQL	 has	 a
positive	impact	on	your	salary.

http://www.stackoverflow.com

7.1.2	Three-Layer	Database	Architecture

Figure	 7.3	 illustrates	 the	 positioning	 of	 SQL	 across	 the	 three-layer	 database
architecture	we	 introduced	 in	 Chapter	 1.	At	 the	 internal	 data	model	 layer,	we
find	 the	 SQL	 database,	 SQL	 tablespace,	 and	 SQL	 index	 definitions.2	 At	 the
logical	 data	model	 layer,	 we	 have	 the	 SQL	 table	 definitions,	 whereby	 a	 table
corresponds	to	a	relation	from	the	relational	model.	At	 the	external	data	model
layer,	SQL	views	are	defined	that	essentially	offer	a	tailored	set	of	data	for	one
or	 more	 applications	 or	 queries.	 The	 queries	 can	 be	 implemented	 in	 a	 host
language	 or	 in	 an	 interactive	 environment.	 Remember,	 these	 layers	 should	 be
connected,	but	loosely	coupled	such	that	a	change	in	one	layer	has	minimal	to	no
impact	on	all	other	layers	above	(see	Chapter	1).

Figure	7.3	SQL	and	the	three-layer	database	architecture.

The	SQL	DDL	 and	DML	 statements	 are	 clearly	 separated	 to	 successfully
implement	the	three-layer	database	architecture.

Connections

Chapter	 1	 discussed	 the	 advantages	 and	 implications	 of	 using	 a	 three-
layer	database	architecture.

Retention	Questions

What	are	the	key	characteristics	of	SQL?

Discuss	the	positioning	of	SQL	across	the	three-layer	database
architecture.

7.2	SQL	Data	Definition	Language

As	discussed	 in	Chapter	1,	 the	 data	 definition	 language	 (DDL)	 is	 used	 by	 the
database	 administrator	 (DBA)	 to	 express	 the	 database’s	 logical,	 internal,	 and
external	 data	 models.	 These	 definitions	 are	 stored	 in	 the	 catalog.	 In	 what
follows,	we	discuss	the	key	DDL	concepts	and	illustrate	them	with	an	example.
We	revisit	referential	integrity	constraints	and	elaborate	on	how	to	drop	or	alter
database	objects.

7.2.1	Key	DDL	Concepts

A	key	concept	to	start	off	with	is	the	SQL	schema.	This	is	a	grouping	of	tables
and	 other	 database	 objects	 such	 as	 views,	 constraints,	 and	 indexes	 which
logically	 belong	 together.	 An	 SQL	 schema	 is	 defined	 by	 a	 schema	 name	 and
includes	an	authorization	 identifier	 to	 indicate	 the	user,	or	user	account,	who
owns	 the	 schema.	 Such	 users	 can	 perform	 any	 action	 they	 want	 within	 the
context	of	 the	schema.	A	schema	 is	 typically	defined	 for	a	business	process	or
context	 such	 as	 a	 purchase	 order	 or	 HR	 system.	 Here,	 you	 can	 see	 the	 SQL
definition	of	a	schema	called	purchase	whereby	BBAESENS	is	assigned	as	the
owner:

CREATE	SCHEMA	PURCHASE	AUTHORIZATION	
BBAESENS

Once	we	have	defined	a	schema,	we	can	start	creating	SQL	tables.	An	SQL
table	 implements	a	 relation	 from	the	 relational	model.	 It	 typically	has	multiple
columns,	one	per	attribute	type,	and	multiple	rows,	one	for	each	tuple.	An	SQL
table	can	be	created	using	the	CREATE	TABLE	statement	followed	by	the	name
of	 the	 table.	 Below	 you	 can	 see	 two	 examples.	 The	 first	 one	 creates	 a	 table
PRODUCT	which	is	assigned	to	the	default	schema.	The	second	example	creates
a	 table	 PRODUCT	 within	 the	 PURCHASE	 schema.	 It	 is	 recommended	 to
explicitly	 assign	 a	 new	 table	 to	 an	 already-existing	 schema	 to	 avoid	 any
confusion	or	inconsistencies.

CREATE	TABLE	PRODUCT	…
CREATE	TABLE	PURCHASE.PRODUCT	…

An	SQL	table	has	various	columns	–	one	per	attribute	type.	As	an	example,
our	SQL	table	PRODUCT	can	have	columns	such	as	PRODNR,	PRODNAME,
PRODTYPE,	 etc.	 Each	 of	 these	 columns	 has	 a	 corresponding	 data	 type	 to
represent	 the	 format	 and	 range	 of	 possible	 values.	 Table	 7.1	 gives	 some
examples	of	commonly	used	SQL	data	types.

Table	7.1	SQL	data	types

Data	type Description

CHAR(n) Holds	a	fixed	length	string	with	size	n

VARCHAR(n) Holds	a	variable	length	string	with	maximum	size	n

SMALLINT Small	integer	(no	decimal)	between	–32,768	and	32,767

INT Integer	(no	decimal)	between	–2,147,483,648	and
2,147,483,647

FLOAT(n,d) Small	number	with	a	floating	decimal	point.	The	total
maximum	number	of	digits	is	n	with	a	maximum	of	d	digits
to	the	right	of	the	decimal	point.

DOUBLE(n,d) Large	number	with	a	floating	decimal	point.	The	total
maximum	number	of	digits	is	n	with	a	maximum	of	d	digits
to	the	right	of	the	decimal	point.

DATE Date	in	format	YYYY-MM-DD

DATETIME Date	and	time	in	format	YYYY-MM-DD	HH:MI:SS

TIME Time	in	format	HH:MI:SS

BOOLEAN True	or	false

BLOB Binary	large	object	(e.g.,	image,	audio,	video)

These	data	types	might	be	implemented	differently	in	various	RDBMSs,	and	it	is
recommended	to	check	the	user	manual	for	the	options	available.

In	SQL	it	 is	also	possible	for	a	user	 to	define	a	data	 type	or	domain.	This
can	be	handy	when	a	domain	can	be	re-used	multiple	times	in	a	table	or	schema
(e.g.,	 see	 our	 BillOfMaterial	 example	 in	 Chapter	 6).	 Changes	 to	 the	 domain
definition	 then	 only	 need	 to	 be	 done	 once,	 which	 greatly	 improves	 the
maintainability	 of	 your	 database	 schema.	 Here	 you	 can	 see	 an	 example	 of	 a
domain	 PRODTYPE_DOMAIN,	 which	 is	 defined	 as	 a	 variable	 number	 of
characters	of	which	the	value	is	either	white,	red,	rose,	or	sparkling:

CREATE	DOMAIN	PRODTYPE_DOMAIN	AS	VARCHAR(10)
CHECK	(VALUE	IN	('white',	'red',	'rose',	'sparkling'))

If	you	would	decide	later	to	also	include	beer,	then	this	can	be	easily	added
to	 the	 list	 of	 admissible	 values.	 Note,	 however,	 that	 some	 RDBMSs	 such	 as
MySQL	do	not	support	the	concept	of	an	SQL	domain.

SQL	 column	 definitions	 can	 be	 further	 refined	 by	 imposing	 column
constraints	(see	also	Chapter	6).	The	primary	key	constraint	defines	the	primary
key	of	the	table.	Remember,	a	primary	key	should	have	unique	values	and	null
values	are	thus	not	tolerated	(entity	integrity	constraint).	A	foreign	key	constraint
defines	 a	 foreign	 key	 of	 a	 table,	 which	 typically	 refers	 to	 a	 primary	 key	 of
another	 (or	 the	 same)	 table,	 thereby	 restricting	 the	 range	 of	 possible	 values
(referential	 integrity	 constraint).	 A	UNIQUE	 constraint	 defines	 an	 alternative
key	of	a	 table.	A	NOT	NULL	constraint	prohibits	null	values	 for	a	column.	A
DEFAULT	constraint	can	be	used	to	set	a	default	value	for	a	column.	Finally,	a
CHECK	constraint	can	be	used	to	define	a	constraint	on	the	column	values.	All
these	 constraints	 should	 be	 set	 in	 close	 collaboration	 between	 the	 database
designer	and	business	user.

7.2.2	DDL	Example

Let’s	now	illustrate	the	DDL	concepts	discussed	before	with	an	example.	Figure
7.4	shows	an	ER	model	for	a	purchase	order	administration	which	we	will	also
use	to	illustrate	both	SQL	DDL	and	SQL	DML	in	this	chapter.	Let’s	spend	some
time	 understanding	 it.	 We	 have	 three	 entity	 types:	 SUPPLIER,	 PURCHASE
ORDER,	and	PRODUCT.	A	supplier	has	a	unique	supplier	number,	which	is	its
key	attribute	type.	It	is	also	characterized	by	a	supplier	name,	supplier	address,
supplier	city,	and	supplier	status.	A	purchase	order	has	a	unique	purchase	order
number,	 which	 is	 its	 key	 attribute	 type.	 It	 also	 has	 a	 purchase	 order	 date.	 A
product	has	a	unique	product	number,	which	is	its	key	attribute	type.	It	also	has	a
product	name,	product	type,	and	available	quantity.

Figure	7.4	Example	ER	model.

Let’s	 look	 at	 the	 relationship	 types.	A	 supplier	 can	 supply	minimum	zero
and	 maximum	 N	 products.	 A	 product	 is	 supplied	 by	 minimum	 zero	 and
maximum	M	suppliers.	The	SUPPLIES	relationship	type	has	two	attribute	types:
purchase_price	 and	 deliv_period,	 representing	 the	 price	 and	 period	 for	 a
particular	supplier	to	supply	a	particular	product.	A	supplier	has	minimum	zero
and	maximum	N	purchase	 orders	 on	 order.	A	 purchase	 order	 is	 on	 order	with

minimum	 one	 and	 maximum	 one	 –	 in	 other	 words,	 exactly	 one	 –	 supplier.
PURCHASE	ORDER	is	existence-dependent	on	SUPPLIER.	A	purchase	order
can	have	several	purchase	order	lines,	each	for	a	particular	product.	This	is	the
relationship	 type	 between	 PURCHASE	 ORDER	 and	 PRODUCT.	 A	 purchase
order	can	have	minimum	one	and	maximum	N	products	as	purchase	order	lines.
Vice	 versa,	 a	 product	 can	 be	 included	 in	 minimum	 zero	 and	 maximum	 N
purchase	orders.	The	relationship	type	is	characterized	by	the	quantity	attribute
type,	 representing	 the	 quantity	 of	 a	 particular	 product	 in	 a	 particular	 purchase
order.

The	corresponding	relational	tables	for	our	ER	model	then	become	(primary
keys	are	underlined;	foreign	keys	are	in	italics):

SUPPLIER(SUPNR,	SUPNAME,	SUPADDRESS,	SUPCITY,	
SUPSTATUS)
PRODUCT(PRODNR,	PRODNAME,	PRODTYPE,	
AVAILABLE_QUANTITY)
SUPPLIES(SUPNR,	PRODNR,	PURCHASE_PRICE,	
DELIV_PERIOD)
PURCHASE_ORDER(PONR,	PODATE,	SUPNR)
PO_LINE(PONR,	PRODNR,	QUANTITY)

The	 SUPPLIER	 and	 PRODUCT	 table	 correspond	 to	 the	 SUPPLIER	 and
PRODUCT	entity	types.	The	SUPPLIES	table	is	needed	to	implement	the	N:M
relationship	 type	 between	 SUPPLIER	 and	 PRODUCT.	 Its	 primary	 key	 is	 a
combination	of	 two	foreign	keys:	SUPNR	and	PRODNR.	It	also	 includes	both
the	PURCHASE_PRICE	and	DELIV_PERIOD,	which	were	 the	attribute	 types
of	 the	 relationship	 type	 SUPPLIES.	 The	 PURCHASE_ORDER	 table
corresponds	 to	 the	PURCHASE_ORDER	 entity	 type	 in	 the	 ER	model.	 It	 also
has	a	foreign	key	SUPNR,	which	refers	to	the	supplier	number	in	the	SUPPLIER

table.	 The	 PO_LINE	 table	 implements	 the	 N:M	 relationship	 type	 between
PURCHASE_ORDER	and	PRODUCT.	 Its	primary	key	 is	again	a	combination
of	 two	 foreign	 keys:	 PONR	 and	 PRODNR.	The	QUANTITY	 attribute	 type	 is
also	included	in	this	table.

The	DDL	definition	for	the	SUPPLIER	table	becomes:

CREATE	TABLE	SUPPLIER
						(SUPNR	CHAR(4)	NOT	NULL	PRIMARY	KEY,
						SUPNAME	VARCHAR(40)	NOT	NULL,
						SUPADDRESS	VARCHAR(50),
						SUPCITY	VARCHAR(20),
						SUPSTATUS	SMALLINT)

The	SUPNR	 is	 defined	 as	CHAR(4)	 and	 set	 to	 be	 the	 primary	 key.	We	 could
have	also	defined	it	using	a	number	data	type,	but	let’s	say	the	business	asked	us
to	define	it	as	four	characters	so	to	also	accommodate	some	older	legacy	product
numbers,	which	may	occasionally	include	alphanumeric	symbols.	SUPNAME	is
defined	as	a	NOT	NULL	column.

The	PRODUCT	table	can	be	defined	as	follows:

CREATE	TABLE	PRODUCT
						(PRODNR	CHAR(6)	NOT	NULL	PRIMARY	KEY,
								PRODNAME	VARCHAR(60)	NOT	NULL,
																CONSTRAINT	UC1	UNIQUE(PRODNAME),
								PRODTYPE	VARCHAR(10),
																CONSTRAINT	CC1	CHECK(PRODTYPE	IN	('white',	
'red',	'rose',	'sparkling')),
								AVAILABLE_QUANTITY	INTEGER)

In	the	PRODUCT	table,	the	PRODNR	column	is	defined	as	the	primary	key.	The
PRODNAME	column	is	defined	as	NOT	NULL	and	UNIQUE.	Hence,	it	can	be

used	 as	 an	 alternative	 key.	 The	 PRODTYPE	 column	 is	 defined	 as	 a	 variable
number	of	 characters	up	 to	 ten.	 Its	values	 should	either	be	white,	 red,	 rose,	or
sparkling.	The	AVAILABLE_QUANTITY	column	is	defined	as	an	integer.

The	DDL	for	the	SUPPLIES	table	is:

CREATE	TABLE	SUPPLIES
						(SUPNR	CHAR(4)	NOT	NULL,
						PRODNR	CHAR(6)	NOT	NULL,
						PURCHASE_PRICE	DOUBLE(8,2)
														COMMENT	'PURCHASE_PRICE	IN	EUR',
						DELIV_PERIOD	INT
														COMMENT	'DELIV_PERIOD	IN	DAYS',
						PRIMARY	KEY	(SUPNR,	PRODNR),
						FOREIGN	KEY	(SUPNR)	REFERENCES	SUPPLIER	
(SUPNR)
														ON	DELETE	CASCADE	ON	UPDATE	CASCADE,
						FOREIGN	KEY	(PRODNR)	REFERENCES	PRODUCT	
(PRODNR)
														ON	DELETE	CASCADE	ON	UPDATE	CASCADE)

The	 SUPPLIES	 table	 has	 four	 columns.	 First,	 the	 SUPNR	 and	 PRODNR	 are
defined.	The	PURCHASE_PRICE	is	defined	as	DOUBLE(8,2).	It	consists	of	a
total	 of	 eight	 digits	 with	 two	 digits	 after	 the	 decimal	 point.	 The
DELIV_PERIOD	column	is	assigned	the	INT	data	type.	The	primary	key	is	then
defined	as	a	combination	of	SUPNR	and	PRODNR.	The	foreign	key	relationship
is	 then	 also	 specified.	Neither	 of	 the	 foreign	 keys	 can	 be	 null	 since	 they	 both
make	up	 the	primary	key	of	 the	 table.	The	ON	UPDATE	CASCADE	and	ON
DELETE	CASCADE	statements	are	discussed	below.

Next,	we	have	the	PURCHASE_ORDER	table:

CREATE	TABLE	PURCHASE_ORDER

						(PONR	CHAR(7)	NOT	NULL	PRIMARY	KEY,
						PODATE	DATE,
						SUPNR	CHAR(4)	NOT	NULL,
						FOREIGN	KEY	(SUPNR)	REFERENCES	SUPPLIER	
(SUPNR)
						ON	DELETE	CASCADE	ON	UPDATE	CASCADE)

The	 PURCHASE_ORDER	 table	 is	 defined	 with	 the	 PONR,	 PODATE,	 and
SUPNR	columns.	The	latter	is	again	a	foreign	key.

We	conclude	our	database	definition	with	the	PO_LINE	table:

CREATE	TABLE	PO_LINE
					(PONR	CHAR(7)	NOT	NULL,
					PRODNR	CHAR(6)	NOT	NULL,
					QUANTITY	INTEGER,
					PRIMARY	KEY	(PONR,	PRODNR),
					FOREIGN	KEY	(PONR)	REFERENCES	PURCHASE_ORDER	
(PONR)
													ON	DELETE	CASCADE	ON	UPDATE	CASCADE,
					FOREIGN	KEY	(PRODNR)	REFERENCES	PRODUCT	
(PRODNR)
													ON	DELETE	CASCADE	ON	UPDATE	CASCADE);

It	 has	 three	 columns:	 PONR,	 PRODNR,	 and	 QUANTITY.	 Both	 PONR	 and
PRODNR	are	foreign	keys	and	make	up	the	primary	key	of	the	table.

7.2.3	Referential	Integrity	Constraints

Remember,	 the	 referential	 integrity	 constraint	 states	 that	 a	 foreign	 key	 has	 the
same	domain	as	the	primary	key	it	refers	to	and	occurs	as	either	a	value	of	the
primary	key	or	NULL	(see	Chapter	6).	The	question	now	arises	of	what	should
happen	to	foreign	keys	in	the	case	that	a	primary	key	is	updated	or	even	deleted.
As	an	example,	suppose	the	supplier	number	of	a	SUPPLIER	tuple	is	updated	or
the	 tuple	 is	 deleted	 in	 its	 entirety.	 What	 would	 have	 to	 happen	 to	 all	 other
referring	SUPPLIES	and	PURCHASE_ORDER	tuples?	This	can	be	specified	by
using	various	referential	integrity	actions.	The	ON	UPDATE	CASCADE	option
says	that	an	update	should	be	cascaded	to	all	referring	tuples.	Similarly,	the	ON
DELETE	 CASCADE	 option	 says	 that	 a	 removal	 should	 be	 cascaded	 to	 all
referring	 tuples.	 If	 the	 option	 is	 set	 to	 RESTRICT,	 the	 update	 or	 removal	 is
halted	 if	 referring	 tuples	 exist.	SET	NULL	 implies	 that	 all	 foreign	keys	 in	 the
referring	tuples	are	set	to	NULL.	This	obviously	assumes	that	a	NULL	value	is
allowed.	 Finally,	 SET	DEFAULT	means	 that	 the	 foreign	 keys	 in	 the	 referring
tuples	should	be	set	to	their	default	value.

This	 is	 illustrated	 in	 Figure	 7.5.	 We	 have	 listed	 some	 tuples	 of	 the
SUPPLIER	 table.	 Let’s	 focus	 on	 supplier	 number	 37,	 whose	 name	 is	 Ad
Fundum.	 This	 supplier	 has	 four	 referring	 SUPPLIES	 tuples	 and	 five	 referring
PURCHASE_ORDER	tuples.	Suppose	now	that	we	update	the	supplier	number
to	40.	In	the	case	of	an	ON	UPDATE	CASCADE	constraint,	this	update	will	be
cascaded	to	all	nine	referring	tuples	where	the	supplier	number	will	thus	also	be
updated	to	40.	In	the	case	of	an	ON	UPDATE	RESTRICT	constraint,	the	update
will	not	be	allowed	because	of	the	referring	tuples.	If	we	now	remove	supplier
number	37,	 then	an	ON	DELETE	CASCADE	option	will	also	remove	all	nine
referring	 tuples.	 In	 the	 case	 of	 an	 ON	 DELETE	 RESTRICT	 constraint,	 the

removal	will	 not	 be	 allowed.	 The	 constraints	 can	 be	 set	 individually	 for	 each
foreign	key	in	close	collaboration	with	the	business	user.

Figure	7.5	Referential	integrity	actions.

7.2.4	DROP	and	ALTER	Command

The	DROP	 command	 can	 be	 used	 to	 drop	 or	 remove	 database	 objects	 (e.g.,
schemas,	 tables,	views,	etc.).	 It	can	also	be	combined	with	the	CASCADE	and
RESTRICT	options.	Some	examples	are:

DROP	SCHEMA	PURCHASE	CASCADE
DROP	SCHEMA	PURCHASE	RESTRICT
DROP	TABLE	PRODUCT	CASCADE
DROP	TABLE	PRODUCT	RESTRICT

The	first	statement	drops	the	purchase	schema.	The	CASCADE	option	indicates
that	 all	 referring	 objects	 such	 as	 tables,	 views,	 indexes,	 etc.	 will	 also	 be
automatically	dropped.	If	the	option	had	been	RESTRICT,	such	as	in	the	second
example,	 the	 removal	 of	 the	 schema	will	 be	 refused	 if	 there	 are	 still	 referring
objects	(e.g.,	tables,	views,	indexes).	The	same	reasoning	applies	when	dropping
tables.

The	ALTER	 statement	 can	 be	 used	 to	 modify	 table	 column	 definitions.
Common	 actions	 are:	 adding	 or	 dropping	 a	 column;	 changing	 a	 column
definition;	 or	 adding	 or	 dropping	 table	 constraints.	 Here	 you	 can	 see	 two
examples:

ALTER	TABLE	PRODUCT	ADD	PRODIMAGE	BLOB
ALTER	TABLE	SUPPLIER	ALTER	SUPSTATUS	SET	DEFAULT	
'10'

The	 first	 one	 adds	 the	 PRODIMAGE	 column	 to	 the	 PRODUCT	 table	 and
defines	 it	 as	a	binary	 large	 object,	 or	BLOB.	 The	 second	 example	 assigns	 a
default	value	of	10	to	the	SUPSTATUS	column.

Once	we	have	 finalized	 the	data	definitions,	we	can	compile	 them	so	 that
they	 can	 be	 stored	 in	 the	 catalog	 of	 the	 RDBMS.	 The	 next	 step	 is	 to	 start
populating	the	database.	Figure	7.6	shows	some	examples	of	tuples	listed	for	the
various	tables	we	defined	earlier.	We	continue	with	the	relational	database	for	a
wine	purchase	administration	whereby	the	products	represent	wines.

Figure	7.6	Example	relational	database	state.

Retention	Questions

Discuss	how	SQL	DDL	can	be	used	to	define	schemas,	tables,	and
domains.

What	types	of	referential	integrity	actions	are	supported	in	SQL?

What	is	the	purpose	of	the	SQL	DROP	and	ALTER	commands?

7.3	SQL	Data	Manipulation	Language

The	data	manipulation	language	(DML)	retrieves,	inserts,	deletes,	and	modifies
data	 (see	Chapter	 1).	 From	 a	 DML	 perspective,	 SQL	 defines	 four	 statements.
The	 SELECT	 statement	 retrieves	 data	 from	 the	 relational	 database.	 The
UPDATE	 and	 INSERT	 statements	modify	 and	 add	 data.	 Finally,	 the	DELETE
statement	 removes	data.	We	examine	each	of	 these	 separately	 in	 the	 following
subsections.

7.3.1	SQL	SELECT	Statement

We	start	with	the	SQL	SELECT	statement.	You	can	see	the	full	syntax	illustrated
below.

								SELECT	component
								FROM	component
								[WHERE	component]
								[GROUP	BY	component]
								[HAVING	component]
								[ORDER	BY	component]

By	using	the	options	listed,	we	can	ask	very	specific	and	complex	questions
of	 the	 database.	 It	 is	 important	 to	 note	 that	 the	 result	 of	 an	 SQL	 SELECT
statement	is	a	multiset,	not	a	set.	Remember,	in	a	set	there	are	no	duplicates	and
the	 elements	 are	 not	 ordered.	 In	 a	multiset	 (sometimes	 also	 called	 bag),	 the
elements	 are	 also	 not	 ordered.	 However,	 there	 can	 be	 duplicate	 elements	 in	 a
multiset.	As	an	example,	you	can	think	of	a	set	{10,	5,	20},	and	a	multiset	{10,
5,	10,	20,	5,	10},	where	the	elements	5	and	10	each	occur	multiple	times.	SQL
will	 not	 automatically	 eliminate	 duplicates	 in	 the	 result.	 There	 are	 various
reasons	for	this.	First,	duplicate	elimination	is	an	expensive	operation.	Next,	the
user	may	also	want	to	see	duplicate	tuples	in	the	query	result.	Finally,	duplicates
may	also	be	considered	by	aggregate	functions	as	we	illustrate	in	Section	7.3.1.2.

In	 what	 follows,	 we	 discuss	 simple	 queries;	 queries	 with	 aggregate
functions;	queries	with	GROUP	BY/HAVING;	queries	with	ORDER	BY;	 join
queries;	nested	queries;	correlated	queries;	queries	with	ALL/ANY;	queries	with
EXISTS;	 queries	 with	 subqueries	 in	 SELECT/FROM;	 and	 queries	 with	 set
operations.

Drill	Down

You	 can	 follow	 along	 with	 the	 queries	 below	 by	 using	 the	 SQL
environment	 in	 the	 online	 playground	 (see	 the	 Appendix	 for	 more
details).

7.3.1.1	Simple	Queries

Simple	 queries	 are	 SQL	 statements	 that	 retrieve	 data	 from	 only	 one	 table.	 In
other	words,	the	FROM	component	in	the	SELECT	statement	contains	only	one
table	name.	The	SELECT	component	then	extracts	the	columns	required.	It	can
contain	various	expressions	which	generally	 refer	 to	 the	names	of	 the	columns
we	are	interested	in:3

Q1:	SELECT	SUPNR,	SUPNAME,	SUPADDRESS,	SUPCITY,	
SUPSTATUS
								FROM	SUPPLIER

Q1	selects	all	information	from	the	SUPPLIER	table.	In	other	words,	it	provides
a	complete	table	dump.	In	the	case	that	all	columns	of	a	table	are	requested,	SQL
provides	a	handy	shortcut	notation:

Q1:	SELECT	*	FROM	SUPPLIER

The	result	is	displayed	in	Figure	7.7.

Figure	7.7	Result	for	Q1.

It	is	also	possible	to	select	only	a	few	columns:

Q2:	SELECT	SUPNR,	SUPNAME	FROM	SUPPLIER

As	shown	in	Figure	7.8,	this	query	selects	the	supplier	number	and	supplier
name	from	the	SUPPLIER	table.

Figure	7.8	Result	for	Q2.

Q3	selects	the	supplier	number	from	the	PURCHASE_ORDER	table.	Since
a	 supplier	 can	 have	 multiple	 purchase	 orders	 outstanding,	 the	 same	 supplier
number	 can	 appear	 multiple	 times	 in	 the	 result,	 as	 illustrated	 in	 Figure	 7.9.
Remember,	the	result	of	an	SQL	query	is	a	multiset,	that’s	why	we	see	supplier
numbers	32	and	37	appearing	multiple	times.

Q3:	SELECT	SUPNR	FROM	PURCHASE_ORDER

Figure	7.9	Result	for	Q3.

Q4	adds	the	DISTINCT	option.	This	option	removes	duplicates	and	makes
sure	that	only	distinct	values	are	shown	in	the	result	(see	Figure	7.10).

Q4:	SELECT	DISTINCT	SUPNR	FROM	PURCHASE_ORDER

Figure	7.10	Result	for	Q4.

Q5	 shows	 that	 we	 can	 also	 include	 simple	 arithmetic	 expressions	 in	 the
SELECT	statement.	It	selects	the	supplier	number,	product	number,	and	delivery
period	divided	by	30	from	the	SUPPLIES	table.	Remember,	the	delivery	period
was	expressed	in	days,	so	if	we	divide	it	by	30	we	can	approximate	it	in	terms	of
months.	 Note	 that	 we	 also	 added	 MONTH_DELIV_PERIOD	 as	 an	 alias	 or
shortcut	name	to	the	calculation.

Q5:	SELECT	SUPNR,	PRODNR,	DELIV_PERIOD/30	AS	
MONTH_DELIV_PERIOD
	FROM	SUPPLIES

Figure	7.11	displays	the	result	of	Q5.

Figure	7.11	Result	for	Q5.

The	SQL	queries	we	discussed	thus	far	only	include	a	SELECT	and	FROM
component.	 A	 missing	WHERE	 clause	 indicates	 there	 is	 no	 condition	 on	 the
actual	tuple	selection.	When	a	WHERE	clause	is	added	to	the	SQL	statement,	it
specifies	 selection	 conditions	 to	 indicate	which	 table	 rows	 should	 be	 selected.
Several	 operators	 can	 be	 used	 in	 the	 WHERE	 clause,	 such	 as:	 comparison
operators,	 Boolean	 operators,	 the	 BETWEEN	 operator,	 the	 IN	 operator,	 the
LIKE	operator,	and	the	NULL	operator.	Let’s	illustrate	this	with	some	examples.

Q6	 selects	 the	 supplier	 number	 and	 supplier	 name	 from	 the	 SUPPLIER
table	of	all	suppliers	living	in	San	Francisco.

Q6:	SELECT	SUPNR,	SUPNAME
				FROM	SUPPLIER
				WHERE	SUPCITY	=	'San	Francisco'

The	result	is	shown	in	Figure	7.12.

Figure	7.12	Result	for	Q6.

Q7	 selects	 the	 supplier	 number	 and	 supplier	 name	 from	 the	 SUPPLIER
table	of	all	suppliers	living	in	San	Francisco	and	whose	status	is	higher	than	80.
Note	that	both	conditions	are	combined	with	a	Boolean	AND	operator.

Q7:	SELECT	SUPNR,	SUPNAME
				FROM	SUPPLIER
				WHERE	SUPCITY	=	'San	Francisco'	AND	SUPSTATUS	>	80

The	result	is	shown	in	Figure	7.13.

Figure	7.13	Result	for	Q7.

Q8	selects	the	supplier	number,	name	and	status	from	the	SUPPLIER	table
of	all	suppliers	whose	status	is	between	70	and	80	(see	Figure	7.14).

Q8:	SELECT	SUPNR,	SUPNAME,	SUPSTATUS
				FROM	SUPPLIER
				WHERE	SUPSTATUS	BETWEEN	70	AND	80

Figure	7.14	Result	for	Q8.

Q9	 selects	 the	 product	 number	 and	 product	 name	 of	 all	 products	 whose
product	type	is	either	white	or	sparkling.	Note	the	use	of	the	IN	operator	which
combines	the	strings	“white”	and	“sparkling”	into	a	set.

Q9:	SELECT	PRODNR,	PRODNAME
				FROM	PRODUCT
				WHERE	PRODTYPE	IN	('WHITE',	'SPARKLING')

The	result	of	Q9	is	shown	in	Figure	7.15.

Figure	7.15	Result	for	Q9.

Q10	 illustrates	 the	 use	 of	 the	 percentage	 sign	 as	 a	wildcard	 representing
zero	or	more	characters.	Another	popular	wildcard	is	the	underscore	(_),	which
is	 a	 substitute	 for	 a	 single	 character.	 In	 our	 example,	 we	 select	 the	 product
number	and	product	name	of	all	products	having	 the	string	CHARD	as	part	of
their	 product	 names.	 This	 selects	 all	 the	 chardonnay	wines,	 as	 you	 can	 see	 in
Figure	7.16.

Q10:	SELECT	PRODNR,	PRODNAME
				FROM	PRODUCT
				WHERE	PRODNAME	LIKE	'%CHARD%'

Figure	7.16	Result	for	Q10.

The	 keyword	 NULL	 can	 also	 be	 handy	 when	 formulating	 queries.	 For
example,	 Q11	 selects	 the	 supplier	 number	 and	 supplier	 name	 of	 all	 suppliers
whose	status	is	NULL	(see	Figure	7.17).

Q11:	SELECT	SUPNR,	SUPNAME,	SUPSTATUS
				FROM	SUPPLIER
				WHERE	SUPSTATUS	IS	NULL

Figure	7.17	Result	for	Q11.

7.3.1.2	Queries	with	Aggregate	Functions

Several	 expressions	 can	 be	 added	 to	 the	 SELECT	 statement	 to	 ask	 for	 more
specific	 information.	 These	 may	 also	 include	 aggregate	 functions	 used	 to
summarize	 information	 from	 database	 tuples.	 Popular	 examples	 are	 COUNT,
SUM,	 AVG,	 VARIANCE,	 MIN/MAX,	 and	 STDEV.	 Let’s	 work	 out	 some
examples	using	the	tuples	illustrated	in	Figure	7.18.

Figure	7.18	Example	tuples	of	SUPPLIES	table.

The	query

Q12:	SELECT	COUNT(*)
					FROM	SUPPLIES
					WHERE	PRODNR	=	'0178'

selects	 the	number	of	 tuples	 in	 the	SUPPLIES	table	where	the	product	number
equals	178.	For	our	example	(see	Figure	7.18),	the	result	of	this	query	will	be	the
number	5.	Note	the	use	of	the	COUNT	operator.

Q13	 selects	 the	 number	 of	 NOT	 NULL	 purchase	 price	 values	 in	 the
SUPPLIES	table	for	tuples	where	the	product	number	equals	178.	The	result	will
be	the	number	4,	referring	to	 the	values	16.99,	17.99,	16.99,	and	18.	Note	 that
the	value	16.99	is	counted	twice	here.

Q13:	SELECT	COUNT(PURCHASE_PRICE)
			FROM	SUPPLIES
			WHERE	PRODNR	=	'0178'

If	we	want	to	filter	out	duplicates,	then	we	can	add	the	keyword	DISTINCT
to	the	query,	which	will	result	in	the	value	3:

Q14:	SELECT	COUNT(DISTINCT	PURCHASE_PRICE)
			FROM	SUPPLIES
			WHERE	PRODNR	=	'0178'

The	query

Q15:	SELECT	PRODNR,	SUM(QUANTITY)	AS	SUM_ORDERS
			FROM	PO_LINE
			WHERE	PRODNR	=	'0178'

selects	 the	 product	 number	 and	 sum	 of	 the	 quantities	 (as	 calculated	 by
SUM(QUANTITY))	of	all	PO_LINE	tuples	of	which	the	product	number	equals
178.	The	result	of	this	query	is	0178	and	the	value	9,	which	equals	3	plus	6,	as
illustrated	for	the	sample	tuples	in	Figure	7.19.

Figure	7.19	Example	tuples	of	PO_LINE	table.

The	query

Q16:	SELECT	SUM(QUANTITY)	AS	TOTAL_ORDERS
			FROM	PO_LINE

simply	adds	up	all	quantities	of	 the	PO_LINE	table,	which	results	 in	 the	value
173.

Q17	selects	 the	product	number	and	average	purchase	price	(as	calculated
by	AVG(PURCHASE_PRICE))	from	the	SUPPLIES	table	(see	Figure	7.20)	for
all	 tuples	where	 the	 product	 number	 equals	 178.	 The	 result	 of	 this	 query	 is	 a
weighted	 average	 price	 since	 duplicate	 values	 will	 not	 be	 filtered	 out	 in	 the
calculation.	More	 specifically,	 since	 supplier	 number	 37	 and	 69	 both	 adopt	 a
price	of	16.99,	this	price	will	be	counted	twice,	resulting	in	a	weighted	average
price	of	(16.99	+	17.99	+	16.99	+	18.00)/4,	or	17.4925.	Hence,	the	result	of	this
query	will	be	the	values	0178	and	17.4925.

Figure	7.20	Example	tuples	of	SUPPLIES	table.

Q17:	SELECT	PRODNR,	AVG(PURCHASE_PRICE)	AS	
WEIGHTED_AVG_PRICE
			FROM	SUPPLIES
			WHERE	PRODNR	=	'0178'

If	 we	 are	 interested	 in	 an	 unweighted	 average,	 then	 we	 need	 to	 add	 the
DISTINCT	option,	as	shown	in	Q18.	Here	the	value	16.99	will	only	be	counted
once,	resulting	in	an	average	of	(16.99	+	17.99	+	18.00)/3,	or	17.66.

Q18:	SELECT	PRODNR,	AVG(DISTINCT	PURCHASE_PRICE)
			AS	UNWEIGHTED_AVG_PRICE
			FROM	SUPPLIES
			WHERE	PRODNR	=	'0178'

The	 variance,	 which	 represents	 the	 average	 squared	 deviation	 from	 the
average,	 can	 also	 be	 calculated	 using	 VARIANCE(PURCHASE_PRICE),	 as
shown	in	Q19.

Q19:	SELECT	PRODNR,	VARIANCE(PURCHASE_PRICE)
			AS	PRICE_VARIANCE	FROM	SUPPLIES
			WHERE	PRODNR	=	'0178'

The	result	is	displayed	in	Figure	7.21.

Figure	7.21	Result	for	Q19.

Q20	 selects	 the	 product	 number,	 minimum	 price	 (calculated	 using
MIN(PURCHASE_PRICE)),	 and	 maximum	 price	 (calculated	 using
MAX(PURCHASE_PRICE))	 of	 all	 SUPPLIES	 tuples	 for	 which	 the	 product
number	equals	178.	This	results	in	the	values	16.99	and	18,	as	shown	in	Figure
7.22.

Q20:	SELECT	PRODNR,	MIN(PURCHASE_PRICE)	AS	
LOWEST_PRICE,
			MAX(PURCHASE_PRICE)	AS	HIGHEST_PRICE
			FROM	SUPPLIES
			WHERE	PRODNR	=	'0178'

Figure	7.22	Result	for	Q20.

7.3.1.3	Queries	with	GROUP	BY/HAVING

Let’s	 add	 some	 more	 complexity	 to	 our	 queries	 by	 using	 a	 GROUP
BY/HAVING	clause.	The	idea	here	is	to	apply	aggregate	functions	to	subgroups
of	 tuples	 in	a	 table,	where	each	subgroup	consists	of	 tuples	 that	have	the	same
value	 for	 one	 or	 more	 columns.	 By	 using	 the	 GROUP	 BY	 clause,	 rows	 are
grouped	 when	 they	 have	 the	 same	 value	 for	 one	 or	 more	 columns	 and	 the
aggregation	 is	 applied	 to	 each	 group	 separately,	 instead	 of	 to	 the	 table	 as	 a
whole,	as	in	the	previous	examples.	The	HAVING	clause	can	then	be	added	to
retrieve	the	values	of	only	those	groups	that	satisfy	specified	conditions.	It	can
only	 be	 used	 in	 combination	 with	 a	 GROUP	 BY	 clause	 and	 can	 include
aggregate	 functions	 such	 as	SUM,	MIN,	MAX,	 and	AVG.	Let’s	 start	with	 the
following	query	as	an	illustration:

Q21:	SELECT	PRODNR
			FROM	PO_LINE
			GROUP	BY	PRODNR
			HAVING	COUNT(*)	>=	3

This	query	retrieves	the	product	numbers	with	at	least	three	outstanding	orders.
If	 you	 look	 at	 the	 PO_LINE	 table	 in	 Figure	 7.23,	 you	 see	 that	 both	 product
numbers	212	and	900	satisfy	the	condition.

Figure	7.23	Example	tuples	from	the	PO_Line	table.

The	GROUP	BY	PRODNR	clause	makes	 groups	 based	 upon	 the	 product
number.	You	can	see	those	groups	represented	in	Figure	7.24.	We	have	a	group
for	 product	 number	 212,	 for	 product	 number	 178,	 and	 so	 on.	 The	 HAVING
COUNT(*)	 >=	 3	 clause	 counts	 how	many	 tuples	 are	 in	 each	 group	 and	 sees
whether	this	is	more	than	or	equal	to	3,	in	which	case	the	product	number	will	be
reported.	For	 the	group	with	product	number	212,	 the	COUNT(*)	gives	3,	and
since	this	 is	more	than	or	equal	 to	3,	 the	product	number	212	will	be	reported.
For	the	group	with	product	number	178,	the	COUNT(*)	results	in	2	such	that	no
output	will	be	generated.	Therefore,	 the	resulting	output	will	be	PRODNR	212
and	900,	as	shown	in	Figure	7.25.

Figure	7.24	Illustrating	the	GROUP	BY	function.

Figure	7.25	Result	of	Q21.

Q22	assumes	we	want	 to	 retrieve	 the	product	numbers	of	products	where
the	 total	 order	 quantity	 exceeds	 15.	 This	 can	 again	 be	 done	 using	 a	 GROUP
BY/HAVING	clause.	The	SQL	query	will	be:

Q22:	SELECT	PRODNR,	SUM(QUANTITY)	AS	QUANTITY
			FROM	PO_LINE
			GROUP	BY	PRODNR
			HAVING	SUM(QUANTITY)	>	15

Figure	7.26	illustrates	how	this	query	works.	First,	groups	are	made	based	upon
the	 product	 number.	 The	 HAVING	 SUM(QUANTITY)	 >	 15	 clause	 then
calculates	the	sum	of	the	quantities	within	each	group,	and	if	this	is	bigger	than
15	the	product	number	and	quantity	will	be	reported	in	the	output.	Note	that	you
cannot	 include	 this	 kind	 of	 selection	 criterion	 simply	 in	 the	WHERE	 clause,
since	the	WHERE	clause	expresses	selection	conditions	on	individual	 tuples	in
the	table.	Instead,	the	HAVING	clause	defines	selection	conditions	on	groups	of
tuples,	based	on	a	specified	aggregate	value	calculated	over	each	group.

Figure	7.26	Illustrating	the	GROUP	BY	function.

As	 you	 can	 see	 in	 Figure	 7.26,	 the	 product	 number	 212	 group	 has	 three
entries,	 for	which	 the	 total	outstanding	quantity	 is	23;	 the	product	number	668
has	two	entries,	for	which	the	total	outstanding	quantity	is	16.	This	result	will	be
output	as	shown	in	Figure	7.27.

Figure	7.27	Result	of	Q22.

Note	that	a	GROUP	BY	clause	can	also	be	used	without	a	HAVING	clause,
e.g.,	to	show	the	total	number	of	outstanding	orders	for	each	individual	product.

7.3.1.4	Queries	with	ORDER	BY

By	using	the	ORDER	BY	statement,	SQL	allows	the	user	to	order	the	tuples	in
the	 result	 of	 a	 query	 by	 the	 values	 of	 one	 or	 more	 columns.	 Each	 column
specified	 in	 the	SELECT	clause	 can	be	used	 for	ordering	 and	you	 can	 sort	 by
more	than	one	column.	The	default	sorting	mode	is	ascending.	Depending	upon
the	 commercial	 implementation,	 NULL	 values	 may	 appear	 first	 or	 last	 in	 the
sorting.	Q23	retrieves	a	list	of	outstanding	purchase	orders,	ordered	ascending	by
date	and	descending	by	supplier	number:

Q23:	SELECT	PONR,	PODATE,	SUPNR
			FROM	PURCHASE_ORDER
			ORDER	BY	PODATE	ASC,	SUPNR	DESC

The	result	is	shown	in	Figure	7.28.

Figure	7.28	Result	of	Q23.

Q24	selects	the	product	number,	supplier	number,	and	purchase	price	of	all
SUPPLIES	 tuples	 where	 the	 product	 number	 is	 0178.	 The	 result	 is	 sorted	 by
purchase	 price	 in	 a	 descending	 mode.	 The	 number	 3	 in	 the	 ORDER	 BY
statement	refers	to	the	third	column	which	is	PURCHASE_PRICE.	Note	that	in
this	implementation	the	NULL	values	appear	last	(see	Figure	7.29).

Q24:	SELECT	PRODNR,	SUPNR,	PURCHASE_PRICE
			FROM	SUPPLIES
			WHERE	PRODNR	=	'0178'
			ORDER	BY	3	DESC

Figure	7.29	Result	of	Q24.

The	 GROUP	 BY	 and	 ORDER	 BY	 clauses	 are	 quite	 often	 confused,
although	 they	 serve	 completely	 different	 purposes.	 The	 GROUP	 BY	 clause
denotes	 the	groups	of	 tuples	over	which	 an	 aggregate	 function	 is	 applied.	The
ORDER	BY	clause	has	no	effect	on	 the	actual	 tuple	 selection,	but	denotes	 the
order	in	which	the	query	result	is	presented.

7.3.1.5	Join	Queries

Until	 now,	 we	 only	 discussed	 simple	 SQL	 queries	 through	 which	 data	 were
retrieved	 from	a	 single	 table.	Join	queries	 allow	 the	user	 to	 combine,	 or	 join,
data	 from	multiple	 tables.	 The	 FROM	 clause	 then	 specifies	 the	 names	 of	 the
tables	containing	the	rows	we	want	to	join.	The	conditions	under	which	the	rows
of	different	tables	can	be	joined	must	be	stated.	These	conditions	are	included	in
the	 WHERE	 clause.	 As	 with	 simple	 queries,	 it	 is	 possible	 to	 specify	 which
columns	from	each	table	should	be	reported	in	the	end	result.

In	 SQL,	 the	 same	 name	 (e.g.,	 SUPNR)	 can	 be	 used	 for	 two	 or	 more
columns,	 provided	 the	 columns	 are	 in	 different	 tables	 (e.g.,	 SUPPLIER	 and
SUPPLIES).	 If	 the	 FROM	 component	 of	 a	 join	 query	 refers	 to	 two	 or	 more
tables	 containing	 columns	 with	 the	 same	 name,	 we	 must	 qualify	 the	 column
name	with	 the	 table	name	to	prevent	ambiguity.	This	can	be	done	by	prefixing
the	table	name	to	the	column	name	(e.g.,	SUPPLIER.SUPNR).

An	SQL	join	query	without	a	WHERE	component	(e.g.,	SELECT	*	FROM
SUPPLIER,	 SUPPLIES)	 corresponds	 to	 the	 Cartesian	 product	 of	 both	 tables,
whereby	all	possible	combinations	of	rows	of	both	tables	are	included	in	the	end
result.	However,	this	is	typically	not	desired	and	join	conditions	can	be	specified
in	the	WHERE	component	to	ensure	that	correct	matches	are	made.

There	 are	different	 types	of	 joins.	 In	what	 follows,	we	discuss	both	 inner
and	outer	joins.

Inner	Joins

Let’s	 assume	 that	we	 start	 from	 the	SUPPLIER	 table,	which	 contains	 supplier
number,	name,	address,	city	and	status,	and	the	SUPPLIES	table	which	contains
supplier	number,	product	number,	purchase	price,	and	delivery	period.	You	now
want	to	retrieve	the	supplier	number,	name,	and	status	from	the	SUPPLIER	table

along	with	the	product	numbers	they	can	supply	and	corresponding	price.	To	do
this,	we	first	list	the	tables	from	which	we	need	information:

SUPPLIER(SUPNR,	SUPNAME,	…,	SUPSTATUS)
SUPPLIES(SUPNR,	PRODNR,	PURCHASE_PRICE,	…)

Figures	 7.30	 and	 7.31	 show	 some	 example	 tuples	 from	 both	 tables.	Note	 that
each	 table	 also	 contains	 additional	 information	we	 do	 not	 need.	We	 have	 two
tables	 with	 corresponding	 information	 that	 we	 need	 to	 combine	 or	 join	 in	 a
specific	way.	The	question	is	how?

Figure	7.30	Example	tuples	from	SUPPLIER	table.

Figure	7.31	Example	tuples	from	SUPPLIES	table.

First,	 note	 that	 there	 are	 columns	 in	 each	 table	 with	 the	 same	 name
(SUPNR).	 Instead	 of	 using	 the	 verbose	 SUPPLIER.SUPNR	 and
SUPPLIES.SUPNR	notation,	we	use	a	shorthand	notation.	In	this	case,	we	will
add	R,	referring	to	the	SUPPLIER	table,	and	S,	referring	to	the	SUPPLIES	table.
This	 gives	 us	R.SUPNR	and	S.SUPNR	 to	differentiate	 both	 supplier	 numbers.
Therefore,	our	first	attempt	to	solve	the	question	using	an	SQL	query	reads:

Q25:	SELECT	R.SUPNR,	R.SUPNAME,	R.SUPSTATUS,	
S.SUPNR,	S.PRODNR,
			S.PURCHASE_PRICE

			FROM	SUPPLIER	R,	SUPPLIES	S

What	 is	 this	 query	 doing?	Since	we	 have	 no	WHERE	 component,	 it	will
make	 the	 Cartesian	 product	 of	 both	 tables	 by	 combining	 every	 possible	 tuple
from	the	SUPPLIER	table	with	every	possible	tuple	from	the	SUPPLIES	table.
This	results	in	incorrect	matches,	as	illustrated	in	Figure	7.32.	For	example,	you
can	see	that	supplier	number	32,	which	is	Best	Wines,	from	the	SUPPLIER	table
is	now	combined	with	supplier	number	21	from	the	SUPPLIES	table,	and	many
other	incorrect	matches.	This	is	clearly	not	what	we	want!

Figure	7.32	Incorrect	matches	due	to	a	missing	join	condition.

To	solve	 this	we	need	 to	carefully	define	under	which	conditions	 the	 join
can	 take	 place	 by	 adding	 a	 WHERE	 clause	 to	 our	 SQL	 join	 query.	 With	 an
additional	WHERE	clause	our	SQL	join	query	reads	as	follows:

Q26:	SELECT	R.SUPNR,	R.SUPNAME,	R.SUPSTATUS,	
S.PRODNR,	S.PURCHASE_PRICE
			FROM	SUPPLIER	R,	SUPPLIES	S
			WHERE	R.SUPNR	=	S.SUPNR

In	 this	 query	 the	 tuples	 can	 be	 joined	 only	 if	 the	 supplier	 numbers	 are
identical.	This	is	why	it	is	called	an	inner	join.	You	can	see	that	the	matchings
are	 correct	 in	 the	 resulting	 tuples	 shown	 in	 Figure	 7.33.	 The	 data	 of	 supplier
number	 21	 from	 the	 SUPPLIER	 table	 are	 correctly	 joined	 with	 the	 data	 of

supplier	 number	 21	 from	 the	 SUPPLIES	 table,	 and	 likewise	 for	 the	 other

suppliers.

Figure	7.33	Correct	matchings	with	a	join	condition.

Here	you	can	see	another	equivalent	way	of	expressing	an	SQL	join	query
using	 the	 INNER	 JOIN	 keyword.	 Both	 queries	 Q26	 and	 Q27	 give	 identical
results.

Q27:	SELECT	R.SUPNR,	R.SUPNAME,	R.SUPSTATUS,	
S.PRODNR,	S.PURCHASE_PRICE
			FROM	SUPPLIER	AS	R	INNER	JOIN	SUPPLIES	AS	S
			ON	(R.SUPNR	=	S.SUPNR)

It	 is	also	possible	 to	 join	data	 from	more	 than	 two	 tables.	Assume	we	are
interested	 in	 the	following:	for	each	supplier	with	outstanding	purchase	orders,
retrieve	 supplier	number	and	name,	 together	with	 the	purchase	order	numbers,
their	 date,	 and	 the	 product	 numbers,	 names,	 and	 quantities	 specified	 in	 these
purchase	orders.	We	can	again	start	by	listing	all	the	tables	needed.	We	now	need
data	 from	 four	 tables:	 SUPPLIER,	 PRODUCT,	 PURCHASE_ORDER,	 and
PO_LINE.	We	need	to	use	the	primary–foreign	key	relationships	to	specify	our

join	 conditions	 to	 ensure	 that	 correct	 matches	 are	made.	 Our	 SQL	 join	 query
becomes:

Q28:	SELECT	R.SUPNR,	R.SUPNAME,	PO.PONR,	PO.PODATE,	
P.PRODNR,
			P.PRODNAME,	POL.QUANTITY
			FROM	SUPPLIER	R,	PURCHASE_ORDER	PO,	PO_LINE	POL,	
PRODUCT	P
			WHERE	(R.SUPNR	=	PO.SUPNR)
			AND	(PO.PONR	=	POL.PONR)
			AND	(POL.PRODNR	=	P.PRODNR)

Again,	 note	 the	 shorthand	 notation	 that	 we	 use	 to	 refer	 to	 the	 tables.	 The
WHERE	 clause	 specifies	 all	 the	 join	 conditions.	 It	 should	 be	 noted	 that	 since
data	 from	 four	 tables	 need	 to	 be	 joined,	 this	 query	 is	 very	 resource-intensive.
The	result	is	displayed	in	Figure	7.34.

Figure	7.34	Result	of	Q28.

In	SQL,	it	is	possible	to	join	rows	that	refer	to	the	same	table	twice.	In	this
case,	 we	 need	 to	 declare	 alternative	 table	 names,	 called	 aliases.	 The	 join
condition	is	 then	meant	to	join	the	table	with	itself	by	matching	the	tuples	 that
satisfy	the	join	condition.	Suppose	we	want	to	retrieve	all	pairs	of	suppliers	who
are	 located	 in	 the	 same	 city.	We	 need	 data	 from	 only	 one	 table:	 SUPPLIER.
However,	we	need	 to	 join	 this	 table	with	 itself	 to	solve	 the	question.	The	SQL
query	becomes:

Q29:	SELECT	R1.SUPNAME,	R2.SUPNAME,	R1.SUPCITY

			FROM	SUPPLIER	R1,	SUPPLIER	R2
			WHERE	R1.SUPCITY	=	R2.SUPCITY
			AND	(R1.SUPNR	<	R2.SUPNR)

Note	that	we	introduced	two	aliases,	R1	and	R2,	to	refer	to	the	SUPPLIER	table.
The	 join	 condition	 is	 now	 based	 upon	matching	 SUPCITY.	However,	 there	 is
another	condition	added:	R1.SUPNR	<	R2.SUPNR.	What	would	be	the	rationale
for	this?

Figure	7.35	shows	a	dump	of	 the	SUPPLIER	table,	which	 is	 the	same	for
both	R1	 and	R2.	 If	we	 omit	 the	 condition	R1.SUPNR	<	R2.SUPNR,	 then	 the
query	 result	 will	 also	 include	 duplicates	 such	 as:	 Deliwines,	 Deliwines;	 Best
Wines,	Best	Wines;	Ad	Fundum,	Ad	Fundum;	Best	Wines,	The	Wine	Depot;	The
Wine	 Depot,	 Best	 Wines,	 etc.,	 because	 these	 have	 matching	 values	 for
SUPCITY.	 To	 filter	 out	 these	meaningless	 duplicates,	 we	 added	 the	 condition
R1.SUPNR	 <	 R2.SUPNR.	 Only	 one	 result	 remains	 then:	 Best	 Wines	 (whose
SUPNR	 is	 32)	 and	 The	 Wine	 Depot	 (whose	 SUPNR	 is	 68),	 which	 are	 both
located	in	San	Francisco	(see	Figure	7.36).

Figure	7.35	Example	tuples	from	the	SUPPLIER	table.

Figure	7.36	Result	of	Q29.

Any	 condition	 can	 be	 added	 to	 the	 join	 condition.	 Suppose	 we	 want	 to
select	the	names	of	all	suppliers	who	can	supply	product	number	0899.	We	need

data	from	two	tables,	SUPPLIER	and	SUPPLIES,	which	should	again	be	joined.

The	SQL	query	becomes:

Q30:	SELECT	R.SUPNAME
			FROM	SUPPLIER	R,	SUPPLIES	S
			WHERE	R.SUPNR	=	S.SUPNR
			AND	S.PRODNR	=	'0899'

The	result	of	it	is	The	Wine	Crate.
Remember,	 the	 result	 of	 an	 SQL	 query	 is	 a	multiset,	 which	may	 contain

duplicates.	 If	we	want	 to	 eliminate	 duplicates	 from	 the	 result,	we	 can	 use	 the
keyword	DISTINCT.	Assume	 the	 following	 request:	Retrieve	 the	names	of	 all
the	 suppliers	 who	 can	 supply	 at	 least	 one	 type	 of	 rose	 wine.	 To	 answer	 this
question,	 we	 need	 data	 from	 three	 tables:	 SUPPLIER,	 SUPPLIES,	 and
PRODUCT.	 In	 some	 cases,	 a	 supplier	 can	 supply	more	 than	 one	 type	 of	 rose
wine,	and	may	appear	multiple	times	in	the	result.	This	can	be	avoided	by	using
the	DISTINCT	option,	as	in	the	following	query:

Q31:	SELECT	DISTINCT	R.SUPNAME
			FROM	SUPPLIER	R,	SUPPLIES	S,	PRODUCT	P
			WHERE	S.SUPNR	=	R.SUPNR
			AND	S.PRODNR	=	P.PRODNR
			AND	P.PRODTYPE	=	'ROSE'

You	can	 see	 the	 result	 of	 the	 same	query	 both	without	 (Figure	7.37)	 and	with
(Figure	7.38)	a	DISTINCT	option.	Since	Deliwines	supplies	multiple	rose	wines,
it	appears	multiple	times	in	the	result	of	the	first	query.

Figure	7.37	Result	of	Q31	without	DISTINCT	option.

Figure	7.38	Result	of	Q31	with	DISTINCT	option.

A	 join	 condition	 can	 also	 be	 combined	 with	 any	 of	 the	 earlier	 SQL
constructs	 we	 discussed.	 This	 allows	 for	 the	 building	 of	 very	 powerful	 SQL
queries	 answering	 complex	 business	 questions.	 Let’s	 consider	 the	 following
example:	 find	 the	 product	 number,	 name,	 and	 total	 ordered	 quantity	 for	 each
product	 that	 is	 specified	 in	 a	 purchase	 order.	 We	 need	 data	 from	 two	 tables:
PRODUCT	and	PO_LINE.	The	SQL	query	becomes:

Q32:	SELECT	P.PRODNR,	P.PRODNAME,	
SUM(POL.QUANTITY)
			FROM	PRODUCT	P,	PO_LINE	POL
			WHERE	P.PRODNR	=	POL.PRODNR
			GROUP	BY	P.PRODNR

This	query	first	joins	both	tables	based	upon	corresponding	product	number.	The
GROUP	BY	clause	then	groups	the	join	result	by	corresponding	product	number.
For	 each	group,	 the	 product	 number,	 product	 name,	 and	 sum	of	 the	 order	 line
quantity	are	reported.	You	can	see	the	result	in	Figure	7.39.

Figure	7.39	Result	of	Q32.

Outer	Joins

The	joins	we	have	covered	thus	far	are	all	examples	of	inner	joins.	This	means
that	 we	 always	 require	 an	 exact	 match	 before	 a	 tuple	 can	 be	 reported	 in	 the
output.	An	outer	join	can	be	used	when	we	want	to	keep	all	the	tuples	of	one	or
both	 tables	 in	 the	 result	 of	 the	 JOIN,	 regardless	 of	 whether	 or	 not	 they	 have
matching	tuples	in	the	other	table.	Three	types	of	outer	joins	exist;	a	left	outer
join,	a	right	outer	join,	and	a	full	outer	join.	Let’s	work	out	some	examples.

In	a	left	outer	join,	each	row	from	the	left	 table	is	kept	in	the	result;	 if	no
match	is	found	in	the	other	table	it	will	return	NULL	values	for	these	columns.
Consider	 the	 following	 example:	 retrieve	 number,	 name,	 and	 status	 of	 all
suppliers,	and,	if	applicable,	include	number	and	price	of	the	products	they	can
supply.	In	other	words,	we	want	the	information	of	all	the	suppliers,	even	if	they
cannot	supply	any	products	at	all.	This	can	be	solved	using	an	outer	join	between
the	SUPPLIER	and	SUPPLIES	table	as	follows:

Q33:	SELECT	R.SUPNR,	R.SUPNAME,	R.SUPSTATUS,	
S.PRODNR,	S.PURCHASE_PRICE
			FROM	SUPPLIER	AS	R	LEFT	OUTER	JOIN	SUPPLIES	AS	S
			ON	(R.SUPNR	=	S.SUPNR)

The	LEFT	OUTER	 JOIN	 clause	 indicates	 that	 all	 tuples	 from	 the	 SUPPLIER
table	 should	be	 included	 in	 the	 result,	 even	 if	 no	matches	 can	be	 found	 in	 the
SUPPLIES	table.	Figures	7.40	and	7.41	illustrate	some	example	tuples	from	both

the	SUPPLIER	and	SUPPLIES	 table.	The	 result	of	 the	OUTER	JOIN	query	 is
displayed	in	Figure	7.42.

Figure	7.40	Example	tuples	from	SUPPLIER	table.

Figure	7.41	Example	tuples	from	SUPPLIES	table.

Figure	7.42	Result	of	Q33.

Note	the	tuple	in	bold	face.	This	is	supplier	number	52,	Spirits	&	Co.	This
supplier	has	no	corresponding	SUPPLIES	tuples.	It	could	be	a	new	supplier	for
which	no	supplies	have	yet	been	entered	in	the	database.	Because	of	the	LEFT
OUTER	 JOIN	 clause,	 this	 supplier	 is	 now	 appearing	 in	 the	 end	 result	 with
NULL	values	for	the	missing	columns	of	the	SUPPLIES	table.

In	 a	 right	 outer	 join,	 each	 row	 from	 the	 right	 table	 is	 kept	 in	 the	 result,
completed	 with	 NULL	 values	 if	 necessary.	 Assume	 we	 have	 the	 following
request:	 select	 all	 product	 numbers,	 together	 with	 the	 product	 name	 and	 total
ordered	quantity,	even	if	there	are	currently	no	outstanding	orders	for	a	product.
This	 can	 be	 answered	 using	 a	 RIGHT	 OUTER	 JOIN	 between	 the	 tables
PRODUCT	and	PO_LINE.	The	SQL	query	becomes:

Q34:	SELECT	P.PRODNR,	P.PRODNAME,	
SUM(POL.QUANTITY)	AS	SUM
			FROM	PO_LINE	AS	POL	RIGHT	OUTER	JOIN	PRODUCT	AS	
P
			ON	(POL.PRODNR	=	P.PRODNR)
			GROUP	BY	P.PRODNR

The	PO_LINE	and	PRODUCT	table	are	joined	using	a	right	outer	join	based	on
product	number.	This	means	that	all	products	will	be	included,	even	if	they	are
not	included	in	any	purchase	order	line.	Next,	the	GROUP	BY	clause	will	make
groups	in	this	join	table.	For	each	group,	the	product	number,	product	name,	and
sum	of	the	quantity	will	be	reported.	You	can	see	the	result	of	this	in	Figure	7.43.
Note	 that	 for	 product	 number	 0119,	which	 is	Chateau	Miraval,	 the	 quantity	 is
NULL.	Also	 for	 product	 numbers	 154,	 199,	 and	 0289,	 the	 quantity	 is	NULL.
These	are	now	included	in	the	end	result	because	of	the	outer	join.

Figure	7.43	Result	of	Q34.

Finally,	 in	 a	 FULL	OUTER	 JOIN	 each	 row	 of	 both	 tables	 is	 kept	 in	 the
result,	if	necessary	completed	with	NULL	values.

7.3.1.6	Nested	Queries

SQL	 queries	 can	 also	 be	 nested.	 In	 other	 words,	 complete	 SELECT	 FROM
blocks	can	appear	in	the	WHERE	clause	of	another	query	as	illustrated	in	Figure
7.44.	The	subquery,	or	inner	block,	is	nested	in	the	outer	block.	Multiple	levels

of	 nesting	 are	 allowed.	 Typically,	 the	 query	 optimizer	 starts	 by	 executing	 the

query	in	the	lowest-level	inner	block.	Subqueries	try	to	solve	queries	in	a	step-
by-step,	sequential	way.

Figure	7.44	Nesting	SQL	queries.

Let’s	work	out	 some	examples.	Assume	we	want	 to	 find	 the	name	of	 the
supplier	with	whom	purchase	order	number	1560	is	placed.	We	need	data	from
two	 tables:	 SUPPLIER	 and	 PURCHASE_ORDER.	 We	 can	 now	 formulate	 a
nested	SQL	query	as	follows:

Q34:	SELECT	SUPNAME
											FROM	SUPPLIER
											WHERE	SUPNR	=
																			(SELECT	SUPNR
																			FROM	PURCHASE_ORDER
																			WHERE	PONR	=	'1560')

To	solve	this	query,	the	query	optimizer	first	solves	the	inner	block,	which	is:

SELECT	SUPNR
FROM	PURCHASE_ORDER
WHERE	PONR	=	'1560'

The	 result	 of	 this	 inner	 block	 is	 32,	 which	 is	 a	 scalar.	 That’s	 why	 this	 is
sometimes	 also	 referred	 to	 as	 a	 scalar	 subquery.	We	 can	 now	 solve	 the	 outer
block	query,	which	becomes:

SELECT	SUPNAME
FROM	SUPPLIER
WHERE	SUPNR	=	32

The	result	of	 this	query	 is	Best	Wines.	Note	 that	 this	query	can	also	be	solved
using	an	inner	join,	as	discussed	before.

Connections

Although	the	query	results	will	be	the	same,	the	performance	of	different
query	 types	 such	 as	 join	 queries	 or	 nested	 queries	will	 depend,	 among
other	 things,	 on	 the	 internal	 data	model,	 the	 characteristics	 of	 the	 data
(e.g.,	 the	 number	 of	 rows	 in	 a	 table)	 and	 the	 availability	 of	 physical
constructs	 such	 as	 indexes.	 Chapters	 12	 and	 13	 provide	 details	 on	 the
interplay	 between	 physical	 database	 organization	 and	 query
performance.

Consider	 the	 following	 example:	 retrieve	 product	 number	 and	 name	 for
each	product	that	exceeds	the	available	quantity	of	product	0178.	We	only	need
one	table	to	solve	this	question:	PRODUCT.	The	nested	SQL	query	becomes:

Q35:	SELECT	PRODNR,	PRODNAME
											FROM	PRODUCT
											WHERE	AVAILABLE_QUANTITY	>
																			(SELECT	AVAILABLE_QUANTITY
																			FROM	PRODUCT
																			WHERE	PRODNR	=	'0178')

Again,	the	inner	block	is	solved	first:

SELECT	AVAILABLE_QUANTITY
FROM	PRODUCT
WHERE	PRODNR	=	'0178'

This	is	again	a	scalar	subquery	resulting	in	the	scalar	136.	The	outer	block	now
becomes:

SELECT	PRODNR,	PRODNAME
FROM	PRODUCT
WHERE	AVAILABLE_QUANTITY	>	136

You	can	see	the	result	of	Q35	in	Figure	7.45.

Figure	7.45	Result	of	Q35.

The	WHERE	 component	 of	 an	 outer	 SELECT	 block	 can	 contain	 an	 IN
operator,	followed	by	a	new	inner	SELECT	block.	Let’s	say	you	want	to	retrieve
all	 supplier	 names	who	 can	 supply	 product	 0178.	 To	 solve	 this,	we	 need	 data
from	the	SUPPLIER	and	SUPPLIES	table.	The	nested	SQL	query	becomes:

Q36:	SELECT	SUPNAME
					FROM	SUPPLIER
					WHERE	SUPNR	IN
													(SELECT	SUPNR
																													FROM	SUPPLIES
																													WHERE	PRODNR	='0178')

Again,	the	inner	block	is	solved	first,	which	is:

SELECT	SUPNR
FROM	SUPPLIES
WHERE	PRODNR	='0178'

The	result	of	this	inner	block	is	no	longer	a	scalar,	but	a	multiset	of	values:	21,
37,	68,	69,	and	94.	The	outer	block	can	then	be	evaluated,	which	now	becomes:

SELECT	SUPNAME
FROM	SUPPLIER
WHERE	SUPNR	IN	(21,	37,	68,	69,	94)

This	query	results	in	the	supplier	names	depicted	in	Figure	7.46.

Figure	7.46	Result	of	Q36.

As	already	mentioned,	multiple	 levels	of	nesting	are	allowed.	Assume	we
want	 to	retrieve	 the	names	of	all	suppliers	who	can	supply	at	 least	one	type	of
rose	wine.	This	can	be	solved	using	a	query	with	two	subqueries:

Q37:	SELECT	SUPNAME
				FROM	SUPPLIER
				WHERE	SUPNR	IN
												(SELECT	SUPNR
												FROM	SUPPLIES
												WHERE	PRODNR	IN

																				(SELECT	PRODNR
																				FROM	PRODUCT
																				WHERE	PRODTYPE	=	'ROSE'))

To	execute	this	query,	the	RDBMS	starts	at	the	lowest	level	of	nesting,	so	it
first	solves	the	subquery:

SELECT	PRODNR
FROM	PRODUCT
WHERE	PRODTYPE	=	'ROSE'

This	results	in	the	values	0119,	0289,	and	0668,	which	are	the	product	numbers
of	rose	wines.	The	second	subquery	becomes:

SELECT	SUPNR
FROM	SUPPLIES
WHERE	PRODNR	IN	(0119,	0289,	0668)

The	result	of	this	subquery	is	21,	21,	21,	and	68.	Finally,	the	outer	block	can	be
processed,	which	results	in	Deliwines	and	The	Wine	Depot.	Note	that	this	query
can	also	be	solved	using	an	inner	join	across	the	tables	SUPPLIER,	SUPPLIES,
and	PRODUCT.

Here	is	another	example	of	a	nested	query.	We	are	interested	in	finding	the
product	 names	 that	 supplier	 number	 32	 as	 well	 as	 supplier	 number	 84	 can
supply.	To	solve	this	query,	we	need	information	from	both	the	PRODUCT	and
SUPPLIES	table.	The	nested	SQL	query	becomes:

Q38:	SELECT	PRODNAME
			FROM	PRODUCT
			WHERE	PRODNR	IN
					(SELECT	PRODNR
						FROM	SUPPLIES

					WHERE	SUPNR	=	'32')
			AND	PRODNR	IN
					(SELECT	PRODNR
					FROM	SUPPLIES
					WHERE	SUPNR	=	'84')

We	now	 have	 two	 subqueries	 at	 the	 same	 level.	 If	 the	 computing	 architecture
supports	it,	both	subqueries	can	be	executed	in	parallel,	which	allows	us	to	speed
up	query	execution.	The	result	of	the	first	subquery	is	0154,	0474,	0494,	0657,
0760,	and	0832.	The	 result	of	 the	second	subquery	 is	0185,	0300,	0306,	0347,
0468,	0494,	0832,	and	0915.	Since	the	results	of	both	subqueries	are	combined
using	a	Boolean	AND	operator,	only	the	numbers	0494	and	0832	remain,	which
correspond	 to	 product	 names	 “Veuve-Cliquot,	 Brut,	 2012”	 and	 “Conde	 de
Hervías,	Rioja,	2004”,	respectively.

7.3.1.7	Correlated	Queries

In	 all	 previous	 cases,	 the	 nested	 subquery	 in	 the	 inner	 select	 block	 could	 be
entirely	 solved	 before	 processing	 the	 outer	 select	 block.	 This	 is	 no	 longer	 the
case	for	correlated	nested	queries.	Whenever	a	condition	in	the	WHERE	clause
of	a	nested	query	references	some	column	of	a	table	declared	in	the	outer	query,
the	two	queries	are	said	to	be	correlated.	The	nested	query	is	then	evaluated	once
for	 each	 tuple	 (or	 combination	 of	 tuples)	 in	 the	 outer	 query.	 Let’s	 give	 some
examples.

Assume	we	want	 to	 retrieve	 the	 product	 numbers	 of	 all	 products	with	 at
least	two	orders.	This	is	a	very	simple	request	at	first	sight.	We	need	data	from
two	 tables:	 PRODUCT	 and	 PO_LINE.	 The	 question	 can	 be	 solved	 using	 the
following	correlated	SQL	query:

Q39:	SELECT	P.PRODNR

					FROM	PRODUCT	P
											WHERE	1	<
															(SELECT	COUNT(*)
																	FROM	PO_LINE	POL
																	WHERE	P.PRODNR	=	POL.PRODNR)

As	 previously,	 the	 RDBMS	 starts	 by	 evaluating	 the	 inner	 select	 block	 first,
which	reads:

SELECT	COUNT(*)
FROM	PO_LINE	POL
WHERE	P.PRODNR	=	POL.PRODNR

This	is	an	example	of	a	correlated	query,	because	the	inner	block	refers	to	table
P,	 which	 is	 declared	 in	 the	 outer	 block.	 Hence,	 this	 subquery	 cannot	 be
processed,	because	the	variable	P	and	thus	P.PRODNR	are	not	known	here.	To
solve	this	correlated	query	the	RDBMS	iterates	through	each	product	tuple	of	the
PRODUCT	table	declared	in	the	outer	block	and	evaluates	the	subquery	for	the
given	tuple	each	time.	Let’s	give	an	example.

Figure	 7.47	 shows	 some	 example	 tuples	 from	 the	 PRODUCT	 table.
Remember,	 the	 tuples	 in	a	 table	are	not	ordered.	The	 first	product	has	product
number	0212.	The	subquery	is	now	evaluated	with	this	product	number.	In	other
words,	it	becomes:

SELECT	COUNT(*)
FROM	PO_LINE	POL
WHERE	0212	=	POL.PRODNR

The	 result	of	 this	 subquery	 is	3,	 as	you	can	see	 in	 the	PO_LINE	 table	 (Figure
7.48).	Since	3	is	bigger	than	1,	the	product	number	0212	will	be	reported	in	the
output.	This	process	is	then	repeated	for	all	other	product	numbers,	resulting	in

product	 numbers	 0212,	 0977,	 0900,	 0306,	 0783,	 0668,	 0766,	 and	 0178	 as	 the

output	 of	 Q39.	 Basically,	 a	 correlated	 SQL	 query	 implements	 a	 looping
mechanism,	looping	through	the	subquery	for	each	tuple	of	the	table	defined	in
the	outer	query	block.

Figure	7.47	Example	tuples	from	the	PRODUCT	table.

Figure	7.48	Example	tuples	from	the	PO_LINE	table.

Correlated	queries	can	answer	very	complex	requests	such	as	the	following:
retrieve	 number	 and	 name	 of	 all	 the	 suppliers	who	 can	 supply	 a	 product	 at	 a
price	lower	than	the	average	price	of	that	product,	together	with	the	number	and
name	 of	 the	 product,	 the	 purchase	 price,	 and	 the	 delivery	 period.	 The	 query
needs	information	from	three	tables:	SUPPLIER,	SUPPLIES,	and	PRODUCT:

Q40:	SELECT	R.SUPNR,	R.SUPNAME,	P.PRODNR,	
P.PRODNAME,	S1.PURCHASE_PRICE,
		S1.DELIV_PERIOD
		FROM	SUPPLIER	R,	SUPPLIES	S1,	PRODUCT	P
		WHERE	R.SUPNR	=	S1.SUPNR
						AND	S1.PRODNR	=	P.PRODNR
						AND	S1.PURCHASE_PRICE	<

													(SELECT	AVG(PURCHASE_PRICE)
													FROM	SUPPLIES	S2
													WHERE	P.PRODNR	=	S2.PRODNR)

The	 first	 part	 of	 Q40	 starts	 by	 specifying	 the	 join	 conditions	 using	 the
primary–foreign	key	relationships.	The	second	part	then	ensures	that	the	price	of
the	product	is	lower	than	the	average	price	charged	by	all	suppliers	for	the	same
product	using	a	correlated	subquery	referring	to	the	PRODUCT	table	P	defined
in	 the	 outer	 SELECT	 block.	 It	 is	 thus	 evaluated	 for	 every	 product	 tuple
separately.

Figure	7.49	shows	a	visual	representation	of	the	query’s	functioning.	Note
that	we	use	two	appearances	of	the	SUPPLIES	table:	S1	in	the	outer	block	and
S2	in	the	correlated	inner	block.	You	can	see	that	product	number	0178	can	be
supplied	by	supplier	number	37	at	a	price	of	16.99,	which	is	clearly	lower	than
the	average	of	all	prices	charged	by	suppliers	for	product	number	0178.

Figure	7.49	Illustrating	Q40.

Let’s	 now	 assume	 we	 are	 interested	 in	 finding	 the	 three	 highest	 product
numbers.	This	can	be	easily	accomplished	using	an	ORDER	BY	clause,	but	that

will	 list	 all	 product	numbers,	which	may	not	be	very	useful	 if	 you	have	many

products.	A	correlated	query	can	provide	a	better	solution:

Q41:	SELECT	P1.PRODNR
					FROM	PRODUCT	P1
					WHERE	3	>
													(SELECT	COUNT(*)
													FROM	PRODUCT	P2
													WHERE	P1.PRODNR	<	P2.PRODNR)

Essentially,	 this	 query	 counts	 for	 each	 product	 the	 number	 of	 products	with	 a
higher	product	number.	If	this	number	is	strictly	smaller	than	three,	the	product
number	belongs	to	 the	three	highest	product	numbers	and	will	be	reported.	Put
differently,	 there	 is	 no	 product	with	 a	 product	 number	 higher	 than	 the	 highest
product	 number.	 There	 is	 only	 one	 product	 number	 which	 is	 higher	 than	 the
second	highest	product	number,	and	two	product	numbers	which	are	higher	than
the	 third	 highest	 product	 number.	 The	 results	 of	 this	 correlated	 query	 are	 the
product	numbers	0915,	0977,	and	0900.

Figure	 7.50	 illustrates	 the	 functioning	 of	 Q41.	 The	 inner	 query	 block	 is
evaluated	for	each	product	number	separately.	For	product	number	0119,	which
happens	to	be	the	smallest	product	number,	the	inner	query	becomes:

SELECT	COUNT(*)
FROM	PRODUCT	P2
WHERE	0119	<	P2.PRODNR

The	result	of	this	query	is	41,	which	is	clearly	not	smaller	than	3	so	no	output	is
given.	For	product	numbers	0900,	0915,	and	0977,	the	inner	block	will	yield	2,
1,	 and	 0,	 respectively,	 which	 are	 all	 less	 than	 3.	 Therefore,	 these	 product
numbers	will	be	output.

Figure	7.50	Illustrating	Q41.

7.3.1.8	Queries	with	ALL/ANY

Besides	 the	 IN	 operator,	 which	 we	 already	 discussed,	 the	 ANY	 and	 ALL
operators	 can	 also	 be	 used	 to	 compare	 a	 single	 value	 to	 a	 multiset.	 The
comparison	condition	v	>	ALL	V	returns	TRUE	if	the	value	v	is	greater	than	all
the	 values	 in	 the	 multiset	 V.	 If	 the	 nested	 query	 does	 not	 return	 a	 value,	 it
evaluates	the	condition	as	TRUE.	The	comparison	condition	v	>	ANY	V	returns
TRUE	 if	 the	value	v	 is	greater	 than	at	 least	one	value	 in	 the	multiset	V.	 If	 the
nested	query	does	not	return	a	value,	it	evaluates	the	whole	condition	as	FALSE.
Note	that	the	comparison	condition	=	ANY(…)	is	hence	equivalent	to	using	the
IN	operator.

Consider	 the	 following	 example:	 retrieve	 the	 names	 of	 the	 suppliers	who
charge	the	highest	price	for	 the	product	with	product	number	0668.	This	query
needs	 information	 from	 both	 the	 SUPPLIER	 and	 SUPPLIES	 table.	 It	 can	 be
solved	using	a	nested	query	with	the	ALL	operator	as	follows:

Q42:	SELECT	SUPNAME
				FROM	SUPPLIER
				WHERE	SUPNR	IN
								(SELECT	SUPNR
									FROM	SUPPLIES
									WHERE	PRODNR	=	'0668'
									AND	PURCHASE_PRICE	>=	ALL

												(SELECT	PURCHASE_PRICE
													FROM	SUPPLIES
													WHERE	PRODNR	=	'0668'))

The	 query	 has	 two	 levels	 of	 nesting.	 First,	 we	 start	 with	 the	 deepest	 level	 of
nesting	and	execute	the	subquery:

SELECT	PURCHASE_PRICE
FROM	SUPPLIES
WHERE	PRODNR	=	'0668'

The	results	of	this	subquery	are	the	prices	6.00	and	6.99.	The	next	subquery	then
becomes:

SELECT	SUPNR
FROM	SUPPLIES
WHERE	PRODNR	=	'0668'
AND	PURCHASE_PRICE	>=	ALL	(6.00,	6.99)

The	result	of	this	subquery	is	68.	We	can	now	finally	evaluate	the	outer	SELECT
block,	which	becomes:

SELECT	SUPNAME
FROM	SUPPLIER
WHERE	SUPNR	IN	(68)

The	result	will	then	be	The	Wine	Depot.
Figure	7.51	visualizes	 the	functioning	of	Q42.	You	can	see	 that	The	Wine

Depot,	which	is	supplier	number	68,	can	supply	product	number	0668	at	a	price
of	6.99,	which	is	higher	than	or	equal	to	all	other	prices	–	in	this	case	6.99	and
6.00.

Figure	7.51	Functioning	of	Q42.

Assume	 we	 are	 interested	 in	 the	 following	 information:	 retrieve	 number,
name,	 city,	 and	 status	 for	 each	 supplier	 who	 has	 the	 highest	 status	 of	 all	 the
suppliers	located	in	the	same	city.	The	SQL	query	becomes:

Q43:	SELECT	R1.SUPNR,	R1.SUPNAME,	R1.SUPCITY,	
R1.SUPSTATUS
			FROM	SUPPLIER	R1
			WHERE	R1.SUPSTATUS	>=	ALL
									(SELECT	R2.SUPSTATUS
									FROM	SUPPLIER	R2
									WHERE	R1.SUPCITY	=	R2.SUPCITY)

This	is	an	example	of	the	ALL	operator	in	combination	with	a	correlated	query.
It	is	quite	self-explanatory,	since	it	selects	the	supplier	number,	name,	city,	and
status	of	a	supplier	R1	where	the	status	is	higher	than	or	equal	to	the	status	of	all
suppliers	 R2	which	 are	 located	 in	 the	 same	 city	 as	 supplier	 R1.	 The	 result	 is
displayed	in	Figure	7.52.

Figure	7.52	Result	of	Q43.

Let’s	now	also	illustrate	the	ANY	operator.	Suppose	we	want	to	retrieve	the
names	of	 the	suppliers	who	do	not	charge	 the	 lowest	price	for	product	number
0178.	This	can	be	solved	with	the	following	SQL	query:

Q44:	SELECT	SUPNAME
			FROM	SUPPLIER
					WHERE	SUPNR	IN
											(SELECT	SUPNR
											FROM	SUPPLIES
											WHERE	PRODNR	=	'0178'	AND	PURCHASE_PRICE	>	
ANY
																	(SELECT	PURCHASE_PRICE
																	FROM	SUPPLIES
																	WHERE	PRODNR	=	'0178'))

This	 is	 a	 double	 nested	 query	 and	 we	 can	 start	 again	 with	 the	 lowest-level
subquery,	which	is:

SELECT	PURCHASE_PRICE
FROM	SUPPLIES
WHERE	PRODNR	=	'0178'

The	answer	to	this	subquery	is	the	multiset	with	elements	NULL,	16.99,	17.99,
16.99,	and	18.00.	The	next	subquery	then	becomes:

SELECT	SUPNR

FROM	SUPPLIES
WHERE	PRODNR	=	'0178'	AND
PURCHASE_PRICE	>	ANY	(NULL,	16.99,	17.99,	16.99,	18.00)

The	ANY	operator	returns	TRUE	if	the	purchase	price	is	greater	than	at	least	one
value	in	the	multiset.	The	result	of	this	query	then	becomes	68	and	94.	The	outer
SELECT	block	can	now	be	run,	which	gives	the	supplier	names	The	Wine	Depot
and	The	Wine	Crate.

7.3.1.9	Queries	with	EXISTS

The	 EXISTS	 function	 is	 another	 handy	 feature	 in	 SQL.	 It	 allows	 us	 to	 check
whether	 the	 result	of	a	correlated	nested	query	 is	empty	or	not.	The	 result	 is	a
Boolean	value:	TRUE	or	FALSE.	In	general,	EXISTS	returns	TRUE	if	there	is	at
least	 one	 tuple	 in	 the	 result	 of	 the	 nested	 query,	 or	 otherwise	 returns	 FALSE.
Vice	versa,	the	NOT	EXISTS	function	returns	TRUE	if	there	are	no	tuples	in	the
result	 of	 the	 nested	 query,	 or	 otherwise	 returns	 FALSE.	 Because	 the	 EXISTS
function	 only	 evaluates	whether	 or	 not	 a	 nested	 query	 outputs	 any	 rows,	 it	 is
unimportant	what	is	specified	in	the	SELECT	component.	Hence,	one	commonly
uses	SELECT	*	for	the	subquery.

Consider	 the	 following	 example:	 retrieve	 the	 names	 of	 the	 suppliers	who
can	supply	product	number	0178.	This	can	be	easily	solved	by	using	either	a	join
or	nested	subquery	as	we	discussed	before.	Here	we	present	a	 third	alternative
using	the	EXISTS	function	as	follows:

Q44:	SELECT	SUPNAME
			FROM	SUPPLIER	R
			WHERE	EXISTS
							(SELECT	*
							FROM	SUPPLIES	S

							WHERE	R.SUPNR	=	S.SUPNR
							AND	S.PRODNR	=	'0178')

You	can	clearly	see	that	the	subquery	is	correlated,	as	it	refers	to	the	SUPPLIER
table	 R	 defined	 in	 the	 outer	 select	 block.	 For	 each	 supplier,	 the	 correlated
subquery	 is	evaluated.	As	soon	as	 it	 returns	a	result,	 the	EXISTS	function	will
evaluate	to	TRUE,	and	the	supplier	name	will	be	reported.	You	can	see	the	result
of	this	query	displayed	in	Figure	7.53.

Figure	7.53	Result	of	Q44.

The	EXISTS	 function	allows	 for	 complex	 requests	 such	as	 the	 following:
retrieve	name,	address,	and	city	for	each	supplier	who	can	supply	all	products.
This	 question	 can	 be	 solved	 using	 a	 double	 correlated	 query	 with	 two	 NOT
EXISTS	functions	as	follows:

Q45:	SELECT	SUPNAME,	SUPADDRESS,	SUPCITY
		FROM	SUPPLIER	R
		WHERE	NOT	EXISTS
								(SELECT	*
								FROM	PRODUCT	P
								WHERE	NOT	EXISTS
														(SELECT	*
														FROM	SUPPLIES	S
														WHERE	R.SUPNR	=	S.SUPNR

																		AND	P.PRODNR	=	S.PRODNR))

This	query	looks	for	all	suppliers	for	whom	there	exist	no	products	they	cannot
supply.	 Remember,	 the	 NOT	 EXISTS	 function	 evaluates	 to	 TRUE	 if	 the
subquery	does	not	return	a	result.	This	query	starts	from	a	specific	supplier	and
then	 looks	 for	 all	 products	 that	 the	 supplier	 cannot	 supply.	 If	 there	 are	 no
products	 the	 supplier	 cannot	 supply,	 then	 it	 means	 that	 he/she	 can	 supply	 all
products	 and	 the	 supplier	 name	 will	 be	 reported.	 In	 our	 example,	 this	 query
returns	zero	rows	as	there	are	no	suppliers	who	can	supply	all	products.

7.3.1.10	Queries	with	Subqueries	in	SELECT/FROM

Besides	the	WHERE	component,	subqueries	can	also	appear	in	the	SELECT	or
FROM	component.	Assume	that	we	want	to	retrieve	the	product	number,	name,
and	total	ordered	quantity	of	each	product,	even	if	a	product	has	no	outstanding
orders.	 We	 have	 solved	 this	 earlier	 using	 an	 outer	 join.	 An	 alternative	 is	 the
following	query:

Q46:	SELECT	P.PRODNR,	P.PRODNAME,
			(SELECT	SUM(QUANTITY)	FROM	PO_LINE	POL
			WHERE	P.PRODNR	=	POL.PRODNR)	AS	TOTALORDERED
			FROM	PRODUCT	P

In	 this	 query,	 we	 have	 a	 subquery	 in	 the	 SELECT	 component.	 This
subquery	results	in	a	scalar	representing	the	total	ordered	quantity	for	a	specific
product.	As	with	the	outer	join,	if	no	match	can	be	found	in	the	PO_LINE	table,
a	NULL	value	will	be	generated	for	the	SUM(QUANTITY)	expression.	This	is
the	case	for	product	number	0523,	as	you	can	see	in	Figure	7.54.

Figure	7.54	Result	of	Q46.

Subqueries	 can	 also	 appear	 in	 the	 FROM	 component.	 Consider	 the
following	 example:	 retrieve	 all	 numbers	 of	 products	 where	 the	 difference
between	the	maximum	and	minimum	price	is	strictly	bigger	than	1.	This	can	be
solved	as	follows:

Q47:	SELECT	M.PRODNR,	M.MINPRICE,	M.MAXPRICE	
FROM
				(SELECT	PRODNR,	MIN(PURCHASE_PRICE)	AS	MINPRICE,
				MAX(PURCHASE_PRICE)	AS	MAXPRICE
				FROM	SUPPLIES	GROUP	BY	PRODNR)	AS	M
				WHERE	M.MAXPRICE-M.MINPRICE	>	1

You	can	 see	 that	 the	FROM	component	has	 a	 table	 subquery	which	 calculates
the	minimum	and	maximum	price	for	each	product.	It	uses	a	GROUP	BY	clause
to	 accomplish	 this.	 The	 subquery	 assigns	 the	 aliases	 MINPRICE	 and
MAXPRICE	to	the	corresponding	columns,	and	the	alias	M	to	the	overall	result.
These	can	then	be	used	in	the	outer	query	as	you	can	see	illustrated.	The	result	of
this	query	is	given	in	Figure	7.55.

Figure	7.55	Result	of	Q47.

7.3.1.11	Queries	with	Set	Operations

Standard	SQL	also	 supports	 set	operations	 such	as	UNION,	 INTERSECT,	and
EXCEPT	to	combine	the	results	of	multiple	SELECT	blocks.	Let’s	first	refresh
how	these	set	operations	work.	Consider	the	following	two	sets,	A	and	B:

A	=	{10,	5,	25,	30,	45}

B	=	{15,	20,	10,	30,	50}

The	result	of	A	UNION	B	is	the	set	of	all	values	that	are	either	in	A	or	in	B,	or	in
other	words	{5,	10,	15,	20,	25,	30,	45,	50}.	The	result	of	A	INTERSECT	B	is	the
set	of	all	values	that	are	in	A	and	B,	or	in	other	words	{10,	30}.	The	result	of	A
EXCEPT	B	is	the	set	of	all	values	that	are	in	A	but	not	in	B,	or	in	other	words
{5,	 25,	 45}.	Hence,	when	 applied	 to	 an	 SQL	 query,	 the	 result	 of	 the	UNION
operation	is	a	table	that	includes	all	tuples	that	are	in	one	of	the	SELECT	blocks,
or	 both.	 The	 result	 of	 the	 INTERSECT	 operation	 is	 a	 table	 that	 includes	 all
tuples	that	are	in	both	SELECT	blocks.	The	result	of	the	EXCEPT	operation	is	a
table	 that	 includes	 all	 tuples	 that	 are	 in	 the	 first	SELECT	block	but	not	 in	 the
second.	 Duplicate	 tuples	 are	 by	 default	 eliminated	 from	 the	 result,	 unless	 the
ALL	operator	is	added.

It	 is	 important	 to	highlight	 that	when	using	 the	UNION,	 INTERSECT,	or
EXCEPT	operation,	all	SELECT	statements	must	be	union	compatible,	i.e.,	they
should	select	the	same	number	of	attribute	types	and	the	corresponding	attribute
types	should	have	compatible	domains.	Note	that	not	all	commercial	RDBMSs
support	these	set	operations.

Consider	 the	 following	 example:	 retrieve	 number	 and	 name	 of	 suppliers
who	 are	 located	 in	 New	York	 or	 who	 can	 supply	 product	 number	 0915.	 This
query	can	be	solved	as	follows:

Q48:	SELECT	SUPNR,	SUPNAME

			FROM	SUPPLIER
			WHERE	SUPCITY	=	'New	York'
			UNION
			SELECT	R.SUPNR,	R.SUPNAME
			FROM	SUPPLIER	R,	SUPPLIES	S
			WHERE	R.SUPNR	=	S.SUPNR
			AND	S.PRODNR	=	'0915'
			ORDER	BY	SUPNAME	ASC

Observe	 how	 the	 results	 of	 both	 queries	 are	 combined	 using	 the	 UNION
operator.	To	successfully	accomplish	this,	both	SELECT	blocks	should	be	union
compatible	 in	 the	 sense	 that	 they	 ask	 for	 the	 same	 columns	 (e.g.,	 SUPNR,
SUPNAME	and	R.SUPNR,	R.SUPNAME).	The	result	is	also	sorted	by	supplier
name	by	adding	an	ORDER	BY	clause	to	the	end	of	the	last	SELECT	block.	The
result	is	given	in	Figure	7.56.

Figure	7.56	Result	of	Q48.

Assume	that	we	change	the	query	as	follows:	retrieve	number	and	name	of
suppliers	 who	 are	 located	 in	 New	 York	 and	 who	 can	 supply	 product	 number
0915.	Both	SELECT	blocks	remain	the	same	as	you	can	see	illustrated,	but	are
now	combined	with	the	INTERSECT	instead	of	UNION	operation.	The	result	of
this	query	is	NULL.

Q49:	SELECT	SUPNR,	SUPNAME
			FROM	SUPPLIER
			WHERE	SUPCITY	=	'NEW	YORK'
			INTERSECT
			SELECT	R.SUPNR,	R.SUPNAME

			FROM	SUPPLIER	R,	SUPPLIES	S
			WHERE	R.SUPNR	=	S.SUPNR
			AND	S.PRODNR	=	'0915'
			ORDER	BY	SUPNAME	ASC

To	 conclude,	 consider	 the	 following	 request:	 retrieve	 the	 number	 of	 the
suppliers	who	cannot	currently	supply	any	product.	This	can	be	solved	using	two
SELECT	blocks	combined	with	an	EXCEPT	operation	as	follows:

Q50:	SELECT	SUPNR
				FROM	SUPPLIER
				EXCEPT
				SELECT	SUPNR
				FROM	SUPPLIES

This	 query	 selects	 all	 supplier	 numbers	which	 appear	 in	 the	SUPPLIER	 table,
but	not	in	the	SUPPLIES	table.	The	result	of	Q50	is	supplier	number	52.

7.3.2	SQL	INSERT	Statement

The	SQL	 INSERT	 statement	 adds	 data	 to	 a	 relational	 database.	The	 following
statement	inserts	a	new	tuple	into	the	PRODUCT	table:

INSERT	INTO	PRODUCT	VALUES
('980',	'Chateau	Angelus,	Grand	Clu	Classé,	1960',	'red',	6)

The	values	 are	 entered	 according	 to	 the	order	 in	which	 the	 columns	have
been	 defined	 using	 the	 CREATE	 TABLE	 statement.	 The	 next	 statement	 is
equivalent,	but	also	explicitly	mentions	the	column	names.	This	is	recommended
to	avoid	any	confusion.

INSERT	INTO	PRODUCT(PRODNR,	PRODNAME,	PRODTYPE,	
AVAILABLE_QUANTITY)	VALUES
('980',	'Chateau	Angelus,	Grand	Clu	Classé,	1960',	'red',	6)

It	is	also	possible	to	specify	only	a	few	column	names	as	follows:

INSERT	INTO	PRODUCT(PRODNR,	PRODNAME,	PRODTYPE)	
VALUES
('980',	'Chateau	Angelus,	Grand	Clu	Classé,	1960',	'red')

The	 values	 for	 the	 unspecified	 columns	 then	 become	 NULL	 (if	 NULL	 is
allowed)	 or	 the	DEFAULT	 value	 (if	 a	 default	 value	 has	 been	 defined).	 In	 our
example,	the	above	INSERT	query	is	equivalent	to:

INSERT	INTO	PRODUCT(PRODNR,	PRODNAME,	PRODTYPE,	
AVAILABLE_QUANTITY)	VALUES
('980',	'Chateau	Angelus,	Grand	Clu	Classé,	1960',	'red',	NULL)

The	following	statement	adds	three	tuples	to	the	PRODUCT	table:

INSERT	INTO	PRODUCT(PRODNR,	PRODNAME,	PRODTYPE,	
AVAILABLE_QUANTITY)	VALUES
('980',	'Chateau	Angelus,	Grand	Clu	Classé,	1960',	'red',	6),
('1000',	'Domaine	de	la	Vougeraie,	Bâtard	Montrachet',	Grand	cru,	
2010',	'white',	2),
('1002',	'Leeuwin	Estate	Cabernet	Sauvignon	2011',	'white',	20)

It	 is	 important	 to	 respect	 all	 constraints	 defined	 (NOT	NULL,	 referential
integrity,	etc.)	when	adding	new	tuples	to	a	table.	Otherwise,	the	INSERT	will	be
rejected	by	the	DBMS	and	an	error	notification	will	be	generated.

An	 INSERT	 statement	 can	 also	 be	 combined	 with	 a	 subquery.	 The
following	 example	 inserts	 the	 supplier	 numbers	 of	 all	 suppliers	 that	 cannot
supply	any	products	in	a	new	table	INACTIVE-SUPPLIERS:

INSERT	INTO	INACTIVE-SUPPLIERS(SUPNR)
SELECT	SUPNR
				FROM	SUPPLIER
				EXCEPT
				SELECT	SUPNR
				FROM	SUPPLIES

7.3.3	SQL	DELETE	Statement

Data	can	be	removed	using	the	SQL	DELETE	statement.	The	following	example
removes	the	product	tuple	with	product	number	1000	from	the	PRODUCT	table:

DELETE	FROM	PRODUCT
WHERE	PRODNR	=	'1000'

The	next	 statement	 removes	all	 supplier	 tuples	 from	 the	SUPPLIER	 table
where	the	supplier	status	is	NULL:

DELETE	FROM	SUPPLIER
WHERE	SUPSTATUS	IS	NULL

The	 DELETE	 statement	 can	 include	 subqueries.	 The	 following	 example
removes	all	product	numbers	from	the	SUPPLIES	table	of	products	that	have	the
string	“CHARD”	as	part	of	their	product	name.	This	will	remove	the	chardonnay
wines	in	the	SUPPLIES	table.

DELETE	FROM	SUPPLIES
WHERE	PRODNR	IN	(SELECT	PRODNR
																	FROM	PRODUCT
																	WHERE	PRODNAME	LIKE	'%CHARD%')

A	 DELETE	 statement	 can	 also	 contain	 correlated	 subqueries.	 This	 is
illustrated	 in	 the	 next	 example,	which	 removes	 suppliers	 from	 the	 SUPPLIER
table	that	have	no	corresponding	tuples	in	the	SUPPLIES	table:

DELETE	FROM	SUPPLIER	R
WHERE	NOT	EXISTS
												(SELECT	PRODNR

												FROM	SUPPLIES	S
												WHERE	R.SUPNR	=	S.SUPNR)

The	next	example	is	a	self-referencing	DELETE.	It	removes	all	SUPPLIES
tuples	where	the	purchase	price	is	strictly	bigger	than	twice	the	average	purchase
price	for	a	specific	product:

DELETE	FROM	SUPPLIES	S1
WHERE	S1.PURCHASE_PRICE	>
									(SELECT	2*AVG(S2.PURCHASE_PRICE)
									FROM	SUPPLIES	S2
									WHERE	S1.PRODNR	=	S2.PRODNR)

Removing	all	tuples	from	the	PRODUCT	table	can	be	done	as	follows:

DELETE	FROM	PRODUCT

As	discussed	before,	the	removal	of	tuples	should	be	carefully	considered	as	this
may	 impact	 other	 tables	 in	 the	 database.	As	 an	 example,	 consider	 removing	 a
supplier	 that	 still	 has	 connected	 SUPPLIES	 or	 PURCHASE_ORDER	 tuples.
Earlier	we	spoke	about	referential	integrity	constraints	which	keep	the	database
in	 a	 consistent	 state	 in	 case	 of	 removal	 of	 one	 or	 more	 referenced	 tuples.
Remember,	the	ON	DELETE	CASCADE	option	cascades	the	delete	operation	to
the	 referring	 tuples,	 whereas	 the	 ON	 DELETE	 RESTRICT	 option	 prohibits
removal	of	referenced	tuples.

7.3.4	SQL	UPDATE	Statement

Modifications	 to	 data	 can	 be	 made	 using	 the	 SQL	 UPDATE	 statement.	 The
following	example	sets	the	available	quantity	to	26	for	product	number	0185	in
the	PRODUCT	table:

UPDATE	PRODUCT
SET	AVAILABLE_QUANTITY	=	26
WHERE	PRODNR	=	'0185'

The	next	UPDATE	statement	sets	the	supplier	status	to	the	default	value	for
all	suppliers:

UPDATE	SUPPLIER
SET	SUPSTATUS	=	DEFAULT

UPDATE	statements	can	include	subqueries.	Suppose	we	want	to	add	seven
days	to	the	delivery	period	for	all	supplies	of	the	supplier	Deliwines:

UPDATE	SUPPLIES
SET	DELIV_PERIOD	=	DELIV_PERIOD	+	7
WHERE	SUPNR	IN	(SELECT	SUPNR
																											FROM	SUPPLIER
																											WHERE	SUPNAME	=	'Deliwines')

An	UPDATE	 statement	 can	 also	 contain	 correlated	 subqueries.	 The	 following
UPDATE	 statement	 guarantees	 that	 supplier	 number	 68	 can	 supply	 all	 its
products	at	the	minimum	price	and	delivery	period.

UPDATE	SUPPLIES	S1
SET	(PURCHASE_PRICE,	DELIV_PERIOD)	=

(SELECT	MIN(PURCHASE_PRICE),	MIN(DELIV_PERIOD)
FROM	SUPPLIES	S2
WHERE	S1.PRODNR	=	S2.PRODNR)
WHERE	SUPNR	=	'68'

An	 UPDATE	 statement	 can	 be	 combined	 with	 an	 ALTER	 TABLE
statement.	 The	 ALTER	 TABLE	 statement	 below	 adds	 a	 column
SUPCATEGORY	 with	 default	 value	 Silver	 to	 the	 SUPPLIER	 table.	 An
UPDATE	statement	is	then	used	to	set	the	values	of	this	new	column.	In	the	case
that	 the	 supplier	 status	 is	between	70	and	90,	 a	Gold	 status	 is	 assigned.	 In	 the
case	 that	 it	 is	 higher	 than	 90,	 it	 is	 set	 to	Platinum.	Note	 the	 use	 of	 the	CASE
statement,	which	allows	us	to	implement	if-then-else	operations	in	SQL:

ALTER	TABLE	SUPPLIER	ADD	SUPCATEGORY	
VARCHAR(10)	DEFAULT	'SILVER'
UPDATE	SUPPLIER
SET	SUPCATEGORY	=
CASE	WHEN	SUPSTATUS	>=70	AND	SUPSTATUS	<=90	THEN	
'GOLD'
WHEN	SUPSTATUS	>=90	THEN	'PLATINUM'
ELSE	'SILVER'
END

The	result	is	shown	in	Figure	7.57.

Figure	7.57	Result	of	SQL	UPDATE.

As	 with	 the	 DELETE	 statement,	 an	 UPDATE	 statement	 can	 affect	 other
tables	 in	 the	 database.	 Again,	 this	 depends	 upon	 the	ON	UPDATE	 referential
integrity	actions	that	have	been	set	during	table	definition.

Retention	Questions

Given	an	example	of	an	SQL	query	with	GROUP	BY.

What	is	the	difference	between	an	inner	join	and	an	outer	join?
Illustrate	with	an	example.

What	are	correlated	queries?	Illustrate	with	an	example.

What’s	the	difference	between	the	ALL	and	ANY	operator?	Illustrate
with	an	example.

7.4	SQL	Views

SQL	views	are	part	of	the	external	data	model.	A	view	is	defined	by	means	of	an
SQL	 query	 and	 its	 content	 is	 generated	 upon	 invocation	 of	 the	 view	 by	 an
application	 or	 by	 another	 query.	 In	 this	way,	 it	 can	 be	 considered	 as	 a	 virtual
table	 without	 physical	 tuples.	 Views	 offer	 several	 advantages.	 By	 hiding
complex	 queries,	 such	 as	 join	 queries	 or	 correlated	 queries	 from	 their	 users,
views	 facilitate	 ease	 of	 use.	 They	 can	 also	 provide	 data	 protection	 by	 hiding
columns	 or	 tuples	 from	 unauthorized	 users.	 Views	 allow	 for	 logical	 data
independence,	which	makes	 them	a	key	component	 in	 the	 three-layer	database
architecture	(see	Chapter	1).

Views	can	be	defined	using	 the	CREATE	VIEW	statement.	Here	you	can
see	three	examples:

CREATE	VIEW	TOPSUPPLIERS
AS	SELECT	SUPNR,	SUPNAME	FROM	SUPPLIER
WHERE	SUPSTATUS	>	50

CREATE	VIEW	TOPSUPPLIERS_SF
AS	SELECT	*	FROM	TOPSUPPLIERS
WHERE	SUPCITY	=	'San	Francisco'

CREATE	VIEW	ORDEROVERVIEW(PRODNR,	PRODNAME,	
TOTQUANTITY)
AS	SELECT	P.PRODNR,	P.PRODNAME,	SUM(POL.QUANTITY)
FROM	PRODUCT	AS	P	LEFT	OUTER	JOIN	PO_LINE	AS	POL
ON	(P.PRODNR	=	POL.PRODNR)
GROUP	BY	P.PRODNR

The	 first	 view	 is	 called	 TOPSUPPLIERS	 and	 offers	 the	 supplier	 number
and	supplier	name	of	all	 suppliers	whose	status	 is	greater	 than	50.	The	second
view	 refines	 the	 first	 by	 adding	 an	 additional	 constraint:	 SUPCITY	 =	 “San
Francisco”.	 The	 third	 view	 is	 called	 ORDEROVERVIEW.	 It	 contains	 the
product	number,	product	name,	and	total	ordered	quantity	of	all	products.	Note
that	 the	 left	 outer	 join	 in	 the	 view	 definition	 ensures	 that	 products	 with	 no
outstanding	orders	are	included	in	the	result.

Once	the	views	have	been	defined,	they	can	be	used	in	applications	or	other
queries	as	follows:

SELECT	*	FROM	TOPSUPPLIERS_SF

SELECT	*	FROM	ORDEROVERVIEW
WHERE	PRODNAME	LIKE	'%CHARD%'

The	first	query	selects	all	tuples	from	the	view	TOPSUPPLIERS_SF,	which	we
defined	 earlier.	 The	 second	 query	 retrieves	 all	 tuples	 from	 the
ORDEROVERVIEW	 view	 where	 the	 product	 name	 contains	 the	 string
“CHARD”.

The	RDBMS	automatically	modifies	queries	that	query	views	into	queries
on	the	underlying	base	tables.	Suppose	we	have	our	view	TOPSUPPLIERS	and
a	query	which	uses	it	as	follows:

CREATE	VIEW	TOPSUPPLIERS
AS	SELECT	SUPNR,	SUPNAME	FROM	SUPPLIER
WHERE	SUPSTATUS	>	50

SELECT	*	FROM	TOPSUPPLIERS
WHERE	SUPCITY=	'Chicago'

Both	 view	 and	 query	 can	 be	modified	 into	 the	 following	 query,	 which	works
directly	on	the	SUPPLIER	table:

SELECT	SUPNR,	SUPNAME
FROM	SUPPLIER
WHERE	SUPSTATUS	>	50	AND	SUPCITY='Chicago'

This	 is	 often	 referred	 to	 as	 query	 modification.	 View	 materialization	 is	 an
alternative	strategy	for	DBMSs	to	perform	queries	on	views,	in	which	a	physical
table	 is	 created	when	 the	 view	 is	 first	 queried.	 To	 keep	 the	materialized	 view
table	 up-to-date,	 the	 DBMS	 must	 implement	 a	 synchronization	 strategy
whenever	 the	 underlying	 base	 tables	 are	 updated.	 Synchronization	 can	 be
performed	 as	 soon	 as	 the	 underlying	 base	 tables	 are	 updated	 (immediate	 view
maintenance)	or	it	can	be	postponed	until	just	before	data	are	retrieved	from	the
view	(deferred	view	maintenance).

Some	 views	 can	 be	 updated.	 In	 this	 case,	 the	 view	 serves	 as	 a	 window
through	which	updates	are	propagated	to	the	underlying	base	table(s).	Updatable
views	require	that	INSERT,	UPDATE,	and	DELETE	statements	on	the	view	can
be	 unambiguously	 mapped	 to	 INSERTs,	 UPDATEs,	 and	 DELETEs	 on	 the
underlying	base	tables.	If	this	property	does	not	hold,	the	view	is	read	only.

Let’s	reconsider	our	view	ORDEROVERVIEW,	which	we	defined	earlier:

CREATE	VIEW	ORDEROVERVIEW(PRODNR,	PRODNAME,	
TOTQUANTITY)
AS	SELECT	P.PRODNR,	P.PRODNAME,	SUM(POL.QUANTITY)
FROM	PRODUCT	AS	P	LEFT	OUTER	JOIN	PO_LINE	AS	POL
ON	(P.PRODNR	=	POL.PRODNR)
GROUP	BY	P.PRODNR

The	following	UPDATE	statement	tries	to	set	the	total	ordered	quantity	to	10	for
product	number	0154.

UPDATE	VIEW	ORDEROVERVIEW
SET	TOTQUANTITY	=	10
WHERE	PRODNR	=	'0154'

Since	there	are	multiple	ways	to	accomplish	this	update,	 the	RDBMS	will
generate	an	error.	A	view	update	 is	 feasible	when	only	one	possible	update	on
the	base	table(s)	can	accomplish	the	desired	update	effect	on	the	view.	In	other
words,	this	is	an	example	of	a	view	which	is	not	updatable.

Various	requirements	can	be	listed	for	views	to	be	updatable.	They	typically
depend	upon	the	RDBMS	vendor.	Common	examples	are:	no	DISTINCT	option
in	the	SELECT	component;	no	aggregate	functions	in	the	SELECT	component;
only	 one	 table	 name	 in	 the	 FROM	 component;	 no	 correlated	 subquery	 in	 the
WHERE	 component;	 no	 GROUP	 BY	 in	 the	 WHERE	 component;	 and	 no
UNION,	INTERSECT,	or	EXCEPT	in	the	WHERE	component.

Another	 issue	 may	 arise	 in	 the	 case	 that	 an	 update	 on	 a	 view	 can	 be
successfully	performed.	More	specifically,	 in	 the	case	 that	 rows	are	 inserted	or
updated	through	an	updatable	view,	there	is	the	chance	that	these	rows	no	longer
satisfy	the	view	definition.	Hence,	the	rows	cannot	be	retrieved	through	the	view
anymore.	The	WITH	CHECK	option	allows	us	to	avoid	such	undesired	effects
by	checking	the	UPDATE	and	INSERT	statements	for	conformity	with	the	view
definition.	To	 illustrate	 this,	 consider	 the	 following	 two	 examples	 of	UPDATE
statements	on	our	TOPSUPPLIERS	view,	which	has	now	been	augmented	with	a
WITH	CHECK	option.

CREATE	VIEW	TOPSUPPLIERS
AS	SELECT	SUPNR,	SUPNAME	FROM	SUPPLIER

WHERE	SUPSTATUS	>	50
WITH	CHECK	OPTION

UPDATE	TOPSUPPLIERS
SET	STATUS	=	20
WHERE	SUPNR	=	'32'

UPDATE	TOPSUPPLIERS
SET	STATUS	=	80
WHERE	SUPNR	=	'32'

The	 first	 UPDATE	will	 be	 rejected	 by	 the	 RDBMS	 because	 the	 supplier
status	 of	 supplier	 32	 is	 updated	 to	 20,	whereas	 the	 view	 requires	 the	 supplier
status	to	be	greater	than	50.	The	second	update	statement	will	be	accepted	by	the
RDBMS	because	the	new	supplier	status	is	bigger	than	50.

Connections

We	 will	 return	 to	 views	 in	 Chapter	 20,	 where	 we	 will	 use	 them	 as	 a
mechanism	to	safeguard	privacy	and	security	in	a	Big	Data	and	analytics
setting.

Retention	Questions

What	are	SQL	views	and	what	can	they	be	used	for?

What	is	a	view	WITH	CHECK	option?	Illustrate	with	an	example.

7.5	SQL	Indexes

Indexes	are	part	of	the	internal	data	model.	Although	we	elaborate	more	on	them
in	Chapters	12	and	13,	we	briefly	highlight	some	key	concepts	here.

An	 index	provides	a	 fast	 access	path	 to	 the	physical	data	 to	 speed	up	 the
execution	time	of	a	query.	It	can	be	used	to	retrieve	tuples	with	a	specific	column
value	quickly,	rather	than	having	to	read	the	entire	table	on	disk.	Indexes	can	be
defined	over	one	or	more	columns.

Indexes	 can	 be	 created	 in	 SQL	 using	 the	 CREATE	 INDEX	 statement.
Below	you	can	see	some	examples:

CREATE	INDEX	PRODUCT_NAME_INDEX
ON	PRODUCT(PRODNAME	ASC)
CREATE	INDEX	SUPSTATUS_INDEX
ON	SUPPLIER(SUPSTATUS	DESC)
DROP	INDEX	SUPSTATUS_INDEX
CREATE	UNIQUE	INDEX	PRODUCT_UNIQUE_NAME_INDEX
ON	PRODUCT(PRODNAME	ASC)
CREATE	UNIQUE	INDEX	
PRODUCT_UNIQUE_NR_NAME_INDEX
ON	PRODUCT(PRODNR	ASC,	PRODNAME	ASC)
CREATE	INDEX	SUPPLIER_NAME_CLUSTERING_INDEX
ON	SUPPLIER(SUPNAME	ASC)	CLUSTER

The	first	statement	creates	an	index	for	the	PRODNAME	column,	whereby	the
index	 entries	 are	 stored	 in	 ascending	 order.	 This	 index	 is	 useful	 for	 queries
retrieving	products	by	product	name.	The	second	example	creates	an	 index	for
the	 supplier	 status.	 Indexes	 can	 be	 removed	 using	 the	 DROP	 statement	 as
illustrated.	The	keyword	UNIQUE	can	be	added	to	enforce	that	the	values	in	the

index	 are	 unique	 and	 do	 not	 allow	 duplicate	 index	 entries.	 The	 next	 example
defines	a	composite	index	on	the	PRODNR	and	PRODNAME	columns.	The	last
example	is	a	clustered	index	that	enforces	that	the	tuples	in	a	table	are	physically
ordered	according	 to	 the	 index	key,	which	 is	 supplier	name	 in	our	 case.	There
can	only	be	one	clustered	index	per	table,	as	the	tuples	can	only	be	stored	in	one
order.	 If	 a	 table	 has	 no	 clustered	 index,	 then	 its	 tuples	 are	 stored	 in	 a	 random
order.

Connections

In	Chapter	13	we	elaborate	more	on	designing	the	internal	data	model	in
SQL.	We	 also	 discuss	 different	 types	 of	 indexes	 for	 speeding	 up	 data
retrieval.

Retention	Questions

Give	some	examples	of	how	indexes	can	be	created	in	SQL.

7.6	SQL	Privileges

SQL	also	provides	facilities	to	manage	privileges.	A	privilege	corresponds	to	the
right	to	use	certain	SQL	statements	such	as	SELECT	or	INSERT	on	one	or	more
database	 objects.	 Privileges	 can	 be	 granted	 or	 revoked.	 Both	 the	 database
administrator	and	schema	owner	can	grant	or	revoke	privileges	to/from	users	or
user	accounts.	They	can	be	set	at	account,	table,	view,	or	column	level.	Table	7.2
provides	an	overview.

Table	7.2	Privileges	in	SQL

Privilege Explanation

SELECT Provides	retrieval	privilege

INSERT Gives	insert	privilege

UPDATE Gives	update	privilege

DELETE Gives	delete	privilege

ALTER Gives	privilege	to	change	the	table	definition

REFERENCES Provides	the	privilege	to	reference	the	table	when
specifying	integrity	constraints

ALL Provides	all	privileges	(DBMS-specific)

Some	examples	of	privilege	statements	in	SQL	are:

GRANT	SELECT,	INSERT,	UPDATE,	DELETE	ON	SUPPLIER	TO	
BBAESENS

GRANT	SELECT	(PRODNR,	PRODNAME)	ON	PRODUCT	TO	
PUBLIC
REVOKE	DELETE	ON	SUPPLIER	FROM	BBAESENS
GRANT	SELECT,	INSERT,	UPDATE,	DELETE	ON	PRODUCT	TO	
WLEMAHIEU	WITH	GRANT	OPTION
GRANT	REFERENCES	ON	SUPPLIER	TO	SVANDENBROUCKE

The	first	example	grants	SELECT,	INSERT,	UPDATE,	and	DELETE	privileges
on	 the	 SUPPLIER	 table	 to	 user	 BBAESENS.	 The	 second	 grants	 a	 SELECT
privilege	on	the	PRODNR	and	PRODNAME	columns	of	the	PRODUCT	table	to
all	 public	 users.	 The	 third	 statement	 revokes	 the	 earlier	 granted	 DELETE
privilege	on	the	SUPPLIER	table	from	user	BBAESENS.	The	fourth	statement
grants	SELECT,	INSERT,	UPDATE,	and	DELETE	privileges	on	the	PRODUCT
table	 to	 user	 WLEMAHIEU,	 whereby	 the	 WITH	 GRANT	 allows	 the	 user
WLEMAHIEU	 to	grant	 the	privileges	 to	others.	The	 fifth	 statement	grants	 the
user	 SVANDENBROUCKE	 the	 privilege	 to	 define	 referential	 integrity
constraints	 that	 refer	 to	 the	 SUPPLIER	 table.	 Note	 that	 this	 privilege	 allows
inferring	certain	information	from	the	SUPPLIER	table,	even	if	no	privileges	are
granted	 to	 actually	 query	 the	 table.	 For	 example,	 a	 foreign	 key	 constraint	 in
another	table	that	refers	to	SUPNR	in	the	SUPPLIER	table	can	be	used	to	verify
whether	a	certain	supplier	exists.

It	is	important	to	stress	that	SQL	privileges	are	often	combined	with	views
to	exert	fine-grained	control	over	the	(sub)set	of	rows	and	columns	in	a	table	that
can	be	accessed	by	a	particular	user.	For	example,	the	view	definition	and	access
privilege	below	can	be	used	to	express	that	user	WLEMAHIEU	can	only	access
the	 SUPNR	 and	 SUPNAME	 columns	 in	 the	 SUPPLIERS	 table,	 and	 only	 for
suppliers	located	in	New	York:

CREATE	VIEW	SUPPLIERS_NY

AS	SELECT	SUPNR,	SUPNAME	FROM	SUPPLIERS
WHERE	SUPCITY	=	'New	York'
GRANT	SELECT	ON	SUPPLIERS_NY	TO	WLEMAHIEU

Retention	Questions

What	 facilities	 does	 SQL	provide	 to	manage	 privileges?	 Illustrate	with
examples.

7.7	SQL	for	Metadata	Management

Since	 most	 DBMSs	 in	 use	 are	 relational,	 the	 catalog	 itself	 can	 also	 be
implemented	as	a	relational	database.	Hence,	this	implies	that	SQL	can	be	used
to	define	and	manage	metadata.	To	 illustrate	 this,	 let’s	 first	 start	 from	an	EER
conceptual	model	for	a	relational	model,	as	illustrated	in	Figure	7.58.	It	includes
the	 following	 entity	 types:	 TABLE,	 COLUMN,	 KEY,	 PRIMARY	 KEY,	 and
FOREIGN	KEY.	KEY	 is	a	 superclass	of	 the	entity	 types	PRIMARY	KEY	and
FOREIGN	 KEY.	 The	 specialization	 is	 total	 and	 overlapping.	 A	 table	 has	 a
unique	 table	 name.	 COLUMN	 is	 a	 weak	 entity	 type	 since	 its	 key	 is	 a
combination	of	Tablename	and	Columnname.	Hence,	the	same	column	name	can
be	used	in	multiple	tables.	Relationship	type	R1	says	that	a	table	can	have	zero
to	 N	 columns,	 whereas	 a	 column	 always	 belongs	 to	 exactly	 one	 table.	 R2
indicates	that	a	column	can	correspond	to	zero	or	M	keys	(e.g.,	a	primary	and	a
foreign	 key)	 and	 a	 key	 to	 between	 one	 and	 N	 columns.	 R3	 specifies	 the
relationship	type	between	a	table	and	its	primary	key.	R4	models	the	relationship
type	 between	 a	 foreign	 key	 and	 the	 corresponding	 primary	 key.	 R5	 indicates
what	table	a	foreign	key	belongs	to.

Figure	7.58	EER	conceptual	model	of	a	relational	model.

Using	the	mapping	rules	explained	in	Chapter	6,	we	can	now	map	this	EER
model	 to	 the	 following	 relational	 model	 (primary	 keys	 are	 underlined	 and
foreign	keys	are	in	italics):

Table(Tablename,	…)
Key(Keyname,	…)
Primary-Key(PK-Keyname,	PK-Tablename,	…)
							PK-Keyname	is	a	foreign	key	referring	to	Keyname	in	Key;
							PK-Tablename	is	a	foreign	key	referring	to	Tablename	in	Table
Foreign-Key(FK-Keyname,	FK-Tablename,	FK-PK-Keyname,	
Update-rule,	Delete-rule,	…)
							FK-Keyname	is	a	foreign	key	referring	to	Keyname	in	Key;
							FK-Tablename	is	a	foreign	key	referring	to	Tablename	in	Table;
							FK-PK-Keyname	is	a	foreign	key	referring	to	PK-Keyname	in	
Primary-Key
Column(Columnname,	C-Tablename,	Data	type,	Nulls,	…)
							C-Tablename	is	a	foreign	key	referring	to	Tablename	in	Table
Key-Column(KC-Keyname,	KC-Columnname,	KC-Tablename,	…)
							KC-Keyname	is	a	foreign	key	referring	to	Keyname	in	Key;
							(KC-Columnname,	KC-Tablename)	is	a	foreign	key	referring	to	

(Columnname,	C-Tablename)	in	Column;

The	 above	 provides	 only	 a	 partial	 representation	 of	 a	 typical	 catalog’s
definitions.	 It	 focuses	 on	 information	 about	 the	 data	 structure	 (structural
metadata),	 which	 is	 admittedly	 the	 most	 crucial	 type	 of	 metadata	 in	 most
database	 settings.	However,	 as	 explained	 in	 Chapter	 4,	 a	 catalog	may	 contain
other	 types	of	metadata	 as	well,	 such	 as	 information	 about	 database	users	 and
their	 access	 privileges,	 or	 statistical	 information	 about	 data	 usage.	 In	 some
specific	 cases,	 catalogs	 even	 contain	 information	 about	 the	 quality	 of	 the	 data
(data	quality	metadata)	or	about	their	meaning	(semantic	metadata).

Once	 the	 catalog	 has	 been	 successfully	 implemented,	 it	 can	 be	 populated
and	queried	using	SQL,	just	as	when	working	with	raw	data.	The	following	SQL
query	retrieves	all	column	information	of	the	SUPPLIER	table:

SELECT	*
FROM	Column
WHERE	Tablename	=	'SUPPLIER'

The	next	SQL	query	retrieves	the	primary	key	of	the	SUPPLIER	table,	the
names	 of	 the	 foreign	 keys	 referring	 to	 it,	 together	with	 their	 tables	 and	 delete
rules.

SELECT	PK.PK-Keyname,	FK.FK-Keyname,	FK.FK-Tablename,	
FK.Delete-rule
FROM	Primary-Key	PK,	Foreign-Key	FK
WHERE	PK.PK-Tablename	=	'SUPPLIER'
AND	PK.PK-Keyname	=	FK.FK-PK-Keyname

This	 clearly	 illustrates	 the	 power	 and	 beauty	 of	 SQL	 in	 an	 RDBMS
environment.	Using	the	same	SQL	DDL	and	SQL	DML	to	manage	both	raw	data

and	metadata	 contributes	 to	 the	 productivity	 and	 efficiency	 of	 database	 users

when	working	with	relational	databases.

Connections

Chapter	4	discussed	the	importance	of	metadata	modeling	and	the	role	of
the	catalog,	which	is	one	of	the	essential	components	of	a	DBMS.

Retention	Questions

How	 can	 SQL	 be	 used	 for	 metadata	 management?	 Illustrate	 with
examples.

Summary

In	 this	chapter	we	discussed	SQL	as	one	of	 the	most	 important	data	definition
and	 data	 manipulation	 languages	 for	 relational	 databases.	 We	 started	 by
introducing	 the	basic	 concepts	 of	SQL	and	positioned	 it	 in	 terms	of	 the	 three-
level	database	architecture	outlined	in	Chapter	1.	We	then	elaborated	on	the	SQL
DDL	 instructions	 that	 can	 be	 used	 to	 either	 create	 or	 remove	 database	 objects
(e.g.,	 schemas,	 tables,	 domains).	 We	 extensively	 discussed	 SQL	 DML
instructions	 by	 reviewing	 the	 SELECT,	 INSERT,	 DELETE,	 and	 UPDATE
statements.	 We	 also	 covered	 SQL	 views,	 which	 are	 part	 of	 the	 external	 data
model	 in	 a	 relational	 environment.	 SQL	 indexes,	which	 belong	 to	 the	 internal
data	model,	were	also	discussed,	as	was	granting	and	revoking	SQL	privileges.
We	concluded	by	reviewing	how	SQL	can	be	used	to	manage	relational	metadata
in	a	transparent	way.	Given	its	widespread	use	and	popularity,	various	extensions
have	 been	 added	 to	 SQL	 for	 specific	 applications	 such	 as	 data	 warehousing,
handling	 XML	 documents,	 and	 analytics.	 We	 discuss	 these	 in	 more	 detail	 in
subsequent	chapters.

Scenario	Conclusion

For	 its	 insurance	 firm,	 Sober	 needs	 to	 provide	 an	 overview	 of	 all
accidents	 together	 with	 the	 number	 of	 Sober	 cars	 involved	 and	 the
average	damage	amount	per	accident.	This	information	can	be	retrieved
using	the	following	SQL	query:

SELECT	ACC-NR,	ACC-DATE-TIME,	ACC-LOCATION,	
COUNT(*),	AVG(DAMAGE	AMOUNT)

FROM	ACCIDENT,	INVOLVED,	CAR,	SOBER	CAR
WHERE
ACC-NR=I-CAR-NR	AND
I-ACC-NR=CAR-NR	AND
CAR-NR=S-CAR-NR
GROUP	BY(ACC-NR)

As	part	of	 its	 customer	 relationship	management	 (CRM)	program,
Sober	wants	 to	 retrieve	 the	customer	with	 the	maximum	wait	 time	and
offer	 him	 or	 her	 a	 free	 ride-hailing	 service.	 This	 information	 can	 be
retrieved	using	the	following	SQL	query:

SELECT	CUST-NR,	CUST-NAME
FROM	CUSTOMER
WHERE	CUST-NR	IN
							(SELECT	H1.CUST-NR
							FROM	RIDE	HAILING	H1
							WHERE	NOT	EXISTS
																		(SELECT	*	FROM	RIDE	HAILING	H2
																		WHERE	H2.WAIT-TIME	>	H1.WAIT-TIME))

To	find	out	which	customers	have	never	booked	any	of	its	services,
the	following	SQL	query	can	be	used:

SELECT	CUST-NR,	CUST-NAME
FROM	CUSTOMER
WHERE	CUST-NR	NOT	IN	(SELECT	H-CUST-NR	FROM	
RIDE	HAILING)
AND
CUST-NR	NOT	IN	(SELECT	B-CUST-NR	FROM	BOOK)

The	 next	 SQL	 query	 retrieves	 the	 number	 and	 names	 of	 all
customers	who	booked	more	than	20	Sober	ride-sharing	services:

SELECT	CUST-NR,	CUST-NAME
FROM	CUSTOMER
WHERE	20	≤	(SELECT	COUNT(*)
													FROM	BOOK
													WHERE	CUST-NR=B-CUST-NR)

Remember,	for	each	of	these	customers	Sober	pledged	to	plant	a	tree	as
part	of	its	eco-friendly	program.

As	part	of	its	data	quality	program,	Sober	wants	to	enforce	that	it	is
not	 possible	 for	 customers	 to	 book	 either	 a	 ride-hailing	 or	 ride-sharing
service	 using	 their	 own	 car.	 The	 following	 SQL	 query	 retrieves	 the
customer	number	and	name,	 ride	number	and	car	number	of	customers
that	booked	a	ride-sharing	service	with	their	own	car:

SELECT	CUST-NR,	CUST-NAME,	RIDE-NR,	CAR-NR
FROM	CUSTOMER,	BOOK,	RIDE	SHARING,	RIDE,	CAR,	
OTHER	CAR
WHERE
CUST-NR=B.CUST-NR	AND
B-S-RIDE-NR=S-RIDE-NR	AND
S-RIDE-NR=RIDE-NR	AND
R-CAR-NR=CAR-NR	AND
CAR-NR=O-CAR-NR	AND
O-CUST-NR=CUST-NR

A	similar	query	can	be	used	to	find	out	which	customers	booked	a	ride-
hailing	service	with	their	own	car.

Key	Terms	List

aggregate	functions

ALL

ALTER

ANY

authorization	identifier

AVG

BETWEEN

binary	large	object	(BLOB)

CHECK	constraint

correlated	nested	queries

COUNT

DELETE

DISTINCT

DROP

EXCEPT

EXISTS

free-form	language

FROM

full	outer	join

GROUP	BY

IN

index

inner	join

INSERT

INTERSECT

join	queries

left	outer	join

LIKE

multiset

nested	query

NOT	EXISTS

NOT	NULL	constraint

ON	DELETE	CASCADE

ON	UPDATE	CASCADE

ORDER	BY

privilege

relational	database	management	system	(RDBMS)

RESTRICT

right	outer	join

SELECT

SET	DEFAULT

SET	NULL

SQL

SQL	schema

Structured	Query	Language	(SQL)

SUM

UNION

UNIQUE	constraint

UPDATE

VARIANCE

view

WHERE

Review	Questions

7.1.	The	following	table	with	purchase	orders	is	created:

CREATE	TABLE	PURCHASE_ORDER
																				(PONR	CHAR(7)	NOT	NULL	PRIMARY	KEY,
																				PODATE	DATE,
																				SUPNR	CHAR(4)	NOT	NULL,
																				FOREIGN	KEY	(SUPNR)	REFERENCES	
SUPPLIER	(SUPNR)
																								ON	DELETE	CASCADE	ON	UPDATE	
CASCADE);

What	happens	upon	deletion	of	a	supplier?

a.	All	purchase	order	records	tied	to	that	supplier	are	also	deleted.

b.	The	SUPNR	of	this	supplier	is	replaced	by	a	NULL	value	in
PURCHASE_ORDER.

c.	The	SUPNR	of	this	supplier	is	deleted	in	PURCHASE_ORDER.

d.	The	SUPNR	of	this	supplier	is	only	deleted	in	SUPPLIER.

7.2.	We’re	interested	in	wine	stores.	Therefore,	we	want	to	retrieve	the
SUPNR	and	SUPNAME	of	each	store	which	contains	“wine”	in	its	store
name.	Which	of	the	following	queries	can	we	use?

a.

SELECT	SUPNR,	SUPNAME
FROM	SUPPLIER
WHERE	SUPNAME	=	"WINE"

b.

SELECT	SUPNR,	SUPNAME
FROM	SUPPLIER
WHERE	SUPNAME	IS	"%WINE%"

c.

SELECT	SUPNR,	SUPNAME
FROM	SUPPLIER	WHERE
SUPNAME	LIKE	"%WINE%"

d.

SELECT	SUPNR,	SUPNAME
FROM	SUPPLIER

WHERE	SUPNAME	IS	"WINE"

7.3.	Take	the	following	extract	from	SUPPLIES:

We	want	to	retrieve	the	fastest	delivery	time	for	product	0185.	We	type
the	following	query:

SELECT	PRODNR,	MIN(DELIV_PERIOD)	AS	
MIN_DELIV_PERIOD
FROM	SUPPLIES
WHERE	PRODNR	=	'0185'

What	are	the	results?	If	you	believe	the	query	is	correct,	select	answer	a,
otherwise	choose	which	results	you	believe	will	be	retrieved.

a.

b.

c.

d.

7.4.	Consider	the	following	query:

SELECT	*
FROM	PRODUCT
WHERE	PRODTYPE='red'
ORDER	BY	AVAILABLE_QUANTITY	DESC,	
PRODNAME

Which	of	the	following	answers	is	correct?

a.

b.

c.

d.

7.5.	We	want	to	retrieve	all	unique	supplier	numbers	and	statuses	of
suppliers	who	have	at	least	one	outstanding	purchase	order.	Which	query
is	correct?

a.

SELECT	DISTINCT	R.SUPNR,	R.SUPSTATUS
FROM	SUPPLIER	R,	PURCHASE_ORDER	O

b.

SELECT	DISTINCT	R.SUPNR,	R.SUPSTATUS
FROM	SUPPLIER	R,	PURCHASE_ORDER	O
WHERE	(R.SUPNR	=	O.SUPNR)

c.

SELECT	DISTINCT	R.SUPNR,	R.SUPSTATUS
FROM	SUPPLIER	R,	PURCHASE_ORDER	O
WHERE	(R.SUPNR	=	O.PONR)

d.

SELECT	R.SUPNR,	R.SUPSTATUS
FROM	PURCHASE_ORDER	R

7.6.	Consider	the	following	query:

SELECT	P.PRODNR,	P.PRODNAME,	
P.AVAILABLE_QUANTITY,	SUM(L.QUANTITY)
AS	ORDERED_QUANTITY
FROM	PRODUCT	AS	P	LEFT	OUTER	JOIN	PO_LINE	
AS	L
ON	(P.PRODNR=L.PRODNR)
GROUP	BY	P.PRODNR

Which	of	the	following	statements	is	not	correct?

a.	The	query	retrieves	the	product	number,	product	name,	and
available	quantity	of	each	product	thanks	to	the	left	outer	join.

b.	The	query	retrieves	for	each	product	the	total	ordered	quantity.

c.	The	query	result	can	never	contain	NULL	values.

d.	If	we	remove	the	GROUP	BY	statement	and	P.PRODNR,
P.PRODNAME,	P.AVAILABLE_QUANTITY	from	the	SELECT
statement,	the	query	will	result	in	one	row	containing	the	total
outstanding	ordered	quantity	over	all	products	in	column
“ORDERED_QUANTITY”.

7.7.	Consider	following	query:

SELECT	DISTINCT	P1.PRODNR,	P1.PRODNAME
FROM	PRODUCT	P1,	SUPPLIES	S1
WHERE	P1.PRODNR	=	S1.PRODNR	AND
1	<=	(SELECT	COUNT(*)	FROM	SUPPLIES	S2
					WHERE	S2.SUPNR	<>	S1.SUPNR	AND	
P1.PRODNR=S2.PRODNR)
ORDER	BY	PRODNR

The	query	retrieves:

a.	The	number	and	name	of	all	products	that	can	only	be	supplied	by
one	supplier.

b.	The	number	and	name	of	all	products	that	cannot	be	supplied	by
any	supplier.

c.	The	number	and	name	of	all	products	that	can	be	supplied	by	more
than	one	supplier.

d.	The	number	and	name	of	all	products	that	can	be	supplied	by	all
suppliers.

7.8.	Which	of	the	following	queries	selects	the	name	of	the	supplier,
corresponding	order	number,	and	total	ordered	quantity	of	the	order	that

has	the	maximum	total	quantity	ordered.

a.

SELECT	R1.SUPNAME,	POL1.PONR,	
SUM(POL1.QUANTITY)
FROM	SUPPLIER	R1,	PURCHASE_ORDER	PO1,	
PO_LINE	POL1
WHERE	R1.SUPNR	=	PO1.SUPNR	AND	PO1.PONR	=	
POL1.PONR
GROUP	BY	POL1.PONR
HAVING	SUM(POL1.QUANTITY)	>=	ANY
					(SELECT	SUM(POL2.QUANTITY)
					FROM	SUPPLIER	R2,	PURCHASE_ORDER	PO2,	
PO_LINE	POL2
					WHERE	R2.SUPNR	=	PO2.SUPNR	AND	PO2.PONR	=	
POL2.PONR
					GROUP	BY	POL2.PONR)

b.

SELECT	R1.SUPNAME,	POL1.PONR,	
SUM(POL1.QUANTITY)
FROM	SUPPLIER	R1,	PURCHASE_ORDER	PO1,	
PO_LINE	POL1
WHERE	R1.SUPNR	=	PO1.SUPNR	AND	PO1.PONR	=	
POL1.PONR
GROUP	BY	POL1.PONR
HAVING	SUM(POL1.QUANTITY)	<=	ALL
									(SELECT	SUM(POL2.QUANTITY)
									FROM	SUPPLIER	R2,	PURCHASE_ORDER	PO2,	
PO_LINE	POL2
									WHERE	R2.SUPNR	=	PO2.SUPNR	AND	
PO2.PONR	=	POL2.PONR

									GROUP	BY	POL2.PONR)

c.

SELECT	R1.SUPNAME,	POL1.PONR,	
SUM(POL1.QUANTITY)
FROM	SUPPLIER	R1,	PURCHASE_ORDER	PO1,	
PO_LINE	POL1
WHERE	R1.SUPNR	=	PO1.SUPNR	AND	PO1.PONR	=	
POL1.PONR
GROUP	BY	POL1.PONR
HAVING	SUM(POL1.QUANTITY)	>=	ALL
									(SELECT	SUM(POL2.QUANTITY)
									FROM	SUPPLIER	R2,	PURCHASE_ORDER	PO2,	
PO_LINE	POL2
									WHERE	R2.SUPNR	=	PO2.SUPNR	AND	
PO2.PONR	=	POL2.PONR
									GROUP	BY	POL2.PONR)

d.

SELECT	R1.SUPNAME,	POL1.PONR,	
SUM(POL1.QUANTITY)
FROM	SUPPLIER	R1,	PURCHASE_ORDER	PO1,	
PO_LINE	POL1
WHERE	R1.SUPNR	=	PO1.SUPNR	AND	PO1.PONR	=	
POL1.PONR
GROUP	BY	POL1.PONR
HAVING	SUM(POL1.QUANTITY)	<=	ANY
									(SELECT	SUM(POL2.QUANTITY)
									FROM	SUPPLIER	R2,	PURCHASE_ORDER	PO2,	
PO_LINE	POL2
									WHERE	R2.SUPNR	=	PO2.SUPNR	AND	
PO2.PONR	=	POL2.PONR

									GROUP	BY	POL2.PONR)

7.9.	Consider	the	following	SQL	query:

SELECT	SUPNAME,	SUPADDRESS,	SUPCITY
FROM	SUPPLIER	R
WHERE	NOT	EXISTS
									(SELECT	*
									FROM	PRODUCT	P
									WHERE	EXISTS
																					(SELECT	*
																					FROM	SUPPLIES	S
																					WHERE	R.SUPNR	=	S.SUPNR
																					AND	P.PRODNR	=	S.PRODNR));

This	query	selects:

a.	The	supplier	name,	supplier	address,	and	supplier	city	of	all
suppliers	who	cannot	supply	any	products.

b.	The	supplier	name,	supplier	address,	and	supplier	city	of	all
suppliers	who	cannot	supply	all	products.

c.	The	supplier	name,	supplier	address,	and	supplier	city	of	all
suppliers	who	can	supply	at	least	one	product.

d.	The	supplier	name,	supplier	address,	and	supplier	city	of	all
suppliers	who	can	supply	all	products.

7.10.	Consider	the	following	query:

SELECT	P.PRODNR,	P.PRODNAME
FROM	PRODUCT	P

WHERE	EXISTS
									(SELECT	*
									FROM	PO_LINE	POL
									WHERE	P.PRODNR	=	POL.PRODNR
									GROUP	BY	POL.PRODNR
									HAVING	SUM(POL.QUANTITY)	>	
P.AVAILABLE_QUANTITY)

The	query	retrieves:

a.	The	name	and	number	of	the	product	with	the	highest	ordered
quantity.

b.	The	name	and	number	of	all	products	that	are	ordered	and	do	not
exceed	their	available	quantity.

c.	The	name	and	number	of	all	products	that	are	ordered	and	exceed
their	available	quantity.

d.	The	name	and	number	of	the	product	with	the	lowest	ordered
quantity.

7.11.	Consider	following	query:

SELECT	CS.CURRENT_STOCK	-	O.ORDERED	AS	
NEW_STOCK
FROM	(SELECT	SUM(P.AVAILABLE_QUANTITY)	AS	
CURRENT_STOCK
									FROM	PRODUCT	P)	AS	CS,
									(SELECT	SUM(POL.QUANTITY)	AS	ORDERED
									FROM	PO_LINE	POL)	AS	O

The	output	of	the	query	represents:

a.	A	table	summarizing	for	each	product	the	increase	in	stock	after	the
ordered	products	are	delivered.

b.	A	table	summarizing	for	each	product	the	decrease	in	stock	after	the
ordered	products	are	delivered.

c.	A	scalar,	summarizing	the	total	quantity	of	products	in	stock	after	all
the	ordered	products	are	delivered.

d.	A	scalar,	summarizing	the	decrease	in	total	available	quantity	of	all
products	after	the	ordered	products	are	delivered.

7.12.	Given	the	task	to	retrieve	the	numbers	of	all	suppliers	who	can
supply	products	0832	and	0494,	which	query	is	correct?

a.

SELECT	DISTINCT	SUPNR
FROM	SUPPLIES
WHERE	PRODNR	IN	(0832,	0494)

b.

SELECT	SUPNR
FROM	SUPPLIES
WHERE	PRODNR	=	0832
UNION	ALL
SELECT	SUPNR
FROM	SUPPLIES
WHERE	PRODNR	=	0494

c.

SELECT	SUPNR

FROM	SUPPLIES
WHERE	PRODNR	=	0832
INTERSECT
SELECT	SUPNR
FROM	SUPPLIES
WHERE	PRODNR	=	0494

d.

SELECT	UNIQUE	SUPNR
FROM	SUPPLIES
WHERE	PRODNR	IN	(0832,	0494)

7.13.	Consider	the	following	View	definition	and	update	statement:

CREATE	VIEW	
TOPPRODUCTS(PRODNR,PRODNAME,QUANTITY)	AS
SELECT	PRODNR,	PRODNAME,	
AVAILABLE_QUANTITY
FROM	PRODUCT	WHERE	
AVAILABLE_QUANTITY>100
WITH	CHECK	OPTION
UPDATE	TOPPRODUCTS
SET	QUANTITY=80
WHERE	PRODNR=0153

What	will	be	the	result	of	this?

a.	The	update	can	be	successfully	made	but	only	the	PRODUCT	table
will	be	updated.

b.	The	update	can	be	successfully	made	and	both	the	View	and
PRODUCT	table	will	be	updated.

c.	The	update	will	be	halted	because	of	the	WITH	CHECK	OPTION.

d.	The	update	can	be	successfully	made	but	only	the	View	will	be
updated.

7.14.	Compare	the	following	two	queries:

1.

SELECT	COUNT(DISTINCT	SUPNR)
FROM	PURCHASE_ORDER

2.

SELECT	COUNT(SUPNR)
FROM	PURCHASE_ORDER

Which	of	the	following	statements	is	correct?

a.	Result	query	1	is	always	=	result	query	2	because
PURCHASE_ORDER	contains	only	unique	purchase	orders.

b.	Result	query	1	is	always	≤	result	query	2	because	the	DISTINCT
operator	counts	only	unique	SUPNRs.

c.	Result	query	1	is	always	≥	result	query	2	because	query	1	sums	the
number	of	purchase	orders	per	supplier	while	query	2	sums	the
number	of	purchase	orders	in	total.

d.	Result	query	1	is	sometimes	≥	and	sometimes	≤	result	query	2
because	the	result	depends	on	the	number	of	suppliers	and	the	number
of	purchase	orders.

7.15.	Consider	the	following	query:

SELECT	PRODNR,	AVG(QUANTITY)	AS	
AVG_QUANTITY
FROM	PO_LINE
GROUP	BY	PRODNR
HAVING	SUM(QUANTITY)	<	15

What	is	the	result?

a.	The	query	returns	the	PRODNR	and	average	QUANTITY	of	each
purchase	order	that	has	fewer	than	15	purchase	order	lines.

b.	The	query	returns	the	PRODNR	and	average	QUANTITY	of	each
product	that	has	fewer	than	15	purchase	order	lines.

c.	The	query	returns	the	PRODNR	and	average	QUANTITY	of	each
product	that	has	fewer	than	15	orders.

d.	The	query	returns	the	PRODNR	and	average	QUANTITY	of	each
purchase	order	that	has	fewer	than	15	orders.

7.16.	Consider	the	following	query:

SELECT	PRODNAME
FROM	PRODUCT
WHERE	PRODNR	IN
							(SELECT	PRODNR
							FROM	SUPPLIES
							WHERE	SUPNR	IN
																	(SELECT	SUPNR
																	FROM	SUPPLIER
																	WHERE	SUPCITY	=	'New	York'))

							AND	PRODNR	IN
					(SELECT	PRODNR
					FROM	SUPPLIES
					WHERE	SUPNR	IN
															(SELECT	SUPNR
															FROM	SUPPLIER
															WHERE	SUPCITY	=	'Washington'))

What	is	the	result?

a.	The	query	retrieves	the	product	name	of	each	product	that	has	a
supplier	in	New	York	or	Washington.

b.	The	query	retrieves	the	product	name	of	each	product	that	has	both
a	supplier	in	New	York	and	a	supplier	in	Washington.

c.	The	query	retrieves	the	product	name	of	each	product	along	with	all
possible	supplier	cities.

d.	The	query	incorrectly	combines	every	product	name	and	supplier
city.

7.17.	We	want	to	retrieve	the	available	quantity	of	each	ordered	product
of	supplier	Ad	Fundum.	Which	of	the	following	queries	is	correct?

a.

SELECT	PRODNR,	AVAILABLE_QUANTITY
FROM	PRODUCT
WHERE	PRODNR	IN
										(SELECT	PRODNR
										FROM	PO_LINE)	AND
SUPNR	IN
										(SELECT	SUPNR

										FROM	SUPPLIER
										WHERE	SUPNAME='Ad	Fundum')

b.

SELECT	PRODNR,	AVAILABLE_QUANTITY
FROM	PRODUCT
WHERE	SUPNR	IN
										(SELECT	SUPNR
										FROM	SUPPLIER
										WHERE	SUPNAME='Ad	Fundum')

c.

SELECT	PRODNR,	AVAILABLE_QUANTITY
FROM	PRODUCT
WHERE	PRODNR	IN
										(SELECT	PRODNR
										FROM	PO_LINE
										WHERE	PONR	IN
													(SELECT	PONR
													FROM	PURCHASE_ORDER
													WHERE	SUPNR	IN
																		(SELECT	SUPNR
																		FROM	SUPPLIER
																		WHERE	SUPNAME='Ad	Fundum')))

d.

SELECT	PRODNR,	AVAILABLE_QUANTITY
FROM	PRODUCT
WHERE	PRODNR	=
											(SELECT	PRODNR
											FROM	PO_LINE

											WHERE	PONR	=
															(SELECT	PONR
															FROM	PURCHASE_ORDER
															WHERE	SUPNR	=
																			(SELECT	SUPNR
																			FROM	SUPPLIER
																			WHERE	SUPNAME='Ad	Fundum')))

7.18.	Consider	the	following	SQL	query:

SELECT	P1.PRODNR
							FROM	PRODUCT	P1
							WHERE	5	<=
																	(SELECT	COUNT(*)
																	FROM	PRODUCT	P2
																	WHERE	P1.PRODNR	<	P2.PRODNR)

This	query	selects:

a.	The	five	highest	product	numbers.

b.	The	five	lowest	product	numbers.

c.	All	product	numbers	except	for	the	five	lowest	product	numbers.

d.	All	product	numbers	except	for	the	five	highest	product	numbers.

7.19.	Consider	the	following	query:

SELECT	R1.SUPNAME,	R1.SUPNR,	COUNT(*)
FROM	PURCHASE_ORDER	PO1,	SUPPLIER	R1
WHERE	PO1.SUPNR	=	R1.SUPNR
GROUP	BY	R1.SUPNR
HAVING	COUNT(*)	>=	ALL

							(SELECT	COUNT(*)
							FROM	PURCHASE_ORDER	PO2,	SUPPLIER	R2
							WHERE	PO2.SUPNR	=	R2.SUPNR
							GROUP	BY	R2.SUPNR)

The	query	retrieves:

a.	The	name,	number,	and	total	outstanding	orders	of	all	suppliers	that
have	outstanding	orders.

b.	The	name,	number,	and	total	outstanding	orders	of	all	suppliers	that
have	outstanding	orders,	except	for	the	supplier(s)	with	the	fewest
outstanding	orders.

c.	The	name,	number,	and	total	outstanding	orders	of	the	supplier	with
the	most	outstanding	orders.

d.	The	name,	number,	and	total	outstanding	orders	of	the	supplier	with
the	fewest	outstanding	orders.

7.20.	Consider	the	following	query:

SELECT	P.PRODNR,	P.PRODNAME
FROM	PRODUCT	P
EXCEPT
SELECT	POL.PRODNR
FROM	PO_LINE	POL

The	query	retrieves:

a.	The	number	and	name	of	all	the	products	with	no	outstanding	order.

b.	The	number	and	name	of	all	the	products	that	are	ordered.

c.	The	query	will	not	execute	because	both	queries	do	not	select	the
same	columns.

d.	The	query	will	not	execute	because	both	queries	do	not	select	the
same	rows.

7.21.	Consider	following	query:

SELECT	P1.PRODNR,	P1.PRODNAME,	S1.SUPNR,	
S1.PURCHASE_PRICE
FROM	PRODUCT	P1,	SUPPLIES	S1
WHERE	P1.PRODNR	=	S1.PRODNR
AND	NOT	EXISTS
						(SELECT	*
						FROM	PRODUCT	P2,	SUPPLIES	S2
						WHERE	P2.PRODNR	=	S2.PRODNR
						AND	P1.PRODNR	=	P2.PRODNR
						AND	S1.PURCHASE_PRICE	>	S2.PURCHASE_PRICE)

and	the	following	statements:

1.	For	each	product,	the	supplier	number	of	the	supplier	who	can
supply	the	product	for	the	cheapest	price	is	retrieved.

2.	For	each	product,	the	supplier	number	of	the	supplier	who
supplies	the	product	for	the	highest	price	is	retrieved.

3.	For	each	product,	exactly	one	tuple	is	returned.

4.	For	each	product,	more	than	one	tuple	can	be	returned.

Which	statements	are	true?

a.	1	and	3.

b.	1	and	4.

c.	2	and	3.

d.	2	and	4.

7.22.	Consider	the	following	query:

SELECT	R.SUPNAME,	(SELECT	COUNT(PO.PODATE)
																																						FROM	PURCHASE_ORDER	PO
																																						WHERE	R.SUPNR	=	PO.SUPNR)	
AS	SUMMARY
FROM	SUPPLIER	R

The	query	selects:

a.	The	name	and	total	number	of	outstanding	orders	of	all	suppliers
that	have	at	least	one	outstanding	order.

b.	The	name	and	total	number	of	outstanding	orders	of	all	suppliers.

c.	The	supplier	name	and	order	date	of	each	of	his/her	outstanding
orders.

d.	The	supplier	name	and	order	date	of	each	of	his/her	outstanding
orders.	If	a	supplier	does	not	have	an	outstanding	order,	she/he	will	be
included	in	the	output	with	a	null	value	for	the	“SUMMARY”	column.

Problems	and	Exercises

7.1E	Write	an	SQL	query	that	retrieves	each	supplier	who	can	deliver	product
0468	within	one	or	two	days,	accompanied	by	the	price	of	the	product	and	the
delivery	period.

7.2E	Write	an	SQL	query	that	returns	the	average	price	and	variance	per	product.

7.3E	Write	an	SQL	query	that	retrieves	all	pairs	of	suppliers	who	supply	the
same	product,	along	with	their	product	purchase	price	if	applicable.

7.4E	Write	a	nested	SQL	query	to	retrieve	the	supplier	name	of	each	supplier
who	supplies	more	than	five	products.

7.5E	Write	an	SQL	query	to	retrieve	the	supplier	number,	supplier	name,	and
supplier	status	of	each	supplier	who	has	a	higher	supplier	status	than	supplier
number	21.

7.6E	Write	a	correlated	SQL	query	to	retrieve	the	number	and	status	of	all
suppliers,	except	for	the	three	suppliers	with	the	lowest	supplier	status.

7.7E	Write	a	correlated	SQL	query	to	retrieve	all	cities	with	more	than	one
supplier.

7.8E	Write	an	SQL	query	to	retrieve	name,	number,	and	total	outstanding	orders
of	all	suppliers	that	have	outstanding	orders,	except	for	the	supplier(s)	with	the
fewest	outstanding	orders.

7.9E	Write	an	SQL	query	using	EXISTS	to	retrieve	the	supplier	numbers	and
names	of	all	suppliers	that	do	not	have	any	outstanding	orders.

7.10E	Create	a	view	SUPPLIEROVERVIEW	that	retrieves,	for	each	supplier,
the	supplier	number,	the	supplier	name,	and	the	total	amount	of	quantities
ordered.	Once	created,	query	this	view	to	retrieve	suppliers	for	whom	the	total
ordered	quantity	exceeds	30.

7.11E	Write	an	SQL	query	that	retrieves	the	total	available	quantity	of	sparkling
wines.	Make	sure	to	display	this	quantity	as	“TOTAL_QUANTITY”.

7.12E	Write	a	query	to	select	all	supplier	numbers,	together	with	their	supplier
name	and	total	number	of	outstanding	orders	for	each	supplier.	Include	all
suppliers	in	the	result,	even	if	there	are	no	outstanding	orders	for	that	supplier	at
the	moment.

7.13E	Write	an	SQL	query	that	returns	the	SUPNR	and	number	of	products	of
each	supplier	who	supplies	more	than	five	products.

7.14E	Write	an	SQL	query	that	reports	the	average	delivery	time	for	each
supplier	who	supplies	products.

7.15E	Write	a	nested	SQL	query	to	retrieve	all	purchase	order	numbers	of
purchase	orders	that	contain	either	sparkling	or	red	wine.

7.16E	Write	a	correlated	SQL	query	to	retrieve	the	three	lowest	product
numbers.

7.17E	Write	an	SQL	query	with	ALL	or	ANY	to	retrieve	the	name	of	the	product
with	the	highest	available	quantity.

7.18E	Write	an	SQL	query	using	EXISTS	to	retrieve	the	supplier	name	and
number	of	the	supplier	who	has	the	lowest	supplier	number.

1	SQL	is	sometimes	also	pronounced	as	SEKWEL.

2	Newer	versions	of	the	SQL	standard	no	longer	focus	on	the	internal	data
model.

3	We	number	all	queries	as	Q1,	Q2,	Q3,	etc.,	so	we	can	easily	refer	to	them.

8

Object-Oriented	Databases	and
Object	Persistence

◈

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

use	advanced	concepts	of	object	orientation,	such	as	method
overloading,	inheritance,	method	overriding,	polymorphism,	and
dynamic	binding;

identify	various	strategies	to	ensure	object	persistence;

understand	the	key	components	of	an	OODBMS;

understand	the	ODMG	standard	and	its	object	model;

use	the	ODMG	object	definition	language	(ODL)	to	define	object
types;

use	the	ODMG	object	query	language	(OQL)	to	formulate	queries;

implement	the	ODMG	standard	through	language	bindings;

evaluate	OODBMSs	against	RDBMSs.

Opening	Scenario

Sober	 has	 noted	 that	 many	 database	 applications	 are	 being	 developed
using	programming	 languages	such	as	Java,	Python,	and	C++.	 It	 found
out	that	many	languages	are	based	on	the	object-oriented	paradigm.	The
company	wants	 to	 know	what	 this	 entails	 and	whether	 this	 could	 have
any	implications	and/or	potential	for	its	database	and	choice	of	DBMS.

The	 object-oriented	 (OO)	 paradigm	 was	 first	 introduced	 by	 programming
languages	 such	 as	C++,	 Eiffel,	 and	 Smalltalk.	Due	 to	 its	 expressive	modeling
power	and	formal	semantics,	the	principles	of	OO	have	also	been	widely	used	in
software	 development	 methodologies.	 However,	 for	 data	 storage	 and
management,	the	adoption	of	OO	proved	less	straightforward.	In	this	chapter,	we
discuss	 various	 approaches	 to	 object	 persistence.	 First,	 we	 refresh	 the	 basic
concepts	of	OO,	many	of	which	have	been	covered	 in	Chapter	3.	This	will	 be
followed	by	a	discussion	of	advanced	OO	concepts	such	as	method	overloading,
inheritance,	method	overriding,	polymorphism,	and	dynamic	binding.	Next,	we
review	the	basic	principles	of	object	persistence.	We	then	discuss	object-oriented
database	management	 systems	 (OODBMSs),	which	 is	 the	 core	of	 this	 chapter.
We	conclude	with	evaluating	OODBMSs	and	demonstrating	their	impact	on	the
emergence	of	object-relational	mapping	(ORM)	frameworks,	which	facilitate	the
persistence	of	objects	 into	RDBMSs.	Due	to	 its	popularity	and	ease	of	use,	we
use	Java	as	the	OO	language	for	the	examples.

8.1	Recap:	Basic	Concepts	of	OO

In	 object-oriented	 (OO)	 programming,	 an	 application	 consists	 of	 a	 series	 of
objects	 that	 request	 services	 from	 each	 other.	 Each	 object	 is	 an	 instance	 of	 a
class	 that	 contains	 a	 blueprint	 description	 of	 all	 the	 object’s	 characteristics.
Contrary	to	procedural	programming,	an	object	bundles	both	its	variables	(which
determine	its	state)	and	its	methods	(which	determine	its	behavior)	in	a	coherent
way.	Let’s	consider	an	example	of	a	class	Employee	defined	in	Java:

public	class	Employee	{
private	int	EmployeeID;
private	String	Name;
private	String	Gender;
private	Department	Dep;
public	int	getEmployeeID()	{
				return	EmployeeID;
}
public	void	setEmployeeID(int	id)	{
				this.EmployeeID	=	id;
}
public	String	getName()	{
				return	Name;
}
public	void	setName(String	name)	{
				this.Name	=	name;
}
public	String	getGender()	{
				return	Gender;
}
public	void	setGender(String	gender)	{

				this.Gender	=	gender;
}
public	Department	getDep()	{
				return	Dep;
}
public	void	setDep(Department	dep)	{
				this.Dep	=	dep;
}
}

In	 the	 example	 above,	 you	 can	 see	 a	 class	 Employee	 with	 four	 variables:
EmployeeID,	Name,	Gender,	 and	Dep,	which	 represents	 the	department	where
the	employee	works.	Each	variable	comes	with	a	getter	and	setter	method,	which
allow	 retrieval	 or	 modification	 of	 the	 variable’s	 value,	 respectively.	 Other
methods	can	also	be	added	as	needed	(e.g.,	 to	calculate	an	employee’s	salary).
The	getter	and	setter	methods	are	also	called	accessor	methods	and	implement
the	concept	of	information	hiding,	also	called	encapsulation.	The	main	idea	is
to	make	variables	private	 to	 the	 class,	 so	 they	are	not	directly	 accessible	 from
outside	 of	 the	 class.	 This	 gives	 the	 programmer	 control	 over	 how	 and	 when
variables	can	be	accessed.	Encapsulation	offers	several	advantages	that	make	it
standard	 recommended	 practice	 for	 all	 classes.	 For	 example,	 you	 can	 use	 the
accessor	methods	to	check	for	validity	before	changing	a	variable’s	value.	If	an
invalid	value	is	provided,	the	programmer	can	decide	how	to	handle	it,	such	as
by	adjusting	it	or	throwing	an	exception.	The	concept	of	encapsulation	enforces
a	strict	separation	between	interface	and	implementation.	The	interface	consists
of	 the	 signatures	 of	 the	methods.	The	 implementation	 is	 then	based	upon	 the
object’s	 variables	 and	method	 definitions	 and	 is	 kept	 hidden	 from	 the	 outside
world.

Once	 the	 class	 has	 been	 defined,	 we	 can	 create	 objects	 from	 it.	 The
following	code	snippet	illustrates	how	we	can	create	three	Employee	objects	and
set	their	names.

public	class	EmployeeProgram	{
				public	static	void	main(String[]	args)	{
								Employee	Bart	=	new	Employee();
								Employee	Seppe	=	new	Employee();
								Employee	Wilfried	=	new	Employee();
								Bart.setName("Bart	Baesens");
								Seppe.setName("Seppe	vanden	Broucke");
								Wilfried.setName("Wilfried	Lemahieu");
				}
}

Retention	Questions

Connections

We	already	discussed	 the	basic	concepts	of	OO	in	Chapter	3,	when	we
introduced	the	UML	conceptual	data	model.

What	is	the	difference	between	an	object	and	a	class?	Illustrate	with
examples.

What	is	information	hiding	and	why	is	it	important?

8.2	Advanced	Concepts	of	OO

In	 this	 section	we	 elaborate	 on	 advanced	 concepts	 of	OO.	We	discuss	method
overloading,	 inheritance,	 method	 overriding,	 polymorphism,	 and	 dynamic
binding.

8.2.1	Method	Overloading

Method	overloading	refers	to	using	the	same	name	for	more	than	one	method	in
the	same	class.	The	OO	language	environment	can	then	determine	which	method
you	are	calling,	provided	 the	number	or	 type	of	parameters	 is	different	 in	each
method.	This	is	illustrated	in	the	following	example.

public	class	Book	{
String	title;
String	author;
boolean	isRead;
int	numberOfReadings;
public	void	read(){
					isRead	=	true;
					numberOfReadings++;
}
public	void	read(int	i){
					isRead	=	true;
					numberOfReadings	+=	i;
}
}

Here	you	have	one	method	with	the	name	“read”	and	no	parameters,	and	a
second	method	with	the	name	“read”	and	one	integer	parameter.	To	Java,	these
are	two	different	methods,	so	you	will	have	no	duplication	errors.	As	expected,	if
the	parameter	i	equals	1	then	read(1)	will	have	the	same	effect	as	read().	Method
overloading	 is	 a	 handy	 feature	 when	 defining	 constructors	 for	 a	 class.	 A
constructor	 is	 a	method	 that	 creates	 and	 returns	 a	 new	 object	 of	 a	 class.	 By
using	method	overloading,	various	constructors	can	be	defined,	each	with	 their
own	 specific	 set	 of	 input	 parameters.	 Consider	 a	 Student	 class	 with	 two

constructor	 methods:	 Student(String	 name,	 int	 year,	 int	 month,	 int	 day)	 and
Student(String	name).	The	 former	 takes	both	 the	name	and	date	of	birth	 as	 its
input	 argument,	whereas	 the	 latter	 only	 takes	 the	 name	 and	 leaves	 the	 date	 of
birth	 unspecified.	 By	 defining	 these	 two	 constructors	 and	 using	 method
overloading,	Student	objects	can	be	created	when	the	date	of	birth	is	known	or
unknown.

8.2.2	Inheritance

Inheritance	 represents	 an	 “is	 a”	 relationship.	 For	 example,	 a	 Student	 is	 a
Person,	 so	 the	 class	 Student	 could	 be	 a	 subclass	 of	 the	 Person	 class.	 An
Employee	is	a	Person	too,	so	Employee	could	be	another	subclass	of	Person.	An
undergraduate	 is	 a	 student	 and	 a	 graduate	 is	 a	 student,	 so	 you	 can	 create	 two
additional	subclasses	of	the	class	Student.	Staff	and	Faculty	might	be	subclasses
of	the	class	Employee.	A	possible	class	hierarchy	for	this	inheritance	example	is
shown	in	Figure	8.1.	Each	subclass	inherits	both	the	variables	and	methods	from
the	superclass.	A	subclass	can	also	introduce	new	variables	and	methods.	Below,
you	can	see	the	definitions	of	the	Person	and	Employee	class	in	Java.	The	Person
superclass	has	a	name	variable,	a	constructor	method	and	getter/setter	methods.
The	Employee	class	is	a	subclass	of	the	Person	class.	Note	the	use	of	the	extends
keyword	 which	 specifies	 the	 inheritance	 relationship.	 The	 Employee	 subclass
also	 defines	 two	 additional	 variables:	 the	 id	 variable	 and	 an	 Employee	 object
which	 represents	 the	 manager	 of	 the	 employee.	 It	 also	 includes	 a	 constructor
method	 and	 the	 necessary	 getter	 and	 setter	 methods	 to	 enforce	 information
hiding.

public	class	Person	{
private	String	name;
public	Person(String	name)	{
this.setName(name);
}
public	String	getName()	{
return	this.name;
}
public	void	setName(String	name)	{
this.name	=	name;

}
}
public	class	Employee	extends	Person	{
private	Employee	manager;
private	int	id;
public	Employee(String	name,	Employee	manager,	int	empID)	{
super(name);
this.setManager(manager);
this.setEmployeeID(empID);
}
public	Employee	getManager()	{
return	manager;
}
public	void	setManager(Employee	manager)	{
this.manager	=	manager;
}
public	int	getEmployeeID()	{
return	id;
}
private	void	setEmployeeID(int	employeeID)	{
this.id	=	employeeID;
}
}

Figure	8.1	Example	inheritance	hierarchy.

8.2.3	Method	Overriding

As	 previously	 noted,	 subclasses	 inherit	 both	 variables	 and	methods	 from	 their
superclass.	 This	means	 that	 if	 the	 Student	 class	 has	 a	 calculateGPA()	method,
then	Graduate	and	Undergraduate	will	have	this	method	as	well.	The	subclasses
can,	however,	override	the	method	with	a	new,	specialized	implementation.	This
is	 called	 method	 overriding.	 This	 is	 not	 related	 to	 method	 overloading
discussed	earlier	 in	 this	chapter.	Consider	 the	calculateGPA()	method	 from	 the
Student	class.	Assume	 the	Student	class	has	a	grades	variable	 that	 contains	all
the	student’s	grades	(e.g.,	 stored	 in	an	array).	The	calculateGPA()	method	 then
just	calculates	the	average	of	these	grades	as	follows:

public	double	calculateGPA(){
double	sum	=	0;
int	count	=	0;
for	(double	grade:	this.getGrades()){
sum	+=	grade;
count++;
}
return	sum/count;
}

Now,	suppose	graduate	students	only	get	credit	 for	grades	above	a	certain
minimum.	 For	 example,	 only	 grades	 of	 80%	 and	 higher	 are	 accepted,	 and
courses	with	a	grade	below	80%	must	be	repeated.	Then	for	the	Graduate	class,
you	might	want	to	calculate	the	GPA	based	only	on	those	higher	grades.	To	do
this,	 you	 can	 override	 the	 calculateGPA()	 method	 and	 change	 the
implementation	by	adding	an	if	(grade	>	80){}	statement	as	follows:

public	double	calculateGPA(){

double	sum	=	0;
int	count	=	0;
for	(double	grade:	this.getGrades()){
if	(grade	>	80){
sum	+=	grade;
count++;
}
}
return	sum/count;
}

This	 will	 make	 sure	 that	 graduate	 students	 have	 their	 grades	 properly
calculated.

8.2.4	Polymorphism	and	Dynamic	Binding

Polymorphism	refers	to	the	ability	of	objects	to	respond	differently	to	the	same
method.	 It	 is	 a	 key	 concept	 in	 OO	 programming	 and	 is	 closely	 related	 to
inheritance.	Because	 inheritance	models	 an	 “is	 a”	 relationship,	 one	 object	 can
take	on	the	variables	and	behavior	of	more	than	one	class.	According	to	the	class
hierarchy	of	the	Person	example,	a	Master	is	a	Graduate,	a	Graduate	is	a	Student,
and	 a	 Student	 is	 a	 Person,	 so	 depending	 on	 the	 functionality	 desired,	 the	OO
environment	might	consider	a	particular	Master	object	as	a	Master,	a	Graduate,	a
Student,	or	a	Person,	because,	after	all,	a	Master	is	still	a	Person.

Every	method	must	be	bound	or	mapped	 to	 its	 implementation.	There	are
two	 types	 of	 binding.	Static	binding	 binds	 a	method	 to	 its	 implementation	 at
compile	 time.	 In	 contrast	 to	 static	 binding,	 dynamic	 binding	 means	 that	 the
binding	 of	 methods	 to	 the	 appropriate	 implementation	 is	 resolved	 at	 runtime,
based	on	the	object	and	its	class.	It	is	also	called	virtual	method	invocation	and	is
the	 binding	 used	 for	 methods	 to	 allow	 for	 polymorphism.	When	 a	 method	 is
overridden,	multiple	implementations	can	be	called,	depending	on	the	object	in
question.	During	execution,	the	OO	environment	will	first	check	the	object	class
that	the	reference	object	points	to	for	the	method	implementation.	If	it	does	not
exist,	 the	system	will	 look	to	 the	superclass.	It	will	check	the	superclass	above
that	if	it	still	finds	no	match,	and	so	on	throughout	the	entire	class	hierarchy.	By
searching	from	the	bottom	up,	the	most	specific	implementation,	or	the	one	from
the	 class	 lowest	 in	 the	 hierarchy,	 will	 be	 the	 one	 used.	 Consider	 again	 the
example	of	 the	GPA	calculation,	which	calculates	 the	average	of	all	grades	 for
most	Student	objects	and	 the	average	of	grades	above	a	 threshold	 for	graduate
students.	Suppose	you	create	a	PersonProgram	class	to	run	your	main	method:

public	class	PersonProgram	{

public	static	void	main(String[]	args){
Student	john	=	new	Master("John	Adams");
john.setGrades(0.75,0.82,0.91,0.69,0.79);
Student	anne	=	new	Associate("Anne	Philips");
anne.setGrades(0.75,0.82,0.91,0.69,0.79);
System.out.println(john.getName()	+	":	"	+	john.calculateGPA());
System.out.println(anne.getName()	+	":	"	+	anne.calculateGPA());
}
}

You	have	two	Student	objects:	John	is	a	Master	(subclass	of	Graduate)	and	Anne
is	 an	 Associate	 (subclass	 of	 Undergraduate).	 To	 compare	 easily,	 assume	 they
both	have	the	same	grades	for	five	courses.	When	your	main	method	reaches	the
print	statements,	it	will	first	call	the	getName()	method	for	each	object.	For	John,
none	 of	 the	 Master	 class,	 the	 Graduate	 class,	 or	 the	 Student	 class	 contain	 a
getName()	method.	Therefore,	the	Master	object	inherits	the	getName()	method
directly	from	the	Person	class.	Next,	it	must	call	the	calculateGPA()	method	for
John.	 The	 Master	 class	 does	 not	 contain	 a	 calculateGPA()	 method,	 but	 the
Graduate	 class,	 the	 superclass	 of	Master,	 does.	 Dynamic	 binding	 looks	 at	 the
type	 of	 object	 that	 John	 is:	 a	 Master	 and,	 hence,	 a	 Graduate.	 Therefore,	 the
calculateGPA()	method	 from	 the	Graduate	 class	 is	 called.	 For	Anne,	 the	 same
decision	process	occurs.	There	is	no	getName()	method	in	the	subclasses,	so	the
class	 hierarchy	 is	 considered	 to	 find	 that	 Anne	 is	 an	 Associate,	 which	 is	 an
Undergraduate,	which	is	a	Student,	which	is	a	Person,	and	the	getName()	method
from	 the	 Person	 class	 is	 called.	 For	 her	 GPA,	 neither	 Associate	 nor
Undergraduate	 has	 a	 calculateGPA()	 method,	 so	 the	 Student	 version	 of	 the
method	is	called	for	Anne.	The	output	will	then	be	as	follows:

John	Adams:	0.865
Anne	Philips:	0.792

Since	 John	 is	 a	master	 student,	which	 is	 a	 subclass	of	Graduate,	 only	 the
marks	above	0.8	will	be	averaged	so	the	result	will	be	(0.82	+	0.91)/2	=	0.865.
Since	Anne	 is	 an	associate,	which	 is	 a	 subclass	of	Undergraduate,	her	average
will	be	calculated	as	(0.75	+	0.82	+	0.91	+	0.69	+	0.79)/5	=	0.792.	It	shows	two
different	 GPAs,	 despite	 having	 the	 same	 grades,	 because	 dynamic	 method
invocation	 allows	 different	 versions	 of	 the	methods	 to	 be	 called	 depending	 on
the	object	calling	it.

We	 can	 conclude	 the	 discussion	 on	 advanced	 concepts	 of	 OO.	 Note	 that
besides	 Java	 these	 concepts	 are	 also	 commonly	 available	 in	 other	 OO
programming	languages	such	as	C++,	Python,	and	C#.

Retention	Questions

What	is	method	overloading	and	why	do	we	use	it?

Discuss	the	relationship	between	method	overriding	and	inheritance.

What	is	the	difference	between	static	and	dynamic	binding?

8.3	Basic	Principles	of	Object	Persistence

During	OO	program	execution,	a	distinction	can	be	made	between	transient	and
persistent	objects.	A	transient	object	 is	only	needed	during	program	execution
and	 can	 be	 discarded	when	 the	 program	 terminates.	 It	 only	 resides	 in	 internal
memory.	As	an	example,	 think	about	graphical	user	 interface	(GUI)	objects.	A
persistent	object	is	one	that	should	survive	program	execution.	Its	state	should
be	made	persistent	using	external	storage	media.	Consider	Employee	objects	or
Student	objects	created	and/or	manipulated	by	the	program.

Various	 strategies	 can	 ensure	 object	 persistence.	 Persistence	 by	 class
implies	 that	 all	 objects	 of	 a	 particular	 class	will	 be	made	 persistent.	Although
this	method	 is	simple,	 it	 is	 inflexible	because	 it	does	not	allow	a	class	 to	have
any	 transient	 objects.	 Persistence	 by	 creation	 is	 achieved	 by	 extending	 the
syntax	for	creating	objects	 to	 indicate	at	compile	 time	that	an	object	should	be
made	persistent.	Persistence	by	marking	implies	that	all	objects	will	be	created
as	 transient.	 An	 object	 can	 then	 be	 marked	 as	 persistent	 during	 program
execution	(at	runtime).	Persistence	by	inheritance	indicates	that	the	persistence
capabilities	are	inherited	from	a	predefined	persistent	class.	Finally,	persistence
by	 reachability	 starts	 by	 declaring	 the	 root	 persistent	 object(s).	 All	 objects
referred	to	(either	directly	or	indirectly)	by	the	root	object(s)	will	then	be	made
persistent	as	well.	This	strategy	is	adopted	by	the	Object	Database	Management
Group	(ODMG)	standard,	as	we	will	discuss	in	Section	8.4.2.

Ideally,	 a	 persistence	 environment	 should	 support	 persistence
orthogonality,	 which	 implies	 these	 properties:	 persistence	 independence,	 type
orthogonality,	 and	 transitive	 persistence.	 With	 persistence	 independence,	 the
persistence	 of	 an	 object	 is	 independent	 of	 how	 a	 program	manipulates	 it.	 The

same	code	 fragment	or	 function	can	be	used	with	both	persistent	 and	 transient
objects.	 Hence,	 the	 programmer	 does	 not	 need	 to	 explicitly	 control	 the
movement	 of	 objects	 between	main	memory	 and	 secondary	 storage	 as	 this	 is
automatically	 taken	care	of	by	the	system.	Type	orthogonality	ensures	 that	all
objects	 can	 be	 made	 persistent,	 despite	 their	 type	 or	 size.	 This	 prevents	 the
programmer	 from	 having	 to	write	 customized	 persistence	 routines	 and	 getting
sidetracked.	Finally,	transitive	persistence	 refers	 to	persistence	by	reachability
as	 we	 discussed	 earlier.	 An	 environment	 supporting	 persistence	 orthogonality
allows	for	improved	programmer	productivity	and	maintenance.

8.3.1	Serialization

Persistent	 programming	 languages	 were	 a	 first	 attempt	 to	 equip	 programming
languages	 with	 the	 ability	 to	 preserve	 data	 across	 multiple	 executions	 of	 a
program.	This	usually	boiled	down	 to	extending	an	OO	language	with	a	set	of
class	 libraries	 for	 object	 persistence.	 One	 approach	 to	 do	 so	 is	 by	 using	 a
mechanism	called	serialization,	which	translates	an	object’s	state	into	a	format
that	 can	be	 stored	 (for	 example,	 in	a	 file)	 and	 reconstructed	 later.	 In	 Java,	 this
can	be	accomplished	as	follows:1

public	class	EmployeeProgram	{
					public	static	void	main(String[]	args)	{
											Employee	Bart	=	new	Employee();
											Employee	Seppe	=	new	Employee();
											Employee	Wilfried	=	new	Employee();
											Bart.setName("Bart	Baesens");
											Seppe.setName("Seppe	vanden	Broucke");
											Wilfried.setName("Wilfried	Lemahieu");
											try	{
											FileOutputStream	fos	=	new	FileOutputStream("myfile.ser");
											ObjectOutputStream	out	=	new	ObjectOutputStream(fos);
											out.writeObject(Bart);
											out.writeObject(Seppe);
											out.writeObject(Wilfried);
											out.close;
											}
			catch	(IOException	e){e.printStackTrace();}
			}
}

The	above	program	creates	three	employee	objects	–	Bart,	Seppe,	and	Wilfried	–
and	sets	the	“name”	variable.	We	now	wish	to	make	all	three	objects	persistent.
The	ObjectOutputStream	class	will	serialize	an	object	to	a	file,	myfile.ser,	using
the	 writeObject	 method.	 The	 objects	 will	 be	 stored	 as	 a	 sequence	 of	 bytes,
including	the	object’s	variables	and	their	types.	Here,	Java	will	apply	persistence
by	reachability.	This	implies	that	if	the	employee	objects	would	have	references
to	 address	 objects,	 department	 objects,	 etc.	 then	 these	 will	 also	 be	 made
persistent	in	myfile.ser.	Once	stored,	the	object	can	be	deserialized	from	the	file
and	recreated	in	internal	memory	using	the	class	ObjectInputStream.

Serialization	 is	 one	 of	 the	 simplest	 strategies	 to	 achieve	 persistence.
However,	 this	 approach	 suffers	 from	 the	 same	 disadvantages	 as	 the	 file-based
approach	to	data	management,	as	discussed	in	Chapter	1	 (e.g.,	application-data
dependence,	 redundancy,	 inconsistent	 updates,	 no	 transaction	 support,	 etc.).
Another	significant	problem	relates	to	the	object	identity	that	is	lost.	Suppose	we
store	information	about	lecturer	and	course	objects.	Bart	and	Wilfried	both	teach
database	management,	whereas	Seppe	and	Bart	both	 teach	basic	programming.
This	can	be	visualized	in	the	object	graph	of	Figure	8.2.

Figure	8.2	Example	object	graph.

Assume	 we	 now	 serialize	 both	 the	 database	 management	 and	 basic
programming	 course	 objects.	 This	means	 the	 information	 for	 the	Bart	 lecturer
object	will	be	duplicated.	Upon	deserialization,	the	Bart	lecturer	object	will	also

be	 duplicated	 in	 internal	 memory,	 which	 can	 lead	 to	 inconsistencies	 when	 its
values	are	changed	during	program	execution.	Hence,	a	better	alternative	would
be	to	work	with	an	object-oriented	DBMS,	as	explained	in	what	follows.

Connections

Serialization	suffers	from	many	disadvantages	of	the	file-based	approach
to	data	management,	as	we	discussed	in	Chapter	1.

Retention	Questions

What	is	the	difference	between	a	transient	and	a	persistent	object?

What	strategies	can	be	adopted	to	ensure	object	persistence?

What	is	meant	by	persistence	orthogonality?

8.4	OODBMS

Object-oriented	DBMSs	 (OODBMS)	 store	 persistent	 objects	 in	 a	 transparent
way.	They	originated	as	 extensions	 to	object-oriented	programming	 languages,
such	 as	 C++	 and	 Smalltalk,	 which	 included	 class	 libraries	 to	 make	 objects
persistent.	These	libraries	were	then	gradually	extended	with	database	facilities,
such	 as	 querying,	 concurrency	 control,	 and	 transaction	 management.	 Initially,
since	 these	 libraries	and	extensions	were	programming	language-dependent,	no
universal	standard	(e.g.,	similar	to	SQL	in	relational	databases)	was	available	to
explain	the	heterogeneous	OODBMS	landscape.

OODBMSs	 support	 persistence	 orthogonality,	 whereby	 the	 same	 data
model	 is	 used	 for	 transient	 and	 persistent	 objects	 with	 no	 need	 to	 map	 to	 an
underlying	relational	structure.	They	come	with	all	the	facilities	of	a	traditional
DBMS,	 such	 as	 a	 data	 definition	 and	 data	 manipulation	 language,	 query
facilities,	 transaction	 management,	 concurrency	 control,	 backup	 and	 recovery
facilities,	etc.	OODBMSs	guarantee	the	ACID	properties	discussed	in	Chapter	1
for	all	persistent	objects.

Drill	Down

According	 to	 http://db-engines.com,	 the	 most	 popular	 OODBMSs	 are:
Caché	 (commercial),	 DB4o	 (open-source),	 ObjectStore	 (commercial),
Versant	Object	Database	(commercial),	and	Matisse	(commercial).	Note
that	none	of	 these	 ranks	 in	 the	 top	50	of	most	popular	DBMSs	used	 in
industry.	 This	 clearly	 indicates	 that	 OODBMSs	 are	 targeted	 at	 niche
applications.

http://db-engines.com

8.4.1	Object	Identifiers

In	 an	 OODBMS,	 every	 object	 has	 a	 unique	 and	 immutable	 object	 identifier
(OID),	which	it	keeps	during	its	entire	lifetime.	These	OIDs	are	used	to	uniquely
identify	an	object.	No	two	objects	can	have	the	same	identifier,	and	each	object
has	 only	 one	 identifier.	 An	 OID	 differs	 from	 a	 primary	 key	 in	 a	 relational
database	 setting.	A	primary	key	depends	upon	 the	 state	of	 a	 tuple,	whereas	an
OID	 is	 not	 dependent	 on	 an	 object’s	 state.	 A	 primary	 key	 can	 be	 updated,
whereas	an	OID	never	changes.	A	primary	key	has	a	unique	value	for	each	tuple
within	a	relation,	while	an	OID	is	unique	within	the	entire	OO	environment.

In	most	commercial	implementations,	the	OIDs	will	remain	invisible	to	the
user.	They	are	typically	system	generated.	The	OIDs	are	used	to	identify	objects
and	 to	 create	 and	 manage	 references	 between	 objects.	 The	 references	 can
implement	 relationship	 types,	 as	 discussed	 earlier.	 By	 using	 these	 OIDs,	 it
becomes	 possible	 that	 an	 object	 is	 shared	 by	 various	 other	 objects	 by	 simply
referring	to	its	OID.	This	reduces	the	number	of	updates	when	objects	have	their
variable	values	or	state	changed.	Because	of	the	extensive	use	of	these	OIDs,	the
OO	model	 is	 often	 called	 an	 identity-based	model.	 The	 relational	 model	 is	 a
value-based	model	 since	 it	uses	primary	and	 foreign	keys,	which	are	based	on
actual	data	values.

A	 difference	 can	 be	 made	 between	 object	 equality	 and	 object	 identity.
Two	objects	are	said	to	be	equal	when	the	values	of	their	variables	are	the	same.
However,	 this	 does	 not	 automatically	 imply	 that	 their	 OIDs	 are	 the	 same.	 A
further	distinction	can	be	made	between	shallow	and	deep	equality.	To	illustrate
both	 concepts,	 assume	 we	 have	 a	 purchase	 order	 object	 with	 some	 variables
including	 a	 list	 of	 references	 to	 OIDs	 of	 related	 purchase	 order	 line	 objects.
Shallow	equality	implies	that	two	purchase	order	objects	have	the	same	values

for	 their	 variables	 (e.g.,	 purchase	 order	 number,	 purchase	 order	 date,	 supplier
number,	etc.).	Deep	equality	 implies	 that	 two	purchase	 order	 objects	 have	 the
same	values	for	their	variables	and	all	their	referred	purchase	order	line	objects
have	the	same	values	for	their	variables.	Two	objects	are	said	to	be	identical	or
equivalent	when	their	OIDs	are	the	same.	Even	though	the	values	of	an	object’s
variables	may	change,	its	identity	always	remains.

8.4.2	ODMG	Standard

The	Object	Database	Management	Group	(ODMG)	was	formed	in	1991	by	a
group	of	OO	database	vendors	to	define	standards	for	working	with	OODBMSs.
Its	name	was	changed	to	Object	Data	Management	Group	in	1998	to	expand	its
coverage	 to	 both	 OODBMSs	 and	 object-relational	 mapping	 standards.	 The
primary	 goal	 was	 to	 promote	 portability	 and	 interoperability	 for	 object
persistence	by	introducing	a	data	definition	and	data	manipulation	language	for
OODBMSs,	 similar	 to	 the	 role	SQL	 fulfills	 toward	RDBMSs.	The	 application
developer	 should	 be	 able	 to	 use	 only	 one	 language	 for	 dealing	 with	 both
transient	and	persistent	objects.	The	group	 introduced	 five	subsequent	versions
of	the	standard,	the	most	recent	being	ODMG	3.0	in	2000	(!),	which	consists	of
these	key	components:

Although	 the	 group	 disbanded	 in	 2001,	many	 concepts	 and	 ideas	 put	 forward
have	been	implemented	in	modern	OODBMSs,	and	in	so-called	object-relational
mapping	frameworks.

object	model,	which	provides	a	standard	object	model	for	object-oriented
databases;

object	definition	language	(ODL),	which	specifies	object	definitions
(classes	and	interfaces);

object	query	language	(OQL),	which	allows	defining	SELECT	queries;

language	bindings	(e.g.,	for	C++,	Smalltalk,	and	Java),	which	allow
retrieval	and	manipulation	of	object	data	from	within	an	OO
programming	language.

8.4.3	Object	Model

The	object	model	serves	as	the	backbone	of	the	ODMG	standard.	It	provides	a
common	model	 to	 define	 classes,	 variables	 or	 attributes,	 behavior,	 and	 object
persistence.	Its	two	basic	building	blocks	are	objects	and	literals.	Contrary	to	an
object,	a	literal	has	no	OID	and	cannot	exist	on	its	own.	It	represents	a	constant
value	 and	 is	 typically	 embedded	 in	 an	 object.	 Three	 types	 of	 literals	 are
supported:	 atomic,	 collection,	 and	 structured	 literals.	 Examples	 of	 atomic
literals	are	short	(short	integer),	long	(long	integer),	double	(real	number),	float
(real	number),	boolean	(true	or	false),	char,	and	string.	A	collection	 literal	can
model	a	collection	of	elements.	ODMG	defines	the	following	collection	literals:

A	structured	literal	consists	of	a	fixed	number	of	named	elements.	ODMG
has	 predefined	 the	 following	 structured	 literals:	 date,	 interval,	 time,	 and
timestamp.	User-defined	structures	are	also	supported,	such	as	Address:

struct	Address{
string	street;
integer	number;
integer	zipcode;
string	city;
string	state;
string	country;

set:	unordered	collection	of	elements	without	duplicates;

bag:	unordered	collection	of	elements	which	may	contain	duplicates;

list:	ordered	collection	of	elements;

array:	ordered	collection	of	elements	indexed;

dictionary:	unordered	sequence	of	key–value	pairs	without	duplicates.

};

In	 contrast	 to	 literals,	 objects	 have	 an	OID.	 Their	 state	 is	 determined	 by
their	attributes	and	relationships,	whereas	their	behavior	 is	specified	by	several
operations.	 All	 ODMG	 objects	 implement	 a	 set	 of	 generic	 operations	 such	 as
“copy”	 (to	 create	 a	 copy	 of	 an	 object),	 “delete”	 (to	 remove	 an	 object),	 and
“same_as”	(to	compare	the	identity	of	two	objects),	which	have	been	defined	in
an	Object	 interface.	A	further	distinction	can	be	made	between	atomic	objects,
which	cannot	be	decomposed	in	a	meaningful	way;	structured	objects,	which	can
be	 built-in	 (e.g.,	 date,	 interval,	 time,	 timestamp,	 etc.)	 or	 user-defined;	 and
collection	objects.

8.4.4	Object	Definition	Language	(ODL)

The	object	definition	 language	(ODL)	 is	a	data	definition	 language	(DDL)	 to
define	 the	 object	 types	 that	 conform	 to	 the	 ODMG	 object	 model.	 It	 is
independent	 of	 any	 programming	 language.	 Similar	 to	 an	 SQL	 schema	 being
portable	across	RDBMSs,	an	ODL	schema	can	be	 implemented	using	multiple
ODMG-compliant	OODBMSs.

Here	 you	 can	 see	 an	 example	 ODL	 definition	 for	 the	 employee
administration	we	discussed	earlier:

class	EMPLOYEE
(extent	employees
	key	SSN)
{
attribute	string	SSN;
attribute	string	ENAME;
attribute	struct	ADDRESS;
attribute	enum	GENDER	{male,	female};
attribute	date	DATE_OF_BIRTH;
relationship	set<EMPLOYEE>	supervises
inverse	EMPLOYEE::	supervised_by;
relationship	EMPLOYEE	supervised_by
inverse	EMPLOYEE::	supervises;
relationship	DEPARTMENT	works_in
inverse	DEPARTMENT::	workers;
relationship	set<PROJECT>	has_projects
inverse	PROJECT::	has_employees;
string	GET_SSN();
void	SET_SSN(in	string	new_ssn);
…
}

class	MANAGER	extends	EMPLOYEE
(extent	managers)
{
attribute	date	mgrdate;
relationship	DEPARTMENT	manages
inverse	DEPARTMENT::	managed_by
}
class	DEPARTMENT
(extent	departments
	key	DNR)
{
attribute	string	DNR;
attribute	string	DNAME;
attribute	set<string>	DLOCATION;
relationship	set<EMPLOYEE>	workers
inverse	EMPLOYEE::	works_in;
relationship	set<PROJECT>	assigned_to_projects
inverse	PROJECT::	assigned_to_department;
relationship	MANAGER	managed_by
inverse	MANAGER::	manages;
string	GET_DNR();
void	SET_DNR(in	string	new_dnr);
…
}
class	PROJECT
(extent	projects
key	PNR)
{
attribute	string	PNR;
attribute	string	PNAME;
attribute	string	PDURATION;
relationship	DEPARTMENT	assigned_to_department
inverse	DEPARTMENT::	assigned_to_projects;

relationship	set<EMPLOYEE>	has_employees
inverse	EMPLOYEE::	has_projects;
string	GET_PNR();
void	SET_PNR(in	string	new_pnr);
}

A	class	is	defined	using	the	keyword	“class”.	The	“extent”	of	a	class	is	the	set	of
all	 current	 objects	 of	 the	 class.	 A	 variable	 is	 declared	 using	 the	 keyword
“attribute”.	An	attribute’s	value	can	be	either	a	literal	or	an	OID.	Operations	or
methods	can	be	defined	by	 their	name	followed	by	parentheses.	The	keywords
“in”,	“out”,	 and	 “inout”	 are	 used	 to	 define	 the	 input,	 output,	 and	 input/output
parameters	of	 the	method.	The	 return	 types	are	also	 indicated,	whereby	“void”
indicates	 that	 the	 method	 returns	 nothing.	 To	 support	 the	 concept	 of
encapsulation,	 it	 is	 recommended	 to	 add	 getter	 and	 setter	 methods	 for	 each
attribute.	 Only	 the	 operations’	 signatures	 are	 defined;	 their	 implementation	 is
provided	through	the	language	bindings,	as	we	will	discuss	in	what	follows.	The
“extends”	 keyword	 indicates	 the	 generalization	 relationship	 between
MANAGER	and	EMPLOYEE.	Remember	that	a	subclass	inherits	the	attributes,
relationships,	and	operations	from	the	superclass.	In	ODMG	a	class	can	have	at
most	one	superclass,	so	no	multiple	inheritance	of	classes	is	supported.2

Relationships	can	be	defined	using	the	keyword	“relationship”.3	Only	unary
and	binary	relationships	with	cardinalities	of	1:1,	1:N,	or	N:M	are	supported	in
ODMG.	 Ternary	 (or	 higher)	 relationships	 and	 relationship	 attributes	 must	 be
decomposed	by	introducing	extra	classes	and	relationships.	Every	relationship	is
defined	in	a	bidirectional	way,	using	the	keyword	“inverse”	through	which	both
directions	 have	 names	 assigned	 to	 facilitate	 navigation.	 For	 example,	 consider
the	following	1:N	relationship	between	EMPLOYEE	and	DEPARTMENT:

relationship	DEPARTMENT	works_in

inverse	DEPARTMENT::	workers;

The	 name	 “works_in”	 will	 be	 used	 to	 navigate	 from	 EMPLOYEE	 to
DEPARTMENT,	whereas	the	name	“workers”	is	the	inverse	relationship	used	to
navigate	from	DEPARTMENT	to	EMPLOYEE.	The	latter	then	becomes:

relationship	set<EMPLOYEE>	workers
inverse	EMPLOYEE::	works_in;

Since	 a	 department	 can	 have	multiple	 employees,	we	 used	 a	 set	 to	model	 the
collection	of	employees	working	in	a	department.	Other	collection	types	such	as
a	bag	or	list	can	also	implement	the	relation.	For	example,	a	list	could	be	useful
if	we	want	to	order	the	employees	based	on	their	age.

An	N:M	relationship	can	be	implemented	by	defining	collection	types	(set,
bag,	 etc.)	 in	 both	 classes	 participating	 in	 the	 relationship.	 Consider	 this	 N:M
relationship	between	EMPLOYEE	and	PROJECT:

relationship	set<PROJECT>	has_projects
inverse	PROJECT::	has_employees;
relationship	set<EMPLOYEE>	has_employees
inverse	EMPLOYEE::	has_projects;

This	 contrasts	 with	 the	 relational	 model,	 where	 a	 new	 relation	 must	 be
introduced.

Based	upon	 the	 relationships	defined,	 the	OODBMS	will	 take	care	of	 the
referential	 integrity	 by	 ensuring	 that	 both	 sides	 of	 the	 relationship	 remain
consistent.	For	example,	when	adding	a	project	 to	 the	 set	“has_projects”	 of	 an
employee,	the	OODBMS	will	also	add	the	employee	to	the	set	“has_employees”
of	the	corresponding	project.

8.4.5	Object	Query	Language	(OQL)

Object	query	language	(OQL)	is	a	declarative,	non-procedural	query	language.
It	 is	based	upon	the	SQL	SELECT	syntax	combined	with	OO	facilities	such	as
dealing	 with	 object	 identity,	 complex	 objects,	 path	 expressions,	 operation
invocation,	 polymorphism,	 and	 dynamic	 binding.	 It	 can	 be	 used	 for	 both
navigational	(procedural)	and	associative	(declarative)	access.

8.4.5.1	Simple	OQL	Queries

A	navigational	query	explicitly	navigates	from	one	object	to	another.	Here,	the
application	program	is	responsible	for	explicitly	specifying	the	navigation	paths.
This	 makes	 it	 similar	 to	 procedural	 database	 languages	 that	 came	 with
hierarchical	 and	 CODASYL	 DBMSs,	 discussed	 in	 Chapter	 5.	 A	 navigational
OQL	query	can	start	from	a	named	object.	Assume	we	have	an	Employee	object
named	Bart.	The	following	OQL	query:

Bart.DATE_OF_BIRTH

returns	the	date	of	birth	of	Bart	as	a	literal.
If	we	are	interested	in	the	address,	we	can	write:

Bart.ADDRESS

which	returns	the	address	of	Employee	object	Bart	as	a	structure.	If	we	are	only
interested	in	the	city,	the	query	can	be	refined	to:

Bart.ADDRESS.CITY

Note	how	we	use	the	dot	operator	(.)	for	navigation.

An	 associative	 query	 returns	 a	 collection	 (e.g.,	 a	 set	 or	 bag)	 of	 objects
located	by	the	OODBMS.	We	can	also	start	from	the	extent,	which	represents	the
set	of	all	persistent	objects	of	a	class.	The	most	straightforward	associative	OQL
query	then	simply	retrieves	all	objects	of	an	extent:

employees

8.4.5.2	SELECT	FROM	WHERE	OQL	Queries

If	 we	 want	 more	 specific	 information,	 we	 can	 write	 an	 OQL	 query	 with	 the
following	syntax:

SELECT…	FROM	…	WHERE

As	with	SQL,	the	SELECT	clause	indicates	the	information	we	are	interested	in.
The	 FROM	 clause	 refers	 to	 the	 extent(s)	 where	 the	 information	 should	 be
retrieved	 from.	The	WHERE	clause	can	define	specific	conditions.	By	default,
an	OQL	query	returns	a	bag.	If	the	keyword	DISTINCT	is	used,	a	set	is	returned.
Queries	with	ORDER	BY	return	a	list.	Associative	OQL	queries	can	also	include
navigation	paths.

Consider	the	following	example:

SELECT	e.SSN,	e.ENAME,	e.ADDRESS,	e.GENDER
FROM	employees	e
WHERE	e.ENAME="Bart	Baesens"

This	 query	 returns	 the	 SSN,	 name,	 address,	 and	 gender	 of	 all	 objects	 of	 the
extent	 employees	 where	 the	 name	 is	 equal	 to	 “Bart	 Baesens”.	 Note	 that	 the
extent	employees	has	been	bound	to	a	variable	e	as	a	shortcut	notation.

Suppose	now	that	the	Employee	class	has	a	method	age	that	calculates	the
age	 of	 an	 employee	 based	 upon	 the	 date	 of	 birth.	 We	 can	 then	 extend	 our

previous	query:

SELECT	e.SSN,	e.ENAME,	e.ADDRESS,	e.GENDER,	e.age
FROM	employees	e
WHERE	e.ENAME="Bart	Baesens"

Besides	literal	values,	an	OQL	query	can	also	return	objects:

SELECT	e
FROM	employees	e
WHERE	e.age	>	40

The	above	query	will	return	a	bag	of	employee	objects	whose	age	is	above	40.

8.4.5.3	Join	OQL	Queries

Just	 as	 in	 SQL,	multiple	 classes	 can	 be	 joined.	 This	 can	 be	 accomplished	 by
traversing	 the	 paths	 as	 defined	 in	 the	 ODL	 schema.	 The	 following	 query
retrieves	all	information	of	employees	working	in	the	ICT	department.

SELECT	e.SSN,	e.ENAME,	e.ADDRESS,	e.GENDER,	e.age
FROM	employees	e,	e.works_in	d
WHERE	d.DNAME="ICT"

The	 variable	 d	 gets	 bound	 to	 the	 department	 object	 based	 upon	 following	 the
path	 e.works_in.	Contrary	 to	SQL,	you	 can	 see	no	 join	 condition.	 Instead,	 the
traversal	 path	 e.works_in	 ensures	 the	 correct	 department	 information	 is	 used.
Multiple	 traversal	paths	 can	be	used	 in	 an	OQL	query.	Consider	 the	 following
query:

SELECT	e1.ENAME,	e1.age,	d.DNAME,	e2.ENAME,	e2.age
FROM	employees	e1,	e1.works_in	d,	d.managed_by	e2

WHERE	e1.age	>	e2.age

This	query	selects	the	name	and	age	of	all	employees	with	a	younger	manager,
the	name	of	the	department	they	work	in,	and	the	name	and	age	of	their	manager.

8.4.5.4	Other	OQL	Queries

Like	 SQL,	 OQL	 provides	 support	 for	 subqueries,	 GROUP	 BY/HAVING,	 and
aggregate	 operators	 such	 as	 COUNT,	 SUM,	 AVG,	 MAX,	 and	 MIN.	 For
example,	the	number	of	employees	can	be	determined	using	this	simple	query:

count(employees)

The	 EXISTS	 operator	 can	 also	 be	 used.	 The	 following	 query	 retrieves
information	about	employees	working	on	at	least	one	project:

SELECT	e.SSN,	e.ENAME
FROM	employees	e
WHERE	EXISTS	e	IN	(SELECT	x	FROM	projects	p	WHERE	
p.has_employees	x)

Suppose	both	the	EMPLOYEE	and	MANAGER	class	each	have	their	own
operation	salary().	Consider	this	OQL	query:

SELECT	e.SSN,	e.ENAME,	e.salary
FROM	employees	e

This	 query	 will	 calculate	 the	 salary	 for	 all	 employee	 objects.	 Thanks	 to
polymorphism	 and	 dynamic	 binding,	 the	 correct	 implementation	 of	 the	 salary
method	 will	 be	 invoked	 at	 runtime	 for	 both	 MANAGER	 and	 regular
EMPLOYEE	objects.

The	OQL	language	provides	no	explicit	support	for	INSERT,	UPDATE,	and
DELETE	 operations.	 These	 have	 to	 be	 directly	 implemented	 in	 the	 class
definitions	instead,	as	discussed	in	Section	8.4.6.

8.4.6	Language	Bindings

A	key	 difference	 between	 relational	 and	OO	 database	management	 systems	 is
that	 the	 latter	 cannot	 be	 used	 without	 a	 particular	 programming	 language.
ODMG	 language	 bindings	 provide	 implementations	 for	 the	 ODL	 and	 OQL
specifications	in	popular	OO	programming	languages	such	as	C++,	Smalltalk,	or
Java.	 The	 object	 manipulation	 language	 (OML)	 is	 kept	 language-specific	 to
accomplish	a	 full	 and	 transparent	handling	of	both	 transient	objects	 in	 internal
memory,	and	persistent	objects	in	the	database.	As	mentioned	before,	the	goal	is
that	 the	 programmer	 can	 use	 only	 one	 language	 transparently	 for	 both
application	development	and	database	manipulation.

For	the	Java	language	binding,	for	instance,	this	goal	entails	that	Java’s	type
system	 will	 also	 be	 used	 by	 the	 OODBMS,	 that	 the	 Java	 language	 syntax	 is
respected	 (and	 therefore	 should	 not	 be	 modified	 to	 accommodate	 the
OODBMS),	and	that	the	OODBMS	should	handle	management	aspects	based	on
Java’s	object	 semantics.	For	 instance,	 the	OODBMS	should	be	 responsible	 for
persisting	 objects	when	 they	 are	 referenced	 by	 other	 persistent	 objects;	 this	 is
what	we	called	persistence	by	reachability	earlier	in	this	chapter.

The	ODMG	Java	language	binding	describes	two	core	ways	to	indicate	that
a	Java	class	should	be	persistence-capable:	either	existing	Java	classes	are	made
persistence-capable,	or	Java	class	definitions	are	generated	from	the	ODL	class
definitions.	 The	ODMG	 Java	API	 is	 contained	 in	 the	 package	 org.odmg.	 The
entire	 API	 consists	 of	 interfaces,	 so	 the	 actual	 implementation	 is	 up	 to	 the
OODBMS	 vendor,	 with	 the	 implementation	 of	 the	 org.odmg.Implementation
interface	forming	the	main	entry	point	for	the	client	application	and	exposing	the
methods	listed	in	Table	8.1.

Table	8.1	Methods	of	the	org.odmg.Implementation	interface

Method Meaning

org.odmg.Transaction	currentTransaction() Get	the	current	Transaction	for
the	thread.

org.odmg.Database
getDatabase(java.lang.Object	obj)

Get	the	Database	that	contains
the	object	obj.

java.lang.String
getObjectId(java.lang.Object	obj)

Get	a	String	representation	of
the	object’s	identifier.

org.odmg.DArray	newDArray() Create	a	new	DArray	object.

org.odmg.Database	newDatabase() Create	a	new	Database	object.

org.odmg.DBag	newDBag() Create	a	new	DBag	object.

org.odmg.DList	newDList() Create	a	new	DList	object.

org.odmg.DMap	newDMap() Create	a	new	DMap	object.

org.odmg.DSet	newDSet() Create	a	new	DSet	object.

org.odmg.OQLQuery	newOQLQuery() Create	a	new	OQLQuery
object.

org.odmg.Transaction	newTransaction() Create	a	Transaction	object.

For	the	mapping	of	the	ODMG	object	model	to	Java,	an	ODMG	object	type
maps	 into	 a	 Java	 object	 type.	 The	ODMG	 atomic	 literal	 types	map	 into	 their
respective	Java	primitive	types.	There	are	no	structured	literal	types	in	the	Java
binding.	The	object	model	definition	of	a	structure	maps	into	a	Java	class.	The
Java	 binding	 also	 includes	 several	 collection	 interfaces	 (DMap,	 DSet)	 that
extend	their	respective	Java	counterparts.

The	following	code	snippet	provides	an	example	of	using	the	ODMG	Java
language	binding	(note	that	age	is	now	considered	as	an	attribute	and	no	longer
as	a	method	for	what	follows):

import	org.odmg.*;
import	java.util.Collection;
//	org.odmg.Implementation	as	implemented	by	a	particular	vendor:
Implementation	impl	=	new	com.example.odmg-
vendor.odmg.Implementation();
Database	db	=	impl.newDatabase();
Transaction	txn	=	impl.newTransaction();
try	{
					db.open("my_database",	Database.OPEN_READ_WRITE);
					txn.begin();
					OQLQuery	query	=	new	OQLQuery(
													"select	e	from	employees	e	where	e.lastName	=	
\"Lemahieu\"");
					Collection	result	=	(Collection)	query.execute();
					Iterator	iter	=	result.iterator();
					while	(iter.hasNext()){
													Employee	employee	=	(Employee)	iter.next();
													//	Update	a	value
													employee.age	+=	1;
					}
					txn.commit();
					db.close();
}	catch	(Exception	e)	{}

This	code	starts	by	creating	an	ODMG	implementation	object	which	is	then
used	to	construct	a	database	object.	We	open	the	database	my_database	for	read
and	write	 access	 and	 initiate	 a	 transaction.	An	OQL	query	object	 is	defined	 to
retrieve	 all	 EMPLOYEE	 objects	 of	 employees	 whose	 last	 name	 is	 Lemahieu.

The	query	is	then	executed	and	the	results	stored	in	a	collection	object.	Next,	an
iterator	object	is	defined	to	loop	through	the	collection	of	query	results.	For	each
employee	in	the	collection,	the	age	is	increased	by	one	unit.4	The	transaction	is
then	 committed,	 implying	 that	 the	 updates	 are	 made	 persistent.	 The	 database
object	is	then	properly	closed.

Retention	Questions

Drill	Down

Delta	Airlines	 serves	more	 than	170	million	customers	per	year.	 In	 the
event	of	irregular	operations	(e.g.,	due	to	severe	weather),	Delta	needs	an
efficient	application	to	reroute	crew	members,	and	for	this	they	need	to
process	 a	 huge	 load	 of	 data	 in	 real-time.	 Efficient	 caching	 that	 allows
quick	saving	and	retrieval	of	objects	is	essential	for	this.	Delta	wanted	a
solution	that	was	capable	of	storing	C++	objects	in	a	persistent	way	and
retrieving	 them	 like	 regular	 objects	with	 no	 intermediate	mapping	 that
would	hamper	the	performance.	For	this,	they	turned	to	OODBMSs	and
used	ObjectStore.

What	are	object	identifiers	and	why	are	they	needed	in	an	OODBMS?

What	are	the	key	components	of	the	ODMG	standard?

Discuss	the	ODMG	object	model.

Contrast	ODMG	ODL	against	SQL	DDL.

What	types	of	queries	can	be	solved	using	ODMG	OQL?	How	is	it
different	from	queries	in	SQL?

8.5	Evaluating	OODBMSs

OODBMSs	 offer	 several	 advantages.	 First,	 they	 store	 complex	 objects	 and
relationships	 in	 a	 transparent	 way.	 The	 identity-based	 approach	 allows	 for
improved	 performance	 when	 performing	 complex	 queries	 involving	 multiple
interrelated	objects,	avoiding	expensive	joins.	By	using	the	same	data	model	as
the	 programming	 language	 to	 develop	 database	 applications,	 the	 impedance
mismatch	 problem	 is	 no	 longer	 an	 issue.	 In	 addition,	 developers	 can	 be	more
productive	as	they	are	confronted	with	only	a	single	language	and	data	model.

Still,	 the	 success	 of	 OODBMSs	 has	 been	 limited	 to	 niche	 applications
characterized	 by	 complex,	 nested	 data	 structures	 where	 an	 identity-based,
instead	 of	 value-based,	 method	 of	 working	 pays	 off.	 An	 example	 is	 the
processing	 of	 scientific	 datasets	 by	 CERN	 in	 Switzerland,	 where	 data	 access
follows	predictable	patterns.	The	widespread	use	and	performance	of	RDBMSs,
however,	 proved	 hard	 to	 displace:	 the	 (ad-hoc)	 query	 formulation	 and
optimization	procedures	of	OODBMSs	are	often	inferior	to	relational	databases,
which	 all	 adopt	 SQL	 as	 their	 primary	 database	 language	 combined	 with	 a
powerful	query	optimizer.	When	compared	to	RDBMSs,	OODBMSs	are	not	as
well	developed	 in	 terms	of	 robustness,	security,	scalability,	and	fault	 tolerance.
They	 also	 do	 not	 provide	 a	 transparent	 implementation	 of	 the	 three-layer
database	architecture.	More	specifically,	most	OODBMSs	provide	no	support	for
defining	external	database	models,	such	as	views	in	the	relational	model.

In	 addition,	 despite	 efforts	 made	 by	 the	 ODMG,	 the	 uniform	 standards
proposed	were	not	widely	 implemented	by	vendors,	who	were	quick	 to	 realize
that	 the	 concepts	 of	 an	 OODBMS	 and	 object	 persistence	 as	 such	 are	 not	 the
same,	 hence	 the	 name	 change	 from	 ODMG	 to	 the	 Object	Data	 Management

Group	 (still	 abbreviated	 ODMG)	 in	 1998.	 The	 aim	 was	 to	 focus	 on	 the
standardization	 of	 an	 API	 for	 object	 persistence,	 still	 according	 to	 the	 same
ODMG	 principles,	 regardless	 of	 whether	 the	 underlying	 data	 store	 was	 an
RDBMS	 or	 an	 OODBMS.	 In	 hindsight,	 this	 is	 probably	 the	 most	 important
contribution	of	the	ODMG,	even	though	the	standard	itself	was	abandoned	over
time.

The	ODMG	effort	inspired	the	creation	of	a	series	of	persistence	APIs	for
the	Java	programming	 language	(which	we	extensively	discuss	 in	Chapter	15),
which	 are	 the	 APIs	 used	 by	 most	 OODBMSs	 today,	 rather	 than	 the	 ODMG
standard.	However,	most	mainstream	database	applications	will	typically	be	built
using	an	OO	programming	language	in	combination	with	an	RDBMS.	In	such	an
environment,	 a	 persistence	 API	 works	 with	 an	 object-relational	 mapping
(ORM)	framework,	which	is	used	as	middleware	to	facilitate	the	communication
between	both	environments:	 the	OO	host	 language	and	the	RDBMS.	An	ORM
framework	 tackles	 the	 impedance	 problem	 between	 an	OO	 application	 and	 an
RDBMS	 by	 directly	 mapping	 objects	 to	 relational	 concepts	 and	 vice	 versa.
Every	object	that	needs	to	be	made	persistent	can	be	mapped	by	the	ORM	to	one
or	 more	 tuples	 in	 a	 relational	 database	 without	 having	 to	 implement	 vendor-
specific	 interfaces	 or	 classes.	 The	 ORM	 provides	 full	 support	 of	 all	 CRUD
(create,	read,	update,	and	delete)	database	operations.	A	key	advantage	of	using
an	object-relational	mapper	is	that	the	developer	does	not	need	to	understand	and
master	all	details	of	relational	database	design	and	advanced	SQL	query	tuning.
This	 allows	 the	 developer	 to	 focus	 on	 the	 OO	 paradigm	 only.	 All	 database
interactions	 are	 directly	 handled	 and	 optimized	 by	 the	 ORM,	 whereas	 the
developer	 is	 solely	confronted	with	objects	and	OO	concepts.	 Ideally,	 this	will
result	 in	more	compact	application	code,	a	potential	decrease	 in	database	calls,
more	efficient	queries,	and	greater	portability	across	database	platforms.

Different	ORM	implementations	exist	for	various	programming	languages,
with	Hibernate	being	one	of	the	most	popular	choices	for	the	Java	programming
language,	providing	support	 for	most	commercial	 relational	database	platforms
such	 as	MySQL,	Oracle,	 Sybase,	 and	 others.	 Figure	 8.3	 provides	 a	 high-level
outline	of	the	Hibernate	architecture.	We	elaborate	each	of	these	components	in
more	detail	in	Chapters	10	and	15.

Figure	8.3	Hibernate	architecture.

One	key	distinction	to	remember	between	ORM	and	OODBMSs	is	that	the
ORM	 acts	 as	 a	 middleware	 layer	 between	 a	 relational	 DBMS	 and	 a	 host
language,	 which	 follows	 an	OO	 paradigm.	 The	 usage	 of	 an	ORM	 framework
should	be	regarded	as	a	more	advanced	form	of	relational	database	access.

Connections

Chapter	15	deals	with	database	access	and	APIs	in	depth,	and	will	revisit
the	 concept	 of	 object-relational	 mapping	 in	 more	 detail.	 Chapter	 10

covers	XML,	which	can	define	the	mappings	as	illustrated	in	Figure	8.3.

Summary

In	this	chapter	we	started	by	reviewing	the	basic	concepts	of	object	orientation.
This	was	 followed	 by	 a	 discussion	 of	 advanced	OO	 concepts	 such	 as	method
overloading,	 inheritance,	 method	 overriding,	 polymorphism,	 and	 dynamic
binding,	all	illustrated	in	Java.	We	then	introduced	the	basic	principles	of	object
persistence	 and	 reviewed	 serialization	 as	 a	 first	 attempt	 to	 equip	programming
languages	 with	 the	 ability	 to	 preserve	 data	 across	 multiple	 executions	 of	 a
program.	This	brought	us	to	OODBMSs,	where	we	started	by	introducing	object
identifiers,	which	 play	 a	 key	 role	 in	 identifying	 objects.	 The	ODMG	 standard
was	 covered	 next,	 and	 we	 discussed	 its	 object	 model,	 the	 object	 definition
language	 (ODL),	 the	 object	 query	 language	 (OQL)	 and	 its	 implementation
through	language	bindings.	We	concluded	with	a	critical	 review	of	OODBMSs
by	 contrasting	 them	 to	 RDBMSs	 and	 introducing	 object-relational	 mapping
frameworks	(ORMs).

Scenario	Conclusion

Now	 that	 Sober	 understands	 the	 basic	 principles	 of	 OO,	 object
persistence,	 and	OODBMSs,	 it	 can	 properly	weigh	 the	 benefits	 versus
risks	of	these	technologies.	Although	the	company	was	initially	charmed
by	 the	 ability	 to	model	 complex	 objects,	 they	 considered	 the	 lack	 of	 a
good	 and	 easy-to-use	 query	 language	 (compared	 to,	 e.g.,	 SQL	 in
RDBMSs)	 combined	 with	 the	 absence	 of	 a	 transparent	 three-layer
database	architecture	as	 the	main	motivation	 to	not	pursue	any	of	 these

technologies	 at	 the	moment.	 Sober	may,	 however,	 reconsider	 this	 once
they	have	grown	into	a	mature	data-aware	organization.

Key	Terms	List

accessor	methods

associative	query

atomic	literal

collection	literal

constructor

deep	equality

dynamic	binding

encapsulation

implementation

information	hiding

inheritance

interface

literal

method	overloading

method	overriding

navigational	query

Object	Data	Management	Group

object	definition	language	(ODL)

object	equality

object	identifier	(OID)

object	identity

object	model

object	query	language	(OQL)

object-relational	mapping	(ORM)

object-oriented	(OO)

object-oriented	DBMS	(OODBMS)

persistence	by	class

persistence	by	creation

persistence	by	inheritance

persistence	by	marking

persistence	by	reachability

persistence	independence

persistence	orthogonality

persistent	object

polymorphism

serialization

shallow	equality

static	binding

structured	literal

transient	object

transitive	persistence

type	orthogonality

Review	Questions

8.1.	Which	of	the	following	statements	is	not	correct?

a.	Objects	are	blueprints	of	classes.	“Human”,	“Employee”,	and
“Sale”	are	examples	of	objects.

b.	Objects	are	instances	of	classes.	The	people	“Bart	Baesens”,
“Wilfried	Lemahieu”,	and	“Seppe	vanden	Broucke”	could	be	instances
of	the	class	“Person”.

c.	Objects	store	both	a	piece	of	information	and	ways	to	manipulate
this	information.

d.	A	class	can	be	instantiated	into	several	objects.

8.2.	Which	statement	about	“Encapsulation”	is	correct?

a.	Encapsulation	refers	to	storing	a	value	in	a	variable,	and	never
changing	it	again.	This	way	its	value	is	safe	forever.

b.	Encapsulation	refers	to	storing	a	value	variable,	and	making	it
impossible	to	retrieve	it.

c.	Encapsulation	refers	to	controlling	the	way	a	variable	is	accessed	by
forcing	users	to	use	getter/setter	methods	that	prevent	misuse	of	the
variable.

d.	Encapsulation	implies	that	the	methods	of	a	class	are	not	accessible
to	the	other	classes.

8.3.	In	Java,	what	is	method	overloading?

a.	Putting	so	much	code	in	a	method	that	its	functionality	becomes
hard	to	understand.

b.	Using	two	methods	with	the	same	name,	but	a	different	number
(and/or	different	type)	of	arguments.

c.	Offering	the	user	of	your	class	all	possible	methods	that	he/she
would	like	to	perform	on	the	variables	the	class	offers.

d.	Making	sure	that	every	method	uses	all	variables	of	the	class.

8.4.	Which	statement	is	correct?

a.	Dynamic	binding	means	that	objects	are	allowed	to	take	the	form	of
either	the	class	they	are	an	instance	of,	or	any	of	its	subclasses.

b.	In	an	inheritance	structure	with	a	parent	class	“Animal”	and
subclass	“Chicken”	at	most	one	of	these	classes	is	allowed	to	have	a
method	with	the	name	“makeNoise”.

c.	Different	subclasses	of	a	parent	class	can	all	have	different
implementations	of	methods	with	the	same	name,	number	of
parameters,	and	parameter	types.

d.	Static	binding	occurs	at	runtime	whereas	dynamic	binding	occurs	at
compile	time.

8.5.	Objects	should	be	made	persistent	when…

a.	you	need	them	over	multiple	program	executions.

b.	you	only	need	them	during	one	program	execution,	and	then	never
again.

8.6.	Which	statement	is	not	correct?

a.	Persistence	by	marking	implies	that	all	objects	will	be	created	as
persistent.	An	object	can	then	be	marked	as	transient	at	compile	time.

b.	Persistence	by	class	implies	that	all	objects	of	a	particular	class	will
be	made	persistent.

c.	Persistence	by	creation	is	achieved	by	extending	the	syntax	for
creating	objects	to	indicate	at	compile	time	that	an	object	should	be
made	persistent.

d.	Persistence	by	inheritance	indicates	that	the	persistence	capabilities
are	inherited	from	a	predefined	persistent	class.

8.7.	Which	statement	about	object	identifiers	(OIDs)	is	correct?

a.	The	OID	of	an	object	remains	the	same	during	the	entire	lifetime	of
the	object.

b.	An	OID	is	the	same	as	a	primary	key	in	a	relational	database
setting.

c.	Two	objects	with	the	same	values	always	have	the	same	OID.

d.	Each	literal	is	defined	by	an	OID	according	to	the	ODMG	standard.

8.8.	Which	of	the	following	statements	about	ODL	is	correct?

a.	ODL	is	only	optimized	for	Java	objects.

b.	The	extent	of	a	class	is	the	set	of	all	current	instances.

c.	Many-to-many	relationships	cannot	be	expressed	using	ODL.

d.	Unary,	binary,	and	ternary	relationships	are	supported	in	ODL.

8.9.	What	statement	about	OQL	is	not	correct?

a.	OQL	is	a	declarative,	non-procedural	query	language.

b.	Join	queries	are	not	supported	in	OQL.

c.	OQL	can	be	used	for	both	navigational	(procedural)	as	well	as
associative	(declarative)	access.

d.	The	OQL	language	provides	no	explicit	support	for	INSERT,
UPDATE,	and	DELETE	operations.

8.10.	What	is	not	an	advantage	of	OODBMSs?

a.	They	allow	storing	objects	and	relationships	in	a	transparent	way.

b.	They	solve	the	impedance	mismatch	problem	by	using	the	same
data	model	as	the	programming	language.

c.	Scalability	and	fault	tolerance	of	OODBMSs	is	far	better	than	that
of	their	relational	counterparts.

d.	The	identity-based	approach	allows	for	improved	performance
when	performing	complex	queries	involving	multiple	interrelated
objects,	avoiding	expensive	joins.

Problems	and	Exercises

8.1E	What	is	the	relationship	between	polymorphism	and	dynamic	binding?
Illustrate	with	an	example.

8.2E	Discuss	various	strategies	to	ensure	object	persistence.	When	would	you
use	what	strategy?	What	are	the	key	properties	a	persistence	environment	should
support?

8.3E	What	are	object	identifiers?	Why	are	they	used	by	OODBMSs?	What	is	the
difference	with	primary	keys	in	an	RDBMS?

8.4E	What	are	literals	in	the	ODMG	model?	What	types	of	literals	are
supported?	How	are	literals	mapped	in	Java?	Illustrate	with	examples.

8.5E	What	types	of	relationships	and	cardinalities	are	supported	in	ODMG?

8.6E	Contrast	OQL	with	SQL.

8.7E	Explain	the	following	query	in	detail.

SELECT	e1.ENAME,	e1.age,	d.DNAME,	e2.ENAME,	e2.age
FROM	employees	e1,	e1.works_in	d,	d.managed_by	e2
WHERE	e1.age	>	e2.age

How	would	you	solve	a	similar	query	in	SQL?

8.8E	Contrast	OODBMSs	versus	RDBMSs	in	terms	of:

1	We	assume	the	Employee	class	implements	the	java.io.Serializable
interface,	which	is	part	of	the	java.io	package.

2	Similar	to	Java,	ODMG	does	support	multiple	inheritance	of	interfaces.

3	A	relationship	in	the	ODMG	standard	corresponds	to	what	we	called	a
relationship	type	in	the	(E)ER	model.

4	For	the	sake	of	this	illustration,	we	assume	that	age	is	defined	as	an	attribute
here	and	not	as	a	method.

handling	of	complex	objects;

query	performance;

implementation	of	the	three-layer	database	architecture;

adoption	in	industry.

9

Extended	Relational	Databases
◈

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

Opening	Scenario

Now	 that	 Sober	 has	 decided	 to	 continue	with	 its	 relational	model,	 the
company	 was	 wondering	 whether	 it	 could	 enrich	 it	 with	 some	 smart
extensions.	 It	 wondered	 whether	 it	 would	 be	 possible	 to	 make	 the
RDBMS	more	 active	 so	 it	 can	 autonomously	 take	 initiative	 for	 action

identify	the	shortcomings	of	the	relational	model;

define	and	use	triggers	and	stored	procedures;

understand	how	RDBMSs	can	be	extended	with	OO	concepts	such	as
user-defined	types,	user-defined	functions,	inheritance,	behavior,
polymorphism,	collection	types,	and	large	objects;

define	and	use	recursive	SQL	queries.

when	 case-specific	 situations	 occur.	 Although	 Sober	 was	 not	 entirely

convinced	about	OODBMSs	and	decided	not	to	continue	with	them,	they
appreciate	 some	 of	 the	 OO	 concepts	 introduced.	 They	 are	 wondering
whether	 it	 would	 be	 possible	 to	 have	 a	 best-of-both-worlds	 approach,
whereby	 they	could	enrich	 their	 relational	model	with	 some	of	 the	OO
concepts	they	learned	about.

In	this	chapter,	we	revisit	RDBMSs,	which	are	very	popular	in	industry.	We	start
by	 refreshing	 the	 key	 building	 blocks	 of	 the	 relational	 model	 and	 discuss	 its
limitations.	We	then	look	at	the	ways	of	extending	relational	databases,	starting
with	reviewing	triggers	and	stored	procedures	as	two	key	mechanisms	to	make
RDBMSs	 more	 active.	 Next,	 we	 introduce	 object-relational	 DBMSs
(ORDBMSs).	In	contrast	to	the	OODBMSs	in	Chapter	8,	ORDBMSs	build	on	a
relational	 engine,	 but	 they	 extend	 RDBMSs	 with	 object-oriented	 (OO)
characteristics.	 We	 conclude	 with	 recursive	 queries,	 which	 are	 a	 powerful
extension	to	the	SQL	language.

9.1	Limitations	of	the	Relational	Model

The	relational	data	model,	and	the	RDBMS	implementations	thereof,	have	been
very	 successful	 for	 managing	 well-structured	 numerical	 and	 alphanumerical
data.	 One	 of	 the	 major	 reasons	 for	 this	 is	 the	 mathematical	 simplicity	 and
soundness	 of	 the	 relational	 model.	 As	 discussed	 in	 Chapter	 6,	 its	 two	 key
building	blocks	 are	 tuples	 and	 relations.	A	 tuple	 is	 a	 composition	of	 values	of
attribute	 types	 that	 describe	 an	 entity.	 It	 can	 be	 created	 by	 using	 a	 tuple
constructor.	A	relation	is	a	mathematical	set	of	tuples	describing	similar	entities.
It	can	be	created	by	using	a	set	constructor.	As	also	mentioned	in	Chapter	6,	the
relational	model	requires	all	relations	to	be	normalized.	Data	about	entities	can
be	 fragmented	 across	 multiple	 relations,	 which	 are	 connected	 using
primary–foreign	 key	 relationships.	 Since	 the	 latter	 are	 based	 on	 actual,
observable	data	values,	the	relational	model	is	also	called	a	value-based	model,
as	opposed	to	the	OO	model,	which	is	an	identity-based	model	where	references
are	made	using	unobservable	object	identifiers.	Another	reason	for	the	success	of
RDBMSs	is	the	availability	of	SQL,	which	is	an	easy-to-learn,	descriptive,	and
non-navigational	data	manipulation	language	(DML)	(see	Chapter	7).

Despite	the	popularity	of	the	relational	model	in	industry,	the	emergence	of
applications	 dealing	 with	 complex	 objects	 (e.g.,	 multimedia,	 geospatial
information	 systems	 (GIS),	 genomics,	 time	 series,	 the	 internet	 of	 things,	 etc.)
stretched	its	limits	and	unveiled	its	shortcomings.	In	what	follows,	we	elaborate
on	this.

A	first	concern	relates	to	the	normalization	itself.	Due	to	the	normalization,
the	relational	model	has	a	flat	structure	whereby	relations	can	only	be	connected
by	 using	 primary–foreign	 key	 relationships.	 This	 puts	 a	 heavy	 burden	 on	 the

performance	 of	 database	 applications	 if	 the	 complexity	 of	 the	 data	 model
increases,	since	expensive	joins	are	needed	to	defragment	the	data	before	it	can
be	successfully	used	and	manipulated.	Modeling	concepts	such	as	specialization,
categorization,	 and	 aggregation	 cannot	 be	 directly	 supported.	 This	 clearly
negatively	affects	code	efficiency	and	maintenance.

Another	 shortcoming	 relates	 to	 the	 fact	 that	 the	 relational	model	 supports
only	 two	 type	 constructors:	 the	 tuple	 constructor	 and	 the	 set	 constructor.	 The
former	 can	 only	 be	 used	 on	 atomic	 values,	 which	 implies	 that	 composite
attribute	types	cannot	be	directly	modeled.	The	latter	can	only	be	used	on	tuples,
so	multi-valued	 attribute	 types	 cannot	 be	 supported.	Both	 constructors	 are	 not
orthogonal	 and	 cannot	 be	 used	 in	 a	 nested	 way.	 Complex	 objects	 cannot	 be
directly	modeled	but	need	to	be	broken	down	into	simple,	manageable	objects	of
which	the	data	can	then	be	spread	across	multiple	relations.

A	next	limitation	concerns	the	inability	to	model	behavior	or	store	functions
to	work	with	the	data	within	the	DBMS	runtime	environment.	If	 this	would	be
possible,	 then	 applications	 can	 share	 and	 invoke	 these	 functions,	 reducing
network	traffic	and	unnecessary	replication	of	code.	Besides	data	independence,
this	 would	 also	 allow	 support	 of	 functional	 independence,	 whereby	 the
implementation	 of	 a	 function	 stored	 in	 the	 database	 can	 change	 without	 the
applications	using	it	being	affected.

Finally,	in	their	basic	form,	RDBMSs	offer	very	poor	support	to	deal	with
specific	data,	such	as	audio,	video,	or	text	files,	which	are	often	encountered	in
modern-day	applications.

To	 address	 the	 above	 shortcomings,	 RDBMSs	 have	 been	 extended	 with
additional	functionality.	In	what	follows,	we	discuss	active	and	OO	extensions.
We	 also	 review	 recursive	 SQL	 queries	 that	 allow	 for	 more	 complex	 query
formulation,	which	is	another	way	to	cope	with	some	structural	limitations	of	the
relational	model.

Connections

The	relational	model	is	discussed	in	detail	in	Chapter	6.	Chapter	7	covers
SQL,	whereas	OODBMSs	are	reviewed	in	Chapter	8.

Retention	Questions

Discuss	the	key	limitations	of	the	relational	model.	Illustrate	with
examples.

9.2	Active	RDBMS	Extensions

Traditional	 RDBMSs	 are	 passive,	 in	 the	 sense	 that	 they	 only	 execute
transactions	 explicitly	 invoked	 by	 users	 and/or	 applications.	Most	modern-day
RDBMSs	 are	active,	 since	 they	 can	 autonomously	 take	 initiative	 for	 action	 if
specific	 situations	occur.	Two	key	components	of	 active	RDBMSs	are	 triggers
and	stored	procedures.

9.2.1	Triggers

A	 trigger	 is	 a	 piece	 of	 SQL	 code	 consisting	 of	 declarative	 and/or	 procedural
instructions	 and	 stored	 in	 the	 catalog	 of	 the	 RDBMS.	 It	 is	 automatically
activated	and	run	(also	called	fired)	by	 the	RDBMS	whenever	a	specific	event
(e.g.,	insert,	update,	delete)	occurs	and	a	specific	condition	is	evaluated	as	true.
In	 contrast	 to	 CHECK	 constraints	 discussed	 in	 Chapter	 7,	 triggers	 can	 also
reference	attribute	types	in	other	tables.	Therefore,	one	of	their	applications	is	to
enforce	 complex	 semantic	 constraints	 that	 cannot	 be	 captured	 in	 the	 basic
relational	model.	Triggers	are	defined	in	SQL	using	this	syntax:

CREATE	TRIGGER	trigger-name
BEFORE	|	AFTER	trigger-event	ON	table-name
[REFERENCING	old-or-new-values-alias-list]
[FOR	EACH	{	ROW	|	STATEMENT	}]
[WHEN	(trigger-condition)]
trigger-body;

Let’s	 illustrate	 this	 with	 a	 few	 examples.	 Assume	 we	 have	 these	 two
relational	tables:

EMPLOYEE(SSN,	ENAME,	SALARY,	BONUS,	JOBCODE,	DNR)
DEPARTMENT(DNR,	DNAME,	TOTAL-SALARY,	MGNR)

Remember	 that	 the	 foreign	 key	 DNR	 in	 EMPLOYEE	 refers	 to	 DNR	 in
DEPARTMENT	and	the	foreign	key	MGNR	refers	to	the	SSN	of	the	department
manager	 in	 EMPLOYEE.	 The	 wage	 of	 an	 employee	 consists	 of	 both	 a	 fixed
salary	and	a	variable	bonus.	The	JOBCODE	attribute	type	refers	to	the	type	of
job	 the	 employee	 is	 assigned	 to.	 The	 attribute	 type	 TOTAL-SALARY	 in
DEPARTMENT	 contains	 the	 total	 salary	 of	 all	 employees	 working	 in	 a

department	 and	 should	 be	 updated	whenever	 a	 new	 employee	 is	 assigned	 to	 a
particular	 department.	 This	 can	 be	 accomplished	 with	 the	 following	 SQL
trigger:1

CREATE	TRIGGER	SALARYTOTAL
AFTER	INSERT	ON	EMPLOYEE
FOR	EACH	ROW
WHEN	(NEW.DNR	IS	NOT	NULL)
UPDATE	DEPARTMENT
SET	TOTAL-SALARY	=	TOTAL-SALARY	+	NEW.SALARY
WHERE	DNR	=	NEW.DNR

This	is	an	example	of	an	after	trigger,	since	it	first	inserts	the	employee	tuple(s)
and	 then	 executes	 the	 trigger	 body,	 which	 adjusts	 the	 attribute	 type	 TOTAL-
SALARY	 in	 DEPARTMENT.	 The	 trigger	 is	 executed	 for	 each	 row	 or	 tuple
affected	by	the	INSERT	and	first	verifies	if	the	DNR	of	the	new	employee	tuple
is	NULL	or	not	before	the	update	is	performed.

A	before	trigger	is	always	executed	before	the	triggering	event	(in	this	case
the	 INSERT	operation	 on	EMPLOYEE)	 can	 take	 place.	Assume	we	 now	 also
have	a	relational	table	WAGE	defined	as	follows:

WAGE(JOBCODE,	BASE_SALARY,	BASE_BONUS)

For	each	value	of	JOBCODE,	this	table	stores	the	corresponding	base	salary	and
bonus.	We	can	now	define	the	following	before	trigger:

CREATE	TRIGGER	WAGEDEFAULT
BEFORE	INSERT	ON	EMPLOYEE
REFERENCING	NEW	AS	NEWROW
FOR	EACH	ROW
SET	(SALARY,	BONUS)	=

(SELECT	BASE_SALARY,	BASE_BONUS
FROM	WAGE
WHERE	JOBCODE	=	NEWROW.JOBCODE)

This	 before	 trigger	 first	 retrieves	 the	 BASE_SALARY	 and	 BASE_BONUS
values	 for	 each	 new	 employee	 tuple	 and	 then	 inserts	 the	 entire	 tuple	 in	 the
EMPLOYEE	table.	Triggers	have	various	advantages:

However,	they	should	also	be	approached	with	care	and	oversight	because	they
may	cause:

automatic	monitoring	and	verification	if	specific	events	occur	(e.g.,
generate	message	if	bonus	is	0);

modeling	extra	semantics	and/or	integrity	rules	without	changing	the	user
front-end	or	application	code	(e.g.,	salary	should	be	>	0,	bonus	cannot	be
bigger	than	salary);

assign	default	values	to	attribute	types	for	new	tuples	(e.g.,	assign	default
bonus);

synchronic	updates	if	data	replication	occurs;

automatic	auditing	and	logging,	which	may	be	hard	to	accomplish	in	any
other	application	layer;

automatic	exporting	of	data	(e.g.,	to	the	web).

hidden	functionality,	which	may	be	hard	to	follow-up	and	manage;

cascade	effects	leading	to	an	infinite	loop	of	a	trigger	triggering	another
trigger,	etc.;

uncertain	outcomes	if	multiple	triggers	for	the	same	database	object	and
event	are	defined;

Given	the	above	considerations,	 it	 is	very	important	 to	extensively	test	 triggers
before	deploying	them	in	a	production	environment.

Some	 RDBMS	 vendors	 also	 support	 schema-level	 triggers	 (also	 called
DDL	 triggers)	 which	 are	 fired	 after	 changes	 are	 made	 to	 the	 DBMS	 schema
(such	 as	 creating,	 dropping,	 or	 altering	 tables,	 views,	 etc.).	 Most	 RDBMS
vendors	 offer	 customized	 implementations	 of	 triggers.	 It	 is	 recommended	 to
check	the	manual	and	explore	the	options	provided.

deadlock	situations	(e.g.,	if	the	event	causing	the	trigger	and	the	action	in
the	trigger	body	pertain	to	different	transactions	attempting	to	access	the
same	data	–	see	Chapter	14);

debugging	complexities	since	they	do	not	reside	in	an	application
environment;

maintainability	and	performance	problems.

9.2.2	Stored	Procedures

A	 stored	 procedure	 is	 a	 piece	 of	 SQL	 code	 consisting	 of	 declarative	 and/or
procedural	 instructions	 and	 stored	 in	 the	 catalog	 of	 the	 RDBMS.	 It	 must	 be
invoked	explicitly	by	calling	it	from	an	application	or	command	prompt.	This	is
the	key	difference	with	triggers,	which	are	implicitly	“triggered”.

Consider	this	example	of	a	stored	procedure:

CREATE	PROCEDURE	REMOVE-EMPLOYEES
(DNR-VAR	IN	CHAR(4),	JOBCODE-VAR	IN	CHAR(6))	AS
BEGIN
DELETE	FROM	EMPLOYEE
WHERE	DNR	=	DNR-VAR	AND	JOBCODE	=	JOBCODE-VAR;
END

This	 stored	 procedure	 takes	 two	 input	 variables,	 DNR-VAR	 and	 JOBCODE-
VAR,	whose	values	can	be	passed	on	from	the	application.	It	will	 then	remove
all	employee	tuples	from	the	EMPLOYEE	table	which	have	the	specified	values
for	both	variables.	As	an	example,	consider	this	JDBC	call:2

import	java.sql.CallableStatement;
…
CallableStatement	cStmt	=	conn.prepareCall("{call	REMOVE-
EMPLOYEES(?,	?)}");
cStmt.setString(1,	"D112");
cStmt.setString(2,	"JOB124");
cStmt.execute();
…

We	start	by	 importing	 the	package	 java.sql.CallableStatement	 (see	Chapter	15)
which	 is	 needed	 to	 execute	 stored	 procedures.	 We	 then	 create	 a	 new

CallableStatement	 object	 using	 the	 Connection	 object	 “conn”	 and	 the	method
prepareCall().	The	two	question	marks	represent	the	input	parameters	and	can	be
set	 in	 the	 Java	 program.	 In	 our	 case,	we	 use	 the	 setString()	method	 to	 set	 the
(String)	 values	 of	 the	 parameters	 and	 execute	 the	 stored	 procedure	 using	 the
execute()	 method.	 This	 call	 will	 ensure	 that	 all	 employees	 who	 work	 in
department	 D112	 and	 whose	 jobcode	 is	 JOB124	 will	 be	 removed	 from	 the
EMPLOYEE	 table.	Note	 that	 a	 stored	 procedure	 can	 also	 return	 results	 to	 the
Java	program,	which	can	then	be	processed	using	a	JDBC	Resultset	object	(see
Chapter	15	for	details).

Stored	procedures	have	various	advantages:

Similar	to	OODBMSs,	they	store	behavior	in	the	database.	The	stored
procedure	can	be	compiled	upfront,	so	no	compilation	is	required	at
runtime,	which	contributes	to	better	performance.

They	can	reduce	network	traffic	since	less	communication	is	needed
between	the	application	and	DBMS.	Calculations	on	large	subsets	of	the
database	can	be	performed	“close	to	the	data”	in	the	RDBMS	runtime
environment,	rather	than	transferring	large	volumes	of	data	over	the
network	to	be	processed	in	the	application	layer.

They	can	be	implemented	in	an	application-independent	way	and	can	be
easily	shared	across	applications	and/or	invoked	from	different
programming	languages.

They	improve	data	and	functional	independence,	and	can	implement
customized	security	rules	(e.g.,	a	user	can	have	permission	to	execute	a
stored	procedure,	without	having	permission	to	read	from	the	underlying
tables	or	views).

Like	triggers,	the	main	disadvantage	is	their	maintainability.

Retention	Questions

Drill	Down

Some	 opponents	 of	 triggers	 and	 stored	 procedures	 often	 cite	 that	 their
usage	can	cause	a	butterfly	effect	–	i.e.,	a	butterfly	flapping	its	wings	in
New	 Mexico	 (similar	 to	 adding	 a	 trigger	 or	 stored	 procedure	 to	 a
database)	 can	 cause	 a	 hurricane	 in	 China	 (similar	 to	 the	 crash	 of	 an
application	or	ecosystem	of	applications).

They	can	be	used	as	a	container	for	several	SQL	instructions	that
logically	belong	together.

They	are	easier	to	debug	compared	to	triggers,	since	they	are	explicitly
called	from	the	application.

What	is	the	difference	between	triggers	and	stored	procedures?	When
would	you	use	which	extension?	What	are	the	risks	of	using	these
extensions?

9.3	Object-Relational	RDBMS	Extensions

We	discussed	OODBMSs	in	Chapter	8.	Although	they	offer	several	advantages,
such	 as	 storing	 complex	 objects	 and	 relationships	 in	 a	 transparent	 way,	 and
bypassing	 the	 impedance	mismatch,	 few	 success	 stories	 have	 been	 reported	 in
the	industry.	This	 is	because	they	are	perceived	as	very	complex	to	work	with,
which	is	largely	caused	by	the	absence	of	a	good,	standard,	DML	such	as	SQL
for	 RDBMSs,	 and	 the	 lack	 of	 a	 transparent	 three-layer	 database	 architecture.
Object-relational	DBMSs	(ORDBMSs)	 try	 to	combine	 the	best	of	both	worlds.
The	 idea	 is	 to	keep	 the	relation	as	 the	fundamental	building	block	and	SQL	as
the	core	DDL/DML,	but	extend	them	with	the	following	set	of	OO	concepts:

Note	that	most	ORDBMS	vendors	only	implement	a	selection	of	these	options,
possibly	combined	with	customized	extensions.	Therefore,	it	is	recommended	to
check	the	DBMS	manual	to	know	what	extensions	it	supports.	Popular	examples
of	 ORDBMSs	 include	 PostgreSQL	 (open-source)	 and	 the	 most	 recent	 DBMS
products	 provided	 by	major	 relational	 vendors	 such	 as	Oracle,	Microsoft,	 and
IBM.

user-defined	types	(UDTs);

user-defined	functions	(UDFs);

inheritance;

behavior;

polymorphism;

collection	types;

large	objects	(LOBs).

Connections

Chapter	8	 discusses	 the	 key	 concepts	 of	OODBMSs.	ORDBMSs	build
on	these	concepts	by	adding	them	as	extensions	to	an	RDBMS.

Drill	Down

One	 of	 the	 first	 open-source	 ORDBMSs	 developed	 is	 POSTGRES,
initially	 released	 on	 July	 8,	 1996.	 The	 code	 forms	 the	 basis	 of
PostgreSQL	and	was	also	commercialized	as	Illustra,	later	purchased	by
Informix,	which	was	in	turn	acquired	by	IBM.

9.3.1	User-Defined	Types

Standard	SQL	only	provides	 a	 limited	 set	 of	data	 types	 such	as:	 char,	 varchar,
int,	float,	double,	date,	time,	boolean	(see	Chapter	7).	These	standard	data	types
are	 insufficient	 to	 model	 complex	 objects.	 If	 we	 could	 specialize	 these	 data
types,	or	even	define	new	data	types	combined	with	the	necessary	operations	on
them,	we	 could	 solve	 this	 problem.	As	 the	 term	 suggests,	user-defined	 types
(UDTs)3	 define	 customized	 data	 types	 with	 specific	 properties.	 Five	 types	 of
UDTs	can	be	distinguished	as	follows:

9.3.1.1	Distinct	Data	Types

A	distinct	data	type	is	a	user-defined	data	type	that	specializes	a	standard,	built-
in	SQL	data	 type.	The	distinct	data	 type	 inherits	 all	 the	properties	of	 the	SQL
data	type	used	for	its	definition.	Consider	these	two	examples:

CREATE	DISTINCT	TYPE	US-DOLLAR	AS	DECIMAL(8,2)
CREATE	DISTINCT	TYPE	EURO	AS	DECIMAL(8,2)

We	 defined	 two	 distinct	 types	 US-DOLLAR	 and	 EURO	 as	 numbers	 with	 six
digits	before	the	decimal	and	two	digits	after	the	decimal.	We	can	now	use	both
when	defining	attribute	types	in	a	table	ACCOUNT	as	follows:

Distinct	data	types:	extend	existing	SQL	data	types.

Opaque	data	types:	define	entirely	new	data	types.

Unnamed	row	types:	use	unnamed	tuples	as	attribute	values.

Named	row	types:	use	named	tuples	as	attribute	values.

Table	data	types:	define	tables	as	instances	of	table	types.

CREATE	TABLE	ACCOUNT
(ACCOUNTNO	SMALLINT	PRIMARY	KEY	NOT	NULL,
…
AMOUNT-IN-DOLLAR	US-DOLLAR,
AMOUNT-IN-EURO	EURO)

One	of	 the	key	advantages	of	distinct	 types	 is	 that	 they	can	be	used	to	prevent
erroneous	 calculations	 or	 comparisons.	 For	 example,	 if	 we	 had	 defined	 both
AMOUNT-IN-DOLLAR	and	AMOUNT-IN-EURO	as	Decimal(8,2),	then	values
of	both	attribute	types	can	be	added	and	compared	without	any	problem,	which
is	 clearly	 not	 meaningful.	 By	 using	 a	 distinct	 type,	 we	 can	 only	 add	 and/or
compare	between	amounts	either	in	euros	or	dollars.

Once	 a	 distinct	 data	 type	 has	 been	 defined,	 the	 ORDBMS	 will
automatically	create	two	casting	functions:	one	to	cast	or	map	the	values	of	the
user-defined	 type	 to	 the	underlying,	built-in	 type,	 and	 the	other	 to	cast	or	map
the	built-in	 type	 to	 the	user-defined	 type.	Suppose	we	now	wish	 to	 retrieve	all
account	tuples	where	the	amount	in	euros	is	bigger	than	1000	and	write	this	SQL
query:

SELECT	*
FROM	ACCOUNT
WHERE	AMOUNT-IN-EURO	>	1000

This	query	will	not	successfully	execute	and	an	error	will	be	thrown.	The	reason
is	that	we	have	a	type	incompatibility	between	AMOUNT-IN-EURO	whose	data
type	is	EURO	and	1000	whose	data	type	is	DECIMAL.	To	successfully	do	the
comparison,	 we	 should	 first	 cast	 1000	 to	 the	 EURO	 data	 type	 using	 the
ORDBMS	generated	Euro()	casting	function	as	follows:

SELECT	*

FROM	ACCOUNT
WHERE	AMOUNT-IN-EURO	>	EURO(1000)

9.3.1.2	Opaque	Data	Types

An	opaque	data	type	is	an	entirely	new,	user-defined	data	type,	not	based	upon
any	 existing	 SQL	 data	 type.	 Some	 examples	 are	 data	 types	 for	 image,	 audio,
video,	fingerprints,	text,	spatial	data,	RFID	tags,	or	QR	codes.	These	opaque	data
types	will	also	require	their	own	user-defined	functions	to	work	with	them.	Once
defined,	they	can	be	used	anywhere	a	standard	SQL	data	type	can	be	used,	such
as	 table	 definitions	 or	 queries.	 Defining	 opaque	 data	 types	 directly	 in	 the
database	allows	multiple	applications	to	share	them	efficiently,	rather	than	each
application	 independently	 having	 to	 provide	 its	 own	 implementation	 for	 them.
Here	you	can	see	an	example	of	this:

CREATE	OPAQUE	TYPE	IMAGE	AS	<…>
CREATE	OPAQUE	TYPE	FINGERPRINT	AS	<…>

CREATE	TABLE	EMPLOYEE
		(SSN	SMALLINT	NOT	NULL,
			FNAME	CHAR(25)	NOT	NULL,
			LNAME	CHAR(25)	NOT	NULL,
			…
			EMPFINGERPRINT	FINGERPRINT,
			PHOTOGRAPH	IMAGE)

9.3.1.3	Unnamed	Row	Types

An	unnamed	row	type	 includes	a	composite	data	 type	 in	a	 table	by	using	 the
keyword	ROW.	It	consists	of	a	combination	of	data	types	such	as	built-in	types,
distinct	types,	opaque	types,	etc.	Note	that	since	no	name	is	assigned	to	the	row

type,	 it	 cannot	 be	 re-used	 in	 other	 tables	 and	 needs	 to	 be	 explicitly	 redefined

wherever	it	is	needed.	It	can	also	not	be	used	to	define	a	table.	Here	you	can	see
an	 example	 of	 two	 unnamed	 row	 types	 to	 define	 the	 name	 and	 address	 of	 an
employee:

CREATE	TABLE	EMPLOYEE
	(SSN	SMALLINT	NOT	NULL,
			NAME	ROW(FNAME	CHAR(25),	LNAME	CHAR(25)),
			ADDRESS	ROW(
			STREET	ADDRESS	CHAR(20)	NOT	NULL,
			ZIP	CODE	CHAR(8),
			CITY	CHAR(15)	NOT	NULL),
			…
			EMPFINGERPRINT	FINGERPRINT,
			PHOTOGRAPH	IMAGE)

9.3.1.4	Named	Row	Types

A	named	row	type	is	a	user-defined	data	type	that	groups	a	coherent	set	of	data
types	into	a	new	composite	data	type	and	assigns	a	meaningful	name	to	it.	Once
defined,	 the	 named	 row	 type	 can	 be	 used	 in	 table	 definitions,	 queries,	 or
anywhere	 else	 a	 standard	 SQL	 data	 type	 can	 be	 used.	Named	 row	 types	 store
complete	rows	of	data	in	one	variable	and	can	also	be	used	as	the	type	for	input
or	output	parameters	of	SQL	routines	and/or	functions	(see	Section	9.3.2).	The
usage	of	 (un)named	 row	 types	 implies	 the	end	of	 the	 first	normal	 form,	as	we
discussed	in	Chapter	6.	Remember,	1	NF	allowed	no	composite	attribute	types	in
a	 relation.	 ORDBMSs	 drop	 this	 requirement	 in	 favor	 of	 more	 modeling
flexibility.	Unlike	unnamed	 row	 types,	named	 row	 types	can	be	used	 to	define
tables.	As	an	example,	we	can	define	a	named	row	type	ADDRESS:

CREATE	ROW	TYPE	ADDRESS	AS

(STREET	ADDRESS	CHAR(20)	NOT	NULL,
ZIP	CODE	CHAR(8),
CITY	CHAR(15)	NOT	NULL)

This	can	then	be	used	to	define	our	EMPLOYEE	table:

CREATE	TABLE	EMPLOYEE
(SSN	SMALLINT	NOT	NULL,
FNAME	CHAR(25)	NOT	NULL,
LNAME	CHAR(25)	NOT	NULL,
EMPADDRESS	ADDRESS,
…
EMPFINGERPRINT	FINGERPRINT,
PHOTOGRAPH	IMAGE)

The	 individual	components	of	 the	named	 row	 type	can	 then	be	accessed	using
the	dot	(.)	operator	as	in	this	query:4

SELECT	LNAME,	EMPADDRESS
FROM	EMPLOYEE
WHERE	EMPADDRESS.CITY	=	'LEUVEN'

This	query	retrieves	the	last	name	and	full	address	of	all	employees	who	live	in
the	city	of	Leuven.	Another	example	is:

SELECT	E1.LNAME,	E1.EMPADDRESS
FROM	EMPLOYEE	E1,	EMPLOYEE	E2
WHERE	E1.EMPADDRESS.CITY	=	E2.EMPADDRESS.CITY
AND	E2.SSN	=	'123456789'

This	query	 returns	 the	 last	name	and	full	address	of	all	employees	who	 live	 in
the	same	city	as	the	employee	with	SSN	equal	to	123456789.

9.3.1.5	Table	Data	Types

A	table	data	type	(or	typed	table)	defines	the	type	of	a	table.	The	latter	refers	to
a	table	definition,	much	like	a	class	in	OO.	It’s	used	to	instantiate	various	tables
with	the	same	structure.	Consider	this	example:

CREATE	TYPE	EMPLOYEETYPE	AS
		(SSN	SMALLINT	NOT	NULL,
		FNAME	CHAR(25)	NOT	NULL,
		LNAME	CHAR(25)	NOT	NULL,
		EMPADDRESS	ADDRESS
		…
		…
		EMPFINGERPRINT	FINGERPRINT,
		PHOTOGRAPH	IMAGE)

The	EMPLOYEETYPE	 table	 data	 type	 can	 now	be	 used	 to	 define	 two	 tables,
EMPLOYEE	and	EX-EMPLOYEE,	as	follows:

CREATE	TABLE	EMPLOYEE	OF	TYPE	EMPLOYEETYPE	
PRIMARY	KEY	(SSN)
CREATE	TABLE	EX-EMPLOYEE	OF	TYPE	EMPLOYEETYPE	
PRIMARY	KEY	(SSN)

A	 column	 of	 a	 table	 type	 definition	 can	 also	 refer	 to	 another	 table	 type
definition	using	the	keyword	REF,	as	follows:

CREATE	TYPE	DEPARTMENTTYPE	AS
		(DNR	SMALLINT	NOT	NULL,
		DNAME	CHAR(25)	NOT	NULL,
		DLOCATION	ADDRESS
		MANAGER	REF(EMPLOYEETYPE))

This	 assumes	 that	 the	 ORDBMS	 supports	 row	 identifications.	 When	 a
department	 table	 is	 defined	 using	 the	 DEPARTMENTTYPE	 type,	 its
MANAGER	 attribute	 type	will	 contain	 a	 reference	 or	 pointer	 to	 an	 employee
tuple	 of	 a	 table	 whose	 type	 is	 EMPLOYEETYPE.	 Note	 that	 these	 references
represent	 the	 ORDBMS	 counterpart	 of	 OIDs	 in	 OODBMSs.	 However,	 unlike
OIDs,	 the	 references	 used	 in	 ORDBMSs	 can	 be	 explicitly	 requested	 and
visualized	 to	 the	user.	As	we	will	 see	 in	Section	9.3.6	 later	 in	 this	chapter,	 the
reference	can	be	replaced	by	the	actual	data	it	refers	to	by	means	of	the	DEREF
(from	dereferencing)	function.

Note	that	some	ORDBMS	vendors	make	no	distinction	between	named	row
types	and	 table	data	 types,	but	only	support	a	CREATE	TYPE	function,	which
can	then	define	either	columns	in	tables	or	an	entire	table.

9.3.2	User-Defined	Functions

Every	 RDBMS	 comes	 with	 a	 set	 of	 built-in	 functions,	 for	 example	 MIN(),
MAX(),	AVG().	User-defined	functions	(UDFs)	allow	users	to	extend	these	by
explicitly	defining	their	own	functions	to	enrich	the	functional	capability	of	the
RDBMS,	 similar	 to	 methods	 in	 OODBMSs.	 These	 UDFs	 can	 work	 on	 both
built-in	and	user-defined	data	types.	Every	UDF	will	consist	of	a	name,	with	the
input	and	output	arguments,	and	the	implementation.	The	implementation	can	be
written	by	using	proprietary	procedural	extensions	of	SQL,	which	are	provided
by	most	RDBMS	vendors,	or	by	using	external	programming	languages	such	as
C,	Java,	or	Python.

The	UDFs	 are	 stored	 in	 the	ORDBMS	 and	 hidden	 from	 the	 applications,
which	 contributes	 to	 the	 property	 of	 encapsulation	 or	 information	 hiding	 (see
Chapter	 8).	 The	 implementation	 of	 a	 UDF	 can	 change	 without	 affecting	 the
applications	that	use	it.	Most	ORDBMSs	will	overload	UDFs,	which	implies	that
UDFs	operating	on	different	data	types	can	have	the	same	name.	When	a	UDF	is
called	by	an	application,	 the	ORDBMS	will	 invoke	the	correct	 implementation
based	upon	the	data	types	specified.

Three	 types	 of	 UDFs	 can	 be	 distinguished:	 sourced	 functions,	 external
scalar	functions,	and	external	table	functions.

A	sourced	function	is	a	UDF	based	on	an	existing,	built-in	function.	They
are	 often	 used	 in	 combination	with	 distinct	 data	 types.	Assume	we	 define	 the
distinct	data	type	MONETARY	as	follows:

CREATE	DISTINCT	TYPE	MONETARY	AS	DECIMAL(8,2)

We	can	then	use	it	in	our	EMPLOYEE	table	definition:

CREATE	TABLE	EMPLOYEE
			(SSN	SMALLINT	NOT	NULL,
			FNAME	CHAR(25)	NOT	NULL,
			LNAME	CHAR(25)	NOT	NULL,
			EMPADDRESS	ADDRESS,
			SALARY	MONETARY,
			…
			EMPFINGERPRINT	FINGERPRINT,
			PHOTOGRAPH	IMAGE)

Let’s	now	define	a	sourced	UDF	to	calculate	the	average:

CREATE	FUNCTION	AVG(MONETARY)
RETURNS	MONETARY
SOURCE	AVG(DECIMAL(8,2))

The	name	of	the	sourced	function	is	AVG(MONETARY),	the	return	data	type	is
MONETARY,	and	the	source	function	is	the	built-in	function	AVG(DECIMAL).
We	can	now	invoke	this	function	by	using	this	query:

SELECT	DNR,	AVG(SALARY)
FROM	EMPLOYEE
GROUP	BY	DNR

This	query	selects	the	department	number	and	average	salary	per	department	as
calculated	using	the	sourced	UDF	we	defined	earlier.

Both	 external	 scalar	 and	 external	 table	 functions	 are	 functions	 that
contain	 explicitly	 defined	 functionality,	 written	 in	 an	 external	 host	 language
(e.g.,	Java,	C,	Python).	The	difference	is	that	the	former	returns	a	single	value	or
scalar,	whereas	the	latter	returns	a	table	of	values.

9.3.3	Inheritance

The	 relational	 model	 is	 a	 flat	 model	 since,	 besides	 a	 primary–foreign	 key
connection	between	tables,	no	other	explicit	relationships	are	allowed.	Hence,	no
superclass–subclass	 relationships	 and	 thus	 no	 inheritance	 are	 supported.	 An
ORDBMS	 extends	 an	 RDBMS	 by	 providing	 explicit	 support	 for	 inheritance,
both	at	the	level	of	a	data	type	and	a	typed	table.

9.3.3.1	Inheritance	at	Data	Type	Level

Inheritance	 at	 data	 type	 level	 implies	 that	 a	 child	 data	 type	 inherits	 all	 the
properties	 of	 a	 parent	 data	 type	 and	 can	 then	 be	 further	 specialized	 by	 adding
specific	 characteristics.	 Let’s	 revisit	 the	 following	 example	 to	 define	 an
ADDRESS	data	type	consisting	of	a	street	address,	zip	code,	and	city:

CREATE	ROW	TYPE	ADDRESS	AS
		(STREET	ADDRESS	CHAR(20)	NOT	NULL,
		ZIP	CODE	CHAR(8),
		CITY	CHAR(15)	NOT	NULL)

We	 can	 now	 specialize	 this	 by	 creating	 a	 subtype
INTERNATIONAL_ADDRESS	which	also	adds	the	country:

CREATE	ROW	TYPE	INTERNATIONAL_ADDRESS	AS
		(COUNTRY	CHAR(25)	NOT	NULL)	UNDER	ADDRESS

Remember,	specialization	always	assumes	an	“is	a”	 relationship,	which	applies
in	our	case,	since	an	international	address	is	an	address.	We	can	use	this	in	our
EMPLOYEE	table	definition	as	follows:

CREATE	TABLE	EMPLOYEE
		(SSN	SMALLINT	NOT	NULL,
		FNAME	CHAR(25)	NOT	NULL,
		LNAME	CHAR(25)	NOT	NULL,
		EMPADDRESS	INTERNATIONAL_ADDRESS,
		SALARY	MONETARY,
		…
		EMPFINGERPRINT	FINGERPRINT,
		PHOTOGRAPH	IMAGE)

We	can	now	write	this	SQL	query:

SELECT	FNAME,	LNAME,	EMPADDRESS
FROM	EMPLOYEE
WHERE	EMPADDRESS.COUNTRY	=	'Belgium'
AND	EMPADDRESS.CITY	LIKE	'Leu%'

This	query	asks	for	the	names	and	addresses	of	all	employees	who	live	in	a	city
in	Belgium	starting	with	 the	 three	characters	“Leu”.	Note	 that	 the	definition	of
the	 INTERNATIONAL_ADDRESS	 data	 type	 does	 not	 explicitly	 include	 the
CITY	 attribute	 type,	 but	 the	 latter	 will	 be	 inherited	 from	 its	 superclass
ADDRESS,	where	it	is	defined.

9.3.3.2	Inheritance	at	Table	Type	Level

We	 can	 now	 also	 apply	 the	 concept	 of	 inheritance	 to	 table	 types.	Assume	we
have	this	definition	for	EMPLOYEETYPE:

CREATE	TYPE	EMPLOYEETYPE	AS
		(SSN	SMALLINT	NOT	NULL,
		FNAME	CHAR(25)	NOT	NULL,
		LNAME	CHAR(25)	NOT	NULL,

		EMPADDRESS	INTERNATIONAL_ADDRESS
		…
		…
		EMPFINGERPRINT	FINGERPRINT,
		PHOTOGRAPH	IMAGE)

We	 can	 now	 create	 various	 subtypes	 for	 it,	 such	 as	 ENGINEERTYPE	 and
MANAGERTYPE:

CREATE	TYPE	ENGINEERTYPE	AS
		(DEGREE	CHAR(10)	NOT	NULL,
		LICENSE	CHAR(20)	NOT	NULL)	UNDER	EMPLOYEETYPE
CREATE	TYPE	MANAGERTYPE	AS
		(STARTDATE	DATE,
				TITLE	CHAR(20))	UNDER	EMPLOYEETYPE

The	inheritance	relationship	is	specified	using	the	keyword	UNDER.	Both
ENGINEERTYPE	and	MANAGERTYPE	inherit	 the	definition	properties	 from
EMPLOYEETYPE.	 As	 you	 can	 see,	 a	 supertype	 can	 have	 multiple	 subtypes.
However,	most	RDBMSs	will	 not	 support	multiple	 inheritance,	 and	 a	 subtype
can	have	at	most	one	supertype.	The	table	type	hierarchy	can	be	multiple	levels
deep	and	cannot	contain	any	cyclic	references.	The	type	definitions	can	then	be
used	to	instantiate	tables.	Obviously,	the	table	hierarchy	should	correspond	to	the
underlying	type	hierarchy,	as	follows:

CREATE	TABLE	EMPLOYEE	OF	TYPE	EMPLOYEETYPE	
PRIMARY	KEY	(SSN)
CREATE	TABLE	ENGINEER	OF	TYPE	ENGINEERTYPE	
UNDER	EMPLOYEE
CREATE	TABLE	MANAGER	OF	TYPE	MANAGERTYPE	
UNDER	EMPLOYEE

Note	 that	 the	 primary	 key	 is	 only	 defined	 for	 the	 maximal	 supertable	 and
inherited	 by	 all	 subtables	 in	 the	 hierarchy.	 The	 definition	 of	 inheritance	 has
implications	for	data	manipulation.	Suppose	we	have	this	query:

SELECT	SSN,	FNAME,	LNAME,	STARTDATE,	TITLE
FROM	MANAGER

This	 query	 targets	 the	 MANAGER	 table	 and	 asks	 for	 the	 SSN,	 FNAME,
LNAME	(from	the	EMPLOYEE	table)	and	the	STARTDATE	and	TITLE	(both
from	 the	MANAGER	 table).	 The	 ORDBMS	 will	 automatically	 retrieve	 these
data	elements	from	the	right	table.	Suppose	we	now	have	the	following	query:

SELECT	SSN,	FNAME,	LNAME
FROM	EMPLOYEE

This	 query	 will	 retrieve	 the	 SSN,	 FNAME,	 and	 LNAME	 of	 all	 employees,
including	 the	 managers	 and	 engineers.	 Tuples	 added	 to	 a	 subtable	 are
automatically	 visible	 to	 queries	 on	 the	 supertable.	 If	 we	 want	 to	 exclude	 the
subtables,	we	should	use	the	keyword	ONLY,	as	follows:

SELECT	SSN,	FNAME,	LNAME
FROM	ONLY	EMPLOYEE

9.3.4	Behavior

One	 of	 the	 key	 characteristics	 of	 objects	 in	 an	 OO	 environment	 is	 that	 they
encapsulate	 both	 data,	 which	 determine	 their	 state,	 and	 methods,	 which
characterize	 their	 behavior.	 An	 ORDBMS	 will	 also	 store	 behavior	 in	 the
database.	This	can	be	done	implicitly	by	defining	triggers,	stored	procedures,	or
UDFs,	as	we	discussed	in	previous	sections.	More	explicitly,	an	ORDBMS	can
include	the	signature	or	interface	of	a	method	in	the	definitions	of	data	types	and
tables.	 Only	 this	 interface	 is	 made	 visible	 to	 the	 outside	 world;	 the
implementation	 remains	 hidden,	 enforcing	 the	 concept	 of	 information	 hiding.
This	 behavior	 can	 then	 be	 considered	 as	 virtual	 columns	 in	 a	 table.	 Let’s
consider	the	following	example:

CREATE	TYPE	EMPLOYEETYPE	AS
		(SSN	SMALLINT	NOT	NULL,
		FNAME	CHAR(25)	NOT	NULL,
		LNAME	CHAR(25)	NOT	NULL,
		EMPADDRESS	INTERNATIONAL_ADDRESS,
		…
		…
		EMPFINGERPRINT	FINGERPRINT,
		PHOTOGRAPH	IMAGE,
		FUNCTION	AGE(EMPLOYEETYPE)	RETURNS	INTEGER)

We	have	now	explicitly	defined	a	function,	AGE,	that	has	an	input	parameter	of
type	EMPLOYEETYPE	and	 returns	 the	 age	 represented	as	 an	 integer.	We	can
now	define	a	table	EMPLOYEE:

CREATE	TABLE	EMPLOYEE	OF	TYPE	EMPLOYEETYPE
PRIMARY	KEY	(SSN)

We	can	then	write	this	SQL	query	to	retrieve	the	SSN,	FNAME,	LNAME,	and
PHOTOGRAPH	of	all	employees	whose	age	equals	60:

SELECT	SSN,	FNAME,	LNAME,	PHOTOGRAPH
FROM	EMPLOYEE
WHERE	AGE	=	60

Note	 this	query	will	 invoke	 the	AGE	function	 to	calculate	 the	age.	An	outside
user	 does	 not	 even	 need	 to	 know	whether	AGE	was	 implemented	 as	 a	 virtual
column	(i.e.,	a	function)	or	as	a	real	column.

9.3.5	Polymorphism

A	subtype	inherits	both	the	attribute	types	and	functions	of	its	supertype.	It	can
also	 override	 functions	 to	 provide	 more	 specialized	 implementations.	 This
implies	 that	 the	 same	 function	 call	 can	 invoke	 different	 implementations,
depending	 upon	 the	 data	 type	 it	 is	 related	 to.	 This	 property	 is	 polymorphism,
which	was	also	discussed	in	Chapter	8.	Consider	the	following	example:

CREATE	FUNCTION	TOTAL_SALARY(EMPLOYEE	E)
RETURNING	INT
AS	SELECT	E.SALARY

The	TOTAL_SALARY	function	 takes	one	employee	 tuple	as	 input	and	returns
the	 salary	 as	 an	 integer.	 We	 can	 now	 further	 specialize	 this	 function	 in	 the
manager	subtype:

CREATE	FUNCTION	TOTAL_SALARY(MANAGER	M)
RETURNING	INT
AS	SELECT	M.SALARY	+	<monthly_bonus>

The	 <monthly_bonus>	 part	 refers	 to	 a	 manager-specific	 add-on	 that	 can	 be
implemented	as	desired.	We	now	have	 two	versions	 for	 the	TOTAL_SALARY
function:	 one	 for	 regular	 employees	 and	 one	 for	 managers.	 Suppose	 we	 now
write	this	query:

SELECT	TOTAL_SALARY	FROM	EMPLOYEE

This	query	will	retrieve	the	TOTAL_SALARY	for	all	employees,	both	managers
and	non-managers.	The	ORDBMS	will	 ensure	 that,	 depending	 upon	 the	 tuple,
the	right	implementation	is	used.

9.3.6	Collection	Types

ORDBMSs	 also	 provide	 type	 constructors	 to	 define	 collection	 types.	 A
collection	 type	can	be	 instantiated	as	a	collection	of	 instances	of	 standard	data
types	or	UDTs.	The	following	collection	types	can	be	distinguished:

Note	that	the	usage	of	collection	types	again	implies	the	end	of	the	first	normal
form	as	we	discussed	it	in	Chapter	6.	Consider	the	following	type	definition:

CREATE	TYPE	EMPLOYEETYPE	AS
		(SSN	SMALLINT	NOT	NULL,
		FNAME	CHAR(25)	NOT	NULL,
		LNAME	CHAR(25)	NOT	NULL,
		EMPADDRESS	INTERNATIONAL_ADDRESS,
		…
		EMPFINGERPRINT	FINGERPRINT,
		PHOTOGRAPH	IMAGE,
		TELEPHONE	SET	(CHAR(12)),
		FUNCTION	AGE(EMPLOYEETYPE)	RETURNS	INTEGER)

The	EMPLOYEETYPE	makes	use	of	a	SET	construct	to	model	the	assumption
that	 an	 employee	 can	 have	 multiple	 telephone	 numbers.	 In	 the	 traditional
relational	model,	this	had	to	be	modeled	by	introducing	a	new	relation	with	SSN
and	 TELEPHONE	 where	 both	 also	 make	 up	 the	 primary	 key	 (assuming	 an

Set:	unordered	collection,	no	duplicates

Multiset	or	bag:	unordered	collection,	duplicates	allowed

List:	ordered	collection,	duplicates	allowed

Array:	ordered	and	indexed	collection,	duplicates	allowed

employee	can	have	multiple	phone	numbers	and	a	phone	number	can	be	shared
among	multiple	employees).	Let’s	now	create	the	EMPLOYEE	table	as	follows:

CREATE	TABLE	EMPLOYEE	OF	TYPE	EMPLOYEETYPE	
(PRIMARY	KEY	SSN)

We	can	now	write	this	query:

SELECT	SSN,	FNAME,	LNAME
FROM	EMPLOYEE
WHERE	'2123375000'	IN	(TELEPHONE)

This	 query	 will	 retrieve	 the	 SSN	 and	 name	 of	 all	 employees	 who	 have	 a
telephone	 number	with	 digits	 2123375000.	Note	 the	 use	 of	 the	 IN	operator	 to
verify	whether	the	specified	digits	belong	to	the	set.

The	definition	of	sets	and	their	usage	in	queries	can	give	rise	to	a	situation
in	 which	 the	 result	 consists	 of	 sets	 of	 sets	 that	 need	 to	 be	 sorted	 afterwards.
Consider	the	following	query:

SELECT	T.TELEPHONE
FROM	THE	(SELECT	TELEPHONE	FROM	EMPLOYEE)	AS	T
ORDER	BY	T.TELEPHONE

Notice	the	usage	of	the	keyword	THE	in	the	above	query.	This	will	transform	the
result	of	 the	subquery	 into	a	set	of	atomic	values	 that	can	be	sorted	afterwards
using	the	ORDER	BY	instruction.	This	will	give	us	an	ordered	list	of	telephone
numbers	of	all	the	employees.

Let’s	now	also	create	a	DEPARTMENTTYPE	type:

CREATE	TYPE	DEPARTMENTTYPE	AS
		(DNR	CHAR(3)	NOT	NULL,

		DNAME	CHAR(25)	NOT	NULL,
		MANAGER	REF(EMPLOYEETYPE),
		PERSONNEL	SET	(REF(EMPLOYEETYPE))

Note	the	use	of	the	REF	operator	for	both	MANAGER	and	PERSONNEL.	The
former	contains	a	reference	or	pointer	to	a	manager	employee	tuple,	whereas	the
latter	contains	a	set	of	 references	 to	 the	employees	working	 in	 the	department.
Instead	of	a	set,	we	could	have	also	used	an	array	or	list	 to	store	the	employee
tuples	in	a	specific	order.	We	can	now	instantiate	this	type:

CREATE	TABLE	DEPARTMENT	OF	TYPE	
DEPARTMENTTYPE	(PRIMARY	KEY	DNR)

If	we	would	run	 the	following	query	 to	 retrieve	personnel	data	 from	a	specific
department:

SELECT	PERSONNEL
FROM	DEPARTMENT
WHERE	DNR	=	'123'

then	we	would	 get	 a	 set	 of	meaningless	 references.	We	 can,	 however,	 use	 the
DEREF	function	to	get	access	to	the	actual	data:

SELECT	DEREF(PERSONNEL).FNAME,	
DEREF(PERSONNEL).LNAME
FROM	DEPARTMENT
WHERE	DNR	=	'123'

Note	the	use	of	the	dot	operator	to	navigate.	In	a	classical	RDBMS	environment,
this	query	had	to	be	solved	by	using	a	time-consuming	value-based	join	between
the	DEPARTMENT	and	 the	EMPLOYEE	 tables.	The	 support	 for	 navigational

access	by	means	of	path	expressions	will	affect	the	design	of	the	query	processor

in	an	ORDBMS.

9.3.7	Large	Objects

Many	multimedia	database	applications	make	use	of	 large	data	objects	such	as
audio,	video,	photos,	text	files,	maps,	etc.	Traditional	relational	database	systems
provide	 no	 adequate	 support	 for	 this.	 ORDBMSs	 introduce	 large	 objects
(LOBs)	 to	 deal	 with	 such	 items.	 To	 improve	 physical	 storage	 efficiency,	 the
LOB	data	will	be	stored	in	a	separate	table	and	tablespace	(see	Chapter	13).	The
base	 table	 then	 includes	 a	 LOB	 indicator	 that	 refers	 to	 this	 location.	 Also,
queries	will	 return	 these	 indicators.	ORDBMSs	 typically	 support	various	 types
of	LOB	data	such	as	the	following:

Many	ORDBMSs	will	 also	 provide	 customized	 SQL	 functions	 for	 LOB	 data.
Examples	 are	 functions	 to	 search	 in	 image	 or	 video	 data	 or	 access	 text	 at	 a
specified	position.

Retention	Questions

BLOB	(binary	large	object):	a	variable-length	binary	string	whose
interpretation	is	left	to	an	external	application.

CLOB	(character	large	object):	variable-length	character	strings	made
up	of	single-byte	characters.

DBCLOB	(double	byte	character	large	object):	variable-length
character	strings	made	up	of	double-byte	characters.

Discuss	the	key	concepts	of	object-relational	RDBMS	extensions.
Illustrate	with	examples.

9.4	Recursive	SQL	Queries

Recursive	 queries	 are	 a	 powerful	 SQL	 extension	 that	 allow	 formulation	 of
complex	queries.	In	particular,	 they	compensate	for	 the	somewhat	cumbersome
way	 in	 which	 hierarchies	 are	 modeled	 in	 the	 relational	 model	 by	 means	 of
foreign	keys.	Querying	 such	hierarchies	until	 an	arbitrary	 level	or	depth	 is	not
easy	 in	 standard	 SQL,	 but	 can	 be	 facilitated	 to	 a	 great	 extent	 by	 means	 of
recursive	 queries.	 Consider	 the	 hierarchy	 among	 employees	 in	 a	 firm	 from
Figure	9.1.

Figure	9.1	Hierarchy	of	employees.

Let’s	assume	we	store	this	in	a	table	Employee	defined	as:

Employee(SSN,	Name,	Salary,	MNGR)

Note	 that	 MNGR	 is	 a	 NULL-ALLOWED	 foreign	 key	 referring	 to	 SSN.
According	to	Figure	9.1,	this	table	has	the	tuples	shown	in	Figure	9.2.

Figure	9.2	Tuples	based	on	Figure	9.1.

Let’s	now	assume	we	would	like	to	write	a	query	to	find	all	subordinates	of
a	given	employee.	This	can	be	solved	with	this	recursive	SQL	query:

WITH	SUBORDINATES(SSN,	NAME,	SALARY,	MNGR,	LEVEL)	
AS
(SELECT	SSN,	NAME,	SALARY,	MNGR,	1
FROM	EMPLOYEE
WHERE	MNGR=NULL)
UNION	ALL
(SELECT	E.SSN,	E.NAME,	E.SALARY,	E.MNGR,	S.LEVEL+1
		FROM	SUBORDINATES	AS	S,	EMPLOYEE	AS	E
		WHERE	S.SSN=E.MNGR)
SELECT	*	FROM	SUBORDINATES
ORDER	BY	LEVEL

This	recursive	query	defines	a	temporary	view	SUBORDINATES	which	will	be
used	to	store	the	intermediate	results.	Such	a	view	always	contains	three	parts:

1.	The	base	or	anchor	query	that	contains	the	seed	of	our	recursive	query:

SELECT	SSN,	NAME,	SALARY,	MNGR,	1
FROM	EMPLOYEE

WHERE	MNGR=NULL

This	query	will	select	the	CEO	as	the	starting	point	for	the	recursion	(i.e.,
Jones	in	our	case).	Other	employees	could	be	selected	as	starting	points	as
well.

2.	The	recursive	query	that	references	the	view	we	are	defining:

SELECT	E.SSN,	E.NAME,	E.SALARY,	E.MNGR,	S.LEVEL+1
FROM	SUBORDINATES	AS	S,	EMPLOYEE	AS	E
WHERE	S.SSN=E.MNGR

3.	The	keyword	UNION	ALL	between	the	two	queries	to	join	both	result
sets

Note	that	we	also	include	a	variable	LEVEL	to	calculate	the	hierarchical	level	of
each	employee.

Upon	 execution,	 the	 base	 or	 anchor	 query	 returns	 the	 results	 shown	 in
Figure	9.3.

Figure	9.3	Results	of	base	query.

The	first	 recursive	step	 is	 then	run	 to	figure	out	 the	direct	subordinates	of
Jones	and	add	them	to	the	view.	This	will	return	the	results	shown	in	Figure	9.4.

Figure	9.4	Results	of	the	first	recursive	step.

The	 recursive	 step	 is	 then	activated	 repeatedly	until	no	more	 rows	can	be
added	to	the	view.	The	second	iteration	of	the	recursive	step	uses	the	set	of	the
previous	step	as	the	input	value	and	returns	the	results	shown	in	Figure	9.5.

Figure	9.5	Results	of	the	second	iteration	of	the	recursive	step.

The	full	result	of	the	recursive	SQL	query	then	becomes	what	is	shown	in
Figure	9.6.

Figure	9.6	Results	of	full	recursive	SQL	query.

Suppose	we	are	now	interested	in	the	subordinates	of	Adams,	then	we	must
adjust	the	base	query	as	follows:

WITH	SUBORDINATES(SSN,	NAME,	SALARY,	MNGR,	LEVEL)	
AS
(SELECT	SSN,	NAME,	SALARY,	MNGR,	1
FROM	EMPLOYEE
WHERE	NAME='ADAMS')
UNION	ALL
(SELECT	E.SSN,	E.NAME,	E.SALARY,	E.MNGR,	S.LEVEL+1
		FROM	SUBORDINATES	AS	S,	EMPLOYEE	AS	E
		WHERE	S.SSN=E.MNGR)
SELECT	*	FROM	SUBORDINATES

ORDER	BY	LEVEL

Retention	Questions

What	is	a	recursive	SQL	query?	In	what	situations	can	it	be	used?

Summary

In	 this	 chapter	 we	 have	 discussed	 three	 extensions	 to	 traditional	 RDBMSs:
active	 extensions,	 object-oriented	 extensions,	 and	 recursive	 SQL	 queries.	 The
first	two	focus	on	extending	the	RDBMS	with	concepts	such	as	triggers,	stored
procedures,	user-defined	types,	user-defined	functions,	etc.	A	key	benefit	of	this
is	that	it	allows	sharing	and	re-use	of	code	across	applications.	The	re-use	stems
from	the	ability	 to	extend	 the	database	with	 functionality	now	stored	centrally,
rather	than	replicated	in	each	application.

ORDBMSs	extend	RDBMSs	with	OO	facilities.	They	capture	some	of	the
benefits	 of	OO	while	 retaining	 the	 relation	 as	 the	 fundamental	 building	block.
Hence,	 they	provide	a	 softer	 leap	 for	 those	 interested	 in	combining	 the	best	of
both	 worlds.	 However,	 disbelievers	 argue	 that	 one	 of	 the	 key	 benefits	 of
RDBMSs	 was	 their	 simplicity	 and	 purity,	 which	 is	 lost	 when	 using	 an
ORDBMS.	On	the	other	hand,	OO	purists	are	not	happy	with	the	OO	extensions
provided,	since	the	relation	is	still	the	key	concept,	rather	than	a	pure	OO	class.
In	 industry,	 ORDBMSs	 have	 had	 modest	 success,	 with	 most	 companies	 only
implementing	a	carefully	selected	set	of	extensions.

Finally,	 we	 also	 discussed	 recursive	 SQL	 queries,	 which	 allow	 for	 more
complex	data	retrieval.	They	do	not	improve	the	expressiveness	of	RDBMSs	in
the	way	 the	 other	 two	 extensions	 do,	 but	 instead	 extend	 the	 SQL	 language	 in
such	 a	 way	 that	 some	 inadequacies	 of	 the	 relational	 paradigm	 are	 alleviated.
Recursive	 queries	 partially	 make	 up	 for	 the	 cumbersome	 way	 hierarchies	 are
represented	and	navigated	in	relational	databases.

Many	 extensions	 discussed	 in	 this	 chapter	 have	 been	 implemented	 in
various	ways	by	ORDBMS	vendors.	Some	implement	them	partially	or	even	add

more	 specific	 functionality.	 Hence,	 it	 is	 recommended	 to	 explore	 the	 options
available	to	a	particular	system.

Scenario	Conclusion

Remember	 that	 in	 the	 relational	 model	 of	 Sober,	 the	 DURATION
attribute	 type	 of	 the	 relation	 RIDE	 was	 a	 derived	 attribute	 type	 (see
Chapter	6).	It	can	be	calculated	by	subtracting	the	pick-up	time	from	the
drop-off	time.	Now	that	Sober	has	learned	about	triggers,	it	has	defined
this	after	trigger:

CREATE	TRIGGER	CALCDURATION
AFTER	INSERT	ON	RIDE
FOR	EACH	ROW
WHEN	(NEW.PICKUP-DATE-TIME	IS	NOT	NULL	AND	
NEW.DROPOFF-DATE-TIME	IS	NOT	NULL)
UPDATE	RIDE
SET	DURATION	=	NEW.DROPOFF-DATE-TIME	–	
NEW.PICKUP-DATE-TIME

The	advantage	of	using	this	trigger,	rather	than	manually	entering	a	value
for	 the	DURATION	attribute	 type,	 is	 that	 the	value	 is	 always	 correctly
calculated.	 Note	 that	 if	 a	 value	 for	 DURATION	 is	 manually	 inserted,
then	this	trigger	will	override	it	since	it	is	an	after	trigger	and	thus	first
inserts	the	new	tuples	before	executing	the	trigger	body.

Sober	 decided	 not	 to	 implement	 any	 stored	 procedures	 because	 it
might	complicate	the	maintenance	of	Sober’s	database	applications.

In	the	current	relational	model,	Sober	has	treated	the	PICKUP-LOC,
DROPOFF-LOC,	 and	 ACC-LOCATION	 attribute	 types	 as	 atomic

attribute	 types.	Now	 that	 it	 has	 learned	 about	 named	 row	 types,	 it	 has
defined	the	following	named	row	type	instead:

CREATE	ROW	TYPE	ADDRESS	AS
(STREET	ADDRESS	CHAR(20)	NOT	NULL,
ZIP	CODE	CHAR(8),
CITY	CHAR(15)	NOT	NULL)

This	can	then	be	used	in	the	RIDE	table:

CREATE	TABLE	RIDE
				(RIDE-NR	INT	NOT	NULL,
				…,
				PICKUP-LOC	ADDRESS,
				DROPOFF-LOC	ADDRESS,
				…)

By	 doing	 so,	 Sober	 can	 ask	 more	 detailed	 queries.	 As	 an	 example,
suppose	 the	 company	 wants	 to	 retrieve	 all	 ride-hailing	 services	 with
drop-off	location	in	San	Francisco.	It	can	now	do	this	with	the	following
SQL	query:

SELECT	*
FROM	RIDE	HAILING,	RIDE
WHERE
H-RIDE-NR=RIDE-NR	AND
DROPOFF-LOC.CITY='San	Francisco'

Sober	also	decided	to	store	the	email	addresses	of	its	customers	for
marketing	purposes.	Since	a	customer	can	have	multiple	email	addresses
(e.g.,	professional	and	private),	it	will	make	use	of	a	SET	collection	type
as	follows:

CREATE	TABLE	CUSTOMER
				(CUST-NR	INT	NOT	NULL,
						CUST-NAME	VARCHAR(30)	NOT	NULL,
						EMAIL	SET	(CHAR(20)),
)

Finally,	Sober	wants	to	store	a	high-resolution	image	of	each	of	its
Sober	cars	and	an	extensive	report	of	each	accident	that	took	place.	It	can
now	 do	 this	 using	 the	 BLOB	 and	 CLOB	 data	 types	 discussed	 in	 this
chapter.

Key	Terms	List

active

after	trigger

before	trigger

BLOB	(binary	large	object)

CLOB	(character	large	object)

DBCLOB	(double	byte	character	large	object)

distinct	data	type

external	scalar	function

external	table	function

large	objects	(LOBs)

named	row	type

opaque	data	type

passive

schema-level	triggers

sourced	function

stored	procedure

table	data	type

trigger

unnamed	row	type

user-defined	functions	(UDFs)

user-defined	types	(UDTs)

Review	Questions

9.1.	Which	statement	is	correct?

a.	In	the	relational	model,	the	tuple	constructor	can	only	be	used	on
atomic	values	and	the	set	constructor	can	only	be	used	on	tuples.

b.	In	the	relational	model,	the	tuple	constructor	allows	defining
composite	attribute	types.

c.	In	the	relational	model,	the	set	constructor	allows	defining	multi-
valued	attribute	types.

d.	In	the	relational	model,	the	tuple	and	set	constructor	can	be	used	in
a	nested	way.

9.2.	Which	of	the	following	is	not	an	advantage	of	triggers?

a.	Triggers	support	automatic	monitoring	and	verification	in	case	of
specific	events	or	situations.

b.	Triggers	allow	avoidance	of	deadlock	situations.

c.	Triggers	allow	modeling	extra	semantics	and/or	integrity	rules
without	changing	the	user	front-end	or	application	code.

d.	Triggers	allow	performance	of	synchronic	updates	in	case	of	data
replication.

9.3.	The	key	difference	between	stored	procedures	and	triggers	is	that:

a.	Stored	procedures	are	explicitly	invoked	whereas	triggers	are
implicitly	invoked.

b.	Stored	procedures	cannot	have	input	variables	whereas	triggers	can.

c.	Stored	procedures	are	stored	in	the	data	catalog,	whereas	triggers
are	not.

d.	Stored	procedures	are	more	difficult	to	debug	than	triggers.

9.4.	Which	of	the	following	is	correct?

a.	A	distinct	data	type	is	a	user-defined	data	type	which	specializes	a
standard,	built-in	SQL	data	type.

b.	An	opaque	data	type	is	an	entirely	new,	user-defined	data	type,
which	is	not	based	upon	any	existing	SQL	data	type.

c.	An	unnamed	row	type	allows	inclusion	of	a	composite	data	type	in	a
table	by	using	the	keyword	ROW.

d.	A	named	row	type	is	a	user-defined	data	type	that	groups	a	coherent
set	of	data	types	into	a	new	composite	data	type	and	assigns	a
meaningful	name	to	it.

e.	All	of	the	above	are	correct.

9.5.	Which	of	the	following	is	correct?

a.	User-defined	functions	(UDFs)	can	only	work	on	user-defined	data
types.

b.	A	sourced	function	is	a	user-defined	function	(UDF)	that	is	based
on	an	existing,	built-in	function.

c.	User-defined	functions	(UDFs)	can	only	be	defined	in	SQL.

d.	User-defined	functions	(UDFs)	must	be	stored	in	the	application,
and	not	in	the	catalog.

9.6.	An	ORDBMS	will	typically	support	inheritance…

a.	only	at	tuple	level.

b.	only	at	data	type	level.

c.	only	at	table	type	level.

d.	at	both	data	type	and	table	type	level.

9.7.	Which	of	these	statements	is	correct?

a.	A	set	is	an	ordered	collection	with	no	duplicates.

b.	A	bag	is	an	unordered	collection	which	may	contain	duplicates.

c.	A	list	is	an	ordered	collection	which	cannot	contain	duplicates.

d.	An	array	is	an	unordered	collection	which	can	contain	duplicates.

9.8.	Which	data	type	can	be	used	to	store	image	data?

a.	BLOB.

b.	CLOB.

c.	DBCLOB.

d.	None	of	the	above.

9.9.	Recursive	queries	are	a	powerful	SQL	extension	which	allow
formulation	of	complex	queries	such	as…

a.	queries	that	need	to	combine	data	from	multiple	tables.

b.	queries	that	need	to	get	access	to	multimedia	data.

c.	queries	that	need	to	navigate	through	a	hierarchy	of	tuples.

d.	queries	that	have	multiple	subqueries.

9.10.	In	industry,	ORDBMSs	have…

a.	been	very	successful	since	they	replaced	RDBMSs	as	the
mainstream	database	technology.

b.	had	modest	success,	with	most	companies	only	implementing	a
carefully	selected	set	of	extensions.

c.	not	been	successful	at	all.

Problems	and	Exercises

9.1E	Give	some	examples	of	triggers	and	stored	procedures	for	the	purchase
order	database	we	discussed	in	Chapter	6.	Discuss	the	advantages	and
disadvantages	of	both	extensions.

9.2E	Contrast	an	ORDBMS	against

Give	examples	of	applications	where	each	of	these	can	be	used.

9.3E	What	is	the	impact	of	ORDBMSs	on	normalization?

9.4E	What	are	the	different	types	of	UDTs	that	can	be	supported	by	ORDBMSs?
Illustrate	with	examples.

9.5E	What	are	the	different	types	of	UDFs	that	can	be	supported	by	ORDBMSs?
Illustrate	with	examples.

9.6E	Consider	a	table	hierarchy	with	supertable	STUDENT	and	subtables
BACHELOR_STUDENT,	MASTER_STUDENT	and	PHD_STUDENT.	Both
bachelor	and	master	students	pass	when	they	achieve	at	least	50%.	PhD	students
pass	when	they	achieve	at	least	70%.	Illustrate	using	an	SQL	query	how
polymorphism	can	be	useful.

an	RDBMS;

an	OODBMS.

9.7E	Discuss	the	following	collection	types:	set,	multiset,	list,	and	array.
Illustrate	with	examples.

9.8E	How	are	large	objects	handled	by	ORDBMSs?	Illustrate	with	examples.

9.9E	Discuss	how	triggers,	stored	procedures,	object-relational	extensions,	and
recursive	queries	are	supported	in	modern-day	DBMSs	provided	by,	e.g.,	Oracle,
IBM,	and	Microsoft.

9.10E	Consider	the	following	relational	model:
COURSE(coursenr,	coursename,	profnr)	–	profnr	is	a	foreign	key	referring	to

profnr	in	PROFESSOR
PROFESSOR(profnr,	profname)
PRE-REQUISITE(coursenr,	pre-req-coursenr)	–	coursenr	is	a	foreign	key

referring	to	coursenr	in	COURSE;	pre-req-coursenr	is	a	foreign	key	referring	to
coursenr	in	COURSE
The	PRE-REQUISITE	relation	essentially	models	a	recursive	N:M

relationship	type	for	COURSE,	since	a	course	can	have	multiple	prerequisite
courses	and	a	course	can	be	a	prerequisite	for	multiple	other	courses.
Write	a	recursive	SQL	query	to	list	all	prerequisite	courses	for	the	course

“Principles	of	Database	Management”.

1	We	could	also	create	a	view	on	the	DEPARTMENT	table	that	calculates	the
total	salary,	but	let’s	assume	we	want	to	maintain	TOTAL-SALARY	as	an
actually	stored	value,	e.g.,	for	performance	reasons.

2	We	discuss	JDBC	extensively	in	Chapter	15.	For	the	moment,	it	suffices	to
say	that	JDBC	allows	Java	programs	to	interact	with	a	relational	database	by

introducing	a	set	of	classes	(e.g.,	CallableStatement	in	our	example).

3	User-defined	types	are	sometimes	also	referred	to	as	abstract	data	types
(ADTs).

4	The	individual	components	of	an	unnamed	row	type	can	also	be	accessed
using	the	dot	(.)	operator.

10

XML	Databases
◈

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

understand	the	basic	concepts	of	XML,	Document	Type	Definition,
XML	Schema	Definition,	Extensible	Stylesheet	Language,
namespaces,	and	XPath;

process	XML	documents	using	the	DOM	and	SAX	APIs;

store	XML	documents	using	a	document-oriented,	data-oriented,	or
hybrid	approach;

grasp	the	key	differences	between	XML	and	relational	data;

map	between	XML	documents	and	(object-)relational	data	using	table-
based	mapping,	schema-oblivious	mapping,	schema-aware	mapping,
and	SQL/XML;

search	XML	data	using	full-text	search,	keyword-based	search,
structured	search	using	XQuery,	and	semantic	search	using	RDF	and
SPARQL;

Opening	Scenario

For	regulatory	and	insurance	purposes,	Sober	needs	to	store	a	report	for
each	accident.	The	report	should	include	the	date,	the	location	(including
GPS	 coordinates),	 a	 summary	 of	 what	 happened	 and	 the	 individuals
involved.	Furthermore,	for	each	individual	Sober	needs	to	know:

The	 report	 should	also	 include	 information	about	aid	provided,	 such	as
police	or	ambulance	assistance.	Sober	would	like	to	know	the	best	way
to	store	this	report.

In	 this	 chapter,	 we	 discuss	 how	 to	 store,	 process,	 search,	 and	 visualize	 XML
documents,	and	how	DBMSs	can	support	this.	We	start	by	looking	at	the	XML
data	 representation	 standard	 and	 discuss	 related	 concepts	 such	 as	 DTDs	 and
XSDs	for	defining	XML	documents,	XSL	for	visualizing	or	transforming	XML
documents,	and	namespaces	to	provide	for	a	unique	naming	convention.	This	is
followed	by	introducing	XPath,	which	uses	path	expressions	to	navigate	through

use	XML	for	information	exchange	in	combination	with	message-
oriented	middleware	(MOM)	and	web	services;

understand	other	data	representation	formats	such	as	JSON	and
YAML.

the	name;

whether	he/she	is	a	driver	driving	a	Sober	car	or	not,	a	pedestrian,	or	a
cyclist;

whether	he/she	was	injured.

XML	 documents.	 We	 review	 the	 DOM	 and	 SAX	 API	 to	 process	 XML
documents.	Next,	we	cover	both	 the	document-	and	data-oriented	approach	for
storing	XML	documents.	We	extensively	highlight	the	key	differences	between
the	XML	 and	 relational	 data	model.	Various	mapping	methods	 between	XML
and	 (object-)relational	 data	 are	 discussed:	 table-based	 mapping,	 schema-
oblivious	mapping,	 schema-aware	mapping,	 and	 the	 SQL/XML	 extension.	We
also	present	various	ways	to	search	XML	data:	full-text	search,	keyword-based
search,	structured	search,	XQuery,	and	semantic	search.	We	then	illustrate	how
XML	 can	 be	 used	 for	 information	 exchange,	 both	 at	 the	 company	 level	 using
RPC	and	message-oriented	middleware	and	between	companies	using	SOAP	or
REST-based	 web	 services.	 We	 conclude	 by	 discussing	 some	 other	 data
representation	standards,	such	as	JSON	and	YAML.

10.1	Extensible	Markup	Language

In	what	 follows	we	discuss	 the	basic	 concepts	of	XML.	This	 is	 followed	by	a
review	 of	Document	Type	Definition	 and	XML	Schema	 definition,	which	 can
both	be	used	to	specify	the	structure	of	an	XML	document.	Extensible	Stylesheet
Language	is	covered	next.	Namespaces	are	discussed	as	a	means	to	avoid	name
conflicts.	The	 section	 concludes	by	 introducing	XPath	 as	 a	 simple,	declarative
language	that	uses	path	expressions	to	refer	to	parts	of	an	XML	document.

10.1.1	Basic	Concepts

Extensible	Markup	Language	(XML)	was	introduced	by	the	World	Wide	Web
Consortium	(W3C)	in	1997.1	It	is	essentially	a	simplified	subset	of	the	Standard
Generalized	Markup	Language	(SGML),	which	is	a	meta-markup	language	that
can	 be	 used	 to	 define	 markup	 languages.	 The	 development	 of	 XML	 was
triggered	by	 the	emergence	of	 the	World	Wide	Web	and	 the	need	 to	exchange
information	 and	 machine-processable	 documents	 between	 various	 web
applications	and	across	heterogeneous	data	sources.	The	XML	standard	is	aimed
at	storing	and	exchanging	complex,	structured	documents.

Like	 HTML,	 XML	 data	 are	 enclosed	 between	 tags,	 which	 are	 used	 to
annotate	 a	 document’s	 content,	 hence	 the	 term	 “markup”.	 However,	 whereas
HTML	comes	with	a	fixed	set	of	predefined	tags,	users	can	define	new	tags	 in
XML,	 hence	 the	 name	 Extensible	 Markup	 Language.	 Consider	 the	 following
example:

<author>Bart	Baesens</author>

The	combination	of	a	start	 tag	(<author>),	content	(Bart	Baesens),	and	end	tag
(</author>)	 is	 called	 an	XML	 element.	 Note	 that	 XML	 is	 case-sensitive,	 so
<author>	 is	 different	 than	 <Author>	 or	 <AUTHOR>.	 Tags	 can	 be	 nested	 and
make	the	data	self-descriptive	as	follows:

<author>
<name>
<firstname>Bart</firstname>
<lastname>Baesens</lastname>
</name>
</author>

Start	tags	can	contain	attribute	values,	such	as	the	following

<author	email="Bart.Baesens@kuleuven.be">Bart	Baesens</author>

All	attribute	values	 (including	numbers!)	must	be	quoted	using	either	single	or
double	quotes.	An	element	may	have	several	attributes,	but	each	attribute	name
can	only	occur	once	within	an	element	to	avoid	ambiguity.	An	obvious	question
then	becomes	when	 to	 use	 an	 attribute	 instead	 of	 defining	 an	 additional	XML
element.	An	alternative	to	the	above	example	is:

<author>
<name>Bart	Baesens</name>
<email>Bart.Baesens@kuleuven.be</email>
</author>

The	latter	option	is	better	in	case	email	is	a	multi-valued	attribute	type	or	if	we
would	like	to	add	more	metadata,	as	follows:

<author>
<name>Bart	Baesens</name>
<email	use="work">Bart.Baesens@kuleuven.be</email>
<email	use="private">Bart.Baesens@gmail.com</email>
</author>

This	example	defines	two	email	addresses,	and	an	additional	attribute	is	included
to	define	 the	 context	 thereof.	This	 specification	 is	 semantically	 richer	 than	 the
one	we	used	before.

Besides	the	ability	to	define	one’s	own	tags,	another	crucial	difference	with
HTML	 is	 already	 apparent	 from	 even	 these	 small	 examples.	 Whereas	 the
predefined	 tags	 in	 HTML	 aim	 at	 specifying	 the	 layout	 of	 the	 content	 (e.g.,
“bold,”	 “italic”	 etc.),	 the	 self-defined	 XML	 tags	 can	 be	 used	 to	 describe	 the

document	structure.	Each	bit	of	content	can	be	labeled	with	metadata	for	how	it
should	be	interpreted	by	a	human	or	a	software	application.	Therefore,	whereas
an	HTML	document	 represents	unstructured	data	 that	can	only	be	“shown”	 on
the	 screen	 with	 a	 particular	 layout,	 XML	 documents	 represent	 structured
information	 that	 can	 be	 processed	 by	 a	 computer	 system	 in	much	more	 detail
(i.e.,	 an	 application	 “knows”	whether	 a	 series	 of	 characters	 represents	 a	 name
rather	 than	 an	 email	 address).2	As	we	will	 discuss	 in	Section	10.1.2,	 it	 is	 also
possible	 to	 prescribe	 the	 structure	 of	 certain	 document	 types	 and	 validate
individual	 documents	 for	 conformance	 with	 this	 structure,	 much	 like	 the	 data
entered	 in	 a	 relational	 database	 is	 validated	 against	 the	 database	 model	 or
schema.

Connections

The	 general	 distinction	 between	 structured	 data,	 unstructured	 data,	 and
semi-structured	data	was	discussed	in	Chapter	1.

XML	 elements	 can	 have	 no	 content	 at	 all,	 in	 which	 case	 the	 start	 and
closing	tag	can	be	combined:

<author	name="Bart	Baesens"/>

This	is	a	concise	representation	equivalent	to:

<author	name="Bart	Baesens"></author>

Comments	can	be	included	between	<!--	and	-->	tags:

<!--This	is	a	comment	line	-->

Comments	 can	be	 useful	 for	 clarification	 (e.g.,	 for	 developers),	 or	 to	 edit
out	a	portion	of	the	XML	code	during	debugging.	They	are	not	processed	by	the
XML	parser.

Processing	 instructions	 are	 enclosed	 between	 <?	 and	 ?>	 tags.	A	 common
example	is	an	instruction	referring	to	the	XML	version	and	text	encoding	format:

<?xml	version="1.0"	encoding="UTF-8"?>

UTF-8	is	a	Unicode	standard	that	covers	nearly	all	characters,	punctuation,	and
symbols	 in	 the	world.	 It	 can	 process,	 store,	 and	 transport	 text	 independent	 of
platform	and	language.

The	following	example	illustrates	an	XML	definition	for	a	wine	cellar	with
two	wines:

<?xml	version="1.0"	encoding="UTF-8"?>
<winecellar>
			<wine>
						<name>Jacques	Selosse	Brut	Initial</name>
						<year>2012</year>
						<type>Champagne</type>
						<grape	percentage="100">Chardonnay</grape>
						<price	currency="EURO">150</price>
						<geo>
									<country>France</country>
									<region>Champagne</region>
						</geo>
						<quantity>12</quantity>
				</wine>
				<wine>
							<name>Meneghetti	White</name>
							<year>2010</year>

							<type>white	wine</type>
							<grape	percentage="80">Chardonnay</grape>
							<grape	percentage="20">Pinot	Blanc</grape>
							<price	currency="EURO">18</price>
							<geo>
										<country>Croatia</country>
										<region>Istria</region>
							</geo>
							<quantity>20</quantity>
				</wine>
</winecellar>

This	example	illustrates	the	typical	structure	of	XML	documents.	A	wine	cellar
consists	 of	 wines.	 Every	 wine	 is	 characterized	 by	 its	 name,	 year,	 type,	 grape
composition,	price,	geographic	location	(country	and	region),	and	quantity.	The
comprehensibility	 of	 an	 XML	 document	 depends	 on	 the	 adoption	 of	 proper
formatting	rules	as	depicted	in	Table	10.1.	An	XML	document	satisfying	 these
rules	is	referred	to	as	well	formed.	A	simple	way	to	check	if	an	XML	document
is	 well	 formed	 is	 by	 verifying	 that	 it	 can	 be	 successfully	 opened	 in	 a	 web
browser.

Table	10.1	XML	formatting	rules

XML	formatting	rule Bad	example Good	example

Only	one	root	element
is	allowed

<winecellar>
<wine>
<name>Jacques	
Selosse	Brut	
Initial</name></wine>
</winecellar>

<winecellar>
<wine>
<name>Jacques	
Selosse	Brut	
Initial</name>
</wine>

<winecellar>
<wine>
<name>Meneghetti	
White</name>
</wine>
</winecellar>

<wine>
<name>Meneghetti	
White</name>
</wine>
</winecellar>

Every	start	tag	should
be	closed	with	a
matching	end	tag

<winecellar>
<wine>
<name>Jacques	
Selosse	Brut	Initial
</winecellar>

<winecellar>
<wine>
<name>Jacques	
Selosse	Brut	Initial	
</name></wine>
</winecellar>

No	overlapping	tag
sequence	or	incorrect
nesting	of	tags

<winecellar>
<wine>
<name>Jacques	
Selosse	Brut	Initial	
</winecellar>
</wine>
</name>

<winecellar>
<wine>
<name>Jacques	
Selosse	Brut	Initial	
</name></wine>
</winecellar>

Since	 XML	 elements	 can	 be	 nested,	 every	 XML	 document	 can	 be
represented	 as	 a	 tree,	 as	 illustrated	 in	 Figure	 10.1.	 The	 root	 of	 the	 tree	 is	 the
element	winecellar.	The	element	wine	 is	 the	child	of	winecellar.	The	 elements
name,	year,	type,	grape,	price,	geo,	and	quantity	are	children	of	wine.	All	these
elements	are	also	descendants	of	winecellar.	The	ancestors	of	country	and	region

are	geo,	wine,	and	winecellar.	The	elements	name,	year,	type,	grape,	price,	geo,

and	quantity	are	siblings.

Figure	10.1	Tree	representation	of	an	XML	document.

10.1.2	Document	Type	Definition	and	XML	Schema	Definition

Document	 Type	 Definition	 (DTD)	 and	 XML	 Schema	 Definition	 (XSD)
formally	specify	the	structure	of	an	XML	document.	Both	define	the	tag	set,	the
location	 of	 each	 tag,	 and	 how	 they	 can	 be	 nested.	 An	 XML	 document	 that
complies	with	a	DTD	or	XSD	is	referred	to	as	valid.	Note	that	defining	a	DTD
or	XSD	for	an	XML	document	is	not	mandatory.	However,	a	document	without	a
DTD	 or	 XSD	 can	 only	 be	 guaranteed	 to	 be	well-formed,	 i.e.,	 to	 satisfy	 the
overall	 syntax	 of	 XML	 documents.	 A	 valid	 XML	 document	 is	 certified	 to
comply	with	 the	 structural	 prescriptions	 of	 a	 specific	 document	 type	 (e.g.,	 an
invoice,	 a	 purchase	 order,	 or	 a	 wine	 cellar	 listing),	 which	 is	 a	 much	 stronger
property	 than	 just	 being	 well-formed.	 Being	 well-formed	 is	 a	 prerequisite	 for
being	valid.

Here	you	can	see	the	DTD	definition	for	our	wine	cellar	example:

<?xml	version="1.0"	encoding="UTF-8"?>
<!DOCTYPE	winecellar	[
<!ELEMENT	winecellar	(wine+)>
<!ELEMENT	wine	(name,	year,	type,	grape*,	price,	geo,	quantity)>
<!ELEMENT	name	(#PCDATA)>
<!ELEMENT	year	(#PCDATA)>
<!ELEMENT	type	(#PCDATA)>
<!ELEMENT	grape	(#PCDATA)>
<!ATTLIST	grape	percentage	CDATA	#IMPLIED>
<!ELEMENT	price	(#PCDATA)>
<!ATTLIST	price	currency	CDATA	#REQUIRED>
<!ELEMENT	geo	(country,	region)>
<!ELEMENT	country	(#PCDATA)>
<!ELEMENT	region	(#PCDATA)>
<!ELEMENT	quantity	(#PCDATA)>

]>

A	few	things	are	worth	mentioning:

The	root	element	is	defined	as	<!DOCTYPE	winecellar	[…]>

<!ELEMENT	winecellar	(wine+)>	implies	that	a	wine	cellar	can	have
one	or	more	wines.	The	modifier	+	refers	to	one	or	more	(e.g.,	wine+)
whereas	*	refers	to	zero	or	more	(e.g.,	wine*).

<!ELEMENT	wine	(name,	year,	type,	grape*,	price,	geo,	quantity)>
specifies	all	the	wine	attributes.

grape*	refers	to	the	fact	that	a	wine	can	be	assembled	from	zero	or	more
grapes	(as	is	the	case	for	the	Meneghetti	wine).	If	we	would	define	it	as
grape+,	we	enforce	that	a	wine	is	assembled	from	one	or	more	grapes.

Attributes	are	specified	using	<!ATTLIST…	>.	The	keyword	#IMPLIED
(e.g.,	for	grape	percentage)	indicates	that	the	attribute	value	is	optional,
whereas	#REQUIRED	(e.g.,	for	price	currency)	indicates	a	compulsory
value.	#FIXED	can	be	used	for	a	constant	value.

CDATA	refers	to	character	data	not	parsed	by	the	XML	parser,	whereas
PCDATA	refers	to	character	data	parsed	by	the	XML	parser.	Tags	inside
PCDATA	text	will	be	parsed	as	regular	XML	tags,	whereas	tags	inside
CDATA	will	be	considered	as	strings.

Key	attribute	types	can	be	defined	using	the	ID	keyword.	For	example,
this	declaration:

<!ATTLIST	wine	winekey	ID	#REQUIRED>

The	DTD	can	be	 included	 in	 the	XML	document	or	 stored	 in	an	external
file	with	*.dtd	extension:

<!DOCTYPE	winecellar	SYSTEM	"winecellar.dtd">

The	keyword	SYSTEM	indicates	that	the	DTD	is	only	accessible	to	a	limited	set
of	 authors.	 An	 alternative	 is	 PUBLIC,	 if	 the	 DTD	 should	 be	 accessible	 to	 a
broader	audience.	An	advantage	of	storing	the	DTD	in	an	external	file	is	that	it
can	be	referred	to	and	shared	by	multiple	XML	documents.

Drill	Down

Some	 popular	 examples	 of	 DTDs	 are:	 MathML	 (mathematics	 markup
language)	 for	 mathematical	 expressions;	 CML	 (chemical	 markup
language)	 for	 describing	 molecules;	 Legal	 XML	 for	 court	 records;
XHTML	 (XML-based	 HTML)	 for	 web	 pages,	 and	 PMML	 (predictive
modeling	markup	language)	for	describing	analytical	models.

A	 key	 disadvantage	 of	 DTD	 is	 that	 it	 only	 supports	 character	 data.	 No
support	for	integers,	dates,	or	other	complex	types	is	provided.	Also	note	that	a
DTD	is	not	defined	using	XML	syntax,	which	further	inhibits	its	adoption.	Both

requires	that	each	wine	has	a	unique	value	for	the	attribute	type	winekey
in	the	XML	document.	An	IDREF	(IDREFS)	attribute	type	can	also	be
defined	to	refer	to	the	value	(values)	of	some	ID	attribute	type	defined
elsewhere	in	the	XML	document.	Although	this	sounds	similar	to	a
primary–foreign	key	relationship	in	the	relational	model,	both	ID	and
IDREF	are	untyped,	which	means	that	an	IDREF	can	refer	to	any	ID
within	the	XML	document.

shortcomings	 are	 addressed	 by	 XML	 Schema,	 which	 provides	 a	 semantically
richer	way	of	defining	XML	document	types.

XML	 Schema	 supports	 various	 data	 types	 and	 user-defined	 types.	 Its
modeling	 toolkit	 has	 been	 inspired	 by	 both	 relational	 and	 object-oriented	 data
modeling	 and	 provides	 modeling	 concepts	 similar	 to	 primary–foreign	 keys,
domains,	cardinalities,	complex	and	user-defined	data	types,	supertype–subtype
relationships,	etc.

Here	you	can	see	an	example	XML	Schema	Definition	(XSD)	for	our	wine
cellar	example:

<?xml	version="1.0"	encoding="UTF-8"	?>
<xs:schema	xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element	name="winecellar">
<xs:complexType>
<xs:sequence>
<xs:element	name="wine"	maxOccurs="unbounded"	
minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element	type="xs:string"	name="name"/>
<xs:element	type="xs:short"	name="year"/>
<xs:element	type="xs:string"	name="type"/>
<xs:element	name="grape"	maxOccurs="unbounded"	
minOccurs="1">
<xs:complexType>
<xs:simpleContent>
<xs:extension	base="xs:string">
<xs:attribute	type="xs:byte"	name="percentage"	use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element	name="price">
<xs:complexType>
<xs:simpleContent>
<xs:extension	base="xs:short">
<xs:attribute	type="xs:string"	name="currency"	use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element	name="geo">
<xs:complexType>
<xs:sequence>
<xs:element	type="xs:string"	name="country"/>
<xs:element	type="xs:string"	name="region"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element	type="xs:byte"	name="quantity"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

A	few	things	are	worth	noting:

XML	Schema	is	more	verbose	than	DTD.

An	XSD	is	a	well-formed	XML	document	itself.	Just	like	the	catalog	in
an	RDBMS	consists	of	relational	data	that	prescribe	the	structure	of	the

As	with	DTDs,	XSDs	can	be	stored	in	the	XML	document	itself	or	in	an	external
file	with	an	*.xsd	extension.

To	facilitate	working	with	XML	documents,	DTD,	and	XML	Schema,	tools
are	 available	 that	 automatically	 check	 whether	 an	 XML	 document	 or	 XSD	 is

user	database,	an	XSD	is	an	XML	document	that	prescribes	the	structure

of	other	XML	documents.

XML	Schema	instructions	start	with	the	prefix	“xs:”,	which	refers	to	the
corresponding	namespace	(see	Section	10.1.4).

The	<xs:complexType>	tag	specifies	that	winecellar	is	a	complex
element	which	consists	of	a	sequence	of	wine	child	elements	as	defined
by	the	<xs:sequence>	tag.

Minimum	and	maximum	cardinalities	can	be	specified	using	minOccurs
and	maxOccurs.

Various	data	types	are	supported	such	as	xs:string,	xs:short,	xs:byte,	etc.

A	wine	is	also	a	complex	element	that	consists	of	a	sequence	of	child
elements,	such	as	name,	year,	type,	etc.

Grape	is	a	complex	element	defined	as	an	extension	of	a	simple	type	and
contains	no	further	elements,	as	indicated	by	the	<xs:simpleContent>	tag.
The	extension	is	defined	by	the	tag	<xs:extension>	with	the	base	type:
xs:string.	An	optional	attribute	type	percentage	with	data	type	xs:byte	is
also	included.	Price	is	defined	in	a	similar	way.

Geo	is	defined	as	a	complex	type	that	is	a	sequence	of	country	and
region.

Like	DTD,	XML	Schema	also	supports	ID,	IDREF,	and	IDREFS
attribute	types.

well-formed	(see	Table	10.1),	and	validate	an	XML	document	against	a	DTD	or
XSD.3

10.1.3	Extensible	Stylesheet	Language

XML	 documents	 focus	 on	 the	 content	 of	 the	 information,	 whereas	 other
standards,	such	as	HTML,	describe	the	representation	or	layout	of	information.
Extensible	 Stylesheet	 Language	 (XSL)	 can	 be	 used	 to	 define	 a	 stylesheet
specifying	how	XML	documents	can	be	visualized	in	a	web	browser.

XSL	encompasses	 two	specifications:	XSL	Transformations	(XSLT)	and
XSL	Formatting	Objects	(XSL-FO).	The	former	is	a	language	that	transforms
XML	documents	to	other	XML	documents,	HTML	webpages,	or	plain	text;	the
latter	 is	 a	 language	 to	 specify	 formatting	 semantics	 (e.g.,	 to	 transform	 XML
documents	 to	 PDFs).	 XSL-FO	was	 discontinued	 in	 2012,	 so	 we	 will	 proceed
with	XSLT	in	the	following.

An	XSLT	stylesheet	specifies	the	set	of	rules	to	transform	XML	documents.
It	will	be	processed	by	an	XSLT	processor	that	will	first	inspect	the	data	in	the
XML	 file	 to	make	 sure	 it	 is	well-formed	 (checked	 against	 the	 factors	 listed	 in
Table	10.1)	and,	optionally,	valid	(checked	against	the	DTD	or	XSD).	It	will	then
apply	the	transformation	rules	and	write	the	result	to	an	output	stream.

Two	common	types	of	XSLT	transformations	can	be	distinguished.	The	first
one	 transforms	 an	XML	document	 to	 another	XML	document	with	 a	 different
structure.	 Suppose	 that	 in	 our	 wine	 cellar	 example	 we	 are	 interested	 in
generating	 a	 summary	 document	 that	 only	 includes	 the	 name	 and	 quantity	 of
each	wine.	We	can	then	define	the	following	XSLT	stylesheet:

<?xml	version="1.0"	encoding="UTF-8"?>
<xsl:stylesheet	version="1.0"	
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template	match="/">
<winecellarsummary>

<xsl:for-each	select="winecellar/wine">
<wine>
<name><xsl:value-of	select="name"/></name>
<quantity><xsl:value-of	select="quantity"/></quantity>
</wine>
</xsl:for-each>
</winecellarsummary>
</xsl:template>
</xsl:stylesheet>

A	few	things	are	worth	noting:

An	XSLT	stylesheet	is	a	well-formed	XML	document	itself.

XSLT	tags	are	represented	using	the	prefix	xsl:,	which	refers	to	the
corresponding	namespace	(see	Section	10.1.4).

An	XSLT	stylesheet	consists	of	templates,	which	are	transformation	rules
defining	what	action	to	perform	to	what	element.	The	<xsl:template>	tag
contains	the	rules	to	apply	when	a	specified	node	in	the	document	tree	is
matched,	whereby	match="/"	refers	to	the	whole	XML	document.	We
could	have	worked	out	an	alternative	solution	by	using	<xsl:template
match="wine">	instead.

The	<xsl:for-each	select="winecellar/wine">	statement	essentially
implements	a	for	loop	that	iterates	through	each	wine	of	the	wine	cellar.
The	statement	"winecellar/wine"	is	an	XPath	expression	used	for
navigational	purposes	(see	Section	10.1.5).

The	statements	<xsl:value-of	select="name"/>	and	<xsl:value-of
select="quantity"/>	then	retrieve	the	name	and	quantity	of	each	wine.

If	 we	 now	 run	 this	 XSLT	 stylesheet	 on	 our	 XML	 document	 using	 an	 XSLT
processor,4	we	will	get	this	result:

<?xml	version="1.0"	encoding="UTF-8"?>
<winecellarsummary>
			<wine>
						<name>Jacques	Selosse	Brut	Initial</name>
						<quantity>12</quantity>
			</wine>
			<wine>
						<name>Meneghetti	White</name>
						<quantity>20</quantity>
			</wine>
</winecellarsummary>

Another	popular	application	of	XSLT	is	to	transform	an	XML	document	to
an	HTML	page	that	can	be	displayed	in	a	web	browser.	Most	web	browsers	have
built-in	facilities	 to	 transform	an	XML	document	with	an	XSLT	stylesheet	 into
an	HTML	page.	Below	you	can	see	an	XSLT	stylesheet	that	transforms	our	wine
cellar	XML	document	to	HTML	format:

<?xml	version="1.0"	encoding="UTF-8"?>
<html	xsl:version="1.0"	
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
			<body	style="font-family:Arial;font-size:12pt;background-
color:#ffff">
<h1>My	Wine	Cellar</h1>
<table	border="1">
<tr	bgcolor="#f2f2f2">
<th>Wine</th>
<th>Year</th>
<th>Quantity</th>

</tr>
<xsl:for-each	select="winecellar/wine">
<tr>
<td><xsl:value-of	select="name"/></td>
<td><xsl:value-of	select="year"/></td>
<td><xsl:value-of	select="quantity"/></td>
</tr>
</xsl:for-each>
</table>
</body>
</html>

A	few	things	are	worth	noting:

If	we	now	process	our	XML	data	with	this	stylesheet,	we	will	obtain	this	HTML
code:

<html>
	<body	style="font-family:Arial;font-size:12pt;background-
color:#ffff">

Every	HTML	document	starts	with	an	<html>	and	<body>	tag.

<h1>	defines	an	HTML	header.

A	visual	table	format	can	be	defined	using	the	<table>,	<th>	(referring	to
table	header),	<tr>	(referring	to	table	row),	and	<td>	(referring	to	table
data	or	table	cell)	tags.

The	expression	"winecellar/wine"	is	an	XPath	expression	(see	Section
10.1.5)	used	for	navigational	purposes.

We	implement	a	for	loop	using	<xsl:for-each	select="winecellar/wine">
and	select	the	corresponding	values	using	for	example	<xsl:value-of
select="name"/>.

					<h1>My	Wine	Cellar</h1>
					<table	border="1">
														<tr	bgcolor="#f2f2f2">
																<th>Wine</th>
																<th>Year</th>
																<th>Quantity</th>
														</tr>
														<tr>
																<td>Jacques	Selosse	Brut	Initial</td>
																<td>2012</td>
																<td>12</td>
														</tr>
														<tr>
																	<td>Meneghetti	White</td>
																	<td>2010</td>
																	<td>20</td>
														</tr>
					</table>
	</body>
</html>

This	 can	be	 represented	 in	 a	web	browser	 (e.g.,	Google	Chrome)	 as	 shown	 in
Figure	10.2.

Figure	10.2	Google	Chrome	representation	of	the	wine	cellar.

A	 key	 advantage	 of	 using	 stylesheets	 is	 the	 decoupling	 of	 information
content	 from	 information	visualization,	 so	 the	underlying	 information	needs	 to
be	stored	only	once,	but	can	be	represented	 in	various	ways,	depending	on	 the
user	or	device	(e.g.,	mobile	phone)	just	by	applying	a	different	stylesheet.

10.1.4	Namespaces

Since	 XML	 allows	 every	 user	 to	 define	 his/her	 own	 tags,	 name	 conflicts	 can
arise.	Consider	the	tag	<element>,	which	can	either	refer	to	a	chemical	element,
mathematical	element	of	a	set	or	even	a	part	of	an	XML	Schema	specification.
Note	that	this	is	not	the	case	in	HTML,	since	all	HTML	tags	have	been	defined
by	the	World	Wide	Web	Consortium	(W3C).

To	avoid	name	conflicts,	XML	has	introduced	the	concept	of	a	namespace.
The	 idea	 is	 to	 introduce	 prefixes	 to	XML	 elements	 to	 unambiguously	 identify
their	 meaning.	 These	 prefixes	 typically	 refer	 to	 a	 URI	 (uniform	 resource
identifier)	 that	 uniquely	 identifies	 a	 web	 resource	 such	 as	 a	 URL	 (uniform
resource	 locator).	 The	 URL	 does	 not	 need	 to	 refer	 to	 a	 physically	 existing
webpage;	it	is	just	used	as	a	unique	identifier.	All	tags	and	attributes	associated
with	 the	 same	 prefix	 belong	 to	 the	 same	 namespace	 and	 should	 be	 unique.
Namespaces	can	be	defined	as	follows:

<winecellar	xmlns:Bartns="www.dataminingapps.com/home.html">

The	 above	 example	 defines	 a	 namespace	 called	 “Bartns”,	 which	 refers	 to	 the
URL	www.dataminingapps.com/home.html.	Tags	can	now	be	prefixed:

<bartns:wine>
<bartns:name>Jacques	Selosse	Brut	Initial</bartns:name>
<bartns:year>2012</bartns:year>
</bartns:wine>

Multiple	 namespaces	 can	 be	 defined	 and	 used	 within	 a	 single	 XML
document.	A	default	name	space	can	be	defined:

<winecellar	xmlns="www.dataminingapps.com/defaultns.html">

http://www.dataminingapps.com/home.html

All	XML	tags	without	any	prefix	will	then	be	assumed	to	belong	to	this	default
namespace.	 Note	 that	 in	 our	 earlier	 examples	 we	 already	 made	 use	 of
namespaces	 for,	 respectively,	 XML	 Schema	 tags	 and	 stylesheet	 tags,	 as	 the
following	two	code	snippets	illustrate:

<xs:schema	xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:stylesheet	version="1.0"	
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

10.1.5	XPath

XPath	 is	 a	 simple	 declarative	 language	 that	 uses	 path	 expressions	 to	 refer	 to
parts	of	an	XML	document.	XPath	considers	an	XML	document	as	an	ordered
tree	whereby	every	element,	attribute,	or	text	fragment	corresponds	to	a	node	of
the	tree.	An	XPath	expression	starts	from	a	context	node	and	then	navigates	from
there	onwards.	Every	navigation	step	results	 in	a	node	or	 list	of	nodes	that	can
then	 be	 used	 to	 continue	 the	 navigation.	 Predicates	 can	 be	 added	 to	 tailor	 the
navigation.

In	 what	 follows,	 we	 will	 discuss	 examples	 of	 XPath	 expressions.	 This
expression	selects	all	wine	elements	from	our	winecellar	example:

doc("winecellar.xml")/winecellar/wine

The	doc()	expression	is	used	to	return	the	root	of	a	named	document.	Note	that
navigating	using	the	“/”	symbol	always	selects	one	level	down.	“//”	can	be	used
to	skip	multiple	levels	of	nodes	and	search	through	all	descendants	of	a	node.

If	we	are	only	interested	in	a	particular	wine,	we	can	use	an	index:

doc("winecellar.xml")/winecellar/wine[2]

This	expression	will	select	all	details	of	the	second	wine	in	our	wine	cellar	XML
document,	which	is	the	Meneghetti	white	wine	information	in	our	example.	Note
that	the	indexing	starts	at	1	and	not	at	0,	as	is	the	case	in,	e.g.,	Java.

Predicates	can	be	added	between	square	brackets:

doc("winecellar.xml")/winecellar/wine[price	>	20]/name

This	will	select	the	names	of	all	wines	with	a	price	greater	than	20	(which	will
return	Jacques	Selosse	Brut	Initial	in	our	example).

XPath	provides	facilities	to	select	attribute	values,	move	between	ancestors,
descendants,	 siblings,	 combine	 multiple	 paths,	 etc.	 It	 also	 includes	 various
operators	for	mathematical	computations	and	Boolean	comparisons.	XPath	is	an
essential	 part	 of	 the	 XSLT	 standard,	 where	 it	 is	 also	 used	 for	 navigational
purposes,	as	we	discussed	before.

Retention	Questions

What	is	XML	and	what	can	it	be	used	for?

What	is	the	difference	between	DTD	and	XML	Schema?

What	is	XSLT	and	what	can	it	be	used	for?

Why	can	namespaces	be	useful?

Give	an	example	of	an	XPath	expression	and	discuss	its	meaning.

10.2	Processing	XML	Documents

The	information	in	an	XML	document	can	be	used	by	an	application	for	further
processing.	Figure	10.3	shows	a	generic	outline	of	the	processing	steps	involved.
A	 first	 step	 is	 using	 an	 XSLT	 stylesheet	 and	 XSLT	 processor	 to	 translate	 the
XML	document	to	the	XML	format	required	by	the	application.	The	XML	parser
will	check	whether	the	XML	document	is	well-formed	(see	Table	10.1)	and	valid
according	to	the	corresponding	DTD	or	XSD.	The	application	will	then	process
the	parsed	XML	code	using	an	API,	such	as	the	DOM	API	or	SAX	API.

Figure	10.3	Processing	an	XML	document.

The	DOM	API	 is	a	tree-based	API	and	will	represent	the	XML	document
as	 a	 tree	 in	 internal	 memory.	 It	 was	 developed	 by	 the	 World	 Wide	 Web

Consortium.	DOM	provides	 various	 classes	with	methods	 to	 navigate	 through
the	 tree	 and	 do	 various	 operations	 such	 as	 adding,	 moving,	 or	 removing
elements.	 It	 is	 especially	 useful	 to	 facilitate	 direct	 access	 to	 specific	 XML
document	 parts	 and	 when	 a	 high	 number	 of	 data	 manipulations	 are	 needed.
However,	it	can	get	too	memory	intensive	when	handling	large	XML	documents.

As	an	example,	consider	this	XML	fragment

<wine>
<name>Meneghetti	White</name>
<year>2010</year>
</wine>

with	corresponding	DOM	tree	as	illustrated	in	Figure	10.4.

Figure	10.4	DOM	tree.

The	SAX	API	 (simple	API	 for	XML)	 is	 an	 event-based	API.	The	XML
document	will	be	represented	as	a	stream	of	events:

start	document
start	element:	wine
start	element:	name
text:	Meneghetti
end	element:	name
start	element:	year
text:	2010
end	element:	year
end	element:	wine
end	document

This	stream	can	then	be	directly	passed	on	to	the	application,	which	will	use
an	 event	 handler	 to	 process	 the	 events.	When	 compared	 to	DOM,	 SAX	has	 a
smaller	memory	footprint,	since	no	tree	needs	 to	be	built,	and	is	more	scalable
for	 processing	 large	XML	documents.	 It	 is	 excellent	 for	 sequential	 access,	 but
less	 suited	 to	 supporting	 direct	 random	 access	 to	 specific	 parts	 of	 the	 XML
document.	It	also	performs	worse	than	DOM	if	heavy	data	manipulation	occurs.

Both	 DOM	 and	 SAX	 have	 been	 implemented	 in	 various	 programming
languages	 such	 as	 C++,	 Java,	 Perl,	 Python,	 etc.	 Some	 languages	 provide
combined	support.	The	JAXP	(Java	API	for	XML	processing)	is	one	of	the	Java
XML	APIs	which	includes	an	XML	parser,	XSLT	processor,	and	both	DOM	and
SAX	access	facilities	to	XML	documents	for	Java	applications.	This	implies	that
the	XML	parser	and	XSLT	processor	can	be	easily	updated	or	changed	with	no
effect	 on	 the	 applications	using	 them.	Also	note	 that	 both	DOM	and	SAX	are
low-level	APIs	which	 are	 often	 used	 by	 higher-level	APIs	 to	 further	 facilitate
XML	access,	such	as	JAXB	(Java	API	for	XML	binding)	which	converts	XML
elements	and	attributes	to	a	Java	object	hierarchy	(and	vice	versa).

DOM	 and	 SAX	 are	 two	XML	 access	methods	 that	 can	 be	 thought	 of	 as
opposites.	 StAX	 (streaming	 API	 for	 XML)	 was	 defined	 as	 a	 more	 recent

compromise	 between	 both,	 and	 originated	 from	 the	 Java	 programming

community.	As	opposed	to	SAX,	which	pushes	the	data	to	the	application	using
events,	 StAX	 allows	 the	 application	 to	 pull	 the	 required	 data	 from	 the	 XML
document	using	a	cursor	mechanism.	The	latter	is	positioned	at	a	particular	point
within	 the	 XML	 document	 and	 can	 be	 explicitly	 moved	 forward	 by	 the
application,	pulling	the	information	on	an	“as	needed”	basis.

Retention	Questions

Summarize	the	key	differences	between	the	DOM	and	SAX	API.

How	does	the	StAX	API	relate	to	the	DOM	and	SAX	API?

10.3	Storage	of	XML	Documents

XML	documents	are	 stored	as	 semi-structured	data.	A	 first	option	would	be	 to
store	 XML	 documents	 as	 files	 on	 a	 web	 server,	 similar	 to	 HTML	 pages.
Although	this	option	is	simple,	it	will	be	cumbersome	in	terms	of	maintenance,
data	manipulation,	and	structured	search.

Connections

Chapter	1	discusses	the	disadvantages	of	the	file-based	approach	to	data
management,	as	opposed	to	the	database	approach.

A	 better	 alternative	 could	 be	 a	 content	 or	 document	management	 system
aimed	 at	 editing,	 storing,	 and	 maintaining	 complex,	 hierarchically	 structured
documents.	These	systems	are	usually	built	on	top	of	a	DBMS	(e.g.,	hierarchical,
relational,	or	OO),	which	is	hidden	from	the	end-user.	They	come	with	various
facilities	 such	 as	 editors,	 authoring	 tools,	 workflow	 systems,	 and	 publishing
tools,	and	often	provide	full-text	search	capabilities.	Another	option	is	an	XML
server	or	XML	DBMS	specifically	designed	to	“natively”	store	XML	documents
and	provide	support	for	all	related	XML	standards,	such	as	DTD,	XML	Schema,
XPath,	 etc.	 It	 also	 includes	 advanced	 facilities	 for	 indexing,	 querying	 using
XQuery	 (see	 Section	 10.6.3),	 transaction	 management,	 security,	 concurrency
control,	backup,	and	recovery.	XML	documents	can	also	be	stored	in	an	(object-
)relational	database	using	either	a	document-	or	data-oriented	approach.	We	will
discuss	both	in	more	detail	in	what	follows.

10.3.1	The	Document-Oriented	Approach	for	Storing	XML	Documents

In	the	document-oriented	approach,	an	XML	document	will	be	stored	as	either
a	BLOB	(binary	 large	object)	or	CLOB	(character	 large	object)	 in	a	 table	cell.
The	 RDBMS	 considers	 these	 objects	 as	 one	 chunk	 of	 “black	 box”	 data	 and
provides	 facilities	 for	 efficient	 storage,	 retrieval,	 and	 querying.	 The	 latter	 is
usually	 based	 upon	 full-text	 search	 features	 provided	 through	 an	 object-
relational	 extension.	 This	 can	 also	 include	 automatic	 indexing	 based	 on
keywords.	 To	 facilitate	 direct	 access	 to	 XML	 document	 elements,	 some
(O)RDBMSs	 have	 introduced	 an	 XML	 data	 type	 as	 part	 of	 the	 SQL/XML
extension,	which	offers	methods	to	parse	and	manipulate	XML	content	including
XML	 to	 SQL	 data	 type	 mappings.	 We	 discuss	 this	 further	 in	 the	 section	 on
SQL/XML.

The	document-oriented	approach	is	simple	and	compact,	and	needs	no	DTD
or	XSD	for	the	XML	document	to	do	the	mapping.	It	is	especially	well	suited	for
storing	 static	 content	 that	 is	 not	 frequently	 updated,	 such	 as	 letters,	 reports,
purchase	 orders,	 or	 contracts.	 A	 drawback	 of	 this	 approach	 is	 the	 poor
integration	with	traditional	relational	SQL	query	processing.

10.3.2	The	Data-Oriented	Approach	for	Storing	XML	Documents

According	 to	 the	 data-oriented	 approach,	 an	 XML	 document	 will	 be
decomposed	into	its	constituting	data	parts	which	will	be	spread	across	a	set	of
connected	(object-)relational	tables.	This	approach	is	also	called	shredding	and
is	 recommended	 in	 the	 case	 of	 highly	 structured	 documents	 and	 fine-granular
queries	targeting	individual	XML	elements.	The	corresponding	set	of	tables	will
focus	on	capturing	the	data	elements	accurately,	so	the	document	structure	itself
becomes	less	relevant.	The	DBMS	or	separate	middleware	can	do	the	back-and-
forth	 translation	 between	 the	 XML	 data	 and	 the	 relational	 data.	 A	 further
distinction	can	be	made	between	schema-oblivious	shredding,	which	starts	from
the	 XML	 document	 itself,	 and	 schema-aware	 shredding,	 which	 starts	 from	 a
DTD	or	XSD.	We	will	discuss	both	in	more	detail	in	Sections	10.5.2	and	10.5.3.

The	major	advantage	of	this	approach	is	that	SQL	queries	can	now	directly
access	and	manipulate	individual	XML	elements.	The	entire	XML	document	can
be	reconstructed	by	using	SQL	joins.	Note,	however,	that	extensive	joins	might
hamper	 the	 performance.	 An	 alternative	 could	 be	 to	 use	 an	 object-relational
DBMS	which	provides	facilities	(e.g.,	nesting,	collection	types)	to	foster	a	closer
resemblance	 between	 the	 data	 structure	 and	 the	XML	document	 structure.	We
will	elaborate	more	on	this	in	Section	10.5.

Connections

Chapter	9	discusses	object-relational	DBMSs.

10.3.3	The	Combined	Approach	for	Storing	XML	Documents

This	 combined	 approach,	 also	 called	 partial	 shredding,	 combines	 the
document-	 and	 data-oriented	 approaches	 for	 storing	 XML	 documents.	 Some
parts	of	the	XML	document	will	be	stored	as	BLOBs,	CLOBs,	or	XML	objects,
whereas	 other	 parts	 will	 be	 shredded	 and	 stored	 in	 relational	 tables.	 This
approach	combines	 the	best	of	both	worlds.	SQL	views	can	 then	be	defined	 to
reconstruct	 the	 entire	 XML	 document.	 Most	 DBMSs	 provide	 facilities	 to
automatically	 determine	 the	 optimal	 level	 of	 decomposition.	 As	 an	 example,
consider	a	car	insurance	claim	XML	document.	The	details	of	the	claimant	and
car	(e.g.,	name,	birth	date,	 license	plate,	etc.)	can	be	stored	in	relational	 tables,
while	 the	 description	 of	 the	 accident,	 photos,	 etc.	 can	 be	 stored	 as	 BLOBs,
CLOBs,	or	XML	objects.

Note	 that	 the	 mapping	 approaches	 discussed	 above	 can	 be	 implemented
either	using	middleware	or	by	the	DBMS	itself,	in	which	case	it	is	referred	to	as
an	XML-enabled	DBMS.

Retention	Questions

Drill	Down

According	 to	 http://db-engines.com,	 the	 most	 popular	 Native	 XML
DBMSs	 are:	 MarkLogic	 (commercial),	 Virtuoso	 (open-source),	 Sedna

Discuss	and	contrast	the	document-oriented,	data-oriented,	and
combined	approach	for	storing	XML	documents.	Give
recommendations	for	when	to	use	each	approach.

http://db-engines.com

(open-source),	 BaseX	 (open-source),	 and	 Tamino	 (commercial).	 Note,
however,	that	none	of	these	ranks	in	the	top	20.

10.4	Differences	Between	XML	Data	and
Relational	Data

Both	the	relational	model	and	XML	represent	data	in	a	structured	way	(or	in	a
semi-structured	way	in	the	case	of	XML).	However,	the	structuring	elements	and
the	 semantics	 that	 can	 (and	 cannot)	 be	 expressed	 in	 both	 are	 very	 different.
Before	 we	 tackle	 the	 mapping	 between	 XML	 and	 (object-)relational	 data,	 we
must	 briefly	 overview	 some	 major	 differences	 in	 the	 way	 each	 deals	 with
structure.

Connections

The	basic	principles	of	the	relational	model	were	discussed	in	Chapter	6.
Object-relational	DBMSs	were	covered	in	Chapter	9.

To	begin	with,	remember	that	the	building	block	of	the	relational	model	is	a
mathematical	relation	that	consists	of	zero,	one,	or	more	unordered	tuples.	Each
tuple	 consists	 of	 one	 or	 more	 attributes.	 The	 relational	 model	 does	 not
implement	any	type	of	ordering.	This	is	different	in	the	XML	model,	where	the
ordering	of	 the	 elements	 can	be	meaningful	 (e.g.,	 the	 ordering	of	 the	different
paragraphs	in	a	contract).	To	implement	this	ordering	in	a	relational	database	an
extra	attribute	type	must	be	added.	In	an	object-relational	database	the	ordering
can	be	implemented	using	a	list	collection	type.

According	 to	 the	 first	normal	 form,	 the	 relational	model	does	not	 support
the	 concept	 of	 nested	 relations.	 As	 discussed	 before,	 XML	 data	 are	 typically
hierarchically	 structured,	 and	 hence	 are	 all	 about	 nesting,	 which	 creates	 a

mapping	problem.	This	is	not	an	issue	in	object-relational	databases,	since	they
provide	direct	support	to	model	complex	objects	using	nested	relations.

Another	requirement	of	the	first	normal	form	is	that	attribute	types	cannot
be	multi-valued.	XML	allows	the	same	child	element	 to	appear	multiple	 times.
As	an	example,	an	author	can	have	multiple	email	addresses.	To	map	this	to	the
relational	model,	 an	 additional	 table	 and	primary–foreign	key	 relationship	will
have	to	be	defined	which	will	create	additional	overhead.	Multi-valued	attribute
types	 can	 be	 implemented	 in	 object-relational	 databases	 using	 any	 of	 the
collection	types	(set,	multiset,	list,	array)	discussed	before.

A	relational	database	only	provides	support	 for	atomic	data	 types,	such	as
integer,	 string,	 date,	 etc.	 XML	 DTDs	 define	 aggregated	 types	 but	 provide	 no
support	for	these	atomic	data	types	since	all	numbers,	text,	and	dates	are	stored
as	 (P)CDATA.	 The	 latter	 can	 be	 appropriately	 defined	 using	 XML	 Schema
which	 supports	 both	 atomic	 and	 aggregated	 types.	 Aggregated	 types	 can	 be
directly	modeled	in	object-relational	databases	using	user-defined	types.

Finally,	XML	data	are	semi-structured.	This	 implies	 that	XML	documents
can	include	certain	anomalies	or	peculiarities	in	their	structure.	For	example,	it	is
possible	that	some	elements	are	missing	(e.g.,	a	customer	without	an	address)	or
have	variable	 length.	The	 introduction	of	 a	new	 tag,	 or	 change	 to	 the	DTD	or
XSD,	will	necessitate	a	re-generation	of	the	relational	tables.

Retention	Questions

Summarize	the	key	differences	between	XML	data	and	relational	data.
Illustrate	with	an	example.

10.5	Mappings	Between	XML	Documents	and
(Object-)	Relational	Data

In	this	section	we	review	various	ways	of	mapping	XML	documents	to	(object-
)relational	 data	 so	 they	 can	 be	 easily	 stored,	 managed,	 and	 queried	 using	 an
(O)RDBMS.	We	 discuss	 table-based	mapping,	 schema-oblivious	mapping	 and
schema-aware	mapping,	and	conclude	by	introducing	SQL/XML.

10.5.1	Table-Based	Mapping

A	 table-based	 mapping	 specifies	 strict	 requirements	 to	 the	 structure	 of	 the
XML	document:	 it	should	be	a	perfect	reflection	of	the	database	structure.	The
back-and-forth	mapping	becomes	straightforward.	Here	you	can	see	an	example
XML	document:

<database>
<table>
<row>
<column1>	data	</column1>
<column2>	data	</column2>
…
</row>
<row>
<column1>	data	</column1>
<column2>	data	</column2>
…
</row>
…
</table>
<table>
…
</table>
…
</database>

The	 actual	 data	 are	 stored	 as	 the	 content	 of	 the	 column	 elements.	 As	 an
alternative,	it	can	also	be	stored	as	column	attribute	values	in	the	row	elements,
such	 as	 <row	 column1=data	 column2=data…/>.	 Most	 tools	 will	 use	 more
meaningful	names	than	table,	column,	row,	etc.

Connections

Updatable	SQL	views	were	discussed	in	Chapter	7.

The	key	advantage	of	this	approach	is	its	simplicity,	given	the	perfect	one-
to-one	 mapping	 that	 implies	 that	 data	 can	 be	 transferred	 efficiently	 from	 the
XML	document	 to	 the	relational	 tables	and	vice	versa.	The	document	structure
itself	 can	 be	 implemented	 using	 an	 updatable	 SQL	 view	 (instead	 of	 actual
tables),	which	will	facilitate	the	data	transfer.

The	 technique	 also	 allows	 you	 to	 extract	 XML	 data	 from	 the	 database,
whereby	the	document	structure	corresponds	to	the	result	of	an	SQL	query.

The	major	disadvantage	relates	to	the	rigid	structure	imposed	on	the	XML
document.	This	 can	be	partly	mitigated	by	using	XSLT	 to	 tailor	 the	document
according	to	the	requirements	of	a	specific	application.

The	 table-based	 mapping	 approach	 is	 frequently	 used	 to	 serialize	 and
transfer	data	from	one	DBMS	to	another	DBMS.	Another	example	concerns	web
forms,	whereby	the	data	entered	are	stored	in	an	XML	document	that	can	then	be
imported	into	the	DBMS	directly.

10.5.2	Schema-Oblivious	Mapping

A	schema-oblivious	mapping/shredding	transforms	an	XML	document	without
the	availability	of	a	DTD	or	XSD.	This	situation	could	occur	for	irregular	XML
documents	that	do	not	abide	to	a	common	schema.	Therefore,	we	need	to	think
about	a	very	general,	high-level	schema	to	assist	in	the	mapping.	One	common
approach	 is	 to	 transform	 the	 document	 to	 a	 tree	 structure,	 whereby	 the	 nodes
represent	the	data	in	the	document.	The	tree	can	then	be	mapped	to	a	relational
model	in	various	ways.	A	first	option	is	to	create	one	relational	table:

CREATE	TABLE	NODE(
ID	CHAR(6)	NOT	NULL	PRIMARY	KEY,
PARENT_ID	CHAR(6),
TYPE	VARCHAR(9),
LABEL	VARCHAR(20),
VALUE	CLOB,
FOREIGN	KEY	(PARENT_ID)	REFERENCES	NODE	(ID)
CONSTRAINT	CC1	CHECK(TYPE	IN	("element",	"attribute"))
)

The	 idea	here	 is	 to	 assign	 a	unique	 identifier	 to	 each	 element	 or	 attribute
type.	The	PARENT_ID	attribute	type	is	a	self-referencing	foreign	key	referring
to	the	parent	of	the	element	or	attribute	type.	The	TYPE	attribute	type	indicates
whether	 the	 tuple	 relates	 to	an	element	or	attribute	 type.	The	LABEL	attribute
type	specifies	 the	XML	tag	name	of	 the	element	or	name	of	 the	attribute	 type.
The	VALUE	attribute	type	is	the	text	value	of	the	element	or	attribute	type.	An
additional	ORDER	attribute	type	can	be	added	to	the	table	to	record	the	order	of
the	children.

As	an	example,	consider	this	XML	specification:

<?xml	version="1.0"	encoding="UTF-8"?>
<winecellar>
				<wine	winekey="1">
							<name>Jacques	Selosse	Brut	Initial</name>
							<year>2012</year>
							<type>Champagne</type>
							<price>150</price>
				</wine>
				<wine	winekey="2">
							<name>Meneghetti	White</name>
							<year>2010</year>
							<type>white	wine</type>
							<price>18</price>
				</wine>
</winecellar>

This	will	result	in	the	tuples	in	the	NODE	table	shown	in	Figure	10.5.

Figure	10.5	Example	tuples	in	the	NODE	table.

XPath	or	XQuery	 (see	Section	10.6.3)	 queries	 can	 then	be	 translated	 into
SQL	queries,	of	which	the	result	can	be	translated	back	to	XML.	As	an	example,
consider	our	previous	XPath	query:

doc("winecellar.xml")/winecellar/wine[price	>	20]/name

This	can	now	be	translated	into:

SELECT	N2.VALUE
FROM	NODE	N1,	NODE	N2
WHERE
N2.LABEL="name"	AND
N1.LABEL="price"	AND
CAST(N1.VALUE	AS	INT)>	20	AND
N1.PARENT_ID=N2.PARENT_ID

Note	that	the	CAST()	function	is	needed	to	cast	the	VARCHAR	into	an	INT	so
the	mathematical	 comparison	 can	 be	 done.	 The	 generation	 of	 this	 SQL	 query
from	 the	 XPath	 expression	 can	 be	 taken	 care	 of	 by	 a	 middleware	 tool.	 Note,
however,	that	not	all	XPath	queries	can	be	translated	to	SQL.	An	example	of	this
is	a	search	through	all	descendants	of	a	node	at	different	levels	using	the	XPath	//
operator.	The	latter	cannot	be	expressed	adequately	in	SQL	unless	the	extension
of	recursive	SQL	queries	is	used.

Connections

Chapter	9	discusses	recursive	SQL	queries.

Although	 a	 single	 relational	 table	 gives	 a	 very	 compact	 representation,	 it
will	 require	 extensive	 querying	 resources	 since	 every	 single	 navigation	 step
requires	 a	 self-join	 on	 this	 table.	 Various	 alternatives	 can	 be	 considered	 by
creating	more	 tables	 storing	 information	 separately	 about	 elements,	 attributes,
siblings,	etc.	The	optimal	design	depends	upon	the	type	of	queries	executed.	The
mapping	can	be	further	facilitated	by	making	use	of	object-relational	extensions

(e.g.,	 nesting	 constructs,	 collection	 types)	 to	 avoid	 extensive	 normalization,
which	risks	over-shredding	the	XML	data	across	too	many	relations.

Note	 that	 due	 to	 extensive	 shredding,	 the	 reconstruction	 of	 the	 XML
document	 from	 the	 (object-)relational	 data	 can	 get	 quite	 resource	 intensive.
Some	middleware	solutions	offer	a	DOM	API	or	SAX	API	on	top	of	the	DBMS.
XML	applications	can	then	access	the	relational	data	through	these	APIs	without
the	 need	 to	 have	 a	 physical	 XML	 document.	 The	 (object-)relational	 data	 are
offered	as	a	virtual	XML	document.	A	related	option	is	to	use	materialized	views
to	store	the	XML	documents.

Connections

Chapter	7	discusses	materialized	views.

10.5.3	Schema-Aware	Mapping

A	schema-aware	mapping	 transforms	an	XML	document	based	on	an	already
existing	 DTD	 or	 XSD.	 The	 availability	 of	 a	 DTD	 or	 XSD	 will	 facilitate	 the
definition	of	a	corresponding	database	schema.	The	following	steps	can	be	taken
to	generate	a	database	schema	from	a	DTD	or	XSD:

1.	Simplify	the	DTD	or	XSD	as	much	as	possible.

2.	Map	every	complex	element	type	(consisting	of	other	element	types	or
mixed	content)	to	a	relational	table,	or	user-defined	type	in	the	case	of	an
ORDBMS,	with	corresponding	primary	key.

3.	Map	every	element	type	with	mixed	content	to	a	separate	table	where	the
(P)CDATA	is	stored.	Connect	this	table	to	the	parent	table	using	a
primary–foreign	key	relationship.

4.	Map	single-valued	attribute	types,	or	child	elements	that	occur	only	once,
with	(P)CDATA	content	to	a	column	in	the	corresponding	relational	table.
When	starting	from	an	XSD,	choose	the	SQL	data	type	that	most	closely
resembles	the	XML	Schema	data	type	(e.g.,	xs:short	to	SMALLINT).	Null
values	are	allowed	if	the	attribute	type	or	child	elements	are	optional.

5.	Map	multi-valued	attribute	types,	or	child	elements	that	can	occur
multiple	times,	with	(P)CDATA	content	to	a	separate	table.	Use	a
primary–foreign	key	relationship	to	connect	this	table	to	the	parent	table.	In
an	object-relational	DBMS,	collection	types	can	be	used	as	an	alternative.

6.	For	each	complex	child	element	type,	connect	the	tables	corresponding	to
the	child	and	parent	element	types	using	a	primary–foreign	key
relationship.

Note	 that	 the	 above	 guidelines	 are	 only	 to	 be	 rules	 of	 thumb.	 Often	 the
number	 of	 relational	 tables	 generated	 from	 a	 DTD	 or	 XSD	 will	 be	 further
minimized	by	allowing	some	denormalization	to	avoid	expensive	joins	when	the
data	need	to	be	retrieved.5	Shredding	 is	a	very	complicated	process	with	many
possible	 solutions.	 The	 best	 option	 depends	 upon	 the	 requirements	 of	 the
applications	that	use	the	data.

The	 following	 steps	 can	 be	 taken	 to	 generate	 a	 DTD	 or	 XSD	 from	 a
database	model	or	schema:

1.	Map	every	table	to	an	element	type.

2.	Map	every	table	column	to	an	attribute	type	or	child	element	type	with
(P)CDATA	in	the	case	of	DTD,	or	most	closely	resembling	data	type	in	case
of	XML	Schema	(e.g.,	SMALLINT	to	xs:short).

3.	Map	primary–foreign	key	relationships	by	introducing	additional	child
element	types.	Object-relational	collections	can	be	mapped	to	multi-valued
attribute	types	or	element	types	which	can	occur	multiple	times.

Annotations	with	mapping	information	can	be	added	to	the	DTD	or	XSD.	Most
vendors	 will	 also	 offer	 user-friendly	 visualization	 facilities	 to	 clarify	 the
mapping.

10.5.4	SQL/XML

SQL/XML	was	introduced	in	2003,	with	revisions	in	2006,	2008,	and	2011.	It	is
basically	an	extension	of	SQL	that	introduces:

SQL/XML	 includes	 no	 rules	 for	 shredding	XML	data	 into	SQL	 format,	 as	we
discussed	before.

Here	you	can	see	an	example	of	an	SQL/XML	DML	instruction:

CREATE	TABLE	PRODUCT(
PRODNR	CHAR(6)	NOT	NULL	PRIMARY	KEY,
PRODNAME	VARCHAR(60)	NOT	NULL,
PRODTYPE	VARCHAR(15),
AVAILABLE_QUANTITY	INTEGER,
REVIEW	XML)

The	table	PRODUCT	has	been	extended	with	a	column	REVIEW	with	data	type
XML.	We	can	now	insert	values	into	this	table:

INSERT	INTO	PRODUCT	VALUES("120",	"Conundrum",	"white",	
12,
XML(<review><author>Bart	Baesens</author>
<date>27/02/2017</date>	<description>This	is	an	excellent	white	
wine	with	intriguing	aromas	of	green	apple,	tangerine	and	

a	new	XML	data	type	with	a	corresponding	constructor	that	treats	XML
documents	as	cell	values	in	a	column	of	a	relational	table,	and	can	be
used	to	define	attribute	types	in	user-defined	types,	variables	and
parameters	of	user-defined	functions;

a	set	of	operators	for	the	XML	data	type;

a	set	of	functions	to	map	relational	data	to	XML.

honeysuckle	blossoms.</description><rating	max-
value="100">94</rating></review>)

As	mentioned,	SQL/XML	can	be	used	to	represent	relational	data	in	XML
format.	It	provides	a	default	mapping	whereby	the	names	of	tables	and	columns
are	 translated	 to	XML	 elements	 and	 row	 elements	 are	 included	 for	 each	 table
row.	As	a	byproduct,	it	will	add	the	corresponding	DTD	or	XSD.	SQL/XML	also
includes	 facilities	 to	 represent	 the	 output	 of	 SQL	 queries	 in	 a	 tailored	 XML
format.	The	instruction	XMLElement	defines	an	XML	element	using	two	input
arguments:	 the	 name	 of	 the	 XML	 element	 and	 the	 column	 name,	 which
represents	its	content	as	follows:

SELECT	XMLElement("sparkling	wine",	PRODNAME)
FROM	PRODUCT
WHERE	PRODTYPE="sparkling"

This	query	will	give	this	result:6

<sparkling_wine>Meerdael,	Methode	Traditionnelle	Chardonnay,	
2014	</sparkling_wine>
<sparkling_wine>Jacques	Selosse,	Brut	Initial,	
2012</sparkling_wine>
<sparkling_wine>Billecart-Salmon,	Brut	Réserve,	
2014</sparkling_wine>
…

The	 above	 shows	 how	 the	 values	 of	 the	 PRODNAME	 column	 have	 been
enclosed	between	<sparkling_wine>	and	</sparkling_wine>	tags.

XMLElement	instructions	can	be	nested	and	the	XMLAttributes	instruction
can	be	added	as	a	subclause	to	specify	the	attributes	of	XML	elements:

SELECT	XMLElement("sparkling	wine",	
XMLAttributes(PRODNR	AS	"prodid"),	XMLElement("name",	
PRODNAME),	XMLElement("quantity",	
AVAILABLE_QUANTITY))
FROM	PRODUCT
WHERE	PRODTYPE="sparkling"

The	result	will	then	become:

<sparkling_wine	prodid="0178">
<name>Meerdael,	Methode	Traditionnelle	Chardonnay,	2014</name>
<quantity>136</quantity>
</sparkling_wine>
<sparkling_wine	prodid="0199">
<name>Jacques	Selosse,	Brut	Initial,	2012</name>
<quantity>96</quantity>
</sparkling_wine>
…

The	above	query	 can	be	 reformulated	using	 the	XMLForest	 instruction,	which
generates	a	list	of	XML	elements	as	children	of	a	root	element:

SELECT	XMLElement("sparkling	wine",	
XMLAttributes(PRODNR	AS	"prodid"),	XMLForest(PRODNAME	
AS	"name",	AVAILABLE_QUANTITY	AS	"quantity"))
FROM	PRODUCT
WHERE	PRODTYPE="sparkling"

XMLAgg	 is	 an	 aggregate	 function	 similar	 to	 COUNT,	MIN,	 or	MAX	 in
standard	 SQL,	 and	 can	 generate	 a	 list	 of	 XML	 elements	 from	 a	 collection	 of
elements	in	combination	with	a	GROUP	BY	statement:

SELECT	XMLElement("product",	XMLElement(prodid,	

P.PRODNR),	XMLElement("name",	P.PRODNAME),	
XMLAgg("supplier",	S.SUPNR))
FROM	PRODUCT	P,	SUPPLIES	S
WHERE	P.PRODNR=S.PRODNR
GROUP	BY	P.PRODNR

This	 query	 will	 append	 all	 supplier	 numbers	 of	 suppliers	 that	 can	 supply	 a
particular	product	under	the	corresponding	product	information:

<product>
<prodid>178</prodid>
<name>Meerdael,	Methode	Traditionnelle	Chardonnay</name>
<supplier>21</supplier>
<supplier>37</supplier>
<supplier>68</supplier>
<supplier>69</supplier>
<supplier>94</supplier>
</product>
<product>
<prodid>199</prodid>
<name>Jacques	Selosse,	Brut	Initial,	2012</name>
<supplier>69</supplier>
<supplier>94</supplier>
</product>
…

The	result	of	an	SQL/XML	query	can	also	be	a	combination	of	both	relational
and	XML	data	types,	as	this	query	illustrates:

SELECT	PRODNR,	XMLElement("sparkling	wine",	
PRODNAME),	AVAILABLE_QUANTITY
FROM	PRODUCT
WHERE	PRODTYPE="sparkling"

The	result	of	this	will	be:

0178,	<sparkling_wine>Meerdael,	Methode	Traditionnelle	
Chardonnay,	2014</sparkling_wine>,	136
0199,	<sparkling_wine>Jacques	Selosse,	Brut	Initial,	
2012</sparkling_wine>,	96
0212,	<sparkling_wine>Billecart-Salmon,	Brut	Réserve,	
2014</sparkling_wine>,	141
…

SQL/XML	 also	 includes	 functions	 to	 concatenate	 a	 list	 of	 XML	 values
(XMLConcat),	 generate	 an	 XML	 comment	 (XMLComment)	 or	 processing
instruction	 (XMLPI),	 serialize	 an	 XML	 value	 to	 a	 character	 or	 binary	 string
(XMLSerialize),	perform	a	non-validating	parse	of	a	character	string	to	produce
an	 XML	 value	 (XMLParse)	 and	 to	 create	 an	 XML	 value	 by	 modifying	 the
properties	 of	 the	 root	 item	 of	 another	 XML	 value	 (XMLROOT).	 Despite	 its
potential,	 most	 vendor	 implementations	 of	 SQL/XML	 are	 proprietary	 and
incompatible	with	each	other.

Some	 tools	 will	 also	 support	 a	 template-based	mapping	 in	 which	 SQL
statements	 can	 be	 directly	 embedded	 in	XML	documents	 using	 a	 tool-specific
delimiter	(e.g.,	<selectStmt>)	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>
<sparklingwines>
<heading>List	of	Sparkling	Wines</heading>
<selectStmt>
SELECT	PRODNAME,	AVAILABLE_QUANTITY	FROM	
PRODUCT	WHERE	PRODTYPE="sparkling";
</selectStmt>
<wine>
<name>	$PRODNAME	</name>

<quantity>	$AVAILABLE_QUANTITY	</quantity>
</wine>
</sparklingwines>

The	tool	will	then	execute	the	query	and	generate	this	output:

<?xml	version="1.0"	encoding="UTF-8"?>
<sparklingwines>
<heading>List	of	Sparkling	Wines</heading>
<wine>
<name>Meerdael,	Methode	Traditionnelle	Chardonnay,	2014</name>
<quantity>136</quantity>
</wine>
<wine>
<name>Jacques	Selosse,	Brut	Initial,	2012</name>
<quantity>96</quantity>
</wine>
..
</sparklingwines>

The	 approaches	 discussed	 in	 this	 subsection	 generate	 a	 variety	 of	 XML
documents	based	upon	the	same	underlying	relational	data.

Retention	Questions

Discuss	the	table-based	mapping	for	mapping	between	XML
documents	and	(object-)relational	data.	Illustrate	with	an	example	and
discuss	the	advantages	and	disadvantages.

Discuss	the	schema-oblivious	mapping	for	mapping	between	XML
documents	and	(object-)relational	data.	Illustrate	with	an	example	and
discuss	the	advantages	and	disadvantages.

Drill	Down

Given	the	amount	of	unstructured	and	textual	data	they	are	working	with,
the	 media	 and	 publishing	 industry	 are	 frequent	 customers	 of	 XML
databases.	As	an	example,	for	more	than	140	years,	the	Press	Association
(PA)	 served	 as	 the	UK’s	main	 provider	 of	 fast	 and	 accurate	 news.	 PA
provides	 different	 types	 of	 information	 such	 as	 news,	 sports	 data,	 and
weather	forecasts,	and	various	types	of	multimedia	content	(images	and
video).	 Since	 XML	 is	 one	 of	 their	 key	 technologies,	 they	 needed	 an
XML-enabled	 DBMS	 such	 as	MarkLogic	 to	 merge	 a	 large	 volume	 of
structured	and	unstructured	data	in	a	transparent	and	efficient	way.

Discuss	the	schema-aware	mapping	for	mapping	between	XML
documents	and	(object-)relational	data.	Illustrate	with	an	example	and
discuss	the	advantages	and	disadvantages.

What	is	SQL/XML	and	what	can	it	be	used	for?	Illustrate	with	an
example.

10.6	Searching	XML	Data

Whereas	 SQL	 is	 used	 to	 query	 relational	 data,	 different	 techniques	 exist	 to
directly	query	XML	data.	Some	exploit	the	structured	aspect	of	XML,	much	like
SQL	does	with	relational	data,	whereas	others	merely	treat	XML	documents	as
plain	 text,	 not	 taking	 the	 inherent	 structure	 into	 account.	 We	 discuss	 the
respective	options	in	this	section.

10.6.1	Full-Text	Search

A	 first	 option	 is	 to	 treat	XML	 documents	 as	 textual	 data	 and	 conduct	 a	 brute
force	full-text	search.	This	approach	does	not	take	into	account	any	tag	structure
or	 information.	 It	 can	 be	 applied	 to	XML	documents	 that	 have	 been	 stored	 as
files	(e.g.,	in	a	file	or	content	management	system)	or	as	BLOB/CLOB	objects	in
a	DBMS.	Note	that	many	DBMSs	offer	full-text	search	capabilities	by	means	of
object-relational	extensions.	The	same	method	can	also	be	applied	 to	search	 in
HTML	documents,	emails,	or	other	text	documents.	A	major	drawback	is	that	it
does	not	formulate	semantically	rich	queries	targeting	individual	XML	elements
and/or	join	XML	data	with	relational	data.

10.6.2	Keyword-Based	Search

A	keyword-based	 search	 assumes	 that	 the	 XML	 document	 is	 complemented
with	 a	 set	 of	 keywords	 describing	 the	 document	metadata,	 such	 as	 file	 name,
author	 name,	 date	 of	 last	 modification,	 keywords	 summarizing	 document
content,	 etc.	 These	 keywords	 can	 then	 be	 indexed	 by	 text	 search	 engines	 to
speed-up	 information	 retrieval.	 The	 document	 itself	 is	 still	 stored	 in	 a	 file	 or
BLOB/CLOB	 format.	 Although	 this	 approach	 is	 semantically	 richer	 than	 the
previous	 one,	 it	 still	 does	 not	 unleash	 the	 full	 expressive	 power	 of	 XML	 for
querying.

10.6.3	Structured	Search	With	XQuery

Structured	search	methods	make	 use	 of	 structural	metadata,	which	 relates	 to
the	 actual	 document	 content.	 To	 clarify	 the	 difference	 between	 document
metadata	and	structural	metadata,	consider	a	set	of	XML	documents	describing
book	reviews.	The	document	metadata	describe	properties	of	the	document,	such
as	author	of	the	review	document	(e.g.,	Wilfried	Lemahieu)	and	creation	date	of
the	document	 (e.g.,	 June	6,	2017).	The	structural	metadata	describe	 the	 role	of
individual	content	fragments	within	the	overall	document	structure.	Examples	of
structural	 metadata	 are:	 “title	 of	 book”	 (e.g.,	 describing	 the	 content	 fragment
“Analytics	in	a	Big	Data	World”),	“author	of	book”	(e.g.,	describing	the	content
fragment	 “Bart	 Baesens”),	 rating	 (e.g.,	 describing	 the	 content	 fragment
“excellent”),	and	“review”	(describing	the	actual	review	text).

Structured	 search	 queries	 offer	 more	 possibilities	 than	 both	 full-text	 and
keyword-based	search	methods	since	we	can	now	also	query	document	content
by	means	of	 the	structural	metadata.	 In	 this	way,	we	can	search	for	 reviews	of
just	 books	 authored	 by	 Bart	 Baesens,	 instead	 of	 all	 documents	 somehow
containing	the	text	string	“Bart	Baesens”,	as	with	full-text	search.	Also,	we	can
retrieve	 only	 the	 title	 of	 the	 qualifying	 books,	 instead	 of	 the	 entire	 review
documents.

The	XQuery	 language	formulates	structured	queries	 for	XML	documents.
The	 queries	 can	 take	 both	 the	 document	 structure	 and	 the	 actual	 elements’
content	 into	 account.	XPath	 path	 expressions	 are	 used	 to	 navigate	 through	 the
document	structure	and	to	retrieve	the	children,	parents,	ancestors,	descendants,
siblings,	and	references	of	an	XML	element.	Also,	the	ordering	of	the	elements
can	 be	 accounted	 for.	 XQuery	 complements	 the	 XPath	 expressions	 with
constructs	 to	 refer	 to	and	compare	 the	content	of	elements.	Here,	 the	syntax	 is

somewhat	 similar	 to	 SQL.	An	XQuery	 statement	 is	 formulated	 as	 a	FLWOR
(pronounced	as	“flower”)	instruction	as	follows:

FOR	$variable	IN	expression
LET	$variable:=expression
WHERE	filtercriterion
ORDER	BY	sortcriterion
RETURN	expression

Consider	this	example:

LET	$maxyear:=2012
RETURN	doc("winecellar.xml")/winecellar/wine[year	<$maxyear]

This	query	will	return	all	wine	elements	(including	all	attributes	and	children)	of
wines	that	are	older	than	2012.	Note	how	the	LET	instruction	is	used	to	assign
the	value	2012	to	the	variable	“maxyear”.	The	RETURN	instruction	will	return
the	query	result.

The	FOR	instruction	implements	an	iteration	as	follows:

FOR	$wine	IN	doc("winecellar.xml")/winecellar/wine
ORDER	BY	$wine/year	ASCENDING
RETURN	$wine

The	 $wine	 variable	 will	 iterate	 through	 each	 wine	 element	 of	 the	 wine
cellar.	As	 in	SQL,	 the	ORDER	BY	 instruction	 can	 be	 used	 for	 sorting.	 In	 our
example,	we	will	sort	the	wines	based	upon	ascending	year.

Similar	to	SQL,	the	WHERE	clause	allows	for	further	refinement:

FOR	$wine	IN	doc("winecellar.xml")/winecellar/wine
WHERE	$wine/price	<	20	AND	$wine/price/@currency="EURO"
RETURN	<cheap_wine>	{$wine/name,	$wine/price}</cheap_wine>

The	above	query	will	select	wine	elements	whose	price	is	cheaper	than	20	euros.
Remember	 that	 currency	 was	 an	 attribute	 of	 the	 XML	 element	 price.	 XML
attributes	can	be	referred	to	by	preceding	their	name	with	an	“@”	in	the	query.
Also	note	that	we	added	the	new	tag	<cheap_wine>	to	the	result.

XQuery	 also	 supports	 join	 queries.	 Assume	 we	 have	 an	 XML	 document
winereview.xml	that	contains	wine	reviews	and	ratings.	Wines	are	also	identified
by	their	“winekey”.	We	can	now	formulate	this	XQuery	join	query:

FOR	$wine	IN	doc("winecellar.xml")/wine
				$winereview	IN	doc("winereview.xml")/winereview
WHERE	$winereview/@winekey=$wine/@winekey
RETURN	<wineinfo>	{$wine,	$winereview/rating}	</wineinfo>

This	 will	 connect	 every	 “wine”	 XML	 element	 to	 every	 “winereview/rating”
XML	element	and	encloses	the	result	between	the	<wineinfo>	and	</wineinfo>
tags.

Most	of	the	SQL	constructs	(e.g.,	aggregation	functions,	DISTINCT,	nested
queries,	ALL,	ANY)	are	supported	in	XQuery,	including	the	definition	of	user-
defined	functions.	The	W3C	also	provided	a	recommendation	to	extend	XQuery
with	update	operations	such	as	INSERT,	DELETE,	REPLACE,	RENAME,	and
TRANSFORM.	More	details	can	be	found	at	www.w3.org.

http://www.w3.org

10.6.4	Semantic	Search	With	RDF	and	SPARQL

The	 concept	 of	 semantic	 search	 emanates	 from	 the	 broader	 context	 of	 the
semantic	 web.	 The	 goal	 is	 to	 get	 a	 better	 understanding	 of	 the	 relationships
behind	 the	 links	 between	 web	 resources	 as	 identified	 by	 their	 URI.	 This	 will
allow	asking	more	semantically	complicated	queries,	such	as:

Give	me	all	spicy,	ruby	colored	red	wines	with	round	texture	raised	in	clay
soil	and	Mediterranean	climate	which	pair	well	with	cheese.

Imagine	you	have	to	solve	this	query	on	data	formatted	in	HTML.	It	would	take
a	 tremendous	 effort	 to	 find	 reliable	 sources	 and	 then	 (manually)	 scrape	 and
integrate	 the	 data.	 One	 reason	 is	 because	 HTML	makes	 use	 of	 untyped	 links
which	 convey	 no	 semantically	 meaningful	 information	 about	 the	 relationship
behind	 the	 link.	The	 semantic	web	 technology	 stack	 tries	 to	 overcome	 this	 by
introducing	components	such	as	RDF,	RDF	Schema,	OWL,	and	SPARQL,	which
are	 all	 combined	 to	 provide	 a	 formal	 description	 of	 concepts,	 terms,	 and	 their
relationships.	We	will	elaborate	on	these	in	this	subsection.

Resource	Description	Framework	(RDF)	provides	the	data	model	for	the
semantic	 web	 and	 was	 developed	 by	 the	 World	 Wide	 Web	 Consortium.7	 It
encodes	 graph-structured	 data	 by	 attaching	 a	 semantic	 meaning	 to	 the
relationships.	 An	 RDF	 data	 model	 consists	 of	 statements	 in
subject–predicate–object	 format,	 which	 are	 also	 known	 as	 triples.	 Some
examples	are	shown	in	Table	10.2.

Table	10.2	Example	RDF	triples

Subject Predicate Object

Bart Name Bart

Baesens

Bart Likes Meneghetti
White

Meneghetti	White Tastes Citrusy

Meneghetti	White Pairs Fish

The	table	states	that	Bart’s	name	 is	Bart	Baesens	and	he	 likes	Meneghetti
White,	 which	 has	 a	 citrusy	 flavor	 and	 pairs	 with	 fish.	 The	 idea	 is	 now	 to
represent	the	subjects	and	predicates	using	URIs,	and	the	objects	using	URIs,	or
literals,	as	shown	in	Table	10.3.8

Table	10.3	Representing	subjects	and	predicates	using	URIs	and	objects	using
URIs	or	literals	in	RDF

Subject Predicate Object

www.kuleuven.be/Bart.Baesens http://mywineontology.com/#term_name “

www.kuleuven.be/Bart.Baesens http://mywineontology.com/#term_likes www.wine.com/MeneghettiWhite

www.wine.com/MeneghettiWhite http://mywineontology.com/#term_tastes “

www.wine.com/MeneghettiWhite http://mywineontology.com/#term_pairs http://wikipedia.com/Fish

By	 using	 URIs,	 a	 universal	 unique	 identification	 –	 which	 cannot	 be
established	using	database	specific	primary	keys	–	becomes	possible.	Data	items
identified	 with	 URIs	 can	 be	 easily	 dereferenced	 over	 the	 web.	 Note	 that	 the
predicate	 refers	 to	 a	 vocabulary	 or	 ontology	 which	 is	 a	 model	 defining	 the
various	concepts	and	their	relationships.	In	our	example	we	developed	our	own

http://www.kuleuven.be/Bart.Baesens
http://mywineontology.com/#term_name
http://www.kuleuven.be/Bart.Baesens
http://mywineontology.com/#term_likes
http://www.wine.com/MeneghettiWhite
http://www.wine.com/MeneghettiWhite
http://mywineontology.com/#term_tastes
http://www.wine.com/MeneghettiWhite
http://mywineontology.com/#term_pairs
http://wikipedia.com/Fish

wine	 ontology.	 The	 success	 of	 an	 ontology	 depends	 upon	 how	 widely	 it	 is
supported.

Drill	Down

Examples	 of	 popular	 ontologies	 are	 the	 Dublin	 Core	 Ontology
(http://dublincore.org)	 for	 describing	 metadata,	 and	 the	 Friend	 Of	 A
Friend	 (FOAF)	 ontology	 (www.foaf-project.org)	 to	 describe	 people’s
social	relationships,	interests,	and	activities.

An	RDF	data	model	can	be	visualized	as	a	directed,	labeled	graph	(Figure
10.6).

Figure	10.6	Example	RDF	graph.

RDF	data	can	be	serialized	in	different	ways.	One	possible	representation	is
the	XML	format,	by	means	of	RDF/XML,	as	you	can	see	here	for	the	first	two
triples	of	Table	10.2:

<?xml	version="1.0"?>
<rdf:RDF	xmlns:rdf="http://www.w3.org/TR/PR-rdf-syntax/"
xmlns:myxmlns="http://mywineontology.com/">
<rdf:Description	rdf:about="www.kuleuven.be/Bart.Baesens">
<myxmlns:name>Bart	Baesens</myxmlns:name>

http://dublincore.org
http://www.foaf-project.org

<myxmlns:name:likes	
rdf:resource="www.wine.com/MeneghettiWhite"/>
</rdf:Description>
</rdf:RDF>

The	RDF	data	model	is	easy	to	understand	and	use.	Hence,	it	is	one	of	the
key	 technologies	 to	 realize	 the	 concept	 of	 so-called	 linked	 data	 by	 using	 a
simple	representation	to	connect	existing	information	via	the	re-use	of	URIs.	It
provides	a	powerful	mechanism	to	mash	distributed	and	heterogeneous	data	into
one	 overall	 semantic	 model.	 RDF	 Schema	 enriches	 RDF	 by	 extending	 its
vocabulary	with	classes	and	subclasses,	properties	and	subproperties,	and	typing
of	 properties.	Web	Ontology	 Language	 (OWL)	 is	 an	 even	 more	 expressive
ontology	 language	which	 implements	 various	 sophisticated	 semantic	modeling
concepts.9	See	www.w3.org/OWL	for	more	details.

RDF	data	can	be	queried	using	SPARQL,	which	is	a	recursive	acronym	for
“SPARQL	 Protocol	 and	 RDF	 Query	 Language”.10	 SPARQL	 is	 based	 upon
matching	graph	patterns	against	RDF	graphs.	Two	examples	of	SPARQL	queries
are:

PREFIX:	mywineont:	<http://mywineontology.com/>
SELECT	?wine
WHERE	{?wine,	mywineont:tastes,	"Citrusy"}

PREFIX:	mywineont:	<http://mywineontology.com/>
SELECT	?wine,	?flavor
WHERE	{?wine,	mywineont:tastes,	?flavor}

The	 first	 query	 retrieves	 all	wines	 that	 taste	 citrusy,	whereas	 the	 second	query
retrieves	 all	 wines	 together	 with	 their	 flavors.	 The	 PREFIX	 keyword	 is
SPARQL’s	 version	 of	 a	 namespace	 declaration.	 Names	 beginning	 with	 ?

http://www.w3.org/OWL

represent	 variables	 (e.g.,	 ?name,	 ?wine).	 The	 WHERE	 clause	 essentially

specifies	a	graph	pattern.	The	result	of	a	SPARQL	query	is	a	set	of	bindings	for
the	 variables	 in	 the	 SELECT	 clause	 shown	 in	 tabular	 format.	 SPARQL	 is	 a
semantically	rich	query	language	that	allows	us	to	extract	RDF	subgraphs	using
complex	 graph	 patterns	 and	 even	 construct	 new	 RDF	 graphs.	 It	 allows	 us	 to
formulate	 complex	 queries	 and	 perform	 semantic	 search.	 A	 drawback	 is	 the
complexity	 of	 the	 technology	 stack	 needed,	 which	 gives	 it	 a	 heavy
implementation	footprint.

Retention	Questions

Discuss	the	advantages	and	disadvantages	of	searching	XML	data
using	full-text	search.

Discuss	the	advantages	and	disadvantages	of	searching	XML	data
using	keyword-based	search.

Discuss	the	advantages	and	disadvantages	of	searching	XML	data
using	XQuery.

Discuss	the	advantages	and	disadvantages	of	searching	XML	data
using	semantic	search	with	RDF	and	SPARQL.

10.7	XML	for	Information	Exchange

Besides	 modeling	 and	 storing	 (semi-)structured	 data,	 XML	 also	 has	 great
potential	 to	 exchange	 information	 between	 two	 or	 more	 databases	 or
applications,	 or	 information	 systems	 of	 different	 partners	 in	 an	 e-business
setting,	 such	 as	 purchase	 orders,	 product	 catalogs,	 or	 invoices.	 Ideally,	 all
collaborating	 parties	 first	 agree	 upon	 a	 common	DTD	or	XSD	 concerning	 the
information	 to	 be	 exchanged.	 These	 schema	 definitions	 are	 more	 frequently
specified	 at	 industry	 level,	 facilitating	 global	 information	 exchange.	 Two
common	 technologies	 to	 exchange	 XML-based	 information	 are	 message-
oriented	middleware	(MOM)	and	web	services.

10.7.1	Message-Oriented	Middleware

Enterprise	application	integration	(EAI)	refers	to	the	set	of	activities	aimed	at
integrating	applications	within	a	specific	enterprise	environment.	As	an	example,
think	about	 the	 integration	between	enterprise	resource	planning	(ERP),	supply
chain	 management	 (SCM)	 and	 customer	 relationship	 management	 (CRM)
applications.	 This	 integration	 can	 be	 facilitated	 by	 two	 types	 of	 middleware
solutions.	A	first	option	concerns	remote	procedure	call	(RPC)	technologies	in
which	 communication	 between	 applications	 is	 established	 through	 procedure
calls.	Popular	examples	are	RMI	and	DCOM.	The	idea	is	that	an	object	invokes
a	method	from	a	remote	object	on	another	server.	For	example,	Java	provides	a
built-in	 mechanism	 to	 perform	 RPC,	 called	 Java	 RMI	 (Java	 remote	 method
invocation).

RPC	 is	 usually	 synchronous,	 which	 implies	 that	 the	 calling
object/application	 must	 wait	 to	 continue	 further	 processing	 until	 the	 called
object/application	 returns	 an	 answer.	 Hence,	 RPC	 creates	 a	 strong	 coupling
between	 interacting	 objects/applications.	 Message-oriented	 middleware
(MOM)	 provides	 an	 alternative	 that	may	 be	more	 suitable	 in	 a	 heterogeneous
environment.	 The	 integration	 is	 established	 by	 exchanging	 XML	 messages
between	the	parties	involved.	An	example	could	be	an	XML	purchase	order:

<purchaseorder	id="12345"	purchaseorderdate="2017–06–08">
<supplier>Deliwines</supplier>
<wine>Meneghetti	White</wine>
<quantity>12</quantity>
…
</purchaseorder>

As	opposed	to	RPC,	MOM	works	in	an	asynchronous	way,	which	implies
that	the	calling	object/application	does	not	need	to	wait	for	an	answer	from	the
called	 object/application.	 This	 establishes	 a	 loose	 coupling	 that	 facilitates	 the
integration	in	a	highly	heterogeneous	environment.	This	also	requires	guarantees
of	reliable	messaging,	so	no	messages	get	delivered	more	than	once	or	get	lost.

Connections

A	 broader	 discussion	 on	 data	 integration	 and	 application	 integration
techniques	 and	 patterns,	 as	 well	 as	 the	 tradeoffs	 between	 different
approaches,	is	provided	in	Chapter	18.

10.7.2	SOAP-Based	Web	Services

Besides	 EAI	 technologies,	 which	 focus	 on	 integrating	 applications	 within	 a
company-specific	 context,	 interactions,	 and	 collaboration	 between	 applications
of	 different	 companies	 are	 also	 needed	 in	 a	 globalized	 e-business	 setting.
Modern	companies	 typically	operate	as	partners	 in	a	cross-company	 integrated
value	chain.	This	requires	that	IT	applications	be	integrated	using	sophisticated
B2B	(business-to-business)	 integration	 technologies.	Since	 the	more	 traditional
RPC	 and	 MOM	 technologies	 proved	 unsuitable	 for	 an	 inter-organizational
setting,	 a	 new	 technology	 stack	 was	 introduced	 that	 relied	 on	 so-called	 web
services.

Web	 services	 can	 be	 defined	 as	 self-describing	 software	 components,
which	 can	 be	 published,	 discovered,	 and	 invoked	 through	 the	web.	 The	main
components	needed	to	leverage	web	services	for	B2B	integration	are	SOAP,	as
an	exchange	format,	and	WSDL,	to	describe	the	service	offerings.	Each	of	these
is	based	upon	XML,	as	we	will	discuss	in	this	subsection.

SOAP	 stands	 for	 “Simple	 Object	 Access	 Protocol,”	 although	 the	 W3
standards	body	has	dropped	the	use	of	the	name	as	an	acronym	in	later	revisions
of	the	standard	in	favor	of	just	using	“SOAP”	as	is.	The	basic	idea	behind	SOAP
is	 to	 provide	 an	 XML-based	 messaging	 framework	 that	 is	 extensible	 (new
features	 can	 be	 easily	 added),	 neutral	 (SOAP	 messages	 can	 travel	 on	 top	 of
HTTP11	 and	 many	 other	 protocols),	 and	 independent	 (it	 can	 be	 used
independently	 of	 the	 programming	 language	 and	 architecture	 at	 hand).	 These
aspects	make	SOAP	very	versatile,	although	slower	and	more	verbose	than	other
RPC	standards,	because	XML	messages	can	quickly	grow	 large.	Here	you	can
see	an	example	of	a	SOAP	message:

<?xml	version="1.0"	encoding="utf-8"?>

<soap:Envelope	xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<GetQuote	xmlns="http://www.webserviceX.NET/">
<symbol>string</symbol>
</GetQuote>
</soap:Body>
</soap:Envelope>

As	you	can	see,	it	consists	of	a	header	(which	is	optional)	and	body	(which
is	 compulsory).	 The	 header	 contains	 application-specific	 information	 (e.g.,	 for
security	 or	 transaction	 management).	 The	 body	 contains	 an	 XML	 encoded
payload,	which	supports	both	MOM-style	and	RPC-style	interactions.	The	body
can	 be	 an	 actual	 document	 (e.g.,	 a	 purchase	 order),	 or	 a	 method	 call	 with
corresponding	 parameters.	 In	 our	 example,	 the	 SOAP	 message	 calls	 the
GetQuote	web	service	available	on	www.webserviceX.NET	with	a	string	 input
parameter	referring	to	a	stock	symbol	(e.g.,	The	Coca-Cola	Co.).12

Before	 a	 SOAP	 message	 can	 be	 sent	 to	 a	 web	 service,	 it	 must	 be	 clear
which	type(s)	of	incoming	messages	the	service	understands	and	what	messages
it	 can	 send	 in	 return.	The	web	 service	must	 define	 its	 supported	 functionality.
This	is	the	goal	of	Web	Services	Description	Language	(WSDL),	which	is	an
XML-based	language	used	to	describe	the	interface	or	functionalities	offered	by
a	web	service.	Here	you	can	see	part	of	the	WSDL	document	for	our	stock	quote
web	service:13

<?xml	version="1.0"	encoding="UTF-8"?>
<wsdl:definitions	xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"	
targetNamespace="http://www.webserviceX.NET/"	

http://www.webservicex.net

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"	
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"	
xmlns:s="http://www.w3.org/2001/XMLSchema"	
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"	
xmlns:tns="http://www.webserviceX.NET/"	
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"	
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"	
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/">
<wsdl:types>
<s:schema	targetNamespace="http://www.webserviceX.NET/"	
elementFormDefault="qualified">
<s:element	name="GetQuote">
<s:complexType>
<s:sequence>
<s:element	type="s:string"	name="symbol"	maxOccurs="1"	
minOccurs="0"/></s:sequence>
</s:complexType>
</s:element>
<s:element	name="GetQuoteResponse">
<s:complexType>
<s:sequence>
<s:element	type="s:string"	name="GetQuoteResult"	maxOccurs="1"	
minOccurs="0"/>
</s:sequence>
</s:complexType>
</s:element>
<s:element	type="s:string"	name="string"	nillable="true"/>
</s:schema>
</wsdl:types>
…
<wsdl:message	name="GetQuoteSoapIn"><wsdl:part	
name="parameters"	element="tns:GetQuote"/></wsdl:message>
<wsdl:message	name="GetQuoteSoapOut"><wsdl:part	

name="parameters"	element="tns:GetQuoteResponse"/>
</wsdl:message>
<wsdl:message	name="GetQuoteHttpGetIn"><wsdl:part	
name="symbol"	type="s:string"/></wsdl:message>
<wsdl:message	name="GetQuoteHttpGetOut"><wsdl:part	
name="Body"	element="tns:string"/></wsdl:message>
…
<wsdl:portType	name="StockQuoteSoap"><wsdl:operation	
name="GetQuote"><wsdl:documentation	
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">Get	Stock	quote	for	
a	company	Symbol</wsdl:documentation><wsdl:input	
message="tns:GetQuoteSoapIn"/><wsdl:output	
message="tns:GetQuoteSoapOut"/></wsdl:operation>
</wsdl:portType>
…
</wsdl:definitions>

Every	web	service	is	represented	as	a	set	of	so-called	port	types	that	define	a	set
of	abstract	operations.	Every	operation	has	an	input	message	(which	can	be	the
SOAP	message,	as	shown	earlier)	and	optional	output	message	corresponding	to
its	 return	 value.	 Every	 message	 specifies	 the	 attributes	 and	 their	 types	 using
XML	 Schema.	 Port	 types	 can	 be	 mapped	 to	 an	 implementation	 (port)	 by
specifying	the	corresponding	URL.	Hence,	the	same	WSDL	document	can	refer
to	multiple	implementations.

Standardized	 procedure	 calls	 between	 applications	 based	 upon	 simple
request/response	 communication	 are	 not	 enough	 to	 automate	 e-business
applications.	 E-business	 transactions	 typically	 take	 place	 according	 to	 a
predefined	process	model,	in	which	each	activity	in	the	process	may	be	realized
by	a	different	web	service.	Hence,	 the	execution	of	such	a	process	requires	the

orchestration	of	a	set	of	web	services,	possibly	belonging	to	different	interacting

partners.	Also	here,	XML	plays	a	central	role.
As	an	example,	consider	a	purchasing	process	with	the	following	activities:

select	 supplier,	 create	 purchase	 order,	 confirm	 purchase	 order,	 shipment	 of
goods,	receipt	of	goods,	send	invoice,	payment,	etc.	Some	of	these	activities	are
executed	 sequentially,	while	others	 can	be	parallelized.	Although	web	 services
can	automate	 these	process	 steps,	 the	order	 in	which	 they	need	 to	be	executed
needs	 to	be	 specified	upfront	 to	guarantee	a	 successful	overall	 execution.	This
can	be	specified	using	an	orchestration	 language,	which	 is	 typically	also	XML
based.	 A	 popular	 example	 is	 WS-BPEL	 (Web	 Services	 Business	 Process
Execution	 Language).	 One	 step	 further	 would	 be	 to	 standardize	 the	 process
itself.	 An	 example	 is	 RosettaNet,	 which	 defines	 a	 set	 of	 RosettaNet	 partner
interface	 processes	 (PIPs)	 based	 upon	 standardized	 XML	 documents	 and
document	exchange	sequences	for	various	processes	such	as	retrieving	inventory
data,	consulting	product	catalogs,	placing	product	orders,	etc.

10.7.3	REST-Based	Web	Services

Due	to	the	verbosity	and	heaviness	of	SOAP,	a	new	web	service	standard,	called
REST	(Representational	State	Transfer),	 has	 been	gaining	 traction	 in	 recent
years.	 REST	 is	 built	 directly	 on	 top	 of	HTTP	 and	 is	 completely	 stateless	 and
light,	in	terms	of	bandwidth	consumption.	The	idea	behind	REST	stems	from	the
realization	 that	 most	 web	 services	 just	 provide	 simple	 request–reply
functionality,	for	which	HTTP	is	already	perfectly	suited.	Extra	standards,	such
as	 SOAP,	 which	 add	 extra	 overhead	 and	 complexity,	 are	 not	 needed	 in	many
contexts.	REST	has	been	adopted	by	most	websites	offering	an	API.	 It	 is	well
suited	 for	 basic,	 ad-hoc	 web	 services.	 In	 addition,	 as	 the	 standard	 is	 tightly
coupled	with	HTTP,	it	has	become	the	architecture	of	choice	by	“modern”	web
companies	 (e.g.,	 social	 networks)	 to	 provide	 APIs	 with	 which	 third-party
developers	can	develop	applications.	A	shift	is	taking	place	in	which	developers
can	 be	 seen	 first	 constructing	 a	 REST	 API	 (API-first	 development)	 and	 then
building	their	own	applications	and	websites	around	this	API.	One	of	the	biggest
differences	between	REST	and	SOAP	is	 that	SOAP	is	communication	agnostic
(remember	that	SOAP	messages	can	be	transferred	on	top	of	HTTP	or	any	other
network	 protocol),	 whereas	 REST	 is	 tightly	 integrated	 with	 HTTP	 and
“embraces”	the	protocol.	The	HTTP	protocol	is	the	complete	exchange	protocol,
meaning	that	REST	basically	instructs	programmers	to	use	the	same	protocol	as
your	web	 browser	 uses	 to	 access	websites,	with	 the	 difference	 being	 that	web
servers	 will	 not	 return	 HTML	 data	 to	 be	 rendered	 by	 a	 web	 browser,	 but
structured	data	that	can	be	parsed	by	a	computer.	This	can	be	in	XML	and	other
formats,	but	with	the	difference	that	this	XML	message	will	contain	none	of	the
SOAP-defined	tags.	A	REST	request	looks	similar	to	a	normal	HTTP	request:

GET	/stockquote/IBM	HTTP/1.1

Host:	www.example.com
Connection:	keep-alive
Accept:	application/xml

This	 is	 a	 normal	HTTP	GET	 request	 for	 the	URI	 /stockquote/IBM	 sent	 to	 the
host	 www.example.com.	 The	 server	 can	 then	 respond	 with	 a	 formatted
representation	of	stock	information	(e.g.,	XML):

HTTP/1.0	200	OK
Content-Type:	application/xml
<StockQuotes>
<Stock>
<Symbol>IBM</Symbol>
<Last>140.33</Last>
<Date>22/8/2017</Date>
<Time>11:56am</Time>
<Change>-0.16</Change>
<Open>139.59</Open>
<High>140.42</High>
<Low>139.13</Low>
<MktCap>135.28B</MktCap>
<P-E>11.65</P-E>
<Name>International	Business	Machines</Name>
</Stock>
</StockQuotes>

GET	 and	 POST	 are	 the	 most	 commonly	 used	 HTTP	 methods.	 In	 fact,	 your
browser	will	typically	execute	GET	requests	to	request	a	document	from	a	web
server	specified	by	its	URL,	and	will	perform	POST	requests	to	send	web	forms
to	the	server.

Unlike	SOAP,	REST	does	not	have	an	official	 standard,	 so	different	APIs
may	 apply	 different	 conventions	 in	 terms	 of	 how	 they	 deal	 with	 the	 HTTP

http://www.example.com

methods	listed	previously.	Additionally,	REST	specifies	no	formatting	language

or	standard	for	the	actual	request	and	response	messages	to	represent	data,	so	the
server	may	 answer	 the	 GET	 /stockquote/IBM	 request	 shown	 previously	 using
XML	or	newer	data	 representation	 formats	 such	as	 JSON,	YAML	(see	Section
10.8),	or	even	a	plain	English	description	of	 the	stock	 information.	Nowadays,
companies	 such	 as	 Twitter,	 Facebook,	 and	 PayPal	 are	 all	 providing	 a	 REST
interface	 to	 access	 their	 services,	 information,	 and	 functionalities	 (Facebook
calls	this	their	“Graph	API”,	but	it	works	the	same	way).	Because	there	is	no	real
REST	 standard,	 conventions	might	 differ	 among	 implementations,	 so	 you	will
need	 to	 browse	 through	 the	 API	 documentation	 of	 each	 service	 you	 want	 to
access,	 though	 they	 all	 agree	 on	 using	 simple	 HTTP-based	 request–response
communication.

Despite	 the	 potential	 of	 REST,	 SOAP	 remains	 in	 wide	 use,	 especially	 in
enterprise	environments	that	have	a	strong	need	for	its	versatility.

10.7.4	Web	Services	and	Databases

Web	 service	 technology	 also	 affects	 the	 interaction	 with	 databases.	 A	 web
service	can	make	use	of	an	underlying	database	to	perform	its	functionality.	The
database	itself	can	also	act	as	a	web	service	provider	or	web	service	consumer.

Stored	procedures	can	be	extended	with	a	WSDL	interface	and	published	as
web	 services.	 The	 corresponding	 database	 functionality	 can	 then	 be	 invoked
from	 other	 applications	 by	 sending	 the	 appropriate	 SOAP	 message	 (or	 using
REST	as	an	alternative)	 to	 the	port	of	 the	database	system.	In	the	case	that	 the
stored	procedure	consists	of	a	SELECT	operation,	the	results	can	be	mapped	to
an	XML	(using	e.g.,	SQL/XML)	or	other	format	(see	Section	10.8)	and	returned
to	the	calling	application.

Database	systems	can	also	act	as	service	consumers.	Stored	procedures	or
triggers	 can	 include	 calls	 to	 external	 web	 services.	 This	 augments	 their
possibilities.	Other	external	data	sources,	such	as	hosted	by	web	service-enabled
database	systems,	can	be	queried	and	the	results	retrieved	in	XML	format,	which
can	 then	 be	 stored	 (possibly	 after	 being	 converted	 into	 a	 relational	 format).
Besides	 data,	 external	 functionality	 can	 be	 invoked.	 An	 example	 could	 be	 a
third-party	web	service	that	converts	amounts	stored	locally	in	euros	to	amounts
in	dollars.	Another	example	 is	a	 trigger	 that	monitors	 (local)	stock	data,	and	 if
the	safety	stock	level	is	reached	automatically	generates	a	(e.g.,	SOAP)	message
with	a	purchase	order	to	the	web	service	hosted	by	the	supplier.

Working	 in	 a	 worldwide	 database-enabled	 web	 services	 setting	 will	 also
have	implications	for	transaction	management.	Consider	a	web	service	for	travel
booking.	 If	 this	 service	 already	booked	 a	 hotel	 and	 rental	 car,	 but	 can	 find	no
flights,	then	the	whole	transaction	needs	to	be	rolled	back	and	the	hotel	and	car
bookings	 canceled.	 The	 web	 service	 technology	 stack	 does	 not	 include	 any

overseeing	distributed	transaction	management	to	accomplish	this.	To	deal	with
this,	orchestration	languages	such	as	WS-BPEL	have	introduced	the	concept	of
compensating	actions.	The	idea	is	to	extend	the	process	definition	with	activities
that	 should	 be	 executed	 if	 the	 process,	 or	 part	 thereof,	 cannot	 be	 successfully
finished.	In	this	way,	a	“manual”	rollback	mechanism	is	implemented.	The	latter
is	dealt	with	in	more	detail	in	Chapter	16.

Retention	Questions

Discuss	the	key	characteristics	of	message-oriented	middleware
(MOM).

Contrast	SOAP-	versus	REST-based	web	services.

Discuss	the	impact	of	web	service	technology	on	the	interaction	with
databases.

10.8	Other	Data	Representation	Formats

In	 recent	 years,	 especially	with	 the	 rise	 of	 “modern”	web	 frameworks	 such	 as
Ruby	 on	 Rails,	 a	 shift	 has	 been	 occurring	 toward	 simpler	 data	 description
languages	such	as	JSON	and	YAML.	The	latter	are	primarily	optimized	for	data
interchange	 and	 serialization	 instead	 of	 representing	 documents,	 as	 is	 the	 case
for	XML.

JavaScript	 Object	 Notation	 (JSON)	 provides	 a	 simple,	 lightweight
representation	 of	 data	 whereby	 objects	 are	 described	 as	 name–value	 pairs.14

Here	you	can	see	the	JSON	specification	of	our	wine	cellar	example:

{
		"winecellar":	{
		"wine":	[
										{
												"name":	"Jacques	Selosse	Brut	Initial",
												"year":	"2012",
												"type":	"Champagne",
												"grape":	{
																		"_percentage":	"100",
																		"__text":	"Chardonnay"
												},
												"price":	{
																		"_currency":	"EURO",
																		"__text":	"150"
												},
												"geo":	{
																		"country":	"France",
																		"region":	"Champagne"
												},

												"quantity":	"12"
												},
												{
												"name":	"Meneghetti	White",
												"year":	"2010",
												"type":	"white	wine",
												"grape":	[
												{
																		"_percentage":	"80",
																		"__text":	"Chardonnay"
												},
												{
																		"_percentage":	"20",
																		"__text":	"Pinot	Blanc"
												}
],
												"price":	{
																		"_currency":	"EURO",
																		"__text":	"18"
												},
												"geo":	{
																		"country":	"Croatia",
																		"region":	"Istria"
												},
												"quantity":	"20"
			}
]
		}
}

A	few	things	are	worth	mentioning:

Similar	to	XML,	it	can	be	seen	that	JSON	is	human	and	machine	readable
based	 upon	 a	 simple	 syntax,	 and	 also	 models	 the	 data	 in	 a	 hierarchical	 way.
Analogous	to	DTD	and	XML	Schema,	the	structure	of	a	JSON	specification	can
be	 defined	 using	 JSON	Schema.	 JSON	 is,	 however,	 less	 verbose	 and	 includes
support	 for	ordered	elements	by	means	of	arrays.	Unlike	XML,	JSON	is	not	a
markup	language	and	is	not	extensible.	Its	primary	usage	is	for	data	(rather	than
document)	 exchange	 and	 serialization	 of	 (e.g.,	 JavaScript,	 Java)	 objects.	 The
popularity	of	 JSON	grew	due	 to	 the	 increased	usage	of	 JavaScript	on	 the	web
(e.g.,	 in	AJAX	applications,	 see	Chapter	15).	 JSON	 documents	 can	 be	 simply
parsed	in	JavaScript	using	the	built-in	eval()	function	with	the	JSON	string	as	its
input	argument.	The	JavaScript	interpreter	will	then	construct	the	corresponding
object	 with	 properties	 as	 defined	 by	 the	 JSON	 string.	 As	 an	 alternative,	most
modern	web	browsers	also	include	native	and	fast	JSON	parsers.

JSON	provides	two	structured	types:	objects	and	arrays.	The	root	node	of
a	JSON	document	must	be	an	object	or	an	array.

Every	object	is	encapsulated	between	brackets	({})	and	consists	of	an
unordered	set	of	name–value	pairs	separated	by	commas	(,).	A	colon	(:)
separates	the	name	from	the	value.	Values	can	be	nested	and	a	value	can
be	of	primitive	type	(see	below),	an	object,	or	an	array.

Arrays	represent	an	ordered	collection	of	values	and	are	enclosed	within
square	brackets	([]),	with	values	being	separated	by	commas.

Attributes	of	XML	elements	are	mapped	using	underscores	(e.g.,
"_percentage":	"100").	The	content	of	the	XML	element	is	then	indicated
using	the	keyword	text	(e.g.,	"__text":	"Chardonnay").	This	may	vary
depending	upon	the	implementation.

These	primitive	types	are	supported:	string,	number,	Boolean,	and	null.

YAML	Ain’t	a	Markup	Language	 (YAML)	 is	 a	 superset	 of	 JSON	with
additional	capabilities,	such	as	support	for	relational	trees	(which	allow	referring
to	other	nodes	in	the	YAML	document),	user-defined	types,	explicit	data	typing,
lists,	 and	 casting.15	 These	 extensions	 make	 it	 a	 better	 solution	 for	 object
serialization	 since	 it	 can	 stay	 closer	 to	 the	original	 class	definition,	 facilitating
the	 deserialization.	 YAML	 has	 been	 defined	 based	 upon	 concepts	 from
programming	languages	such	as	C,	Perl,	and	Python,	combined	with	some	ideas
from	XML.	Our	wine	cellar	YAML	specification	looks	as	follows:

winecellar:
wine:
-
	name:	"Jacques	Selosse	Brut	Initial"
	year:	2012
	type:	Champagne
	grape:
				_percentage:	100
				__text:	Chardonnay
	price:
				_currency:	EURO
				__text:	150
	geo:
				country:	France
				region:	Champagne
	quantity:	12
-
	name:	"Meneghetti	White"
	year:	2010
	type:	"white	wine"
	grape:
	-
	_percentage:	80

	__text:	Chardonnay
	-
	_percentage:	20
__text:	"Pinot	Blanc"
	price:
				_currency:	EURO
	__text:	18
	geo:
				country:	Croatia
				region:	Istria
	quantity:	20

A	few	things	are	worth	mentioning:

In	contrast	to	JSON,	YAML	uses	inline	and	white	space	delimiters
instead	of	square	brackets.	Important	to	note	is	that	the	indentation
should	be	done	by	means	of	one	or	more	spaces	and	never	with
tabulation.

In	terms	of	structured	types,	YAML	works	with	mappings,	which	are	sets
of	unordered	key–value	pairs	separated	by	a	colon	and	a	mandatory
space	(:),	and	sequences	that	correspond	to	arrays	and	are	represented
using	a	dash	and	a	mandatory	space	(-).	YAML	uses	indentation	to
represent	nesting.	Keys	are	separated	from	values	by	a	colon	and	an
arbitrary	number	of	spaces.

As	in	JSON,	attributes	of	XML	elements	are	mapped	using	underscores
(e.g.,	_percentage:	100).	The	content	of	the	XML	element	is	then
indicated	using	the	keyword	text	(e.g.,	__text:	Chardonnay).	This	may
vary	depending	upon	the	implementation.

When	 compared	 against	 XML,	 both	 JSON	 and	 YAML	 are	 far	 less
technically	mature.	There	is	no	good	equivalent	to	XPath,	which	as	we	discussed
before	 facilitates	path-based	navigation	 through	XML	documents	and	 is	one	of
the	 key	 building	 blocks	 of	 XQuery.	 Mature	 and	 standardized	 SQL/JSON	 or
SQL/YAML	 counterparts	 to	 SQL/XML	 are	 not	 available.	 Another	 distinction
concerns	 the	 concept	 of	 namespaces,	which	 is	well	 developed	 and	 extensively
used	in	XML,	making	it	easily	extensible	compared	to	JSON	and	YAML	where
namespace	 support	 is	 lacking.	Hence,	XML	 is	 still	 the	 language	 of	 choice	 for
many	commercial	tools	and	applications.

Retention	Questions

In	terms	of	primitive	data	types,	YAML	supports	numbers,	strings,
Boolean,	dates,	timestamps,	and	null.

The	usage	of	quotes	is	optional	since	everything	is	treated	as	a	string.

Contrast	JSON	against	YAML.

How	do	JSON	and	YAML	compare	against	XML?

Summary

In	this	chapter	we	introduced	the	basic	concepts	of	XML	as	a	data	representation
format.	 We	 discussed	 how	 Document	 Type	 Definition	 and	 XML	 Schema
Definition	can	be	used	 to	 specify	 the	 structure	of	 an	XML	document.	We	also
covered	Extensible	Stylesheet	Language,	namespaces,	and	XPath.	We	reviewed
various	ways	of	processing	XML	documents	using	the	DOM	and	SAX	APIs.	We
then	 elaborated	 on	 storing	 XML	 documents	 using	 a	 document-oriented,	 data-
oriented,	 or	 hybrid	 approach.	We	 listed	 the	key	differences	between	XML	and
relational	 data	 and	 then	 discussed	 how	 to	map	 between	 XML	 documents	 and
(object-)relational	data	using	a	table-based	mapping,	schema-oblivious	mapping,
schema-aware	 mapping,	 and	 SQL/XML.	 We	 discussed	 various	 ways	 of
searching	 XML	 data	 using	 full-text	 search,	 keyword-based	 search,	 structured
search	 using	 XQuery,	 and	 semantic	 search	 using	 RDF	 and	 SPARQL.	 We
illustrated	how	XML	can	be	used	for	information	exchange	in	combination	with
message-oriented	 middleware	 and	 web	 services.	 We	 concluded	 by	 reviewing
other	data	representation	formats	such	as	JSON	and	YAML.

Scenario	Conclusion

Now	 that	 Sober	 has	 learned	 about	 XML,	 it	 has	 decided	 to	 use	 this
technology	for	its	accident	reports.	An	example	XML	report	could	then
look	as	follows:

<report>
<date>Friday	September	13th,	2017</date>
<location>

<name>Broadway,	New	York</name>
<GPS_latitude>41.111547</GPS_latitude>
<GPS_longitude>-73.858381</GPS_longitude>
</location>
<summary>Collision	between	2	cars,	1	cyclist	and	1	
pedestrian.</summary>
<actor>
<driver	injured="yes"	Sobercar="yes">John	Smith</driver>
<driver	injured="no"	Sobercar="no">Mike	Doe</driver>
<pedestrian	injured="yes">Sarah	Lucas</pedestrian>
<cyclist	injured="no">Bob	Kelly</cyclist>
</actor>
<aid>
<police>NYPD</police>
<ambulance>Broadway	Hospital</ambulance>
</aid>
</report>

Sober	 chose	 XML	 Schema	 to	 define	 its	 XML	 report	 since	 it	 is
semantically	 richer	 than	DTD.	An	example	XML	Schema	specification
for	the	above	report	could	look	as	follows:

<?xml	version="1.0"	encoding="UTF-8"	?>
<xs:schema	
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element	name="report">
<xs:complexType>
<xs:sequence>
<xs:element	type="xs:string"	name="date"/>
<xs:element	name="location">
<xs:complexType>
<xs:sequence>
<xs:element	type="xs:string"	name="name"/>

<xs:element	type="xs:float"	name="GPS_latitude"/>
<xs:element	type="xs:float"	name="GPS_longitude"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element	type="xs:string"	name="summary"/>
<xs:element	name="actor">
<xs:complexType>
<xs:sequence>
<xs:element	name="driver"	maxOccurs="unbounded"	
minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension	base="xs:string">
<xs:attribute	type="xs:string"	name="injured"	
use="optional"/>
<xs:attribute	type="xs:string"	name="Sobercar"	
use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element	name="pedestrian"	maxOccurs="unbounded"	
minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension	base="xs:string">
<xs:attribute	type="xs:string"	name="injured"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element	name="cyclist"	maxOccurs="unbounded"	

minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension	base="xs:string">
<xs:attribute	type="xs:string"	name="injured"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element	name="aid">
<xs:complexType>
<xs:sequence>
<xs:element	type="xs:string"	name="police"/>
<xs:element	type="xs:string"	name="ambulance"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Sober	will	also	define	two	XSLT	stylesheets:

one	to	transform	its	XML	reports	to	an	XML	format	tailored	to	its
insurance	firm;

one	to	transform	its	XML	reports	to	HTML	which	can	then	be
displayed	in	a	web	browser	on	the	Sober	intranet.

If	Sober	wants	to	list	all	actors	for	a	specific	accident,	it	can	use	this
XPath	expression:

doc("myreport.xml")/report/actor

Sober	 also	 plans	 to	 use	 SQL/XML	 to	 add	 the	 report	 to	 the	 relational
ACCIDENT	table:

CREATE	TABLE	ACCIDENT(
ACC-NR	INT	NOT	NULL	PRIMARY	KEY,
ACC-DATE-TIME	DATETIME	NOT	NULL,
ACC-LOCATION	VARCHAR(15),
REPORT	XML)

Key	Terms	List

combined	approach

data-oriented	approach

Document	Type	Definition	(DTD)

document-oriented	approach

DOM	API

enterprise	application	integration	(EAI)

Extensible	Markup	Language	(XML)

Extensible	Stylesheet	Language	(XSL)

FLWOR

full-text	search

JavaScript	Object	Notation	(JSON)

keyword-based	search

linked	data

message-oriented	middleware	(MOM)

namespace

partial	shredding

RDF	Schema

remote	procedure	call	(RPC)

Resource	Description	Framework	(RDF)

REST	(Representational	State	Transfer)

SAX	API	(simple	API	for	XML)

schema-aware	mapping

schema-oblivious	mapping/shredding

semantic	search

shredding

SOAP

SPARQL

SQL/XML

StAX	(streaming	API	for	XML)

structured	search

table-based	mapping

template-based	mapping

valid

Web	Ontology	Language	(OWL)

Web	services

Web	Services	Description	Language	(WSDL)

well-formed

XML	element

XML	Schema	Definition	(XSD)

XML-enabled	DBMS

XPath

XQuery

XSL	Formatting	Objects	(XSL-FO)

XSL	Transformations	(XSLT)

YAML	Ain’t	a	Markup	Language	(YAML)

Review	Questions

10.1.	XML	focuses	on	the…

a.	content	of	documents.

b.	representation	of	documents.

10.2.	Which	statement	is	correct?

a.	Using	XSLT,	an	XML	document	can	be	transformed	to	another
XML	document.

b.	Using	HTML,	an	XML	document	can	be	transformed	to	an	XSLT
document.

c.	Using	XML,	an	XSLT	document	can	be	transformed	to	an	XML
document.

d.	Using	DTD,	an	XML	document	can	be	transformed	to	an	HTML
document.

10.3.	Which	of	the	following	statements	about	XML	Schema	is	not
correct?

a.	It	is	more	verbose	than	DTD.

b.	It	allows	specification	of	minimum	and	maximum	cardinalities.

c.	Various	data	types	are	supported	such	as	xs:string,	xs:short,	xs:byte,
etc.

d.	It	is	not	defined	using	XML	syntax.

10.4.	Which	of	the	following	statements	is	not	correct	about	XPath?

a.	It	is	a	simple,	declarative	language.

b.	It	considers	an	XML	document	as	a	set	of	XML	elements.

c.	It	uses	path	expressions	to	refer	to	parts	of	an	XML	document.

d.	Every	navigation	step	results	in	a	node	or	list	of	nodes	which	can
then	be	used	to	continue	the	navigation.

10.5.	In	the	case	that	an	application	needs	to	process	large	XML
documents	in	a	sequential	way,	it	is	recommended	to	use	the…

a.	DOM	API.

b.	SAX	API.

10.6.	A	key	difference	between	XML	data	and	relational	data	is	that…

a.	relational	data	assume	atomic	data	types,	whereas	XML	data	can
consist	of	aggregated	types.

b.	relational	data	are	ordered,	whereas	XML	data	are	unordered.

c.	relational	data	can	be	nested,	whereas	XML	data	cannot	be	nested.

d.	relational	data	can	be	multi-valued,	whereas	XML	data	cannot	be
multi-valued.

10.7.	Consider	the	following	table,	which	maps	an	XML	document	to	a
relational	database:

CREATE	TABLE	NODE(
ID	CHAR(6)	NOT	NULL	PRIMARY	KEY,
PARENT_ID	CHAR(6),
TYPE	VARCHAR(9),
LABEL	VARCHAR(20),
VALUE	CLOB,
FOREIGN	KEY	(PARENT_ID)	REFERENCES	NODE	(ID)
CONSTRAINT	CC1	CHECK(TYPE	IN	("element",	

"attribute"))
)

Which	statement	is	correct?

a.	The	above	table	assumes	the	presence	of	a	DTD	or	XSD	before	the
mapping	can	take	place.

b.	The	table	will	require	extensive	querying	resources	since	every
single	(e.g.,	XPath)	navigation	step	requires	a	self-join	on	this	table.

c.	Using	the	above	table,	every	XPath	expression	can	be	translated	to	a
corresponding	SQL	query.

d.	The	table	is	not	entirely	normalized	and	still	contains	redundant
information.

10.8.	What	statement	about	SQL/XML	is	not	correct?

a.	It	introduces	a	new	XML	data	type.

b.	It	includes	facilities	for	mapping	relational	data	to	XML.

c.	It	includes	rules	for	shredding	XML	data	into	SQL.

d.	The	result	of	an	SQL/XML	query	can	be	a	combination	of	both
relational	and	XML	data	types.

10.9.	What	statement	about	XQuery	is	not	correct?

a.	It	allows	making	use	of	both	the	document	structure	and	its	content.

b.	It	does	not	allow	joining	information	from	different	XML
documents.

c.	It	uses	XPath	expressions	to	navigate	through	the	document.

d.	The	end	results	can	be	sorted.

10.10.	In	an	enterprise	application	integration	(EAI)	context,
asynchronous	communication	between	objects	and/or	applications	can	be
achieved	by	means	of…

a.	remote	procedure	call	(RPC).

b.	message-oriented	middleware	(MOM).

10.11.	Which	of	the	following	statements	is	not	correct?

a.	An	RDF	data	model	consists	of	statements	which	are	in
subject–predicate–object	format.

b.	RDF	allows	use	of	database-specific	primary	keys	to	identify
resources.

c.	An	RDF	data	model	can	be	visualized	as	a	directed,	labeled	graph.

d.	RDF	Schema	enriches	RDF	by	extending	its	vocabulary	with
classes	and	subclasses,	properties	and	subproperties,	and	typing	of
properties.

10.12.	Which	of	the	following	are	properties	of	SPARQL?

a.	It	is	based	upon	matching	graph	patterns.

b.	It	can	query	RDF	graphs.

c.	It	provides	support	for	namespaces.

d.	All	of	the	above.

10.13.	A	key	benefit	of	REST	when	compared	to	SOAP	for	web	services
is	that…

a.	REST	has	an	official	standard.

b.	REST	only	allows	XML	for	exchanging	requests	and	responses.

c.	REST	is	communication	agnostic,	whereas	SOAP	is	tightly
integrated	with	HTTP.

d.	REST	is	built	directly	on	top	of	HTTP	and	is	less	verbose	and
heavy	than	SOAP.

10.14.	When	compared	against	XML,	both	JSON	and	YAML	are…

a.	not	human	readable.

b.	unable	to	provide	support	for	ordered	elements	such	as	arrays.

c.	less	technically	mature.

d.	much	more	verbose.

Problems	and	Exercises

10.1E	Consider	our	purchase	order	administration	example	from	Chapter	3.
Remember,	a	purchase	order	can	have	multiple	purchase	order	lines,	each
corresponding	to	a	particular	product.	A	purchase	order	is	also	assigned	to
exactly	one	supplier.	Develop	a	DTD	and	XML	Schema	for	a	purchase	order	and
contrast	both.	Work	out	an	example	of	an	XML	purchase	order	document	with
four	purchase	order	lines.	Illustrate	how	XPath	can	be	used	to	retrieve	specific
elements	of	this	purchase	order.

10.2E	Using	the	purchase	order	example	of	Question	1,	illustrate	how	the	DOM
and	SAX	APIs	would	process	the	XML	document	differently.

10.3E	Discuss	and	contrast	the	various	approaches	that	can	be	used	to	search
XML	data.

10.4E	Discuss	how	XML	can	be	used	for	information	exchange.

10.5E	Represent	the	purchase	order	XML	document	of	Question	1	in	JSON	and
YAML.	Contrast	the	three	representations	against	each	other.

10.6E	Consider	the	most	recent	(O)RDBMS	products	provided	by	Oracle,	IBM,
and	Microsoft.	Discuss	and	contrast	their	support	in	terms	of:

storing	XML	documents	(document-oriented	approach,	data-oriented
approach,	or	combined	approach);

1	www.w3.org/XML.

2	The	structure	of	XML	documents	is	somewhat	less	strict	and	more	volatile
than	that	of,	e.g.,	relational	data.	Therefore,	the	term	semi-structured	data	is
also	used	in	reference	to	XML.	We	come	back	to	this	later	in	this	chapter.

3	For	a	freely	available	online	tool,	see	www.freeformatter.com.

4	See	www.freeformatter.com	for	a	freely	available	online	XSLT	processor.

5	Denormalization	can	be	achieved	by	combining	two	or	more	normalized
tables	into	one.	By	doing	so,	join	queries	will	execute	faster	since	now	only
one	table	needs	to	be	considered.	However,	this	comes	at	a	price	of	redundant
data	and	possibly	inconsistent	data	as	well	if	not	appropriately	managed.

6	These	queries	can	only	be	executed	when	using	a	DBMS	that	supports
SQL/XML.

7	www.w3.org/RDF.

8	The	URIs	in	our	example	are	fictitious.

9	The	acronym	for	Web	Ontology	Language	is	OWL	and	not	WOL,	as	it	is
easier	to	remember	and	suggests	wisdom.

table-based	mapping	facilities;

schema-oblivious	mapping	facilities;

schema-aware	mapping	facilities;

SQL/XML;

searching	facilities	for	XML	data	(full-text	search,	keyword-based
search,	XQuery,	RDF,	and	SPARQL);

http://www.w3.org/XML
http://www.freeformatter.com
http://www.freeformatter.com
https://www.w3.org/RDF

10	www.w3.org/TR/rdf-sparql-query/#sparqlDefinition.

11	HTTP	(HyperText	Transfer	Protocol)	was	originally	conceived	as	the
interaction	protocol	between	web	browsers	and	web	servers,	but	it	may	serve
multiple	purposes.	HTTP	is	being	maintained	by	the	W3C.	See
www.w3.org/Protocols	for	further	details.

12	The	website	www.webservicex.net	hosts	a	number	of	small	web	services
and	serves	over	six	million	requests	a	day.

13	See	www.webservicex.net/stockquote.asmx?WSDL	for	the	full
specification.

14	http://json.org.

15	www.yaml.org.

http://www.w3.org/TR/rdf-sparql-query/#sparqlDefinition
https://www.w3.org/Protocols
http://www.webservicex.net
http://www.webservicex.net/stockquote.asmx?WSDL
http://json.org
http://www.yaml.org

11

NoSQL	Databases
◈

Chapter	Objectives

In	this	chapter,	you	will	learn:

what	is	meant	by	“NoSQL”	and	how	this	movement	differs	from
earlier	approaches;

to	understand	the	differences	between	key–value-,	tuple-,	document-,
column-,	and	graph-based	databases;

about	the	defining	characteristics	of	NoSQL	databases,	such	as	their
capability	to	scale	horizontally,	their	approach	toward	data	replication
and	how	this	relates	to	eventual	consistency,	their	APIs,	and	how	they
are	queried	and	interacted	with;

how	to	query	NoSQL	databases,	using	MapReduce,	Cypher,	and	other
approaches.

Sober	has	been	happily	using	 its	 relational	 database	 system	 for	 quite	 a
while	 now,	 but	 is	 experiencing	 some	 limits	 of	 its	 existing	 system.	 In
particular,	 due	 to	 the	 growth	 of	 its	 mobile	 applications	 (now	 serving
many	 users	 simultaneously),	 some	 queries	 are	 performing	 slower,
causing	users	to	wait	a	few	seconds	when	working	with	the	app.	Sober’s
database	 administrators	 have	 identified	 that	 this	 is	 mainly	 due	 to	 the
normalized	 approach	 of	 its	 relational	 database	 model,	 causing	 many
queries	 to	 involve	 joining	 tables,	 which	 results	 in	 bottlenecks	 when
thousands	of	users	are	hailing	cabs	simultaneously.

Another	 issue	 is	 that	 the	 mobile	 developers	 regularly	 want	 to
experiment	with	new	 features	 (to	 do	 so,	 a	 “beta”	 version	 of	 the	 app	 is
rolled	 out	 to	 a	 subset	 of	 users),	 though	 given	 the	 emphasis	 on	 data
consistency	put	forward	by	RDBMSs,	changing	existing	data	schemas	so
they	 can	 handle	 new	 data	 fields	 is	 a	 time-intensive	 effort.	 The	 app
developers	 are	 not	 very	 familiar	 with	 this,	 causing	 back-and-forth
between	the	development	team	and	the	database	administrators.

Given	 these	new	issues,	Sober	 is	 thinking	of	different	scenarios	 to
handle	its	growth.	One	option	would	be	to	roll	out	additional	servers	to
handle	the	increased	usage,	but	keep	using	the	RDBMS	system	to	do	so.
Another	 possibility	 would	 be	 to	 explore	 a	 NoSQL	 database	 solution.
Sober’s	 database	 administrator	 has	 heard	 about	 newer	 approaches	 such
as	 MongoDB,	 Cassandra,	 and	 others,	 which	 offer	 strong	 scaling
opportunities	and	a	schema-free	approach	to	data	management.

Relational	 database	management	 systems	 (RDBMSs)	put	 a	 lot	 of	 emphasis	 on
keeping	data	consistent.	They	require	a	formal	database	schema,	and	new	data	or
modifications	 to	 existing	 data	 are	 not	 accepted	 unless	 they	 comply	 with	 this

schema	in	terms	of	data	type,	referential	integrity,	etc.	Sometimes	this	focus	on
consistency	 may	 become	 a	 burden,	 because	 it	 induces	 (in	 some	 cases
unnecessarily)	overhead	and	hampers	scalability	and	flexibility.	 In	 this	chapter,
we	 discuss	 a	 series	 of	 non-relational	 database	management	 systems	 that	 focus
specifically	 on	 being	 highly	 scalable	 in	 a	 distributed	 environment:	 NoSQL
databases.	 We	 discuss	 in	 turn	 key–value	 stores,	 tuple,	 and	 document	 stores,
column-oriented	 databases,	 and	 graph	 databases,	 and	 show	 how	 they	 deviate
from	the	 typical	 relational	model,	and	which	concepts	 they	utilize	 to	achieve	a
high	 scalability.	We	will	 also	 see	how	 this	high	 scalability	often	 comes	with	 a
cost	as	well,	such	as	strong	querying	facilities	being	absent,	or	not	being	able	to
provide	strong	consistency	guarantees.

11.1	The	NoSQL	Movement

If	 one	 thing	 becomes	 apparent	 from	 this	 chapter,	 it	 is	 that	 the	 label	 “NoSQL”
covers	 a	 very	 broad	 and	 diverse	 category	 of	 DBMSs.	 There	 probably	 isn’t	 a
single	 concept	 or	 statement	 that	 applies	 to	 each	 system,	 except	 that	 they	 all
somehow	 attempt	 to	 overcome	 certain	 inherent	 limitations	 of	 the	 traditional
RDBMS.	Therefore,	before	tackling	NoSQL	databases,	we	discuss	the	settings	in
which	these	limitations	manifest	themselves.

11.1.1	The	End	of	the	“One	Size	Fits	All”	Era?

RDBMSs	pay	a	lot	of	attention	to	data	consistency	and	compliance	with	a	formal
database	 schema.	New	 data	 or	modifications	 to	 existing	 data	 are	 not	 accepted
unless	they	satisfy	constraints	represented	in	this	schema	in	terms	of	data	types,
referential	 integrity,	 etc.	 The	 way	 in	 which	 RDBMSs	 coordinate	 their
transactions	 guarantees	 that	 the	 entire	 database	 is	 consistent	 at	 all	 times	 (the
ACID	 properties;	 see	 Section	 14.5	 in	 Chapter	 14).	 Consistency	 is	 usually	 a
desirable	 property;	 one	 normally	 wouldn’t	 want	 erroneous	 data	 to	 enter	 the
system,	nor	for	a	money	transfer	to	be	aborted	halfway	through,	with	only	one	of
the	two	accounts	updated.

Yet	sometimes	this	focus	on	consistency	may	become	a	burden,	because	it
induces	 (sometimes	 unnecessarily)	 overhead	 and	 hampers	 scalability	 and
flexibility.	 RDBMSs	 are	 at	 their	 best	 when	 performing	 intensive	 read/write
operations	on	small-	or	medium-sized	datasets,	or	when	executing	 larger	batch
processes,	but	with	only	a	 limited	number	of	simultaneous	transactions.	As	the
data	 volumes	 or	 the	 number	 of	 parallel	 transactions	 increase,	 capacity	 can	 be
increased	by	vertical	scaling	(also	called	scaling	up),	i.e.,	by	extending	storage
capacity	and/or	CPU	power	of	the	database	server.	However,	there	are	hardware-
induced	limitations	to	vertical	scaling.

Therefore,	 further	 capacity	 increases	 need	 to	 be	 realized	 by	 horizontal
scaling	(also	known	as	scaling	out),	with	multiple	DBMS	servers	being	arranged
in	 a	 cluster.	The	 respective	nodes	 in	 the	 cluster	 can	balance	workloads	 among
one	another	and	scaling	 is	achieved	by	adding	nodes	 to	 the	cluster,	 rather	 than
extending	 the	 capacity	 of	 individual	 nodes.	Such	 a	 clustered	 architecture	 is	 an
essential	 prerequisite	 to	 cope	with	 the	 enormous	demands	of	 recent	 evolutions
such	as	Big	Data	(analytics),	cloud	computing,	and	all	kinds	of	responsive	web

applications.	It	provides	the	necessary	performance,	which	cannot	be	realized	by
a	single	server,	but	also	guarantees	availability,	with	data	being	replicated	over
multiple	 nodes	 and	 other	 nodes	 taking	 over	 their	 neighbor’s	 workload	 if	 one
node	fails.

However,	 RDBMSs	 are	 not	 good	 at	 extensive	 horizontal	 scaling.	 Their
approach	toward	transaction	management	and	their	urge	to	keep	data	consistent
at	 all	 times	 induces	 a	 large	 coordination	 overhead	 as	 the	 number	 of	 nodes
increases.	 In	addition,	 the	 rich	querying	 functionality	may	be	overkill	 in	many
Big	Data	 settings,	where	 applications	merely	 need	 high	 capacity	 to	 “put”	 and
“get”	 data	 items,	 with	 no	 demand	 for	 complex	 data	 interrelationships	 nor
selection	criteria.	Also,	Big	Data	settings	often	focus	on	semi-structured	data	or
on	data	with	a	very	volatile	structure	(consider	sensor	data,	 images,	audio	data
and	 so	 on),	 where	 the	 rigid	 database	 schemas	 of	 RDBMSs	 are	 a	 source	 of
inflexibility.

None	 of	 this	 means	 that	 relational	 databases	 will	 become	 obsolete	 soon.
However,	 the	 “one	 size	 fits	 all”	 era,	where	RDBMSs	were	 used	 in	 nearly	 any
data	and	processing	context,	 seems	 to	have	come	 to	an	end.	RDBMSs	are	still
the	way	 to	 go	when	 storing	 up	 to	medium-sized	 volumes	 of	 highly	 structured
data,	 with	 strong	 emphasis	 on	 consistency	 and	 extensive	 querying	 facilities.
Where	massive	volumes,	flexible	data	structures,	scalability,	and	availability	are
more	 important,	 other	 systems	 may	 be	 called	 for.	 This	 need	 resulted	 in	 the
emergence	of	NoSQL	databases.

11.1.2	The	Emergence	of	the	NoSQL	Movement

The	 term	“NoSQL”	has	become	overloaded	 throughout	 the	past	decade,	so	 the
moniker	now	relates	to	many	meanings	and	systems.	The	name	“NoSQL”	itself
was	first	used	in	1998	by	the	NoSQL	Relational	Database	Management	System,
a	 DBMS	 built	 on	 top	 of	 input/output	 stream	 operations	 as	 provided	 by	 Unix
systems.	It	implements	a	full	relational	database	to	all	effects,	but	foregoes	SQL
as	a	query	language.

Drill	Down

The	 NoSQL	 Relational	 Database	 Management	 System	 itself	 was	 a
derivative	 of	 an	 even	 earlier	 database	 system,	 called	RDB.	Like	RDB,
NoSQL	 follows	a	 relational	 approach	 to	data	 storage	and	management,
but	opts	 to	store	 tables	as	regular	 textual	 files.	 Instead	of	using	SQL	to
query	 its	 data,	 NoSQL	 relies	 on	 standard	 command-line	 tools	 and
utilities	to	select,	remove,	and	insert	data.

The	system	has	been	around	for	a	long	time	and	has	nothing	to	do	with	the
more	recent	“NoSQL	movement”	discussed	in	this	chapter.

Drill	Down

The	home	page	of	the	NoSQL	Relational	Database	Management	System
even	 explicitly	 mentions	 it	 has	 nothing	 to	 do	 with	 the	 “NoSQL
movement”.

The	 modern	 NoSQL	 movement	 describes	 databases	 that	 store	 and
manipulate	 data	 in	 other	 formats	 than	 tabular	 relations,	 i.e.,	 non-relational
databases.	The	movement	should	have	more	appropriately	been	called	NoREL,
especially	 since	 some	 of	 these	 non-relational	 databases	 actually	 provide	 query
language	facilities	close	to	SQL.	Because	of	such	reasons,	people	have	changed
the	original	meaning	of	 the	NoSQL	movement	 to	stand	 for	“not	only	SQL”	 or
“not	relational”	instead	of	“not	SQL”.

What	makes	NoSQL	databases	different	 from	other,	 legacy,	non-relational
systems	 that	have	existed	since	as	early	as	 the	1970s?	The	 renewed	 interest	 in
non-relational	 database	 systems	 stems	 from	 Web	 2.0	 companies	 in	 the	 early
2000s.	Around	 this	 period,	 up-and-coming	web	 companies,	 such	 as	 Facebook,
Google,	and	Amazon,	were	increasingly	being	confronted	with	huge	amounts	of
data	to	be	processed,	often	under	time-sensitive	constraints.	For	example,	think
about	 an	 instantaneous	 Google	 search	 query,	 or	 thousands	 of	 users	 accessing
Amazon	product	pages	or	Facebook	profiles	simultaneously.

Often	 rooted	 in	 the	 open-source	 community,	 the	 characteristics	 of	 the
systems	developed	 to	deal	with	 these	 requirements	 are	very	diverse.	However,
their	 common	 ground	 is	 that	 they	 try	 to	 avoid,	 at	 least	 to	 some	 extent,	 the
shortcomings	 of	 RDBMSs	 in	 this	 respect.	Many	 aim	 at	 near-linear	 horizontal
scalability,	 which	 is	 achieved	 by	 distributing	 data	 over	 a	 cluster	 of	 database
nodes	 for	 the	 sake	 of	 performance	 (parallelism	 and	 load	 balancing)	 and
availability	 (replication	 and	 failover	 management).	 A	 certain	 measure	 of	 data
consistency	is	often	sacrificed	in	return.	A	term	frequently	used	in	this	respect	is
eventual	consistency;	 the	 data,	 and	 respective	 replicas	 of	 the	 same	 data	 item,
will	become	consistent	in	time	after	each	transaction,	but	continuous	consistency
is	not	guaranteed.

The	relational	data	model	is	cast	aside	for	other	modeling	paradigms,	which
are	 typically	 less	 rigid	 and	 better	 able	 to	 cope	 with	 quickly	 evolving	 data

structures.	 Often,	 the	 API	 (application	 programming	 interface)	 and/or	 query
mechanism	are	much	simpler	 than	in	a	relational	setting.	The	Comparison	Box
provides	 a	 more	 detailed	 comparison	 of	 the	 typical	 characteristics	 of	 NoSQL
databases	 against	 those	 of	 relational	 systems.	Note	 that	 different	 categories	 of
NoSQL	databases	exist	and	 that	even	 the	members	of	a	single	category	can	be
very	diverse.	No	single	NoSQL	system	will	exhibit	all	of	these	properties.

Comparison	Box

Relational	databases NoSQL	databases

Data
paradigm

Relational	tables Key–value	(tuple)	based

Document	based

Column	based

Graph	based

XML,	object	based	(see
Chapter	10)

Others:	time	series,
probabilistic,	etc.

Distribution Single-node	and
distributed

Mainly	distributed

Scalability Vertical	scaling,	harder
to	scale	horizontally

Easy	to	scale	horizontally,
easy	data	replication

Openness Closed	and	open-source Mainly	open-source

Schema	role Schema-driven Mainly	schema-free	or

flexible	schema

Query
language

SQL	as	query	language No	or	simple	querying
facilities,	or	special-purpose
languages

Transaction
mechanism

ACID:	Atomicity,
Consistency,	Isolation,
Durability

BASE:	Basically	Available,
Soft	state,	Eventually
consistent

Feature	set Many	features	(triggers,
views,	stored
procedures,	etc.)

Simple	API

Data
volume

Capable	of	handling
normal-sized	datasets

Capable	of	handling	huge
amounts	of	data	and/or	very
high	frequencies	of
read/write	requests

In	 the	 remainder	 of	 this	 chapter,	 we	 will	 look	 closely	 at	 some	 NoSQL
databases,	and	classify	them	according	to	their	data	model.	XML	databases	and
object-oriented	DBMSs,	which	could	also	be	kinds	of	NoSQL	databases,	were
already	discussed	extensively	in	previous	chapters.	Therefore,	we	will	focus	on
key–value-,	 tuple-,	 document-,	 column-,	 and	 graph-based	 databases.	 Besides
their	data	model,	we	will	 also	discuss	other	defining	characteristics	of	NoSQL
databases,	 such	 as	 their	 capability	 to	 scale	 horizontally;	 their	 approach	 toward
data	replication	and	how	this	relates	to	eventual	consistency;	and	NoSQL	DBMS
APIs	and	how	they	are	interacted	with	and	queried.

Connections

For	 a	 discussion	 on	 object-oriented	 database	 management	 systems
(OODBMSs),	see	Chapter	8.	For	XML	databases,	see	Chapter	10.	Both
can	also	be	regarded	as	kinds	of	NoSQL	databases.

Retention	Questions

What	is	meant	by	vertical	scaling	and	horizontal	scaling?

Which	type	of	scaling	are	RDBMSs	not	good	at?	Why?

What	does	the	NoSQL	movement	describe?	Is	this	an	appropriate
name?

List	the	differences	between	relational	databases	and	NoSQL
databases.

11.2	Key–Value	Stores

Key–value	stores	have	been	around	for	decades,	since	the	early	days	of	Unix	in
the	 1970s.	A	 key–value-based	 database	 stores	 data	 in	 a	 format	 that	 is	 easy	 to
understand,	i.e.,	as	(key,	value)	pairs.	The	keys	are	unique	and	represent	the	sole
“search”	 criterion	 to	 retrieve	 the	 corresponding	 value.	 This	 approach	 maps
directly	to	a	data	structure	also	present	natively	in	the	majority	of	programming
languages,	namely	that	of	a	hash	map,	or	hash	table,	or	dictionary	as	they’re	also
called.	 For	 example,	 Java	 provides	 the	 HashMap	 class	 which	 allows	 storing
arbitrary	objects	(in	internal	memory	in	this	case)	based	on	a	single	“key”:

import	java.util.HashMap;
import	java.util.Map;
public	class	KeyValueStoreExample	{
							public	static	void	main(String…	args)	{
														//	Keep	track	of	age	based	on	name
														Map<String,	Integer>	age_by_name	=	new	HashMap<>();
														//	Store	some	entries
														age_by_name.put("wilfried",	34);
														age_by_name.put("seppe",	30);
														age_by_name.put("bart",	46);
														age_by_name.put("jeanne",	19);
														//	Get	an	entry
														int	age_of_wilfried	=	age_by_name.get("wilfried");
														System.out.println("Wilfried's	age:	"	+	age_of_wilfried);
														//	Keys	are	unique
														age_by_name.put("seppe",	50);	//	Overrides	previous	entry
					}
}

11.2.1	From	Keys	to	Hashes

To	make	the	data	structure	of	a	hash	map	more	efficient,	its	keys	(such	as	“bart”,
“seppe”	 and	 so	 on	 in	 the	 example	 above)	 are	 hashed	 by	means	 of	 a	 so-called
hash	 function.	 A	 hash	 function	 is	 a	 function	 that	 takes	 an	 arbitrary	 value	 of
arbitrary	 size	 and	maps	 it	 to	 a	 key	with	 a	 fixed	 size,	which	 is	 called	 the	 hash
value,	hash	code,	hash	sum,	or	simply	the	hash.

Connections

We	will	also	look	into	hashing	in	more	detail	in	the	chapters	on	physical
file	 organization	 and	 physical	 database	 organization	 (Chapters	 12	 and
13).

Good	hash	functions	must	satisfy	a	number	of	properties,	 i.e.,	 they	should
be:

deterministic:	hashing	the	same	input	value	must	always	provide	the
same	hash	value.	A	typical	example	of	a	simple	hash	function	is	taking
the	remainder	after	dividing	the	key–value	by	a	prime	number
(nonnumeric	keys	are	first	converted	to	an	integer	format).

uniform:	a	good	hash	function	should	map	the	inputs	evenly	over	its
output	range,	to	prevent	so-called	“collisions”	between	closely	related
pairs	of	inputs	(two	inputs	leading	to	the	same	hash	value).

defined	size:	it	is	desirable	that	the	output	of	a	hash	function	has	a	fixed
size,	which	makes	it	easier	to	store	the	data	structure	efficiently	(every
key	takes	a	known,	fixed	amount	of	space).

The	 reason	 hashes	 allow	 for	 efficient	 storage	 and	 lookup	 of	 entries	 is
because	each	hash	can	be	mapped	to	a	space	in	computer	memory,	allowing	for
rapid,	exact	lookup	of	a	key.	Figure	11.1	illustrates	this	concept.

Figure	11.1	Simple	example	of	a	hash	function.

In	Figure	11.1,	we	use	a	trivial	hash	function	that	converts	keys	to	a	double-
digit	value.	When	storing	the	key–value	pair	(bart,	46),	the	hash	value	of	the	key
will	be	calculated:	hash(bart)	=	07.	The	value	“46”	will	then	be	stored	on	address
07.	 Conversely,	 when	 a	 user	 wishes	 to	 retrieve	 the	 value	 for	 key	 “bart”,	 the
lookup	in	memory	can	be	performed	immediately	based	on	hash(bart)	=	07.	In
Figure	 11.1	 we	 store	 the	 original	 unhashed	 key	 next	 to	 the	 actual	 value	 in
memory,	which	is	not	required	(as	we	use	the	hash	of	the	original	key	to	perform
the	 lookup),	but	can	be	helpful	 in	case	you	wish	 to	 retrieve	 the	 set	of	all	keys
with	a	given	value	associated	 to	 them.	Note	 that	 the	whole	hash	 table	must	be
scanned	in	that	case,	resulting	in	linear	(non-immediate)	lookup	times.

Connections

In	practice,	 the	address	resulting	from	the	hash	function	will	often	be	a
relative	address,	from	which	the	absolute	address	can	be	easily	derived.
Also,	 there	 exist	 different	 solutions	 if	 too	many	 keys	map	 to	 the	 same
address	(collision).	This	is	treated	in	more	detail	in	Chapter	12.

11.2.2	Horizontal	Scaling

Now	that	we’ve	 explained	 the	 concept	 of	 hashes,	we	 can	 introduce	 a	 first	 key
characteristic	 of	NoSQL	 databases:	 the	 fact	 that	 they	 are	 built	with	 horizontal
scalability	 support	 in	 mind	 and	 can	 be	 easily	 distributed.	 The	 reason	 follows
from	 the	 nature	 of	 hash	 tables	 themselves.	 Consider	 a	 very	 large	 hash	 table.
Naturally,	there	is	a	limit	to	the	number	of	entries	that	can	be	stored	on	a	single
machine.	 Luckily,	 since	 the	 nature	 of	 a	 hash	 function	 is	 to	 spread	 inputs
uniformly	over	its	output	range,	it	is	easy	to	create	an	index	over	the	hash	range
that	can	spread	out	the	hash	table	over	different	locations.

Expanding	the	example	above,	imagine	that	our	hash	table	of	ages	exceeds
the	 limits	of	our	computer’s	memory.	We	decide	 to	bring	 two	more	computers
into	 the	mix,	 over	which	 our	 hash	 table	must	 now	 be	 distributed.	We	 need	 to
spread	 our	 hashes	 over	 three	 servers,	 which	 can	 be	 done	 easily	 using	 the
mathematical	modulo	(the	remainder	after	division)	of	each	hash.	For	example:
index(hash)	=	mod(hash,	nrServers)	+	1	 in	 the	 example	 shown	 in	Figure	 11.2.
Hash	08	divided	by	 three	 has	 a	 remainder	 of	 2,	which	 results	 in	 index	3	 after
adding	1.	This	whole	operation	can	be	regarded	as	another	hash	function,	so	that
every	key	 (“wilfried”,	“seppe”	 and	 so	on)	 is	 now	hashed	 to	 a	 server	 identifier
(“Server	 #1,”	 “#2”	 and	 “#3”).	 It	 is	 worth	 emphasizing	 that	 the	 concept	 of
hashing	can	be	used	to	convert	keys	to	locations	or	addresses	within	a	node	or
server,	 and	 can	 be	 used	 to	 assign	 or	 distribute	 values	 over	 a	 list	 of	 resources,
such	as	multiple	servers,	as	illustrated	by	Figure	11.2.

Figure	11.2	Key–value	pairs	are	spread	over	multiple	servers.

There	 are	 other	 techniques	 besides	 hashing	 to	 distribute	 values	 over
resources,	such	as	using	a	separate	routing	server	that	will	distribute	data	over	a
cluster	 of	 resources.	 Regardless	 of	 the	 actual	 technique,	 distributing	 the	 data
over	different	nodes	means	we	partition	the	data	into	separate	sets,	each	of	which
are	attributed	to	a	different	node.	This	practice	of	partitioning	is	also	known	as
sharding	and	an	individual	partition	is	often	called	a	shard.

11.2.3	An	Example:	Memcached

A	famous,	 early	example	of	a	NoSQL	database	 (as	 in	NoSQL,	 the	movement)
built	on	 the	 ideas	above	 is	Memcached.	Memcached	 implements	 a	 distributed
memory-driven	 hash	 table	 (a	 key–value	 store),	 which	 is	 placed	 in	 front	 of	 a
traditional	database	to	speed	up	queries	by	caching	recently	accessed	objects	in
internal	memory.	 In	 that	 sense,	Memcached	 is	 a	caching	 solution	 rather	 than	a
persistent	database,	but	 its	API	 inspired	many	follow-up	projects	 that	do	allow
persistent	 key–value	 stores.	 The	 Memcached	 hash	 table	 can	 grow	 very	 large
(several	 gigabytes)	 and	 can	be	 scaled	horizontally	 across	multiple	 servers	 in	 a
data	 center.	 To	 prevent	 hash	 tables	 from	 growing	 too	 large,	 old	 entries	 are
discarded	to	make	room	for	new	ones.

Drill	Down

Memcached	was	 originally	 developed	 by	LiveJournal,	 but	was	 quickly
picked	 up	 by	 other	 companies	 such	 as	 YouTube,	 Reddit,	 Facebook,
Twitter,	Wikipedia,	 and	many	others,	 thanks	 to	 the	 software	being	 free
and	open-source.

Memcached	 has	 many	 client	 libraries	 in	 many	 languages.	 The	 example
below	 illustrates	 a	 trivial	 Java	 program	 using	 the	 popular	 SpyMemcached
library:

import	java.util.ArrayList;
import	java.util.List;
import	net.spy.memcached.AddrUtil;
import	net.spy.memcached.MemcachedClient;

public	class	MemCachedExample	{
		public	static	void	main(String[]	args)	throws	Exception	{
						List<String>	serverList	=	new	ArrayList<String>()	{
										{
														this.add("memcachedserver1.servers:11211");
														this.add("memcachedserver2.servers:11211");
														this.add("memcachedserver3.servers:11211");
												}
										};
						MemcachedClient	memcachedClient	=	new	MemcachedClient(
														AddrUtil.getAddresses(serverList));
						//	ADD	adds	an	entry	and	does	nothing	if	the	key	already	exists
						//	Think	of	it	as	an	INSERT
						//	The	second	parameter	(0)	indicates	the	expiration	-	0	means	no	
expiry
						memcachedClient.add("marc",	0,	34);
						memcachedClient.add("seppe",	0,	32);
						memcachedClient.add("bart",	0,	66);
						memcachedClient.add("jeanne",	0,	19);
						//	It	is	possible	to	set	expiry	dates:	the	following	expires	in	three	
seconds:
						memcachedClient.add("short_lived_name",	3,	19);
						//	Sleep	5	seconds	to	make	sure	our	short-lived	name	is	expired
						Thread.sleep(1000	*	5);
						//	SET	sets	an	entry	regardless	of	whether	it	exists
						//	Think	of	it	as	an	UPDATE-OR-INSERT
						memcachedClient.add("marc",	0,	1111);	//	<-	ADD	will	have	no	
effect
						memcachedClient.set("jeanne",	0,	12);	//	<-	But	SET	will
						//	REPLACE	replaces	an	entry	and	does	nothing	if	the	key	does	
not	exist
						//	Think	of	it	as	an	UPDATE
						memcachedClient.replace("not_existing_name",	0,	12);	//	<-	Will	

have	no	effect
						memcachedClient.replace("jeanne",	0,	10);
						//	DELETE	deletes	an	entry,	similar	to	an	SQL	DELETE	statement
						memcachedClient.delete("seppe");
						//	GET	retrieves	an	entry
						Integer	age_of_marc	=	(Integer)	memcachedClient.get("marc");
						Integer	age_of_short_lived	=	(Integer)	
memcachedClient.get("short_lived_name");
						Integer	age_of_not_existing	=	(Integer)	
memcachedClient.get("not_existing_name");
						Integer	age_of_seppe	=	(Integer)	memcachedClient.get("seppe");
						System.out.println("Age	of	Marc:	"	+	age_of_marc);
						System.out.println("Age	of	Seppe	(deleted):	"	+	age_of_seppe);
						System.out.println("Age	of	not	existing	name:	"	+	
age_of_not_existing);
						System.out.println("Age	of	short	lived	name	(expired):	"	+	
age_of_short_lived);
						memcachedClient.shutdown();
		}
}

It	 is	 important	 to	 note	 that	 –	 with	 Memcached	 –	 it	 is	 the	 client’s
responsibility	 to	 distribute	 the	 entries	 among	 the	 different	 servers	 in	 the
Memcached	pool	(in	the	example	above,	we	have	provided	three	servers).	That
is:	the	client	decides	to	which	server	each	key	–	and	hash	–	should	be	mapped,
for	 example	 by	 using	 a	 mechanism	 similar	 to	 the	 modulo	 hashing	 function
illustrated	 above.	With	 the	 SpyMemcached	 Java	 library,	 this	 is	 taken	 care	 of
automatically	 once	 multiple	 servers	 are	 passed	 to	 the	 client	 object.	 Also,
Memcached	 provides	 no	 data	 redundancy.	 That	 means	 that	 if	 a	 server	 goes
down,	all	 the	entries	stored	on	that	node	will	be	lost.	Despite	this,	Memcached
remains	very	popular	as	a	caching	solution,	especially	because	many	middleware

libraries	exist	that	allow	you	to	put	it	on	top	of	a	web	server	(to	cache	recently

requested	pages)	or	on	top	of	an	existing	Hibernate-driven	project	(see	Chapter
15).

Connections

Memcached	 is	also	often	placed	on	 top	of	an	existing	Hibernate-driven
project	 (see	 Chapter	 15)	 to	 cache	 queries	 to	 an	 existing	 relational
database,	 which	 is	 especially	 helpful	 in	 cases	where	 such	 queries	 take
substantial	time	(for	example,	for	queries	involving	many	joins).

11.2.4	Request	Coordination

In	the	simplest	case,	such	as	with	Memcached,	it	is	the	duty	of	the	client	to	make
sure	requests	to	store	and	retrieve	key–value	pairs	are	routed	to	the	desired	node
which	will	store	the	data	(i.e.,	by	directly	contacting	and	“talking	to”	 that	node
over	the	network).	However,	starting	from	the	basic	key–value	architecture	it	is
possible	 to	 move	 such	 duties	 from	 the	 client	 to	 the	 nodes	 themselves.	 Many
NoSQL	 implementations,	 such	 as	 Cassandra,	 Google’s	 BigTable,	 Amazon’s
DynamoDB,	CouchDB,	Redis,	and	CouchBase	–	to	name	a	few	–	do	so.	In	such
a	set-up,	all	nodes	often	 implement	 the	same	functionality	and	can	all	perform
the	role	of	request	coordinator:	 i.e.,	 the	 responsible	party	 to	 route	 requests	 to
the	appropriate	destination	node	and	relay	back	the	result	status	of	the	operation.

Since	 any	 node	 can	 act	 as	 a	 request	 coordinator,	 and	 clients	 can	 send
requests	to	any	of	such	nodes,	it	 is	necessary	that	all	nodes	remain	informed	at
all	times	of	the	other	nodes	in	the	network.	This	problem	is	addressed	through	a
membership	protocol:	each	node	talks	to	the	network	to	retrieve	a	membership
list	and	keep	its	view	of	the	whole	network	up	to	date.	This	protocol	allows	all
nodes	 to	 know	 about	 the	 existence	 of	 other	 nodes,	 and	 is	 the	 fundamental
underlying	protocol	on	top	of	which	other	functionality	can	be	built.

Each	 membership	 protocol	 contains	 two	 sub-components,	 called
dissemination	 and	 failure	 detection,	 which	 can	 be	 accomplished
simultaneously	 or	 implemented	 using	 separate	 logic.	 The	 most	 naïve	 way	 to
implement	 a	membership	 protocol	would	 be	 by	 using	 a	 network	multicast,	 in
which	 each	 node	 would	 send	 out	 an	 “are	 you	 (still)	 there	 and	 part	 of	 my
network?”	 request	 to	 all	 other	 members	 in	 a	 node’s	 known	 network,	 but	 this
solution	 is	 inefficient	 and	 scales	 badly.	 Therefore,	 implementation	 in	 practice
commonly	 uses	 dissemination	 protocols	 that	mimic	 how	 rumors	 or	 gossip	 are

spread	in	social	networks,	or	how	viruses	spread	in	an	epidemic.	The	basic	idea
behind	 this	 dissemination	 involves	 periodic,	 pairwise	 communication,	with	 the
information	 exchanged	 in	 such	 interaction	 being	 bounded.	 When	 two	 nodes
interact,	the	state	of	the	node	(i.e.,	the	node’s	current	view	on	the	network)	being
most	out	of	date	will	be	updated	 to	reflect	 the	state	of	 the	other	party.	When	a
node	is	added	to	the	network,	it	will	contact	a	known	existing	node	to	announce
its	 arrival,	which	will	 then	be	 spread	 throughout	 the	network.	When	a	node	 is
removed	 from	 the	 network,	 it	 will	 not	 respond	 anymore	when	 contacted	 by	 a
random,	different	node.	The	 latter	node	can	 then	spread	 this	 information	about
this	node	being	down	further	through	the	network.	In	this	way,	failure	detection
is	handled.

11.2.5	Consistent	Hashing

Thanks	to	the	membership	protocol,	nodes	are	(eventually)	aware	of	one	another.
Following	this,	they	can	now	partition	hashed	key–value	pairs	among	them.	This
can	be	done	using	 the	same	 technique	 in	which	each	hash	can	be	mapped	 to	a
specific	node	using	the	modulo	operator.	In	practice,	however,	more	consistent
hashing	schemes	are	often	used,	which	avoid	having	to	remap	each	key	to	a	new
node	when	nodes	are	added	or	removed.1

Let’s	explain	this	concept	in	more	detail.	Recall	Figure	11.2	on	the	usage	of
the	modulo	operator	to	distribute	keys	over	a	list	of	servers.	The	hash	function
used	to	distribute	keys	over	a	set	of	servers	can	be	expressed	as:

h(key)	=	key	%	n	With	%	the	modulo	operator	and	n	the	number	of	servers.

Imagine	now	that	we	have	a	situation	where	ten	keys	are	distributed	over	three
servers	(n	=	3).	The	table	in	Figure	11.3	outlines	what	happens	when	a	server	is
removed	(n	=	2)	or	added	(n	=	4).

Figure	11.3	Keys	are	distributed	over	three	nodes	using	a	simple	hashing

function.	Which	hashes	would	change	when	removing	or	adding	a	node?

Note	 how,	 upon	 removal	 or	 addition	 of	 a	 server,	many	 items	 have	 to	 be
moved	 to	 a	 different	 server	 (the	 highlighted	 entries	 in	 Figure	 11.3).	 That	 is,
increasing	n	from	three	to	four	causes	1–n/k	=	70%	of	the	keys	to	be	moved.	If
there	had	been	ten	servers	(n	=	10)	and	1000	 items	(keys),	 then	 the	number	of
keys	 that	 would	 have	 to	 be	 moved	 when	 adding	 another	 server	 equals
1–10/1000,	or	99%	of	all	 items.	Clearly,	 this	 is	not	a	desirable	outcome	in	set-
ups	where	servers	are	likely	to	be	removed	or	added.

A	consistent	hashing	scheme	resolves	this	issue.	At	the	core	of	a	consistent
hashing	 set-up	 is	 a	 so-called	 “ring”-topology,	 which	 is	 basically	 a
representation	of	the	number	range	[0,1]	as	illustrated	in	Figure	11.4.

Figure	11.4	A	consistent	hashing	scheme	starts	from	a	ring	topology.

In	this	set-up,	all	servers	(three	servers	with	identifiers	0,	1,	2)	are	hashed	to
place	them	in	a	position	on	this	ring	(Figure	11.5).

Figure	11.5	Server	identifiers	are	hashed	and	placed	on	the	ring.

To	 distribute	 the	 keys,	we	 follow	 a	 similar	mechanism	 in	which	we	 first
hash	each	key	 to	a	position	on	 the	ring,	and	store	 the	actual	key–value	pair	on
the	 first	 server	 that	 appears	 clockwise	 of	 the	 hashed	 point	 on	 the	 ring.	 For
instance,	for	key	3,	we	obtain	a	position	of	0.78,	which	ends	up	being	stored	on
server	0	(Figure	11.6).

Figure	11.6	Keys	are	hashed	as	well	and	stored	in	the	next	occurring	server
(clockwise	order).

Because	of	the	uniformity	property	of	a	“good”	hash	function,	roughly	1/n
key–value	 pairs	will	 end	 up	 being	 stored	 on	 each	 server.	 This	 time,	 however,
most	 of	 the	 key–value	 pairs	 will	 remain	 unaffected	 if	 a	 machine	 is	 added	 or
removed.	 For	 instance,	 say	 we	 add	 a	 new	 server	 to	 the	 ring,	 only	 the	 keys

positioned	on	the	highlighted	section	of	the	ring	in	Figure	11.7	would	have	to	be
moved	to	the	new	server.

Figure	11.7	In	case	a	server	joins	the	network,	only	a	small	fraction	of	keys
need	to	be	moved.

Typically,	the	fraction	of	keys	that	need	to	be	moved	when	using	this	set-up
is	about	k/(n	+	1)	–	i.e.,	a	much	smaller	fraction	than	was	the	case	for	modulo-
based	hashing.

11.2.6	Replication	and	Redundancy

The	basic	consistent	hashing	procedure	as	described	above	is	still	not	ideal.	First,
if	two	servers	end	up	being	mapped	close	to	one	another,	one	of	these	nodes	will
end	up	with	few	keys	to	store	(as	the	distance	between	the	two	nodes	on	the	ring
is	 small).	 Second,	 if	 a	 server	 is	 added	 to	 the	 ring,	we	 see	 that	 all	 of	 the	 keys
moved	to	this	new	node	originate	from	just	one	other	server.

Luckily,	 the	mechanism	of	consistent	hashing	allows	us	to	deal	with	these
issues	in	an	elegant	manner.	Instead	of	mapping	a	server	s	 to	a	single	point	on
our	 ring,	 we	 map	 it	 to	 multiple	 positions,	 called	 replicas.	 For	 each	 physical
server	s,	we	hence	end	up	with	r	(the	number	of	replicas)	points	on	the	ring,	with
everything	else	working	like	before.	By	using	this	mechanism,	we	increase	the
uniformity	with	which	key–value	pairs	will	end	up	being	distributed	to	servers,
and	can	also	ensure	that	an	even	lower	number	of	keys	must	be	moved	when	a
server	is	added	to	a	cluster.

Note,	 however,	 this	 concept	 has	 nothing	 to	 do	 with	 redundancy.	 Each
replica	for	a	node	still	represents	the	same	physical	instance.	Many	vendors	refer
to	this	concept	as	virtual	nodes,	as	the	nodes	placed	on	the	ring	correspond	to	a
lower	 number	 of	 real,	 physical	 nodes.	 To	 handle	 data	 replication	 or
redundancy,	many	vendors	 extend	 the	 consistent	hashing	mechanism	outlined
above	so	key–value	pairs	are	duplicated	across	multiple	nodes,	 for	 instance	by
storing	 the	 key–value	 pair	 on	 two	 or	 more	 nodes	 clockwise	 from	 the	 key’s
position	on	the	ring.	Other	constraints	can	be	considered	as	well,	such	as	making
sure	that	the	(virtual)	nodes	correspond	to	actual	different	physical	machines,	or
even	making	sure	that	the	nodes	are	present	in	different	data	centers.	Finally,	to
ensure	an	even	greater	amount	of	data	safety,	it	 is	also	possible	to	set	up	a	full

redundancy	scheme	 in	which	each	node	 itself	corresponds	 to	multiple	physical
machines	each	storing	a	fully	redundant	copy	of	the	data	(Figure	11.8).

Figure	11.8	Replication	(virtual)	nodes	create	a	more	uniform	topology,
whereas	data	replication	ensures	data	safety	in	the	event	of	faults.

11.2.7	Eventual	Consistency

Recall	that	the	membership	protocol	does	not	guarantee	that	every	node	is	aware
of	every	other	node	at	all	times,	but	guarantees	that	up-to-date	information	will
spread	through	the	network	so	it	will	reach	a	consistent	state	over	time,	 i.e.,	 in
which	all	nodes	possess	up-to-date	 information	 regarding	 the	current	 layout	of
the	network.	This	affects	read	and	write	operations	that	clients	perform,	as	they
must	 deal	 with	 the	 fact	 that	 the	 state	 of	 the	 network	 might	 not	 be	 perfectly
consistent	at	any	moment	in	time,	though	will	eventually	become	consistent	at	a
future	 point	 in	 time.	 Many	 NoSQL	 databases	 guarantee	 so-called	 eventual
consistency.	 Contrary	 to	 traditional	 relational	 databases,	 which	 enforce	 ACID
(Atomicity,	 Consistency,	 Isolation,	 and	 Durability)	 on	 their	 transactions,	 most
NoSQL	databases	 follow	 the	BASE	principle	 (Basically	Available,	 Soft	 state,
Eventually	consistent).

Connections

The	principles	of	ACID	are	explained	in	much	more	detail	in	Chapter	14,
where	we	talk	about	transaction	management.

The	BASE	acronym	was	originally	conceived	by	Eric	Brewer,	who	is	also
known	 for	 formulating	 the	 CAP	 theorem,	 which	 states	 that	 a	 distributed
computer	system,	such	as	the	one	we’ve	looked	at	above,	cannot	guarantee	the
following	 three	 properties	 simultaneously:	 consistency	 (all	 nodes	 see	 the	 same
data	 simultaneously);	 availability	 (guarantees	 that	 every	 request	 receives	 a
response	 indicating	 a	 success	 or	 failure	 result);	 and	 partition	 tolerance	 (the
system	 continues	 to	 work	 even	 if	 nodes	 go	 down	 or	 are	 added).	 Stand-alone

RDBMSs	needn’t	bother	with	partition	tolerance,	because	there	is	only	a	single
node,	 so	 they	 can	 focus	 on	 consistency	 and	 availability.	Distributed	RDBMSs
will	typically	attempt	to	enforce	consistency	at	all	costs	in	a	multi-node	setting,
which	may	affect	availability	if	individual	nodes	cannot	be	reached.

As	 stated	 above,	 most	 NoSQL	 databases,	 but	 not	 all,	 sacrifice	 the
consistency	part	of	CAP	in	their	set-up,	instead	striving	for	eventual	consistency,
indicating	 that	 the	 system	will	become	consistent	over	 time,	once	all	 inputs	 to
that	system	stop.	The	full	BASE	acronym	stands	for:

The	 impact	 of	 eventual	 consistency	 becomes	 immediately	 apparent	when
we	 look	 closely	 at	 write	 and	 read	 requests.	 Imagine	 that	 our	 client	 wishes	 to
store	 a	 key–value	 pair	 “(bart,	 32)”	 in	 the	 ring	 topology	 described	 above.	 The
node	receiving	this	request	maps	the	hash	of	this	key	to,	for	example,	three	node
replicas	(corresponding	to	different	physical	servers),	and	contacts	these	nodes	to
store	 this	 key	 in	 their	 storage.	 The	 original	 receiving	 node	 can	 then	 send	 a
response	to	the	client	immediately,	wait	until	at	least	one	replica	answers	with	a
positive	 reply	 (“the	 replica	 is	 up	 and	 stored	 the	 entry”),	wait	 until	 all	 replicas
reply,	or	wait	until	a	quorum	of	at	 least	half	of	 the	 replicas	 reply.	The	 latter	 is
oftentimes	called	quorum	consistency.	In	the	case	that	a	replica	is	down	and	does
not	 reply,	 the	 request	 receiving	 node	 can	 keep	 the	 request	 around	 to	 retry	 the

Basically	Available,	indicating	that	NoSQL	databases	adhere	to	the
availability	guarantee	of	the	CAP	theorem;

Soft	state,	indicating	that	the	system	can	change	over	time,	even	without
receiving	input	(since	nodes	continue	to	update	each	other);

Eventually	consistent,	indicating	that	the	system	will	become	consistent
over	time	but	might	not	be	consistent	at	a	particular	moment.

operation	later,	or	rely	on	the	membership	protocol	to	spread	the	information	in
case	at	least	one	of	the	replicas	received	the	entry.

If	 our	 client	 wishes	 to	 retrieve	 a	 key–value	 pair,	 a	 similar	mechanism	 is
applied,	 but	 some	 nodes	 might	 contain	 an	 outdated	 version	 of	 the	 entry
compared	to	others.	Again,	the	request-receiving	node	can	then	take	immediate
action	and	 instruct	 the	outdated	nodes	 to	update	 their	entry,	or	again	wait	until
the	membership	protocol	takes	care	of	things	on	its	own.

Connections

Eventual	 consistency	 and	 BASE	 transactions	 will	 return	 and	 will	 be
discussed	in	more	detail	in	Chapter	16.

Note,	 however,	 that	 although	 eventual	 consistency	 is	 typically	 associated
with	NoSQL	databases,	 a	 fair	number	of	 them	hold	on	 to	 stronger	consistency
and	ACID-like	transactions.

Drill	Down

When	 choosing	 a	 NoSQL	 system,	 it	 is	 important	 to	 know	 whether	 a
choice	regarding	consistency	policy	 is	available.	 If	 the	database	system
supports	eventual	consistency	only,	then	the	application	must	handle	the
possibility	of	 reading	 inconsistent	data.	This	 is	not	as	easy	as	 it	 sounds
since	 this	 responsibility	 is	 then	 left	 to	 the	 application	 developer,	 who
then	has	to	consider	questions	such	as	“What	happens	if	a	database	read
returns	an	arbitrarily	old	value?”	Handling	such	cases	can	take	up	a	lot	of
developer	time.	Google	addressed	the	pain	points	of	eventual	consistency
in	a	paper	on	its	distributed	F1	database	and	noted:

“We	also	have	a	lot	of	experience	with	eventual	consistency
systems	at	Google.	In	all	such	systems,	we	find	developers	spend	a
significant	fraction	of	their	time	building	extremely	complex	and
error-prone	mechanisms	to	cope	with	eventual	consistency	and
handle	data	that	may	be	out	of	date.	We	think	this	is	an
unacceptable	burden	to	place	on	developers	and	that	consistency
problems	should	be	solved	at	the	database	level.”2

Hence,	we’ve	seen	newer	NoSQL	systems	move	away	from	the	eventual
consistency	idea.

11.2.8	Stabilization

As	 we’ve	 explained	 above,	 because	 the	 partitioning	 of	 hashes	 over	 nodes
depends	 on	 the	 number	 of	 nodes	 available,	 it	 is	 required	 to	 repartition	 hashes
over	nodes	 if	 this	 amount	changes.	The	operation	 that	 repartitions	hashes	over
nodes	 if	 nodes	 are	 added	 or	 removed	 is	 called	 stabilization,	 and	 should
preferably	 be	 as	 efficient	 as	 possible	 to	 reduce	 network	 overhead	 or	 waiting
time.	If	a	consistent	hashing	scheme	is	being	applied,	the	number	of	fluctuations
in	 the	 hash–node	 mappings	 will	 be	 minimized,	 hence	 leading	 to	 a	 shorter
stabilization	period.

If	a	node	gets	added	or	permanently	removed,	each	node’s	membership	list
will	 eventually	 get	 updated,	which	 instructs	 that	 node	 to	 investigate	 its	 list	 of
entries	it	is	holding	and	remap	its	keys.	In	the	optimal	case,	a	key	still	belongs	to
the	same	node	and	no	action	must	be	taken.	If	a	node	is	no	longer	responsible	for
an	entry,	it	can	use	the	partitioning	scheme	to	figure	out	which	node	or	nodes	are
now	 responsible	 and	 send	 the	 entry	 to	 those.	 Note	 that	 if	 a	 node	 is	 removed,
entries	can	only	be	deleted	from	the	to-be-removed	node	once	they	are	present	in
their	 new,	 correct,	 location.	 Again,	 it	 is	 relevant	 to	 note	 this	 stabilization
operation	takes	time,	so	the	planned	removal	of	a	node	can	still	take	some	time
before	the	node	can	actually	be	removed	from	the	network.

11.2.9	Integrity	Constraints	and	Querying

In	this	section,	we	have	attempted	to	provide	a	comprehensive	overview	of	the
defining	elements	of	key–value	stores.	 It	must	be	stressed	 that	 this	category	of
NoSQL	databases	 still	 represents	 a	 very	diverse	gamut	of	 systems.	As	 already
explained,	 some	 systems	 are	 full-blown	 DBMSs	 in	 their	 own	 right,	 whereas
others	are	merely	used	as	caches	in	front	of	a	(relational)	DBMS.	Some	have	the
hash	 values	 refer	 to	 internal	memory	 addresses,	 whereas	 others	 use	 persistent
memory.	A	typical	property	is	that	only	limited	query	facilities	are	offered,	with
an	 interface	 that	often	comes	down	 to	simple	put()	and	get()	 instructions,	with
the	 key	 as	 the	 defining,	 single-hit	 parameter.	 Such	 APIs	 can	 be	 offered,	 for
example,	as	a	SOAP	or	REST	interface.	Also,	there	are	limited	to	zero	means	to
enforce	 structural	 constraints	 on	 the	 data.	 The	DBMS	 remains	 agnostic	 to	 the
internal	structure,	if	any,	of	the	“values”	in	the	key–value	pairs:	these	are	treated
as	opaque	objects	and	as	a	consequence	they	cannot	be	subject	to	search	criteria.
Moreover,	no	relationships,	let	alone	referential	integrity	constraints	or	database
schema,	can	be	defined	over	the	respective	elements	stored	in	the	database.	New
key–value	pairs	are	simply	added,	without	impact	on	the	other	data.	The	DBMS
treats	them	as	completely	independent	and	any	constraints	or	relationships	are	to
be	 managed	 and	 enforced	 entirely	 at	 application	 level.	 Therefore,	 the	 main
feature	of	key–value	stores	is	their	ability	to	offer	a	very	efficient	and	scalable,
yet	 simple,	 environment	 for	 storing	 and	 retrieving	 unrelated	 data	 elements.	 In
this	capacity,	they	are	also	often	used	as	a	foundation	layer	to	systems	with	more
complex	functionalities.

Retention	Questions

How	do	key–value	stores	store	their	data?

Which	properties	should	a	good	hash	function	adhere	to?

In	which	way	does	a	key–value	store	allow	for	better	horizontal
scalability?

What	is	request	coordination?	When	is	it	needed?

What	is	consistent	hashing?	Which	issues	does	it	solve?

Explain	eventual	consistency	in	the	context	of	the	CAP	theorem.

What	is	meant	by	stabilization?

Which	query	operations	does	a	typical	key–value	store	support?

11.3	Tuple	and	Document	Stores

Now	 that	 we	 have	 explained	 the	 basic	 concepts	 of	 key–value	 stores,	 we	 can
easily	make	the	jump	to	other	types	of	NoSQL	databases,	such	as	the	tuple	store.
A	 tuple	 store	 is	 essentially	 the	 same	 thing	 as	 a	 key–value	 store,	 with	 the
difference	that	it	does	not	store	pairwise	combinations	of	a	key	and	a	value,	but
instead	stores	a	unique	key	together	with	a	vector	of	data.	To	expand	upon	our
earlier	example,	an	entry	in	a	tuple	store	could	look	like	this:

marc	->	("Marc",	"McLast	Name",	25,	"Germany")

There	 is	 no	 requirement	 of	 each	 tuple	 in	 the	 tuple	 store	 having	 the	 same
length	 or	 semantic	 ordering,	 meaning	 that	 the	 handling	 of	 data	 is	 completely
schema-less.	 Unlike	 relational	 databases,	 where	 each	 table	 is	 defined	 under	 a
particular	schema,	tuple	stores	simply	allow	you	to	start	adding	any	sort	of	rows,
and	 leaves	 the	 handling	 and	 checking	 of	 those	 up	 to	 the	 application.	 Various
NoSQL	 implementations	 do,	 however,	 permit	 organizing	 entries	 in	 semantical
groups,	 often	 called	 collections	 or	 even	 tables,	 which	 is	 basically	 an	 extra
namespace	defined	over	the	keys.	For	instance,	a	collection	“Person”	might	hold
these	two	entries:

Person:marc	->	("Marc",	"McLast	Name",	25,	"Germany")
Person:harry	->	("Harry",	"Smith",	29,	"Belgium")

And	another	collection	“Book”	might	hold	the	following	single	entry:

Book:harry	->	("Harry	Potter",	"J.K.	Rowling")

Making	the	jump	from	a	tuple	store	to	a	document-based	NoSQL	database
is	 easily	 done.	 Rather	 than	 storing	 a	 tuple-based	 structure	 (unlabeled	 and
ordered),	document	stores	store	a	collection	of	attributes	labeled	and	unordered,
representing	 items	 that	 are	 semi-structured.	 For	 instance,	 a	 book	 can	 be
described	using	this	collection	of	attributes:

{
		Title											=	"Harry	Potter"
		ISBN												=	"111–1111111111"
		Authors									=	["J.K.	Rowling"]
		Price											=	32
		Dimensions						=	"8.5	x	11.0	x	0.5"
		PageCount							=	234
		Genre											=	"Fantasy"
}

Again,	 most	 implementations	 allow	 organizing	 items	 in	 tables	 or	 collections.
Just	like	with	key–value	or	tuple	stores,	no	schema	needs	to	be	defined	over	the
items	in	a	collection.	Instead,	a	structure	is	imposed	by	the	internal	structure	of
the	documents	–	for	instance,	as	a	(nested)	collection	of	attributes	as	illustrated
above.	 Most	 modern	 NoSQL	 databases	 represent	 documents	 using	 the	 JSON
standard	 (JavaScript	 Object	 Notation),	 which	 includes	 numbers,	 strings,
Booleans,	arrays,	objects,	and	null	as	its	basic	types.	For	instance,	a	book	can	be
represented	using	JSON	as	follows:

{
						"title":	"Harry	Potter",
						"authors":	["J.K.	Rowling",	"R.J.	Kowling"],
						"price":	32.00,
						"genres":	["fantasy"],
						"dimensions":	{

										"width":	8.5,
										"height":	11.0,
										"depth":	0.5
						},
						"pages":	234,
						"in_publication":	true,
						"subtitle":	null
}

Connections

More	details	regarding	the	JSON	standard	and	other	representations	such
as	XML	can	be	found	in	Chapter	10.

Other	commonly	found	representations	are	BSON	(Binary	JSON),	YAML
(YAML	Ain’t	Markup	Language)	and	even	XML.	In	that	sense,	XML	databases
can	 be	 considered	 an	 example	 of	 document	 stores,	 and	 hence	 be	 considered	 a
NoSQL	database	as	well.

11.3.1	Items	with	Keys

Since	document	stores	store	collections	of	attributes,	it	is	possible	to	include	an
item’s	key	directly	in	this	collection	of	attributes,	though	many	of	the	concepts
such	as	hashing	and	partitioning	we’ve	seen	before	remain	present.	Most	NoSQL
document	stores	will	allow	you	to	store	items	in	tables	(collections)	in	a	schema-
less	manner,	but	will	enforce	that	a	primary	key	be	specified	over	each	table	to
uniquely	identify	each	item	in	the	collection.	This	can	be	done	by	leaving	it	up	to
the	end-user	to	indicate	which	attribute	should	be	used	as	the	unique	key	(e.g.,
“title”	 in	 a	 collection	 of	 books),	 such	 as	 with	 Amazon’s	 DynamoDB,	 or	 by
predefining	 an	 always-present	 primary	 key	 attribute	 itself.	 MongoDB,	 for
instance,	uses	“_id”	as	the	primary	key	attribute	in	an	item,	which	can	be	set	by
the	user	or	 left	out.	 If	 left	out,	MongoDB	will	auto-generate	a	unique,	 random
identifier	 for	 the	 item.	 Just	 as	with	 key–value	 stores,	 the	 primary	 key	will	 be
used	as	a	partitioning	key	to	create	a	hash	and	determine	where	the	data	will	be
stored.

11.3.2	Filters	and	Queries

We’ve	seen	that	document	stores	deal	with	semi-structured	items.	They	impose
no	particular	schema	on	 the	structure	of	 items	stored	 in	a	particular	collection,
but	assume	 that	 items	nevertheless	exhibit	an	 implicit	structure	 following	from
their	representational	format,	representing	a	collection	of	attributes,	using	JSON,
XML,	etc.

Just	as	with	key–value	stores,	the	primary	key	of	each	item	can	be	used	to
rapidly	retrieve	a	particular	item	from	a	collection,	but	since	items	are	composed
of	multiple	attributes,	most	document	stores	can	retrieve	items	based	on	simple
filters	as	well.	Therefore,	 they	 typically	also	offer	a	 richer	API	 than	key–value
stores,	 with	 functionality	 to	 query	 and	 manipulate	 document	 content.	 To
illustrate	a	basic	example,	the	Java	code	below	shows	how	you	can	connect	to	a
MongoDB	instance,	insert	some	documents,	query,	and	update	them:

import	org.bson.Document;
import	com.mongodb.MongoClient;
import	com.mongodb.client.FindIterable;
import	com.mongodb.client.MongoDatabase;
import	java.util.ArrayList;
import	static	com.mongodb.client.model.Filters.*;
import	static	java.util.Arrays.asList;
public	class	MongoDBExample	{
				public	static	void	main(String…	args)	{
												MongoClient	mongoClient	=	new	MongoClient();
												MongoDatabase	db	=	mongoClient.getDatabase("test");
												//	Delete	all	books	first
												db.getCollection("books").deleteMany(new	Document());
												//	Add	some	books
												db.getCollection("books").insertMany(new	

ArrayList<Document>()	{{
																add(getBookDocument("My	First	Book",	"Wilfried",	
"Lemahieu",
																								12,	new	String[]{"drama"}));
																add(getBookDocument("My	Second	Book",	"Seppe",	
"vanden	Broucke",
																								437,	new	String[]{"fantasy",	"thriller"}));
																add(getBookDocument("My	Third	Book",	"Seppe",	"vanden	
Broucke",
																								200,	new	String[]{"educational"}));
																add(getBookDocument("Java	Programming	for	Database	
Managers",
																														"Bart",	"Baesens",
																														100,	new	String[]{"educational"}));
												}});
												
												//	Perform	query
												FindIterable<Document>	result	=	
db.getCollection("books").find(
																												and(
																																								eq("author.last_name",	"vanden	Broucke"),
																																								eq("genres",	"thriller"),
																																								gt("nrPages",	100)));
												for	(Document	r:	result)	{
																System.out.println(r.toString());
																//	Increase	the	number	of	pages:
																db.getCollection("books").updateOne(
																						new	Document("_id",	r.get("_id")),
																						new	Document("$set",
																										new	Document("nrPages",	r.getInteger("nrPages")	+	
100)));
												}
												

												mongoClient.close();
								}
								
				public	static	Document	getBookDocument(String	title,
												String	authorFirst,	String	authorLast,
												int	nrPages,	String[]	genres)	{
								return	new	Document("author",	new	Document()
																																																										.append("first_name",	
authorFirst)
																																																										.append("last_name",	
authorLast))
																																												.append("title",	title)
																																												.append("nrPages",	nrPages)
																																												.append("genres",	asList(genres));
				}
}

This	 example	 works	 as	 follows:	 first,	 we	 set	 up	 a	 MongoClient	 and
MongoDatabase	 to	 establish	 a	 connection	 to	 MongoDB.	 Next,	 we	 use	 the
deleteMany()	method	to	delete	all	entries	in	the	“books”	collection.	This	method
needs	a	filter	condition,	but	since	we	wish	to	delete	all	entries	we	pass	a	blank
document	here.	Next,	we	add	some	books	using	the	insertMany()	method.	Each
book	 is	 constructed	using	 a	 static	 helper	method	 (getBookDocument()),	which
creates	 a	 new	 document	 with	 the	 fields	 “author”,	 “title”,	 “nrPages”,	 and
“genres”.	Note	 that	 fields	of	documents	can	be	documents	 themselves,	 such	as
the	“author”	 field	 consisting	 of	 “first_name”	 and	 “last_name”.	MongoDB	will
use	a	dot	(“.”)	to	indicate	such	fields,	so	that	the	full	 identifier	of	“first_name”
becomes	“author.first_name”.	After	inserting	some	books,	we	perform	a	simple
query	 using	 the	 find()	 method	 and	 passing	 a	 conjunctive	 (and)	 condition
containing	 three	 clauses:	 the	 “author.last_name”	 should	 equal	 “vanden

Broucke”,	the	genres	should	contain	“thriller”	(the	“eq”	filter	gets	used	to	search

through	a	list	in	this	case),	and	the	number	of	pages	should	be	greater	than	100.
For	each	document	 in	 the	result	set,	we	use	 the	updateOne()	method	 to	set	 the
number	of	pages	to	a	new	value.

Running	this	code	will	produce	this	result:

Document{{_id=567ef62bc0c3081f4c04b16c,	
author=Document{{first_name=Seppe,	last_name=vanden	
Broucke}},	title=My	Second	Book,	nrPages=437,	genres=[fantasy,	
thriller]}}

Drill	Down

We	use	MongoDB	here	 as	 it	 remains	 one	 of	 the	most	well-known	 and
widely	 used	 implementations	 of	 a	 document	 store.	 In	 case	 you’re
wondering	where	MongoDB	stands	 in	 the	 “eventual	consistency”	 story
as	 discussed	 before,	 know	 that	 MongoDB	 is	 strongly	 consistent	 by
default:	if	you	write	data	and	read	it	back	out,	you	will	always	be	able	to
read	the	result	of	 the	write	you	just	performed	(if	 the	write	succeeded).
This	 is	because	MongoDB	 is	 a	 so-called	“single-master”	 system	where
all	 reads	 go	 to	 a	 primary	 node	 by	 default.	 If	 you	 do	 optionally	 enable
reading	 from	 the	 secondary	nodes,	 then	MongoDB	becomes	eventually
consistent	where	it’s	possible	to	read	out-of-date	results.

This	 is	 the	 theory;	 the	actual	 story	 is	 somewhat	more	complicated
than	this.	In	various	MongoDB	versions,	researchers	were	able	to	show
that	 MongoDB’s	 implementation	 of	 a	 strong	 consistency	 model	 was
broken	 (this	 happened	 in	 2013,	 2015,	 and	 again	 recently	 in	 20173).
Versions	3.4.1	and	3.5.1	are	finally	consistent	with	no	bugs,	though	this

shows	 that	end-users	should	be	very	attentive	when	adopting	a	NoSQL
database.

Drill	Down

The	 online	 playground	 contains	 a	 MongoDB	 version	 of	 the	 wine
database,	 which	 you	 can	 query	 through	 its	 JavaScript	 shell	 (see	 the
Appendix	for	more	details).

Apart	 from	 basic	 filtering	 and	 query	 operations,	 most	 NoSQL	 document
stores	support	more	complex	queries	(e.g.,	with	aggregations).	For	example,	the
Java	 code	 below	 shows	 how	 you	 can	 perform	 a	 query	 that	 shows	 the	 total
number	of	pages	across	all	books,	grouped	by	author:

//	Perform	aggregation	query
AggregateIterable<Document>	result	=	db.getCollection("books")
									.aggregate(asList(
																			new	Document("$group",
																									new	Document("_id",	"$author.last_name")
																															.append("page_sum",	new	Document("$sum",	
"$nrPages")))));
for	(Document	r:	result)	{
								System.out.println(r.toString());
}

Running	this	code	on	the	Java	example	above	will	yield	this	result:

Document{{_id=Lemahieu,	page_sum=12}}
Document{{_id=vanden	Broucke,	page_sum=637}}
Document{{_id=Baesens,	page_sum=100}}

Although	 NoSQL	 databases	 are	 built	 with	 scalability	 and	 simplicity	 in
mind,	running	individual	queries	with	many	query	criteria,	sorting	operators,	or
aggregations	 can	 still	 be	 relatively	 slow,	 even	 when	 no	 relational	 joining	 is
performed.	The	reason	for	 this	 is	 that	every	filter	 (such	as	“author.last_name	=
Baesens”)	 entails	 a	 complete	 collection	 or	 table	 scan	 (i.e.,	 a	 scan	 of	 every
document	item	in	the	collection)	to	figure	out	which	documents	match	the	query
statements.	The	primary	key	defined	for	every	item	forms	a	notable	exception,	as
this	 key	 functions	 as	 a	 unique	 partitioning	 index	making	 efficient	 retrieval	 of
items	possible.

To	 speed	 up	 other,	 more	 complex	 operations,	 most	 document	 structures
allow	 defining	 indexes	 over	 collections,	 in	 a	 manner	 very	 similar	 to	 table
indexes	in	a	relational	database.	Defining	indexes	over	collections	makes	it	easy
to	 traverse	 a	 collection	and	perform	efficient	matching	operations,	 at	 a	 cost	 of
storage,	 as	 storing	 the	 index	 itself	 will	 also	 take	 up	 some	 amount	 of	 storage
space.	 Many	 document	 storage	 systems	 can	 define	 a	 variety	 of	 indexes,
including	 unique	 and	 non-unique	 indexes,	 composite	 indexes,	 which	 are
composed	of	multiple	attributes,	and	even	specialized	indexes,	such	as	geospatial
indexes	 (when	 an	 attribute	 represents	 geospatial	 coordinates),	 or	 text-based
indexes	(when	an	attribute	represents	a	large	text	field).

Connections

Indexing	will	be	discussed	in	more	detail	in	Chapters	12	and	13.

11.3.3	Complex	Queries	and	Aggregation	with	MapReduce

Based	on	the	explanation	above,	you	might	notice	that	document	stores	exhibit
many	 similarities	 to	 relational	 databases,	 including	 query,	 aggregation,	 and
indexing	 facilities.	 One	 notable	 aspect	 missing	 from	 most	 document	 stores,
however,	 is	 that	 of	 relations	 between	 tables.	 To	 illustrate	 this	 concept,	 say	we
start	 from	 our	 book	 example	 above,	 but	 that	 we	 get	 a	 request	 to	 store	 more
information	 about	 each	 author,	 rather	 than	 just	 modeling	 it	 as	 a	 list	 of	 string
values	per	book	like	we	did	before.

One	way	to	tackle	this	problem	is	to	just	model	the	concept	of	an	author	as
a	 document	 on	 its	 own,	 and	 continue	 to	 store	 it	 in	 an	 author	 list	 per	 book,
meaning	that	instead	of	the	following:

{
												"title":	"Databases	for	Beginners",
												"authors":	["J.K.	Sequel",	"John	Smith"],
												"pages":	234
}

we	model	a	book	item	like	this:

{
												"title":	"Databases	for	Beginners",
												"authors":	[
																{"first_name":	"Jay	Kay",	"last_name":	"Sequel",	"age":	
54},
																{"first_name":	"John",	"last_name":	"Smith",	"age":	32}],
												"pages":	234
}

This	 concept	 is	 referred	 to	 by	 MongoDB	 and	 other	 vendors	 as	 “embedded
documents”,	 and	 is	what	we’ve	 been	 applying	 to	 our	 Java	 example	 above	 as
well.	This	idea	has	the	benefit	that	queries	on	“linked	items”	(authors	to	books,
in	this	case)	work	just	as	normal	attributes	would.	For	instance,	it	is	possible	to
perform	an	equality	check	on	“authors.first_name	=	John”.	The	downside	of	this
approach,	however,	is	that	it	can	quickly	lead	to	data	duplication,	and	can	make
it	 cumbersome	 to	perform	an	update	 to	 an	 author’s	 information	because	every
book	containing	that	author	entry	will	have	to	be	updated.

Readers	familiar	with	the	chapters	on	relational	databases	would	see	this	as
a	strong	case	for	normalization,	and	would	advise	creating	two	collections:	one
for	books	and	one	for	authors.

Connections

See	Chapters	6	and	9	 for	more	 information	on	 relational	databases	and
normalization.

Books	can	then	contain	items	like	the	following:

{
																"title":	"Databases	for	Beginners",
																"authors":	["Jay	Kay	Rowling",	"John	Smith"],
																"pages":	234
}

And	for	the	authors	collection:

{
																"_id":	"Jay	Kay	Rowling",
																"age":	54

}

This	approach,	however,	has	the	downside	that	most	document	stores	will	force
you	 to	 resolve	 complex	 relational	 queries	 “by	 hand”	 at	 the	 level	 of	 your
application	code.	For	instance,	say	we	would	like	to	retrieve	a	list	of	books	for
which	the	author	is	older	than	a	particular	age.	In	many	document	stores,	this	is
impossible	 through	a	single	query.	 Instead,	users	are	advised	 to	 first	perform	a
query	 to	 retrieve	all	 authors	older	 than	 the	 requested	age,	 and	 then	 retrieve	all
titles	 per	 author.	 Contrary	 to	 relational	 databases,	 this	 operation	 will	 involve
many	round-trips	to	the	document	store	to	fetch	additional	items.

This	 way	 of	 working	 might	 seem	 limiting	 at	 first,	 but	 remember	 that
document	stores	are	geared	toward	storing	a	large	number	of	documents	across
many	nodes,	especially	in	cases	where	the	amount	or	velocity	of	data	is	so	high
that	 relational	 databases	 would	 not	 be	 able	 to	 keep	 up.	 To	 perform	 complex
queries	and	aggregations,	most	analytics-oriented	document	stores	offer	ways	to
query	the	dataset	through	map–reduce	operations.	MapReduce	is	a	well-known
programming	model	made	popular	by	Google	and	subsequently	implemented	by
Apache	Hadoop,	an	open-source	software	framework	for	distributed	computing
and	storage	of	large	datasets.

Connections

We	mainly	focus	on	MapReduce	in	what	follows.	Hadoop	and	the	wider
field	of	Big	Data	and	analytics	are	discussed	in	Chapters	19	and	20.

The	main	 innovative	 aspects	 of	MapReduce	 do	 not	 come	 from	 the	map-
and-reduce	 paradigm	 itself,	 as	 these	 concepts	 were	 long	 known	 in	 functional
programming	circles,	but	 rather	 from	 the	 idea	of	 applying	 these	 functions	 in	 a

manner	incredibly	scalable	and	fault-tolerant.	A	map–reduce	pipeline	starts	from

a	 series	 of	 key–value	 pairs	 (k1,v1)	 and	maps	 each	 pair	 to	 one	 or	more	 output
pairs.	 Note,	 therefore,	 that	 multiple	 output	 entries	 per	 input	 entry	 can	 be
produced.	This	operation	can	easily	be	run	in	parallel	over	the	input	pairs.	Next,
the	output	entries	are	shuffled	and	distributed	so	all	output	entries	belonging	to
the	 same	 key	 are	 assigned	 to	 the	 same	 worker	 (in	 most	 distributed	 set-ups,
workers	 will	 correspond	 to	 different	 physical	 machines).	 These	 workers	 then
apply	a	reduce	function	to	each	group	of	key–value	pairs	having	the	same	key,
producing	a	new	list	of	values	per	output	key.	The	resulting	final	outputs	are	then
(optionally)	sorted	per	key	k2	to	produce	the	final	outcome.

Let’s	illustrate	a	map–reduce	pipeline	using	a	simple	example.	Imagine	we
would	like	to	get	a	summed	count	of	pages	for	books	per	genre.	Assuming	each
book	has	one	genre,	we	can	resolve	this	in	a	relational	database	setting	using	this
SQL	query:

SELECT	genre,	SUM(nrPages)	FROM	books
GROUP	BY	genre
ORDER	BY	genre

Assume	 now	 we	 are	 dealing	 with	 a	 large	 collection	 of	 books.	 Using	 a
map–reduce	 pipeline,	we	 can	 tackle	 this	 query	 by	 first	 creating	 a	 list	 of	 input
key–value	pairs	corresponding	to	the	records	we	want	to	process:

k1 v1

1 {genre:	education,	nrPages:	120}

2 {genre:	thriller,	nrPages:	100}

3 {genre:	fantasy,	nrPages:	20}

… …

Each	worker	will	 now	 start	working	on	 an	 input	 entry,	 and	will	 apply	 its
map	operation.	Here,	the	map	function	is	a	simple	conversion	to	a	genre–nrPages
key–value	pair:

function	map(k1,	v1)
																emit	output	record	(v1.genre,	v1.nrPages)
end	function

Our	workers	will	hence	have	produced	the	following	three	output	lists	(example
with	three	workers	below),	with	the	keys	now	corresponding	to	genres:

Next,	 a	 working	 operation	 will	 be	 started	 per	 unique	 key	 k2,	 for	 which	 its
associated	list	of	values	will	be	reduced.	For	instance,	(education,[120,200,20])
will	be	reduced	to	its	sum,	340:

function	reduce(k2,	v2_list)
																emit	output	record	(k2,	sum(v2_list))
end	function

The	final	output	list	hence	looks	as	follows:

k2 v3

education 340

thriller 100

drama 500

fantasy 30

This	final	list	can	then	be	sorted	based	on	k2	or	v3	to	produce	the	desired	result.
Depending	 on	 the	 query,	 it	 might	 require	 careful	 thought	 to	 produce	 the

desired	result.	For	 instance,	 if	we	would	like	 to	retrieve	an	average	page	count
per	 book	 for	 each	 genre,	 it	 seems	 plausible	 to	 rewrite	 our	 reduce	 function	 as
such:

function	reduce(k2,	v2_list)
												emit	output	record	(k2,	sum(v2_list)	/	length(v2_list))
end	function

Just	as	before,	after	mapping	the	input	list,	our	workers	will	have	produced	the
following	three	output	lists:

which	are	now	reduced	to	averages	as	follows:

k2 v3

education (120	+	200	+	20)/3	=	113.33

thriller 100/1	=	100.00

drama 500/1	=	500.00

fantasy (20	+	10)/2	=	15.00

This	 example	 serves	 well	 to	 illustrate	 another	 powerful	 concept	 of	 the
map–reduce	pipeline,	namely	the	fact	that	the	reduce	operation	can	happen	more
than	once,	 and	 can	already	 start	 before	all	mapping	operations	have	 finished.
This	 is	 especially	 helpful	when	 the	 output	 data	 are	 too	 large	 to	 be	 reduced	 at
once,	or	when	new	data	arrive	later	on.

Using	the	same	averaging	example,	imagine	that	two	workers	have	already
finished	mapping	the	first	couple	of	input	rows	like	so:

Instead	 of	 sitting	 around	 until	 all	 mappers	 have	 finished,	 our	 reducers	 can
already	start	to	produce	an	intermediate	reduced	result:

k2 v3

education (20	+	50	+	50	+	100	+	100)/5	=	64.00

thriller 100/1	=	100.00

drama (100	+	200	+	200)/3	=	166.67

fantasy (20)/1	=	20.00

Now	let’s	say	that	the	next	batch	arrives,	which	is	mapped	as	follows:

k2 v2

education 20

fantasy 10

However,	if	we	would	reduce	this	set	with	our	previously	reduced	set,	we	would
get	the	following,	wrong,	result:

This	 illustrates	a	particularly	 important	aspect	of	 the	MapReduce	paradigm.	To
obtain	the	actual	correct	result,	we	need	to	rewrite	our	map	and	reduce	functions:

function	map(k1,	v1)
											emit	output	record	(v1.genre,	(v1.nrPages,	1))
end	function
function	reduce(k2,	v2_list)
											for	each	(nrPages,	count)	in	v2_list	do
															s	=	s	+	nrPages	*	count
															newc	=	newc	+	count
											repeat
											emit	output	record	(k2,	(s/newc,	newc))
end	function

Our	mapping	 function	now	produces	 the	 following	 result.	Note	 that	 the	values
are	now	a	pair	of	pages	and	the	literal	number	“1”	(a	counter	keeping	track	of	the
number	of	items	in	the	so-far-reduced	average):

If	we	reduce	the	first	two	lists,	we	get:

First	reduced	list

k2 v3

education 64.00,	5

thriller 100.00,	1

drama 166.67,	3

fantasy 20.00,	1

If	we	now	reduce	this	list	with	the	last	set,	we	get	a	correct,	final	result:

This	 example	 highlights	 two	 very	 important	 criteria	 regarding	 the	 reduce
function.	Since	this	function	can	be	called	multiple	times	on	partial	results:

1.	The	reduce	function	should	output	the	same	structure	as	emitted	by	the
map	function,	since	this	output	can	be	used	again	in	an	additional	reduce
operation.

2.	The	reduce	function	should	provide	correct	results	even	if	called	multiple
times	on	partial	results.

As	 a	 final	 example,	 we	 close	 with	 a	 famous	 one	 (almost	 every	 NoSQL
database	or	Big	Data	technology	supporting	the	MapReduce	paradigm	uses	this
example	 as	 an	 introductory	 one):	 to	 count	 the	 number	 of	 occurrences	 of	 each
word	in	a	document:

function	map(document_name,	document_text)
									for	each	word	in	document_text	do
															emit	output	record	(word,	1)
									repeat
end	function
function	reduce(word,	partial_counts)
												emit	output	record	(word,	sum(partial_counts))
end	function

You	might	be	tempted	to	change	the	map	function	so	that	it	already	aggregates
the	 sum	 per	 word	 it	 has	 found	 in	 its	 given	 document	 (in	 “document_text”).
However,	 it	 is	 advisable	 to	not	 include	 this	 reduce	 logic	 in	 your	map	 function
and	 to	 keep	 the	 mapping	 simple.	 Imagine,	 for	 instance,	 that	 a	 worker	 were
confronted	with	a	huge	list	of	words	exceeding	its	local	memory,	in	which	case	it
would	 never	 be	 able	 to	 perform	 the	 aggregation	 and	 return	 its	 output	 list.	 By
iterating	 the	 words	 one	 by	 one	 and	 emitting	 an	 output	 record	 per	 word,	 the
mapping	function	is	guaranteed	to	finish.	The	job	scheduler	can	then	inspect	the
size	of	the	stored,	emitted	records	to	decide	whether	it	needs	to	split	up	the	list
among	different	reduce	jobs.	As	we’ve	seen	before,	this	is	possible	since	reduce
functions	are	written	so	they	can	be	applied	on	partial	results.

Let’s	return	to	our	MongoDB	based	Java	examples	to	illustrate	the	concept
of	MapReduce	in	practice.	We	will	implement	an	aggregation	query	that	returns
the	average	number	of	pages	per	genre,	but	now	taking	into	account	that	books
can	have	more	than	one	genre	associated	to	them.	The	following	code	fragments
set	up	a	new	database	for	us	to	use:

import	org.bson.Document;
import	com.mongodb.MongoClient;
import	com.mongodb.client.MongoDatabase;
import	java.util.ArrayList;

import	java.util.List;
import	java.util.Random;
import	static	java.util.Arrays.asList;
public	class	MongoDBAggregationExample	{
											public	static	Random	r	=	new	Random();

							public	static	void	main(String…	args)	{
											MongoClient	mongoClient	=	new	MongoClient();
											MongoDatabase	db	=	mongoClient.getDatabase("test");
											
											setupDatabase(db);
											for	(Document	r:	db.getCollection("books").find())
																			System.out.println(r);

											mongoClient.close();
			}

			public	static	void	setupDatabase(MongoDatabase	db)	{
							db.getCollection("books").deleteMany(new	Document());
							
							String[]	possibleGenres	=	new	String[]	{
																			"drama",	"thriller",	"romance",	"detective",
																			"action",	"educational",	"humor",	"fantasy"	};
							for	(int	i	=	0;	i	<	100;	i++)	{
																									db.getCollection("books").insertOne(
																															new	Document("_id",	i)
																															.append("nrPages",	r.nextInt(900)	+	100)
																															.append("genres",
																																					getRandom(asList(possibleGenres),	
r.nextInt(3)	+	1)));
													}
							}
	

			public	static	List<String>	getRandom(List<String>	els,	int	
number)	{
			List<String>	selected	=	new	ArrayList<>();
			List<String>	remaining	=	new	ArrayList<>(els);
			for	(int	i	=	0;	i	<	number;	i++)	{
											int	s	=	r.nextInt(remaining.size());
											selected.add(remaining.get(s));
											remaining.remove(s);
			}
			return	selected;
			}
			}

Running	 this	 code	 will	 set	 up	 a	 random	 books	 database	 and	 print	 out	 the
following	list	of	inserted	items:

Document{{_id=0,	nrPages=188,	genres=[action,	detective,	
romance]}}
Document{{_id=1,	nrPages=976,	genres=[romance,	detective,	
humor]}}
Document{{_id=2,	nrPages=652,	genres=[thriller,	fantasy,	action]}}
Document{{_id=3,	nrPages=590,	genres=[fantasy]}}
Document{{_id=4,	nrPages=703,	genres=[educational,	drama,	
thriller]}}
Document{{_id=5,	nrPages=913,	genres=[detective]}}
…

Let	 us	 now	 construct	 our	 aggregation	 query.	 If	 we	 performed	 this	 query
manually,	a	basic	solution	would	look	as	follows:

public	static	void	reportAggregate(MongoDatabase	db)	{
								Map<String,	List<Integer>>	counts	=	new	HashMap<>();
								for	(Document	r:	db.getCollection("books").find())	{

																for	(Object	genre:	r.get("genres",	List.class))	{
																								if	(!counts.containsKey(genre.toString()))
																																								counts.put(genre.toString(),	new	
ArrayList<Integer>());
																								counts.get(genre.toString()).add(r.getInteger("nrPages"));

																}
								}
								for	(Entry<String,	List<Integer>>	entry:	counts.entrySet())	{
																System.out.println(entry.getKey()	+	"	-->	AVG	=	"	+
																								sum(entry.getValue())	/	(double)	
entry.getValue().size());
								}
}
private	static	int	sum(List<Integer>	value)	{
								int	sum	=	0;
								for	(int	i:	value)	sum	+=	i;
								return	sum;
}

In	 the	 code	 fragment	 above,	we	 loop	 through	 all	 books	 in	 the	 collection,
iterate	over	its	genres,	and	keep	track	of	all	page	counts	per	genre	in	a	hashmap
structure.	This	code	produces	this	result:

romance	-->	AVG	=	497.39285714285717
drama	-->	AVG	=	536.88
detective	-->	AVG	=	597.1724137931035
humor	-->	AVG	=	603.5357142857143
fantasy	-->	AVG	=	540.0434782608696
educational	-->	AVG	=	536.1739130434783
action	-->	AVG	=	398.9032258064516
thriller	-->	AVG	=	513.5862068965517

This	code	will	scale	badly	once	we	are	dealing	with	millions	of	books.	If	the	list
of	genres	 is	 known	beforehand,	we	can	 also	optimize	 this	query	 somewhat	by
performing	the	aggregation	per	genre	directly	in	MongoDB	itself:

public	static	void	reportAggregate(MongoDatabase	db)	{
				String[]	possibleGenres	=	new	String[]	{
																								"drama",	"thriller",	"romance",	"detective",
																								"action",	"educational",	"humor",	"fantasy"	};
												for	(String	genre:	possibleGenres)	{
																		AggregateIterable<Document>	iterable	=
																								db.getCollection("books").aggregate(asList(
																												new	Document("$match",	new	Document("genres",	
genre)),
																												new	Document("$group",	new	Document("_id",	
genre)
																																				.append("average",	new	Document("$avg",	
"$nrPages")))));
																												for	(Document	r:	iterable)	{
																																		System.out.println(r);
}
}
}

which	produces	a	similar	output:

Document{{_id=drama,	average=536.88}}
Document{{_id=thriller,	average=513.5862068965517}}
Document{{_id=romance,	average=497.39285714285717}}
Document{{_id=detective,	average=597.1724137931035}}
Document{{_id=action,	average=398.9032258064516}}
Document{{_id=educational,	average=536.1739130434783}}
Document{{_id=humor,	average=603.5357142857143}}
Document{{_id=fantasy,	average=540.0434782608696}}

Assume	we	have	millions	of	books	in	our	database	and	we	do	not	know	the
number	 of	 genres	 beforehand.	 First	 looping	 through	 all	 books	 to	 fetch	 all
possible	genres	and	then	constructing	a	list	of	averages	per	genre	would	be	very
time-consuming,	 so	 it	 makes	 sense	 to	 rewrite	 our	 logic	 using	 a	 map–reduce
approach.

In	 MongoDB,	 the	 map	 and	 reduce	 functions	 should	 be	 supplied	 using
JavaScript	code,	and	using	the	following	prototypes.	For	map:

function()	{
								//	No	arguments,	use	"this"	to	refer	to	the
								//	local	document	item	being	processed
								emit(key,	value);
}

and	for	reduce:

function(key,	values)	{
								return	result;
}

Let’s	start	with	building	the	map	function.	We	need	to	map	each	incoming
document	 item	 to	 a	 number	 of	 key–value	 pairs.	 Because	 we	 want	 to	 create
aggregate	page	counts	per	genre,	our	key	will	be	the	genre	of	an	item,	with	its
value	being	a	pair	composed	of	the	current	running	average	and	the	number	of
items	used	to	create	the	average,	similar	to	the	example	above:

function()	{
								var	nrPages	=	this.nrPages;
								this.genres.forEach(function(genre)	{
																emit(genre,	{average:	nrPages,	count:	1});
								});

}

The	 reduce	 function	will	 then	 take	a	 list	of	values	and	output	a	new,	averaged
result.	Remember	 the	 two	 requirements	of	 the	 reduce	 function	as	 listed	above:
the	 reduce	 function	 should	 output	 the	 same	 structure	 as	 emitted	 by	 the	 map
function,	and	the	reduce	function	should	continue	to	work	even	if	called	multiple
times	 on	 partial	 results,	 as	MongoDB	will	 run	 this	 function	 as	many	 times	 as
necessary:

function(genre,	values)	{
								var	s	=	0;
								var	newc	=	0;
								values.forEach(function(curAvg)	{
																s	+=	curAvg.average	*	curAvg.count;
																newc	+=	curAvg.count;
								});
								return	{average:	(s	/	newc),	count:	newc};
}

We	can	then	implement	these	JavaScript	functions	in	our	Java	code	example	as
follows,	by	passing	them	as	plain	strings	to	the	mapReduce()	method:

public	static	void	reportAggregate(MongoDatabase	db)	{
								String	map	=	"function()	{	"	+
																								"	var	nrPages	=	this.nrPages;	"	+
																								"	this.genres.forEach(function(genre)	{	"	+
																								"	emit(genre,	{average:	nrPages,	count:	1});	"	+
																								"	});	"	+
																								"}	";
								String	reduce	=	"function(genre,	values)	{	"	+
																								"	var	s	=	0;	var	newc	=	0;	"	+
																								"	values.forEach(function(curAvg)	{	"	+

																								"	s	+=	curAvg.average	*	curAvg.count;	"	+
																								"	newc	+=	curAvg.count;	"	+
																								"	});	"	+
																								"	return	{average:	(s	/	newc),	count:	newc};	"	+
																								"}	";
								MapReduceIterable<Document>	result	=	
db.getCollection("books")
																.mapReduce(map,	reduce);
								for	(Document	r:	result)
																System.out.println(r);
}

Running	 this	 code	 gives	 us	 the	 same	 result	 as	 before,	 now	 achieved	 in	 a
map–reduce	fashion:

Document{{_id=action,	
value=Document{{average=398.9032258064516,	count=31.0}}}}
Document{{_id=detective,	
value=Document{{average=597.1724137931035,	count=29.0}}}}
Document{{_id=drama,	value=Document{{average=536.88,	
count=25.0}}}}
Document{{_id=educational,	
value=Document{{average=536.1739130434783,	count=23.0}}}}
Document{{_id=fantasy,	
value=Document{{average=540.0434782608696,	count=23.0}}}}
Document{{_id=humor,	
value=Document{{average=603.5357142857143,	count=28.0}}}}
Document{{_id=romance,	
value=Document{{average=497.39285714285717,	count=28.0}}}}
Document{{_id=thriller,	
value=Document{{average=513.5862068965517,	count=29.0}}}}

11.3.4	SQL	After	All…

We	 have	 seen	 how	 map–reduce-based	 operations	 can	 help	 perform	 complex
queries	and	aggregations	in	document	stores,	even	though	these	document	stores
do	not	support	relational	structures	directly.

Based	on	the	map–reduce	examples	shown	above,	it	becomes	apparent	that
many	traditional	GROUP	BY-style	SQL	queries	are	convertible	to	an	equivalent
map–reduce	 pipeline.	That	 is	 the	 reason	many	Hadoop	 vendors	 and	 document
store	implementations	express	queries	using	an	SQL	interface	(most	often	using
a	subset	of	 the	SQL	 language),	offering	users	a	more	 familiar	way	of	working
rather	than	requiring	them	to	think	in	map–reduce	logic.

Some	document	stores,	such	as	Couchbase,	also	allow	you	to	define	foreign
keys	 in	document	structures	and	 to	perform	 join	operations	directly	 in	queries.
This	 means	 that	 the	 following	 query	 is	 possible	 using	 Couchbase	 N1QL
(Couchbase’s	SQL	dialect):

SELECT	books.title,	books.genres,	authors.name
FROM	books
JOIN	authors	ON	KEYS	books.authorId

With	this	kind	of	functionality,	one	can	wonder	where	traditional	relational
databases	end	and	where	the	NoSQL	way	of	thinking	begins.	This	is	exactly	why
the	 line	 between	 the	 two	 has	 become	 blurred	 over	 the	 years,	 and	why	we	 see
vendors	 of	 relational	 databases	 catching	 up	 and	 implementing	 some	 of	 the
interesting	aspects	that	made	NoSQL	databases,	and	document	stores	especially,
popular	in	the	first	place.	These	aspects	include:

focus	on	horizontal	scalability	and	distributed	querying;

dropping	schema	requirements;

This	 comes	 backed	 by	 a	 strong	 querying	 backend	 and	 SQL	 querying
capabilities.	 For	 example,	 recent	 versions	 of	 the	 open-source	 PostgreSQL
database	allow	you	to	execute	the	following	statements:

CREATE	TABLE	books	(data	JSONB);
INSERT	INTO	books	(data)	VALUES
('
								{
								"title":	"Beginners	Guide	to	Everything",
								"genres":	["educational",	"fantasy"],
								"price":	200,
								}
');
SELECT	DISTINCT	data->>'title'	AS	titles	FROM	books;

In	the	first	statement	a	new	table	is	created	(books)	containing	one	field	(data)	of
the	type	JSONB	(the	“B”	stands	for	“binary”).	The	non-binary	JSON	data	type
stores	 an	 exact	 copy	 of	 the	 input	 text,	 which	must	 be	 processed	 every	 time	 a
query	 is	 run	 over	 this	 field.	 JSONB	 data,	 on	 the	 other	 hand,	 are	 stored	 in	 a
decomposed	 binary	 format	 that	 makes	 it	 slightly	 slower	 to	 store	 (since	 the
textual	 JSON	 representation	 must	 be	 converted	 to	 a	 binary	 format),	 but
significantly	 faster	 to	 process	 in	 subsequent	 calls,	 as	 no	 reparsing	 is	 needed.
Next,	 we	 can	 insert	 plain	 JSON	 objects	 using	 a	 normal	 INSERT	 statement.
Finally,	 we	 can	 perform	 a	 SELECT	 query	 to	 select	 all	 distinct	 “title”	 fields
(using	 the	 ->>	 syntax).	 In	 the	 background,	 PostgreSQL	 takes	 care	 of	 query
optimization	and	planning.

support	for	nested	data	types	or	allowing	to	store	JSON	directly	in	tables;

support	for	map–reduce	operations;

support	for	special	data	types,	such	as	geospatial	data.

Retention	Questions

What	is	the	difference	between	a	tuple	store	and	a	key–value	store	in
terms	of	data	representation?

What	is	the	difference	between	a	tuple	store	and	a	document	store	in
terms	of	data	representation?

Which	types	of	queries	do	typical	document	stores	such	as	MongoDB
provide?	How	are	more	complex	queries	handled?

11.4	Column-Oriented	Databases

A	 column-oriented	DBMS	 is	 a	 DBMS	 that	 stores	 data	 tables	 as	 sections	 of
columns	of	data,	rather	than	as	rows	of	data	as	in	most	DBMS	implementations.
Such	 an	 approach	 has	 advantages	 in	 some	 areas,	 such	 as	marketing	 analytics,
business	 intelligence-focused	 systems,	 and	 clinical	 data	 systems	 (i.e.,	 systems
where	 aggregates	 are	 regularly	 computed	 over	 large	 numbers	 of	 similar	 data
items).	Columns	with	many	null	values,	known	as	sparse	data,	can	be	dealt	with
more	efficiently,	without	wasting	storage	capacity	for	the	empty	cells.

Note	that	being	column	oriented,	rather	than	row	oriented,	is	a	decision	that
stands	 quite	 orthogonal	 to	 the	 type	 of	 data	 being	 stored.	 This	 means	 that
relational	databases	can	be	both	row	and	column	oriented,	and	so	can	key–value
or	document	stores.	However,	since	the	need	for	column-oriented	data	structures
became	 apparent,	 along	 with	 the	 need	 for	 non-relational	 databases,	 column-
oriented	database	systems	are	categorized	as	a	form	of	NoSQL.

To	 illustrate	 the	basic	workings	of	 a	 column-oriented	database,	 imagine	 a
database	system	containing	these	rows:

Id Genre Title Price Audiobook	
price

1 fantasy My	first	book 20 30

2 education Beginners	 10 null

guide

3 education SQL	strikes	
back

40 null

4 fantasy The	rise	of	
SQL

10 null

A	 row-based	 system	 is	 designed	 to	 efficiently	 return	 data	 for	 an	 entire	 row,
which	matches	the	common	use	case	in	which	users	wish	to	retrieve	information
about	a	particular	object	or	entity,	such	as	a	book	with	Id	3.	By	storing	a	row’s
data	in	a	single	block	on	the	hard	drive,	along	with	related	rows,	the	system	can
quickly	retrieve	rows.

However,	such	systems	are	not	efficient	at	performing	operations	that	apply
to	the	entire	dataset,	as	opposed	to	a	particular	row.	For	example,	if	we	want	to
find	all	 records	 in	our	example	with	a	price	above	20,	we	would	need	 to	 seek
through	 each	 row	 to	 find	 the	matching	 ones.	Most	 database	 systems	 speed	 up
such	operations	by	means	of	database	indexes.

Connections

See	Chapters	12	and	13	for	more	information	on	indexing.

For	instance,	we	could	define	an	index	on	price,	which	would	be	stored	as
an	index	mapping	column	values	to	a	tuple	of	identifiers:

Price	value Record	identifiers

10 2,4

20 1

40 3

By	 sorting	 the	 index,	 we	 can	 obtain	 huge	 time	 savings	 because	 we	 avoid
scanning	 the	 whole	 dataset,	 using	 the	 index	 to	 retrieve	 only	 those	 rows	 that
satisfy	the	query.	However,	maintaining	an	index	also	adds	overhead,	especially
when	new	data	enter	the	database.	New	data	require	the	index	to	be	updated	in
addition	to	the	actual	data	objects.

In	a	column-oriented	database,	all	values	of	a	column	are	placed	 together
on	the	disk,	so	our	example	table	would	be	stored	in	this	way:

Genre: fantasy:1,4 education:2,3

Title: My	
first…:1

Beginners…:2 SQL	
Strikes..:3

The	
rise…:4

Price: 20:1 10:2,4 40:3

Audiobook	
price:

30:1

In	this	way,	one	particular	column	matches	the	structure	of	a	normal	index	in	a
row-based	 system	 –	 an	 iteration	 of	 possible	 values	 together	 with	 the	 record
identifiers	holding	that	value.	However,	the	need	for	separate	indexes	disappears
here,	 as	 the	 primary	 keys	 for	 each	 column	 are	 the	 data	 values	 themselves,
mapping	 directly	 to	 record	 identifiers	 (i.e.,	 genre	 “fantasy”	maps	 to	 records	 1
and	4).	Operations	such	as	“find	all	records	with	price	equal	to	10”	can	now	be
executed	 directly	 in	 a	 single	 operation.	 Other	 aggregation	 operations	 (sums,
averages,	etc.)	over	columns	can	be	sped	up	in	this	manner	as	well.

Moreover,	null	values	do	not	take	up	storage	space	anymore;	only	cells	that
contain	an	actual	value	are	present	in	the	storage	scheme.	The	latter	is	illustrated
in	 the	 example,	 where	 only	 a	 small	 minority	 of	 the	 books	 is	 available	 as	 an
audiobook.	Therefore,	only	very	few	cells	in	the	column	“Audiobook	price”	will
have	a	non-null	value.	All	these	nulls	are	effectively	“stored”	in	the	row-oriented
format,	but	not	in	the	column-oriented	version.

There	are	also	disadvantages	to	this	approach.	To	begin	with,	retrieving	all
attributes	pertaining	to	a	single	entity	becomes	less	efficient.	It	is	also	clear	that
joining	 operations	 will	 be	 slowed	 down	 considerably,	 because	 every	 column
must	 now	 be	 scanned	 to	 find	 values	 belonging	 to	 a	 certain	 foreign	 record
identifier	rather	than	being	able	to	immediately	retrieve	a	particular	record	by	its
identifier	 directly.	Many	 column-oriented	 databases,	 such	 as	Google	BigTable,

group	commonly	joined	tables	by	defining	“column	groups,”	avoiding	frequent
time-intensive	join	operations.

Drill	Down

Other	 notable	 implementations	 of	 column	 stores	 include	 Cassandra,
HBase,	 and	 Parquet.	 Parquet	 is	 a	 columnar	 storage	 format	 gaining
traction	 in	 the	data	science	community	as	an	alternative	format	 to	CSV
(comma	 separated	 value)	 or	 other	 row-oriented	 formats,	 as	 it	 greatly
improves	data	science	workflows,	 since	 these	often	 include	 the	need	 to
perform	dataset-wide	aggregations	(imagine	for	 instance	the	calculation
of	a	simple	correlation	metric	between	values	from	two	columns).	Data
science	workflows	are	mostly	read,	but	not	write,	intensive.

Retention	Questions

What	is	a	column-oriented	database?

Which	advantages	do	column-oriented	databases	offer	compared	with
row-based	ones?

11.5	Graph-Based	Databases

Of	all	 the	categories	of	NoSQL	databases,	graph-based	databases	may	become
the	most	 significant	 in	 the	 future.	Graph	databases	 apply	 graph	 theory	 to	 the
storage	 of	 records.	 In	 computer	 science	 and	 maths,	graph	 theory	 entails	 the
study	 of	 graphs	 –	 mathematical	 structures	 used	 to	 model	 pairwise	 relations
between	objects.	Graphs	consist	of	nodes	 (or	points,	or	vertices)	and	edges	 (or
arcs,	 or	 lines)	 that	 connect	 nodes.	Arcs	 can	 be	 uni-	 or	 bidirectional.	 In	 recent
years,	graph	structures	have	become	popular	due	 to	being	capable	of	modeling
social	 networks.	 For	 instance,	 Figure	 11.9	 depicts	 three	 nodes	 with	 edges
representing	 a	 “follows”-relation	 as	 you’d	 find	 in	 a	 social	 network	 such	 as
Twitter	or	Facebook.

Figure	11.9	A	simple	social	network	represented	as	a	graph.

Figure	11.9	 shows	 that	 everyone	 follows	 Seppe,	 Seppe	 follows	Bart,	 and
Bart	follows	Wilfried.	Graph	structures	are	used	in	many	areas	of	mathematics,
computer	 science,	 data	 science,	 and	 operations	 research	 to	 solve	 a	 variety	 of
problems,	such	as	routing	problems,	network	flow	modeling,	etc.

The	 reason	why	graph	databases	 are	 an	 interesting	 category	of	NoSQL	 is
because,	contrary	to	the	other	approaches,	they	actually	go	the	way	of	increased
relational	modeling,	 rather	 than	doing	away	with	relations.	That	 is,	one-to-one,
one-to-many,	 and	many-to-many	 structures	 can	 easily	 be	modeled	 in	 a	 graph-
based	way.	Consider	books	having	many	authors	and	vice	versa.	In	an	RDBMS,
this	would	be	modeled	by	three	tables:	one	for	books,	one	for	authors,	and	one
modeling	the	many-to-many	relation.	A	query	to	return	all	book	titles	for	books
written	by	a	particular	author	would	then	look	as	follows:

SELECT	book.title
FROM	book,	author,	books_authors
WHERE	author.id	=	books_authors.author_id
				AND	book.id	=	books_authors.book_id
				AND	author.name	=	"Bart	Baesens"

In	 a	 graph	 database,	 this	 structure	 would	 be	 represented	 as	 shown	 in	 Figure
11.10.

Figure	11.10	Capturing	the	relations	between	an	author	and	book.

The	 related	 query	 to	 fetch	 the	 desired	 list	 of	 books	 becomes	 more
straightforward	as	well:

MATCH	(b:Book)<-[:WRITTEN_BY]-(a:Author)
WHERE	a.name	=	"Bart	Baesens"
RETURN	b.title

Drill	Down

Monsanto	is	an	international	agricultural	company	producing	seeds.	With
the	 world	 population	 continuously	 growing	 and	 more	 land	 needed	 for
housing,	less	farmland	is	left	for	feeding	people.	Hence,	it	is	important	to
develop	new	crop	species	(e.g.,	corn)	with	improved	yield	that	can	feed
more	 people	 given	 the	 limited	 land	 available.	 To	 this	 end,	 Monsanto
invested	in	genomics	to	carefully	unravel	genetic	traits	of	plants.

Before	graph	databases	were	available,	Monsanto	used	a	relational
database	 to	 store	 its	 gene	data,	which	 consisted	of	 11	 connected	 tables
representing	 900	 million	 rows	 of	 data.	 One	 of	 the	 commonly	 used
queries	 requested	 information	 about	 the	 entire	 tree	 of	 ancestors	 for	 a
single	 plant.	 Solving	 this	 query	 using	 the	 relational	 database	 design
resulted	 in	massive,	 resource-intensive	 joins	with	 long	 response	 times.
To	 speed	 up	 these	 query	 times,	Monsanto	 invested	 in	 graph	 databases
which	turned	out	to	be	a	superior	alternative	to	model	and	query	genetic
relationships	between	plants.

Here,	 we’re	 using	 the	 Cypher	 query	 language,	 the	 graph-based	 query
language	introduced	by	Neo4j,	one	of	the	most	popular	graph	databases.

Drill	Down

Other	notable	implementations	of	graph	databases	include	AllegroGraph,
GraphDB,	InfiniteGraph,	and	OrientDB.	We’ll	continue	to	use	Neo4j	and
Cypher	in	this	section.

In	a	way,	a	graph	database	is	a	hyper-relational	database,	where	JOIN	tables
are	replaced	by	more	interesting	and	semantically	meaningful	relationships	that
can	 be	 navigated	 (graph	 traversal)	 and/or	 queried,	 based	 on	 graph	 pattern
matching.	We	will	continue	to	use	Neo4j	to	work	out	some	examples	and	topics
in	the	following	subsections,	starting	with	an	overview	of	Cypher,	Neo4j’s	query
language.	However,	note	that	graph	databases	differ	in	terms	of	representation	of
the	underlying	graph	data	model.	Neo4j,	for	instance,	supports	nodes	and	edges
having	 a	 type	 (book)	 and	 a	 number	 of	 attributes	 (title),	 next	 to	 a	 unique
identifier.	 Other	 systems	 are	 geared	 toward	 speed	 and	 scalability	 and	 only
support	a	simple	graph	representation.

Drill	Down

FlockDB,	 for	 instance,	 developed	 by	 Twitter,	 only	 supports	 storing	 a
simplified	 directed	 graph	 as	 a	 list	 of	 edges	 having	 a	 source	 and
destination	 identifier,	 a	 state	 (normal,	 removed,	 or	 archived),	 and	 an
additional	 numeric	 “position”	 to	 help	with	 sorting	 results.	 Twitter	 uses
FlockDB	to	store	social	graphs	(who	follows	whom,	who	blocks	whom	–
refer	 back	 to	 Figure	 11.9)	 containing	 billions	 of	 edges	 and	 sustaining
hundreds	 of	 thousands	 of	 read	 queries	 per	 second.	 Obviously,	 graph
database	 implementations	 position	 themselves	 regarding	 the	 tradeoff
between	speed	and	data	expressiveness.

Drill	Down

The	online	playground	contains	a	Neo4j	database	 for	our	book	 reading
club.	You	can	use	the	same	queries	as	the	ones	in	this	chapter	to	follow

along	(see	the	Appendix	for	more	details).

11.5.1	Cypher	Overview

Like	SQL,	Cypher	is	a	declarative,	text-based	query	language,	containing	many
similar	 operations	 to	 SQL.	 However,	 because	 it	 is	 geared	 toward	 expressing
patterns	found	in	graph	structures,	it	contains	a	special	MATCH	clause	to	match
those	 patterns	 using	 symbols	 that	 look	 like	 graph	 symbols	 as	 drawn	 on	 a
whiteboard.

Nodes	are	represented	by	parentheses,	symbolizing	a	circle:

()

Nodes	 can	 be	 labeled	 if	 they	 need	 to	 be	 referred	 to	 elsewhere,	 and	 be	 further
filtered	by	their	type,	using	a	colon:

(b:Book)

Edges	are	drawn	using	either	--	or	-->,	representing	an	undirected	line	or	an
arrow	representing	a	directional	relationship	respectively.	Relationships	can	also
be	filtered	by	putting	square	brackets	in	the	middle:

(b:Book)<-[:WRITTEN_BY]-(a:Author)

Let’s	look	at	some	examples.	This	is	a	basic	SQL	SELECT	query:

SELECT	b.*
FROM	books	AS	b;

It	can	be	expressed	in	Cypher	as	follows:

MATCH	(b:Book)
RETURN	b;

Alternatively,	 OPTIONAL	MATCH	 can	 be	 used	 and	works	 just	 like	MATCH
does,	except	that	if	no	matches	are	found,	OPTIONAL	MATCH	will	use	a	null
for	missing	parts	of	the	pattern.

ORDER	BY	and	LIMIT	statements	can	be	included	as	well:

MATCH	(b:Book)
RETURN	b
ORDER	BY	b.price	DESC
LIMIT	20;

WHERE	clauses	can	be	included	explicitly,	or	as	part	of	the	MATCH	clause:

MATCH	(b:Book)
WHERE	b.title	=	"Beginning	Neo4j"
RETURN	b;

MATCH	(b:Book	{title:"Beginning	Neo4j"})
RETURN	b;

JOIN	 clauses	 are	 expressed	 using	 direct	 relational	 matching.	 The	 following
query	returns	a	list	of	distinct	customer	names	who	purchased	a	book	written	by
Wilfried	Lemahieu,	are	older	than	30,	and	paid	in	cash:

MATCH	(c:Customer)-[p:PURCHASED]->(b:Book)<-
[:WRITTEN_BY]-(a:Author)
WHERE	a.name	=	"	Wilfried	Lemahieu"
			AND	c.age	>	30
			AND	p.type	=	"cash"
RETURN	DISTINCT	c.name;

Where	 graph	 databases	 really	 start	 to	 shine	 is	 in	 tree-based	 structures.
Imagine	 we	 have	 a	 tree	 of	 book	 genres,	 and	 books	 can	 be	 placed	 under	 any

category	 level.	 Performing	 a	 query	 to	 fetch	 a	 list	 of	 all	 books	 in	 the	 category
“Programming”	and	all	its	subcategories	can	become	problematic	in	SQL,	even
with	extensions	that	support	recursive	queries.

Connections

For	an	overview	on	recursive	queries	and	other	extensions	 in	SQL,	see
Chapter	9.

Yet,	Cypher	can	express	queries	over	hierarchies	and	transitive	relationships
of	 any	 depth	 simply	 by	 appending	 a	 star	 *	 after	 the	 relationship	 type	 and
providing	optional	min/max	limits	in	the	MATCH	clause:

MATCH	(b:Book)-[:IN_GENRE]->(:Genre)
																												-[:PARENT*0..]-(:Genre	{name:"Programming"})
RETURN	b.title;

All	books	in	the	category	“Programming,”	but	also	in	any	possible	subcategory,
sub-subcategory,	and	so	on,	will	be	retrieved.	The	latter	type	of	problem	is	often
called	the	“friend-of-a-friend”	problem.

11.5.2	Exploring	a	Social	Graph

Here,	 we’ll	 try	 to	 explore	 a	 social	 graph	 for	 a	 book-reading	 club,	 modeling
genres,	books,	and	readers	in	the	structure	shown	in	Figure	11.11.

Figure	11.11	Metadata	structure	of	our	social	graph.

We	start	by	inserting	some	data	using	Cypher	queries.	You	can	do	this	using
the	 Neo4j	 web	 console	 or	 using	 Neo4j’s	 JDBC	 driver.	 Note	 that	 CREATE
statements	 require	 you	 to	 specify	 a	 relation	 direction,	 but	 the	 actual	 direction
(i.e.,	using	->	or	<-)	does	not	matter	in	this	example	as	we	will	query	all	relations
as	unidirectional	ones	later:

CREATE	(Bart:Reader	{name:'Bart	Baesens',	age:32})
CREATE	(Seppe:Reader	{name:'Seppe	vanden	Broucke',	age:30})
CREATE	(Wilfried:Reader	{name:'Wilfried	Lemahieu',	age:40})
CREATE	(Marc:Reader	{name:'Marc	Markus',	age:25})
CREATE	(Jenny:Reader	{name:'Jenny	Jennifers',	age:26})
CREATE	(Anne:Reader	{name:'Anne	HatsAway',	age:22})
CREATE	(Mike:Reader	{name:'Mike	Smith',	age:18})
CREATE	(Robert:Reader	{name:'Robert	Bertoli',	age:49})
CREATE	(Elvis:Reader	{name:'Elvis	Presley',	age:76})
CREATE	(Sandra:Reader	{name:'Sandra	Mara',	age:12})
CREATE	(Fantasy:Genre	{name:'fantasy'})

CREATE	(Education:Genre	{name:'education'})
CREATE	(Thriller:Genre	{name:'thriller'})
CREATE	(Humor:Genre	{name:'humor'})
CREATE	(Romance:Genre	{name:'romance'})
CREATE	(Detective:Genre	{name:'detective'})
CREATE	(b01:Book	{title:'My	First	Book'})
CREATE	(b02:Book	{title:'A	Thriller	Unleashed'})
CREATE	(b03:Book	{title:'Database	Management'})
CREATE	(b04:Book	{title:'Laughs,	Jokes,	and	More	Jokes'})
CREATE	(b05:Book	{title:'Where	are	my	Keys?'})
CREATE	(b06:Book	{title:'A	Kiss	too	Far'})
CREATE	(b07:Book	{title:'A	Wizardly	Story'})
CREATE	(b08:Book	{title:'A	Wizardly	Story	2:	Order	of	the	SQL'})
CREATE	(b09:Book	{title:'Laughing	and	Learning'})
CREATE	(b10:Book	{title:'A	Murder	in	Fantasyville'})
CREATE	(b11:Book	{title:'Without	you	I	am	Nothing'})
CREATE	(b12:Book	{title:'How	to	be	Romantic:	a	Guide'})
CREATE	(b13:Book	{title:'Why	Boring	is	Good'})
CREATE	(b14:Book	{title:'An	Unsolved	Problem	for	Detective	
Whiskers'})
CREATE	(b15:Book	{title:'Mathematics	for	the	Rest	of	Us'})
CREATE	(b16:Book	{title:'The	Final	Book	I	ever	Wrote'})
CREATE	(b17:Book	{title:'Who	Says	Love	is	Outdated?'})
CREATE	(b18:Book	{title:'A	Chainsaw	Massacre'})
CREATE
				(b01)-[:IS_GENRE]->(Education),
				(b02)-[:IS_GENRE]->(Thriller),
				(b03)-[:IS_GENRE]->(Education),
				(b04)-[:IS_GENRE]->(Humor),
				(b05)-[:IS_GENRE]->(Humor),	(b05)-[:IS_GENRE]->(Detective),
				(b06)-[:IS_GENRE]->(Humor),	(b06)-[:IS_GENRE]->(Romance),	
(b06)-[:IS_GENRE]->(Thriller),
				(b07)-[:IS_GENRE]->(Fantasy),

				(b08)-[:IS_GENRE]->(Fantasy),	(b08)-[:IS_GENRE]->
(Education),
				(b09)-[:IS_GENRE]->(Humor),	(b09)-[:IS_GENRE]->(Education),
				(b10)-[:IS_GENRE]->(Detective),	(b10)-[:IS_GENRE]->(Thriller),	
(b10)-[:IS_GENRE]->(Fantasy),
				(b11)-[:IS_GENRE]->(Humor),	(b11)-[:IS_GENRE]->(Romance),
				(b12)-[:IS_GENRE]->(Education),	(b12)-[:IS_GENRE]->
(Romance),
				(b13)-[:IS_GENRE]->(Humor),	(b13)-[:IS_GENRE]->(Education),
				(b14)-[:IS_GENRE]->(Humor),	(b14)-[:IS_GENRE]->(Detective),
				(b15)-[:IS_GENRE]->(Education),
				(b16)-[:IS_GENRE]->(Romance),
				(b17)-[:IS_GENRE]->(Romance),	(b17)-[:IS_GENRE]->(Humor),
				(b18)-[:IS_GENRE]->(Thriller)
CREATE
				(Bart)-[:FRIEND_OF]->(Seppe),
				(Bart)-[:FRIEND_OF]->(Wilfried),
				(Bart)-[:FRIEND_OF]->(Jenny),
				(Bart)-[:FRIEND_OF]->(Mike),
				(Seppe)-[:FRIEND_OF]->(Wilfried),
				(Seppe)-[:FRIEND_OF]->(Marc),
				(Seppe)-[:FRIEND_OF]->(Robert),
				(Seppe)-[:FRIEND_OF]->(Elvis),
				(Wilfried)-[:FRIEND_OF]->(Anne),
				(Wilfried)-[:FRIEND_OF]->(Mike),
				(Marc)-[:FRIEND_OF]->(Mike),
				(Jenny)-[:FRIEND_OF]->(Anne),
				(Jenny)-[:FRIEND_OF]->(Sandra),
				(Anne)-[:FRIEND_OF]->(Mike),
				(Anne)-[:FRIEND_OF]->(Elvis),
				(Mike)-[:FRIEND_OF]->(Elvis),
				(Robert)-[:FRIEND_OF]->(Elvis),
				(Robert)-[:FRIEND_OF]->(Sandra)

CREATE
				(Bart)-[:LIKES]->(b01),	(Bart)-[:LIKES]->(b03),	(Bart)-[:LIKES]-
>(b05),	(Bart)-[:LIKES]->(b06),
				(Seppe)-[:LIKES]->(b01),	(Seppe)-[:LIKES]->(b02),	(Seppe)-
[:LIKES]->(b03),	(Seppe)-[:LIKES]->(b07),
				(Wilfried)-[:LIKES]->(b01),	(Wilfried)-[:LIKES]->(b05),	
(Wilfried)-[:LIKES]->(b06),	(Wilfried)-[:LIKES]->(b10),
				(Marc)-[:LIKES]->(b03),	(Marc)-[:LIKES]->(b11),	(Marc)-
[:LIKES]->(b13),	(Marc)-[:LIKES]->(b15),
				(Jenny)-[:LIKES]->(b08),	(Jenny)-[:LIKES]->(b09),	(Jenny)-
[:LIKES]->(b12),	(Jenny)-[:LIKES]->(b14),
				(Anne)-[:LIKES]->(b14),	(Anne)-[:LIKES]->(b15),	(Anne)-
[:LIKES]->(b17),	(Anne)-[:LIKES]->(b18),
				(Mike)-[:LIKES]->(b05),	(Mike)-[:LIKES]->(b07),	(Mike)-
[:LIKES]->(b11),	(Mike)-[:LIKES]->(b17),
(Robert)-[:LIKES]->(b04),	(Robert)-[:LIKES]->(b10),	(Robert)-
[:LIKES]->(b12),	(Robert)-[:LIKES]->(b13),
				(Elvis)-[:LIKES]->(b03),	(Elvis)-[:LIKES]->(b06),	(Elvis)-
[:LIKES]->(b14),	(Elvis)-[:LIKES]->(b16),
				(Sandra)-[:LIKES]->(b03),	(Sandra)-[:LIKES]->(b05),	(Sandra)-
[:LIKES]->(b07),	(Sandra)-[:LIKES]->(b09)

Our	complete	social	graph	now	looks	as	depicted	in	Figure	11.12.

Figure	11.12	Our	complete	social	graph.

Let	us	start	now	to	answer	queries.	For	instance:	who	likes	romance	books?
Because	there	is	only	one	type	of	relationship	between	each	node	type,	we	can
drop	the	square	brackets	colon-selector.	Note	also	the	usage	of	--()--	to	perform	a
non-directional	query.

MATCH	(r:Reader)--(:Book)--(:Genre	{name:'romance'})
RETURN	r.name

Returns:

Elvis	Presley
Mike	Smith
Anne	HatsAway
Robert	Bertoli
Jenny	Jennifers

Marc	Markus
Elvis	Presley
Wilfried	Lemahieu
Bart	Baesens

Who	are	Bart’s	friends	that	liked	humor	books?

MATCH	(me:Reader)--(friend:Reader)--(b:Book)--(g:Genre)
WHERE	g.name	=	'humor'
				AND	me.name	=	'Bart	Baesens'
RETURN	DISTINCT	friend.name

Can	you	recommend	humor	books	that	Seppe’s	friends	liked	and	Seppe	has	not
liked	yet?

MATCH	(me:Reader)--(friend:Reader),
												(friend)--(b:Book),
												(b)--(genre:Genre)
WHERE	NOT	(me)--(b)
				AND	me.name	=	'Seppe	vanden	Broucke'
				AND	genre.name	=	'humor'
RETURN	DISTINCT	b.title

Get	 a	 list	 of	 people	 with	 books	 Bart	 liked,	 sorted	 by	 most	 liked	 books	 in
common:

MATCH	(me:Reader)--(b:Book),
														(me)--(friend:Reader)--(b)
WHERE	me.name	=	'Bart	Baesens'
RETURN	friend.name,	count(*)	AS	common_likes
ORDER	BY	common_likes	DESC

Note	that	we	are	applying	an	aggregation	operator,	“count”.	In	Cypher,	grouping
for	 aggregation	 is	 implicit,	 meaning	 that	 as	 soon	 as	 you	 use	 an	 aggregation
function,	all	non-aggregated	columns	(friend.name	in	the	example	above)	will	be
used	as	grouping	keys.	Hence,	the	query	returns:

friend.name		common_likes
Wilfried	Lemahieu		3
Seppe	vanden	Broucke		2
Mike	Smith		1

Now	 let’s	 get	 a	 list	 of	 pairs	 of	 books	 having	 more	 than	 one	 genre	 in
common.	The	following	query:

MATCH	(b1:Book)--(g:Genre)--(b2:Book)
WHERE	common_genres	>	1
RETURN	b1.title,	b2.title,	count(*)	AS	common_genres

fails	 as	 “common_genres”	 in	 the	 WHERE	 clause	 is	 placed	 before	 its	 actual
definition.	 To	 resolve	 this,	 we	 can	 use	 the	WITH	 clause	 to	 put	 the	 definition
upfront,	as	so:

MATCH	(b1:Book)--(g:Genre)--(b2:Book)
WITH	b1,	b2,	count(*)	AS	common_genres
WHERE	common_genres	>	1
RETURN	b1.title,	b2.title,	common_genres

Now	let’s	 say	we’d	 like	 to	 retrieve	pairs	 of	 books	 that	 have	no	genres	 in
common.	At	first,	this	seems	easy	enough:

MATCH	(b1:Book)--(g:Genre)--(b2:Book)
WITH	b1,	b2,	count(*)	AS	common_genres
WHERE	common_genres	=	0

RETURN	b1.title,	b2.title,	common_genres

However,	this	query	will	return	zero	results.	This	is	not	due	to	the	fact	that	there
are	 no	 pairs	 of	 books	 with	 no	 common	 genres,	 but	 rather	 since	 the	MATCH
clause	will	only	select	completely	matching	patterns.	Since	pairs	of	books	 that
have	no	common	genre	 in	between	will	not	have	a	“--(g:Genre)--”	 relationship
by	definition,	 the	MATCH	clause	 selects	nothing	at	 all,	 causing	no	 rows	 to	be
returned.	To	resolve	this	issue,	we	can	use	the	OPTIONAL	MATCH,	which	will
replace	 missing	 parts	 of	 a	 pattern	 with	 nulls,	 which	 we	 can	 then	 use	 in	 the
WHERE	clause.

MATCH	(b1:Book),	(b2:Book)
WITH	b1,	b2
OPTIONAL	MATCH	(b1)--(g:Genre)--(b2)
WHERE	g	IS	NULL
RETURN	b1.title,	b2.title

Remember	that	different	graph	database	implementations	support	different	data
models.	Some	graph	databases	will	also	allow	end-users	to	impose	schemas	–	for
example,	 to	 constrain	 the	 types	of	 edges	 that	 can	occur	between	certain	nodes
(plugins	to	do	so	are	available	for	Neo4j	as	well).

Though	graph	databases	have	not	become	as	widely	adopted	as	 relational
DBMSs	by	a	long	shot,	it	is	interesting	to	note	they	have	succeeded	in	various,
niche	application	domains	(e.g.,	Twitter	using	FlockDB	to	store	its	social	graph).
Likewise,	 graph	 databases	 are	 frequently	 applied	 in	 domains	 such	 as	 location-
based	 services,	 where	 many	 topological	 entities	 and	 algorithms	 can	 be
represented	as,	or	work	over,	a	graph,	such	as	finding	the	shortest	route	among
two	 locations.	 Graph	 databases	 are	 also	 applied	 to	 construct	 recommender
systems	 (think	 of	 recommending	 books	 that	 your	 friends	 like),	 social	 media

(suggest	 followers	 or	 find	 common	 friends),	 and	 knowledge-based	 systems	 to

provide	a	semantical	representation	of	resources	and	rules.

Connections

In	the	context	of	semantical	representation,	 it	 is	 interesting	to	make	the
link	 to	Chapter	10,	where	RDF	(Resource	Description	Framework)	and
the	 SPARQL	 query	 language	 were	 discussed.	 As	 RDF	 models
intrinsically	 represent	 a	 labeled,	 directed	 multi-graph,	 many	 graph
databases	 natively	 support	 RDF	 statements	 and	 SPARQL	 as	 a	 query
language.	Neo4j	 plugins	 exist	 for	 SPARQL	as	well,	 though	 the	 vendor
mainly	continues	to	back	Cypher	as	its	primary	query	language.

Retention	Questions

What	is	a	graph	database?	How	does	it	represent	data?

Which	query	language	does	Neo4j	use?	In	which	ways	does	it	differ
from	SQL?

11.6	Other	NoSQL	Categories

Besides	the	main	categories	we	have	covered	above,	among	which	are	key–value
stores,	 tuple	and	document	 stores,	 column-oriented	databases,	 and	graph-based
databases,	several	other,	niche,	NoSQL	databases	exist.	In	many	cases,	these	are
geared	 specifically	 toward	 storing	 and	 querying	 specialized	 types	 of	 data	 or
structures.	 Two	 of	 these,	 XML	 and	 object-oriented	 databases,	 were	 discussed
earlier.

Connections

See	Chapter	 8	 for	 object-oriented	 databases	 and	 Chapter	 10	 for	 XML
databases.

Other	types	include:

Database	systems	to	deal	with	time	series	and	streaming	events,	such	as
Event	Store	and	Axibase.	Such	systems	represent	data	as	a	series	of
immutable	events	over	time,	making	it	easier	to	support	use	cases	such	as
event	monitoring,	complex	event	processing,	or	real-time	analytics.
Typically,	availability	and	performance	are	of	high	concern	for	such
systems.

Database	systems	to	store	and	query	geospatial	data,	supporting
geospatial	operators	following	the	DE-9IM	model,	which	defines
relations	between	polygons	as	them	being	equal,	touching,	disjoint,
contained,	covered,	or	intersecting.	For	example,	you	can	express	a
“within	radius”	query	as	follows:

Retention	Questions

SELECT	name,	type,	location,
		ST_Distance_Sphere(Point(-70,	40),	location)	AS	
distance_in_meters
FROM	restaurants
WHERE	type	=	"french	cuisine"
ORDER	BY	distance_in_meters
LIMIT	10

Database	systems	such	as	BayesDB,	which	lets	users	query	the	probable
implication	of	their	data	(for	example,	to	derive	which	fields	in	a	table
are	the	main	predictors	to	estimate	a	certain	outcome)	and	simulate	what-
if	scenarios	using	a	Bayesian	query	language,	such	as:

SIMULATE	gdp	--	simulate	gross	domestic	product
FROM	countries	--	using	table	with	information	on	countries
--	given	the	following:
GIVEN	population_million	=	1000,	continent	=	'asia'
LIMIT	10;	--	run	10	simulations

Which	NoSQL	databases	exist?	List	some	niche	NoSQL	databases
geared	toward	a	particular	context.

Summary

This	chapter	has	discussed	NoSQL	databases,	a	group	of	database	management
systems	 that	 have	 become	 quite	 popular	 throughout	 the	 past	 decade,	 and
represents	 a	 shift	 in	 thinking	 toward	 schema-less	 structures,	 horizontal
scalability,	and	non-relational	data	models	and	querying	facilities.

We	note,	however,	that	the	explosion	of	popularity	of	NoSQL	data	storage
layers	should	be	put	into	perspective,	considering	their	limitations.	Most	NoSQL
implementations	have	yet	 to	 prove	 their	 true	worth	 in	 the	 field	 (most	 are	very
young	and	 in	development).	Most	 implementations	sacrifice	ACID	concerns	 in
favor	 of	 being	 eventually	 consistent,	 and	 the	 lack	 of	 relational	 support	makes
expressing	some	queries	or	aggregations	particularly	difficult,	with	map–reduce
interfaces	being	offered	as	a	possible,	but	harder	to	learn	and	use,	alternative.

Combined	 with	 the	 fact	 that	 RDBMSs	 do	 provide	 strong	 support	 for
transactionality,	 durability,	 and	 manageability,	 quite	 a	 few	 early	 adopters	 of
NoSQL	were	confronted	with	some	sour	lessons.

Drill	Down

For	some	well-known	examples	of	such	“sour	lessons”,	see	the	FreeBSD
maintainers	 speaking	 out	 against	 MongoDB’s	 lack	 of	 on-disk
consistency	 support,4	 Digg	 struggling	 with	 the	 NoSQL	 Cassandra
database	after	switching	from	MySQL,5	and	Twitter	facing	similar	issues
as	well	(which	also	ended	up	sticking	with	a	MySQL	cluster	for	a	while
longer),6	 or	 the	 fiasco	of	HealthCare.gov,	where	 the	 IT	 team	also	went
with	a	badly	suited	NoSQL	database.7

It	would	be	an	over-simplification	to	reduce	the	choice	between	RDBMSs
and	NoSQL	databases	to	a	choice	between	consistency	and	integrity	on	the	one
hand,	and	scalability	and	flexibility	on	the	other.	The	market	of	NoSQL	systems
is	 far	 too	 diverse	 for	 that.	 Still,	 this	 tradeoff	 will	 often	 come	 into	 play	 when
deciding	 on	 taking	 the	NoSQL	 route.	We	 see	many	NoSQL	 vendors	 focusing
again	on	robustness	and	durability.	We	also	observe	traditional	RDBMS	vendors
implementing	features	that	let	you	build	schema-free,	scalable	data	stores	inside
a	 traditional	RDBMS,	capable	of	storing	nested,	semi-structured	documents,	as
this	seems	to	remain	the	true	selling	point	of	most	NoSQL	databases,	especially
those	in	the	document	store	category.

Drill	Down

Some	 vendors	 have	 already	 adopted	 “NewSQL”	 as	 a	 term	 to	 describe
modern	 relational	 database	management	 systems	 that	 aim	 to	 blend	 the
scalable	 performance	 and	 flexibility	 of	 NoSQL	 systems	 with	 the
robustness	guarantees	of	a	traditional	DBMS.

Expect	 the	 future	 trend	 to	 continue	 toward	 adoption	 of	 such	 “blended
systems”,	except	 for	use	cases	 that	 require	specialized,	niche	DBMSs.	 In	 these
settings,	the	NoSQL	movement	has	rightly	taught	users	that	the	one-size-fits-all
mentality	of	relational	systems	is	no	longer	applicable	and	should	be	replaced	by
finding	 the	 right	 tool	 for	 the	 job.	 For	 instance,	 graph	 databases	 arise	 as	 being
“hyper-relational”	 databases,	 which	makes	 relations	 first-class	 citizens	 next	 to
records	 themselves	 rather	 than	 doing	 away	 with	 them	 altogether.	We’ve	 seen
how	 such	 databases	 express	 complicated	 queries	 in	 a	 straightforward	 way,
especially	 where	 one	 must	 deal	 with	 many,	 nested,	 or	 hierarchical	 relations
between	objects.

Comparison	Box

Traditional
SQL
RDBMSs NoSQL	databases

Blended
systems,
“NewSQL”

Relational Yes No Yes

SQL Yes No,	though	can
come	with	own
query	languages

Yes

Column	stores No Yes Yes

Scalability Limited Yes Yes

Consistency
model

Strong Eventually
consistent,	though
some	efforts	to
enforce	stronger
consistency

Strongly
consistent	for
the	most	part

BASE
(Basically
Available,	Soft
state,	and
Eventually
consistent)

No Yes No

Handles	large
volumes	of
data

No Yes Yes

Schema-less No Yes No,	though	can
store	and	query

free-structured
fields

Scenario	Conclusion

After	 performing	 a	 thorough	 evaluation	 of	 NoSQL	 database	 systems,
Sober’s	 team	 decides	 to	 implement	 the	 following	 approach.	 First,	 the
decision	is	made	to	continue	using	the	RDBMS-based	set-up	at	the	core
of	 its	 operations,	 as	 the	 database	 administrators	 show	 that	 the	 strong
ACID	 approach,	 maturity,	 and	 data	 consistency	 enforcement	 of	 such
systems	 cannot	 be	 bested	 by	 existing	 NoSQL	 systems.	 On	 the	 other
hand,	 the	 mobile	 app	 development	 team	 is	 given	 the	 go-ahead	 to	 use
MongoDB	to	handle	the	increased	workload	coming	from	mobile	users.
The	 document	 store	 will	 be	 used	 as	 an	 operational	 support	 system	 to
handle	 incoming	queries	 from	many	simultaneous	users	and	 to	develop
and	prototype	new	experimental	features.	Finally,	Sober	plans	to	look	at
graph	 databases	 for	 more	 analytical	 purposes	 in	 the	 near	 future	 –	 for
instance	to	identify	users	who	frequently	hail	cabs	together,	or	wish	to	go
to	similar	destinations.	The	marketing	team	especially	is	interested	in	this
approach	to	enrich	their	customer	profiling	activities.

Key	Terms

BASE	principle

CAP	theorem

column-oriented	DBMS

consistent	hashing

Cypher

data	redundancy

data	replication

dissemination

document	stores

edges

embedded	documents

eventual	consistency

failure	detection

graph-based	databases

graph	theory

hash	function

horizontal	scaling

JSONB

key–value	stores

MapReduce

membership	protocol

Memcached

nodes

redundancy

replicas

request	coordinator

ring	topology

shard

sharding

stabilization

tuple	stores

vertical	scaling

virtual	nodes

Review	Questions

11.1.	Which	of	the	following	statements	describes	NoSQL	databases
best?

a.	A	NoSQL	database	offers	no	support	for	SQL.

b.	NoSQL	databases	do	not	support	joins.

c.	NoSQL	databases	are	non-relational.

d.	NoSQL	databases	are	not	capable	of	dealing	with	large	datasets.

11.2.	Which	of	the	following	is	not	an	example	of	a	NoSQL	database?

a.	Graph-based	databases.

b.	XML-based	databases.

c.	Document-based	databases.

d.	All	three	can	be	regarded	as	NoSQL	databases.

11.3.	Which	of	the	following	is	not	a	property	of	a	good	hash	function
for	use	in	key–value-based	storage	structures?

a.	A	hash	function	should	always	return	the	same	output	for	the	same
input.

b.	A	hash	function	should	return	an	output	of	fixed	size.

c.	A	good	hash	function	should	map	its	inputs	as	evenly	as	possible
over	the	output	range.

d.	Two	hashes	from	two	inputs	that	differ	little	should	also	differ	as
little	as	possible.

11.4.	Which	of	the	following	is	correct?

a.	The	fact	that	most	NoSQL	databases	adopt	an	eventual	consistency
approach	is	due	to	the	CAP	theorem,	which	states	that	strong
consistency	cannot	be	obtained	when	availability	and	partitioning	have
to	be	ensured.

b.	Replicas	in	a	distributed	NoSQL	environment	relate	to	making
periodic	backups	of	the	database	to	a	second	system.

c.	Stabilization	relates	to	the	waiting	time	between	the	start-up	of	a
NoSQL	system	and	when	the	system	becomes	available	to	receive	user
queries.

d.	Some	relational	constructs,	such	as	the	many-to-many	relationship,
are	harder	to	express	using	graph	databases.

11.5.	Which	of	the	following	is	correct?

a.	Document	stores	require	users	to	define	document	schemas	before
data	can	be	inserted.

b.	Document	stores	require	that	you	perform	all	filtering	and
aggregation	logic	in	your	application.

c.	Document	stores	are	built	on	the	same	ideas	as	key–value-	and
tuple-based	database	systems.

d.	Document	stores	do	not	provide	SQL-like	capabilities.

11.6.	When	are	column-oriented	databases	more	efficient?

a.	When	many	columns	of	a	single	group	need	to	be	fetched	at	the
same	time.

b.	When	inserts	are	performed	where	all	of	the	row	data	are	supplied
at	the	same	time.

c.	When	aggregates	need	to	be	calculated	over	many	or	all	rows	in	the
dataset.

d.	When	a	lot	of	joins	need	to	be	performed	in	queries.

11.7.	Which	of	the	following	statements	is	not	correct?

a.	Graphs	are	mathematical	structures	consisting	of	nodes	and	edges.

b.	Graph	models	are	not	capable	of	modeling	many-to-many
relationships.

c.	Edges	in	graphs	can	be	uni-	or	bidirectional.

d.	Graph	databases	work	particularly	well	on	tree-like	structures.

11.8.	What	does	the	following	Cypher	query	express?

OPTIONAL	MATCH	(user:User)-[:FRIENDS_WITH]-
(friend:User)
WHERE	user.name	=	"Bart	Baesens"
RETURN	user,	count(friend)	AS	NumberOfFriends

a.	Get	the	node	for	Bart	Baesens	and	a	count	of	all	his	friends,	but
only	if	at	least	one	FRIENDS_WITH	relation	exists.

b.	Get	the	node	for	Bart	Baesens	and	a	count	of	all	his	friends,	even	if
no	FRIENDS_WITH	relation	exists.

c.	This	query	will	fail	if	Bart	Baesens	is	FRIENDS_WITH	himself.

d.	Get	the	node	for	Bart	Baesens	and	all	his	friends.

11.9.	Using	Cypher,	how	do	you	get	a	list	of	all	movies	Wilfried
Lemahieu	has	liked,	when	he	has	given	at	least	four	stars?

a.

SELECT	(b:User)--(m:Movie)
WHERE	b.name	=	"Wilfried	Lemahieu"
AND	m.stars	>=	4

b.

MATCH	(b:User)-[l:LIKES]-(m:Movie)
WHERE	b.name	=	"Wilfried	Lemahieu"
AND	m.stars	>=	4
RETURN	m

c.

MATCH	(b:User)-[l:LIKES]-(m:Movie)
WHERE	b.name	=	"Wilfried	Lemahieu"
AND	l.stars	>=	4
RETURN	m

d.

MATCH	(b:User)--(m:Movie)
WHERE	b.name	=	"Wilfried	Lemahieu"
AND	l.stars	>=	4
RETURN	m

11.10.	What	does	the	following	Cypher	query	express?

MATCH	(bart:User	{name:'Bart'})-[:KNOWS*2]->(f)
WHERE	NOT((bart)-[:KNOWS]->(f))
RETURN	f

a.	Return	all	of	Bart’s	friends,	and	their	friends	as	well.

b.	Do	not	return	Bart’s	friends,	but	return	their	friends.

c.	Do	not	return	Bart’s	friends,	but	return	their	friends	if	Bart	does	not
know	them.

d.	Return	Bart’s	friends	who	have	exactly	one	other	friend.

Problems	and	Exercises

11.1E	Write	map	and	reduce	functions	to	perform	an	aggregation	with	a	MAX
function,	instead	of	the	AVG	and	SUM	examples	we	have	discussed	in	this
chapter.

11.2E	Assume	you	have	a	list	of	people	and	people	they	are	following	on
Twitter:

Seppe	->	Bart	Wilfried	An
Bart	->	Wilfried	Jenny	An
Wilfried	->	Bart	An
Jenny	->	Bart	An	Seppe
An	->	Jenny	Wilfried	Seppe

Write	a	map–reduce	pipeline	that	outputs	a	list	of	commonly	followed	people	per
pair	of	people.	E.g.:	(Wilfried,	Seppe)	->	(Bart,	An).

11.3E	Using	the	Neo4j	book	club	database	in	this	chapter,	can	you	do	the
following	using	Cypher	queries?

Find	a	list	of	books	no-one	likes.

Find	all	pairs	of	people	that	have	no	liked	books	in	common.

Find	the	genre	with	the	most	liked	books.

Find	the	person	who	has	the	most	likes	in	common	with	a	given,	other
person.

11.4E	One	newer	and	promising	NoSQL	database	is	VoltDB,	as	it	tries	to
combine	the	best	aspects	of	RDBMSs	and	the	NoSQL	movement.	Its
documentation	states	the	following:

As	a	fully	ACID,	distributed	SQL	database,	VoltDB	must	either	commit	or
rollback	100%	of	all	transactions.	There	can	be	no	partial	applications,
which	means	the	changes	made	by	all	SQL	statements	must	be	complete
and	visible	at	all	live	replicas,	or	none	of	the	changes	can	be	visible.	A
transaction	commits	once	VoltDB	confirms	it	has	successfully	completed	at
all	replicas	of	all	involved	partitions.	Once	a	transaction	is	confirmed	at	all
replicas,	VoltDB	sends	a	confirmation	message	to	the	calling	client.
VoltDB	must	confirm	transactions	that	have	completed	at	all	replicas	for

a	given	partition.	If	a	given	partition	is	unable	to	confirm	it	completed	a
transaction	within	a	user-specified	time,	VoltDB’s	cluster	membership
consensus	kicks	in	and	one	or	more	nodes	are	removed	from	the	cluster.
The	result	is	that	all	replicas	move	in	lockstep.	They	do	the	same
transactions,	in	the	same	order,	as	fast	as	they	can.	If	they	fall	out	of
lockstep	they	are	actively	ejected	from	the	cluster.	Note	this	is	different
from	systems	that	require	a	quorum	of	replicas	to	do	a	write.	There	are
benefits	and	tradeoffs	to	the	VoltDB	approach	that	are	intentional.

Link	this	explanation	to	concepts	we	have	discussed	in	this	chapter.	How	does
VoltDB	achieve	transaction	consistency?	Why	might	the	“lockstep”	approach	of
VoltDB	be	better	than	the	“quorum”-based	approach?

11.5E	Apart	from	using	a	map–reduce	pipeline	to	write	complex	queries	in
MongoDB,	it	also	provides	an	“aggregate”	command	through	which	you	can
define	an	aggregation	pipeline	consisting	of	several	stages	(filtering,	limiting,

grouping,	and	sorting),	as	we’ve	discussed	in	the	chapter.	Would	it	be	possible	to
write	the	following	query:

SELECT	genre,	SUM(nrPages)	FROM	books
GROUP	BY	genre
ORDER	BY	genre

also	as	an	“aggregate”	command	instead	of	using	a	map–reduce	pipeline?	For
which	types	of	queries	would	aggregation	become	harder	in	MongoDB?

11.6E	A	fun	programming	exercise	is	to	implement	a	basic	gossip	membership
protocol.	You	can	even	simulate	this	locally	in	one	program,	so	you	don’t	have
to	run	it	over	a	network	of	computers.	Remember	that	the	basic	idea	of	gossip-
based	dissemination	involves	periodic,	pairwise	communication,	with	the
information	exchanged	in	such	interaction	being	bounded.	When	two	nodes
interact,	the	state	of	the	node	(i.e.,	the	node’s	current	view	on	the	network)	being
most	out	of	date	will	be	updated	to	reflect	the	state	of	the	other	party.	Try	to
implement	a	very	basic	version	of	such	gossip	protocol	in	any	programming
language	(adding	a	visualization	is	even	better).

1	The	SpyMemcached	example	illustrated	earlier	in	fact	uses	a	consistent
hashing	mechanism	as	well.

2	Corbett,	J.,	Dean,	J.,	Epstein,	M.	et	al.	Spanner:	Google’s	globally-
distributed	database.	In	Proceedings	of	OSDI	’12:	Tenth	Symposium	on
Operating	System	Design	and	Implementation,	Hollywood,	CA,	October
2012.

3	See	https://jepsen.io/analyses	for	the	detailed	analysis.	Jepsen	also	stress
tests	and	evaluates	many	other	NoSQL	vendors	and	is	a	fantastic	resource	to
use	as	a	guide	when	making	a	NoSQL-related	decision.

https://jepsen.io/analyses

4	www.ivoras.net/blog/tree/2009-11-05.a-short-time-with-mongodb.html.

5	www.forbes.com/2010/09/21/cassandra-mysql-software-technology-cio-
network-digg.html.

6	https://techcrunch.com/2010/07/09/twitter-analytics-mysql.

7	https://gigaom.com/2013/11/25/how-the-use-of-a-nosql-database-played-a-
role-in-the-healthcare-gov-snafu.

http://www.ivoras.net/blog/tree/2009-11-05.a-short-time-with-mongodb.html
http://www.forbes.com/2010/09/21/cassandra-mysql-software-technology-cio-network-digg.html
https://techcrunch.com/2010/07/09/twitter-analytics-mysql
https://gigaom.com/2013/11/25/how-the-use-of-a-nosql-database-played-a-role-in-the-healthcare-gov-snafu

Part	III
◈

Physical	Data	Storage,	Transaction
Management,	and	Database	Access

12 Physical	File	Organization	and	Indexing

13 Physical	Database	Organization

14 Basics	of	Transaction	Management

15 Accessing	Databases	and	Database	APIs

16 Data	Distribution	and	Distributed	Transaction	Management

12

Physical	File	Organization	and
Indexing

◈

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

Opening	Scenario

Now	 that	 Sober	 has	 its	 relational	 logical	 data	 model	 from	 Chapter	 6
ready,	it	wants	to	understand	how	it	can	be	physically	implemented.	The
company	 is	 also	wondering	whether	 there	 exist	 any	 physical	means	 to
speed	up	the	response	times	of	frequently	used	queries.

grasp	the	basic	principles	of	storage	hardware	and	physical	database
design;

understand	how	data	items	can	be	organized	into	stored	records;

identify	various	methods	for	primary	and	secondary	file	organization;

This	chapter	focuses	on	the	most	important	principles	pertaining	to	the	physical
organization	 of	 records	 and	 files.	 As	 such,	 it	 can	 be	 considered	 as	 the
prerequisite	 to	 Chapter	 13,	 which	 applies	 these	 principles	 in	 the	 context	 of
physical	 database	 organization.	 In	 this	 way	 Chapters	 12	 and	 13	 are
complementary	 in	 covering	 all	 facets	 of	 physical	 database	 design	 –	 the
translation	 of	 a	 logical	 data	 model	 into	 an	 internal	 data	 model,	 including	 the
design	of	indexes	to	speed	up	data	access.

First,	we	present	some	overall	properties	of	storage	devices	and	the	impact
of	 the	 mechanicals	 of	 hard	 disk	 drives	 on	 the	 performance	 aspects	 of	 data
retrieval.	 After	 that,	 we	 overview	 the	mapping	 of	 logical	modeling	 constructs
onto	 physical	 concepts,	 and	 thus	 of	 the	 logical	 data	 model	 onto	 the	 internal
model.	 Then,	 we	 briefly	 discuss	 record	 organization,	 covering	 the	 different
alternatives	 to	 organize	 physical	 data	 records,	 consisting	 of	 individual	 data
fields.	 After	 that	 comes	 the	 main	 body	 of	 this	 chapter,	 focusing	 on	 file
organization	 and	 covering	 methods	 to	 organize	 records	 into	 physical	 files,	 as
well	 as	 techniques	 to	efficiently	 search	 for	 records	with	certain	characteristics.
We	discuss	several	approaches,	such	as	sequential	files,	hashing	and	the	use	of
different	 index	 types,	 including	 B+-trees.	 Chapter	 13	 follows	 on	 from	 this
chapter,	 applying	 the	 insights	 gained	 from	 the	 file	 organization	 section	 to	 the
particular	context	of	physical	database	organization.

12.1	Storage	Hardware	and	Physical	Database
Design

Physical	database	design	pertains	to	the	design	of	an	internal	data	model	and	to
the	 way	 in	 which	 the	 logical	 database	 concepts	 discussed	 in	 the	 previous
chapters	are	realized	physically	as	stored	records,	physical	files,	and,	ultimately,
a	 physical	 database.	 In	 this	 chapter,	 we	 assume	 a	 relational	 database	 setting
unless	noted	otherwise,	although	most	concepts	apply	to	other	database	types	as
well.1

Connections

Chapter	6	discusses	the	basic	concepts	of	the	relational	model.

12.1.1	The	Storage	Hierarchy

Before	 discussing	 the	 actual	 database	 files,	 we	 briefly	 focus	 on	 the	 storage
devices	on	which	these	files	reside.	This	section	deals	with	the	individual	storage
device,	 and	 we	 come	 back	 to	 storage	 hardware	 in	 the	 next	 chapter	 when	 we
discuss	storage	device	pooling	and	the	overall	architecture	of	enterprise	storage
subsystems.

A	computer	 system’s	memory	 can	be	 looked	upon	 as	 a	 hierarchy	 (Figure
12.1),	with	high-speed	memory	that	is	very	expensive	and	limited	in	capacity	at
the	top,	and	slower	memory	that	is	relatively	cheap	and	much	larger	in	size	at	the
bottom.	The	 top	 of	 the	 hierarchy	 is	 the	 central	 processing	 unit	 (CPU)	with	 its
registers,	 in	 which	 the	 mathematical	 and	 logical	 processor	 operations	 are
executed.	Most	 often,	 some	high-speed	 cache	memory	 is	 physically	 integrated
with	 the	 CPU	 and/or	 with	 the	 motherboard	 that	 contains	 the	 CPU.	 Cache
memory	 operates	 at	 nearly	 the	 same	 speed	 as	 the	 CPU.	 Below	 that,	 we	 have
central	storage,	which	is	also	referred	to	as	internal	memory	or	main	memory.	It
consists	 of	 memory	 chips	 (also	 called	 random	 access	 memory,	 or	 RAM),	 of
which	 the	 performance	 is	 expressed	 in	 nanoseconds.	 Each	 individual	 byte	 in
central	 storage	 has	 its	 own	 address	 and	 is	 directly	 referable	 by	 the	 operating
system.	The	entirety	of	the	memory	described	so	far	is	called	primary	storage.
This	type	of	memory	is	considered	volatile	memory,	which	means	its	content	is
cleared	when	the	power	is	turned	off.	Volatile	memory	certainly	has	its	role	in	a
database	system,	as	it	contains	the	database	buffer	as	well	as	the	runtime	code	of
the	 applications	 and	 DBMS.	 However,	 the	 memory	 we	 will	 focus	 on	 in	 this
chapter	 is	 secondary	 storage,	 which	 consists	 of	 persistent	 storage	 media,
retaining	 its	 content	 even	 without	 being	 powered.	 The	 physical	 database	 files
reside	in	secondary	storage.	The	most	important	secondary	storage	device	is	still

the	 hard	 disk	 drive	 (HDD),	 although	 solid	 state	 drives	 (SSD)	 based	 on	 flash
memory	are	catching	up	quickly.

Figure	12.1	The	storage	hierarchy.

Connections

Chapter	2	elaborates	on	the	architecture	of	a	DBMS	and	also	includes	a
discussion	on	the	database	buffer.

Primary	 and	 secondary	 storage	 are	 divided	 by	 what’s	 known	 as	 the	 I/O
boundary.	This	means	 that	 all	memory	 above	 this	 boundary,	 although	 slower
than	the	CPU,	still	operates	at	speeds	that	make	it	efficient	for	the	CPU	to	“wait”
until	data	are	retrieved	from	primary	storage.	In	comparison,	secondary	storage
is	 much	 slower.	 The	 speed	 of	 HDDs	 and	 SSDs	 is	 typically	 expressed	 in
milliseconds.	 It	 is	 not	 efficient	 for	 the	 CPU	 to	 wait	 until	 the	 interaction	 with
secondary	storage	is	completed.	Rather,	 the	CPU	will	switch	to	another	task	or
thread	 until	 the	 requested	 data	 are	 copied	 from	 secondary	 storage	 to	 primary
storage	or	until	data	that	were	manipulated	in	primary	storage	become	persistent
in	 secondary	 storage.	 The	 exchange	 of	 data	 between	 secondary	 storage	 and
primary	 storage	 is	 called	I/O	 (input/output)	 and	 is	 supervised	by	 the	operating
system.2	The	operating	system	signals	when	the	I/O	task	is	completed,	such	that
the	CPU	can	continue	processing	the	data.

Still	lower	in	the	hierarchy,	we	have	even	slower	storage	technology	such	as
optical	drives	(e.g.,	rewritable	DVD	or	Blu-ray)	and	tape,	which	mainly	serve	as
media	 for	 backup	 and	 archiving,	 rather	 than	 being	 considered	 a	 directly
accessible	layer	in	the	storage	hierarchy.

In	 what	 follows,	 and	 unless	 noted	 otherwise,	 we	 assume	 a	 HDD	 as	 the
storage	medium	 for	 the	 physical	 database.	Given	 their	 capacity	 and	 cost,	 hard
disks	are	still	the	preferred	medium	for	most	database	settings	for	the	time	being.
Still,	 in-memory	 database	 technology,	 directly	 exploiting	 central	 storage	 for
database	 purposes,	 is	 gaining	 momentum	 for	 particular	 high-performance
applications.	Hybrid	solutions	exist	as	well,	caching	part	of	the	physical	database
in	 RAM	 for	 higher	 performance,	 as	 is	 the	 case	 with,	 e.g.,	 the	 Memcached
NoSQL	 database	 discussed	 in	 Chapter	 11.	 Moreover,	 flash	 memory	 can	 be
expected	to	take	over	from	hard	disk	technology	in	the	not	too	distant	future,	but
at	 present	 the	 supported	 capacity	 is	 still	 limited	 in	 comparison	 to	 hard	 disk
storage.

We’ll	now	look	at	the	internals	of	an	HDD,	as	its	physical	concepts	impact
the	way	 in	which	we	deal	with	 file	organization	and	physical	database	design.
That	being	said,	much	of	the	discussion	in	this	chapter	is	applicable	to	SSDs,	and
sometimes	in-memory	databases,	as	well.

12.1.2	Internals	of	Hard	Disk	Drives

Hard	 disk	 drives	 store	 their	 data	 on	 circular	 platters,	 which	 are	 covered	 with
magnetic	particles	(Figure	12.2).	A	HDD	also	contains	a	hard	disk	controller,
which	 is	 circuitry	 that	 oversees	 the	 drive’s	 functioning	 and	 that	 interfaces
between	the	disk	drive	and	the	rest	of	the	system.

Figure	12.2	Internals	of	a	hard	disk	drive.

Reading	 from	 and	writing	 to	 hard	 disks	 comes	 down	 to	magnetizing	 and
demagnetizing	the	spots	on	these	platters	to	store	binary	data.	HDDs	are	directly
accessible	 storage	 devices	 (DASDs),	 which	 means	 that	 every	 location	 on	 a
platter	 should	 be	 individually	 addressable	 and	 directly	 reachable	 to	 access	 its
content.3	 Since	 a	 platter	 is	 two-dimensional,	 movement	 in	 two	 dimensions
should	 be	 supported	 by	 the	 HDD’s	 mechanicals.	 The	 first	 dimension	 of
movement	 is	 disk	 rotation.	For	 that	 purpose,	 the	platters,	 or	 sometimes	only	 a
single	 platter,	 are	 secured	 on	 a	 spindle,	 which	 rotates	 at	 a	 constant	 speed.
Movement	 in	 a	 second	 dimension	 is	 realized	 by	 positioning	 the	 read/write
heads	on	arms,	which	are	fixed	to	an	actuator.	There	is	a	set	of	read/write	heads
for	 each	 writable	 platter	 surface.	 The	 actuator,	 along	 with	 the	 arms	 and	 the

read/write	heads,	can	be	moved	toward	or	away	from	the	center	of	the	disks.	By
combining	disk	rotation	with	actuator	movement,	each	individual	section	of	the
disk	is	directly	reachable.

The	magnetic	particles	on	 the	platters	are	organized	 in	concentric	circular
tracks,	 with	 each	 track	 consisting	 of	 individual	 sectors.	 The	 sector	 is	 the
smallest	addressable	unit	on	a	HDD.	Traditionally,	the	standard	sector	size	was
512	bytes,	but	many	more	recent	HDDs	have	sector	sizes	of	up	 to	4096	bytes.
Also,	 for	 reasons	of	efficiency,	 it	often	occurs	 that	 the	operating	system	or	 the
HDD	itself	does	not	directly	address	individual	sectors,	but	rather	addresses	so-
called	disk	 blocks	 (aka	 clusters,	pages,	 or	 allocation	 units),	 which	 consist	 of
two	 or	 more	 physically	 adjacent	 sectors.	 By	 addressing	 disk	 blocks
encompassing	multiple	sectors,	the	number	of	required	addresses	and	the	amount
of	 overhead	 can	be	 reduced.	 In	what	 follows,	we	make	 abstraction	 from	 these
distinctions	 and	 always	 use	 the	 generic	 term	disk	block,	 or	block	 for	 short,	 to
refer	 to	 an	 addressable	unit	 of	hard	disk	 storage	 capacity,	 consisting	of	one	or
more	adjacent	physical	sectors.

When	organizing	physical	files	on	disk	blocks	and	tracks,	it	is	important	to
keep	the	mechanicals	of	the	movement	in	a	HDD	in	mind.	Indeed,	reading	from
a	block,	or	writing	to	a	block,	identified	by	its	block	address	comes	down	to	the
following.	First,	the	actuator	needs	to	be	moved	in	such	a	way	that	the	read/write
heads	 are	positioned	 above	 the	 track	 that	 contains	 the	desired	block.	The	 time
necessary	to	position	the	actuator	is	called	the	seek	time.	All	sectors	on	the	same
track	of	a	platter	can	then	be	read	without	additional	seeks.	Moreover,	since	all
read/write	heads	are	positioned	on	arms	above	one	another,	all	tracks	at	the	same
distance	 from	 the	center	on	 the	 respective	platter	 surfaces	 can	be	 read	without
additional	 seeks.	 Such	 a	 set	 of	 tracks,	 with	 the	 same	 diameter,	 is	 called	 a
cylinder.	Once	 the	heads	 are	positioned	appropriately,	one	must	wait	until	 the
desired	sector	has	rotated	under	 the	read/write	head	of	 that	platter	surface.	The

time	required	for	that	is	called	the	rotational	delay	or	latency.	Finally,	the	data
can	be	read	or	written.	The	transfer	time	depends	on	the	block	size,	the	density
of	the	magnetic	particles	and	the	rotation	speed	of	the	disks.

The	 response	 time	 to	 retrieve	 a	 disk	 block	 from	 a	 disk	 drive	 can	 be
summarized	as	follows:

We	will	not	discuss	the	queuing	time	at	this	point;	it	pertains	to	the	waiting
time	 until	 the	 device	 is	 actually	 free	 from	 other	 jobs,	 and	 depends	 upon	 task
scheduling,	 system	 workload,	 and	 facilities	 for	 parallelism.	 Some	 of	 these
aspects	 are	 tackled	 in	 the	next	chapter	 and	 in	 later	 chapters.	The	 transfer	 time
itself	is	typically	fixed	and	depends	on	the	hardware	properties	of	the	disk	drive.
Still,	physical	file	organization	can	be	optimized	in	such	a	way	that	the	expected
seek	 time	 and,	 to	 a	 lesser	 extent,	 rotational	 delay	 are	minimized	 and	 this	may
have	 a	 considerable	 impact	 on	 overall	 performance	 of	 a	 database	 system.	 For
that	reason,	we	discriminate	between	the	expected	service	time	for	random	block
accesses	 (Trba)	 and	 the	 expected	 service	 time	 for	 sequential	 block	 accesses
(Tsba).	 Trba	 refers	 to	 the	 expected	 time	 to	 retrieve	 or	 write	 a	 disk	 block
independently	 of	 the	 previous	 read/write.	 Tsba	 denotes	 the	 expected	 time	 to
sequentially	 retrieve	 a	 disk	 block	 with	 the	 read/write	 head	 already	 in	 the
appropriate	 position	 from	 a	 previous	 read/write	 to	 a	 physically	 adjacent	 disk
block:

Trba	 is	equal	to	the	sum	of	the	expected	seek	time,	the	rotational	delay,	and	the
transfer	 time.	 The	 seek	 time	 depends	 upon	 the	 number	 of	 cylinders	 to	 be

response	time	=	service	time	+	queuing	time;

service	time	=	seek	time	+	rotational	delay	+	transfer	time.

Trba	=	Seek	+	ROT/2	+	BS/TR

Tsba	=	ROT/2	+	BS/TR

traversed.	Hard	disk	manufacturers	tend	to	provide	an	average	value	–	“average
seek	 time”	–	 expressed	 in	milliseconds	 in	 their	 descriptions	 of	 a	 drive	model.
The	expected	rotational	delay	is	calculated	as	one-half	of	the	time	required	for	a
full	 disk	 rotation	 (ROT),	 also	 expressed	 in	 milliseconds.	 If	 the	 manufacturer
provides	the	rotation	speed	of	the	drive	in	rotations	per	minute	(RPM),	then	ROT
(in	 milliseconds)	 =	 (60	 ×	 1000)/RPM.	 The	 last	 term	 in	 the	 above	 equation
represents	the	transfer	time,	which	is	equal	to	the	block	size	(BS)	divided	by	the
transfer	rate	TR.	The	transfer	rate	is	expressed	in	megabytes	per	second	(MBps)
or	megabits	per	second	(Mbps).	For	Tsba,	the	expression	is	similar,	with	omission
of	the	seek	term.

For	example,	for	a	HDD	with	the	following	characteristics:

Average	seek	time:	8.9	ms

Spindle	speed:	7200	rpm

Transfer	rate:	150	MBps

Block	size:	4096	bytes

we	have	the	following	results:

From	this	example,	it	is	recommended	to	organize	physical	files	onto	tracks	and
cylinders	 in	 a	 way	 that	 seeks	 and,	 to	 a	 lesser	 extent,	 rotational	 delay	 are
minimized	 as	much	 as	 possible.	 This	 objective	 is	 a	 leading	 theme	 throughout
most	of	this	and	the	next	chapter.

Drill	Down

Trba	=	8.9	ms	+	4.167	ms	+	0.026	ms	=	13.093	ms

Tsba	=	4.167	ms	+	0.026	ms	=	4.193	ms

Solid	 state	 drives	 (SSDs)	 are	 based	 on	 integrated	 circuitry	 (most	 often
flash	memory),	rather	than	on	magnetic	disk	technology.	Unlike	HDDs,
SSDs	have	no	moving	mechanical	components	and	therefore	have	lower
access	 times	 than	 HDDs	 and	 are,	 in	 several	 aspects,	 more	 robust.	 In
particular,	read	performance	of	SSDs	is	much	better	than	with	HDDs.	On
the	 other	 hand,	 most	 elements	 mentioned	 with	 respect	 to	 HDDs	 also
apply	 to	 SSDs:	 SSDs	 are	 accessible	 through	 the	 same	 controller	 types
and	 I/O	 commands	 as	 traditional	 HDDs.	 The	 concepts	 of	 file	 system,
blocks,	sequential	block	access,	and	random	block	access	apply	as	well.

One	 problem	 of	 SSDs	 (especially	 in	 the	 early	 days)	 is	 that	 their
blocks	can	only	sustain	a	 limited	number	of	writes	before	 they	go	bad,
whereas	most	HDDs	fail	due	to	mechanical	failure,	not	blocks	going	bad.
This	 has	 some	 implications	 for	 physical	 data	management	 in	 the	 sense
that	the	DBMS	or	operating	system	will	make	sure	not	to	overwrite	the
same	sector	too	many	times.	Modern	SSDs	will	include	firmware	which
transparently	organizes	data	to	protect	the	drive,	so	this	is	less	of	an	issue
when	 using	 newer	 drives.	 This	 technique	 is	 called	 wear	 leveling.
Therefore,	 whereas	 a	 file	 that	 is	 updated	 on	 a	 HDD	will	 generally	 be
rewritten	into	its	original	location,	a	new	version	of	a	file	on	an	SSD	will
typically	be	written	to	a	different	location.

Some	 SSDs	 are	 not	 based	 on	 persistent	 flash	 memory,	 but	 on
volatile	DRAM	(dynamic	random	access	memory)	circuitry.	Such	SSDs
are	 characterized	 by	 even	 faster	 access	 times.	 However,	 in	 contrast	 to
flash	memory,	DRAM	does	not	retain	its	content	in	the	case	of	a	power
outage.	 Therefore,	 DRAM-based	 SSDs	 are	 typically	 equipped	 with	 an
internal	 battery	 or	 external	 power	 supply,	 which	 lasts	 long	 enough	 to
persist	its	content	into	a	backup	storage	facility	in	case	of	power	failure.
Finally,	 hybrid	 drives	 exist	 as	 well,	 combining	 SSD	 and	 HDD

technology	 in	 a	 single	 unit,	 using	 the	 SSD	 as	 a	 cache	 for	 the	 most
frequently	accessed	data.

12.1.3	From	Logical	Concepts	to	Physical	Constructs

The	main	focus	of	this	and	the	next	chapter	is	on	how	a	database	is	realized	as	a
set	 of	 physical	 files	 and	 other	 constructs.	 The	 purpose	 is	 mostly	 to	 optimize
update	 and	 retrieval	 efficiency	 by	 minimizing	 the	 number	 of	 required	 block
accesses,	 especially	 random	 block	 accesses.	 An	 optimal	 tradeoff	 is	 pursued
between	 efficient	 update/retrieval	 and	 efficient	 use	of	 storage	 space.	The	main
focus	 is	 on	 the	 physical	 organization	 of	 structured	 data,	 by	 translating	 logical
structures	 into	 physical	 ones.	 Chapter	 18,	 dealing	 with	 data	 integration,	 also
discusses	the	indexing	and	searching	of	unstructured	data.

Physical	 database	 design	 comes	 down	 to	 the	 translation	 of	 a	 logical	 data
model	 into	 an	 internal	 data	 model,	 also	 called	 the	 physical	 data	 model.	 This
translation	 takes	 the	 physical	 properties	 of	 the	 storage	media	 into	 account,	 as
well	as	the	statistical	properties	of	the	data	and	the	types	of	operations	(search,
insert,	update,	delete)	that	are	executed	on	them.	The	internal	data	model	should
provide	 adequate	 support	 for	 the	 most	 frequent	 and/or	 most	 time-critical
operations.	Figure	12.3	recapitulates	the	three-layer	database	architecture	and	the
position	of	the	internal	data	model	in	it.	As	discussed	in	Chapter	1,	this	approach
guarantees	physical	data	independence.

Figure	12.3	Position	of	the	internal	data	model.

Connections

Chapter	 1	 discusses	 the	 three-layer	 database	 architecture,	 logical,	 and
physical	data	independence.

The	 logical	 data	 model	 does	 not	 contain	 any	 concrete	 implementation-
related	specifications,	but	 it	does	make	an	assumption	about	 the	actual	 type	of
DBMS	used	to	implement	the	model	physically.	As	already	stated,	we	focus	on	a
relational	 database	 setting	 although	most	 aspects	 in	 the	discussion	on	physical
record	and	file	organization	are	applicable	to	other	DBMS	types	as	well.

If	we	position	the	logical	data	model	next	to	the	internal	data	model,	we	can
compare	the	corresponding	concepts	in	each	of	them,	which	are	to	be	translated
from	logical	into	physical	structures.	We	use	both	the	“generic”	terminology	of	a
logical	data	model	and	 the	more	specific	 terminology	of	a	 relational	model.	 In
general,	 a	 logical	 model	 defines	 entity	 records,	 or	 just	 records	 for	 short,	 as
instances	of	entity	record	types	(or	record	types	for	short).	A	record	is	described
by	its	attributes.	In	a	relational	setting,	we	speak	of	a	logical	database	as	a	set	of
tables	or	relations.	A	table	consists	of	rows	or	tuples,	which	contain	values	(aka
cell	values,	as	they	represent	values	to	the	individual	cells	in	a	relational	table),
described	by	the	corresponding	column	names	(see	Chapter	6).	The	internal	data
model	 denotes	 how	 the	 former	 concepts	 can	 be	 realized	 physically	 on	 storage
media	 and	 also	 defines	 physical	 structures	 that	 allow	 for	 these	 concepts	 to	 be
accessed	in	an	efficient	way.

Connections

Chapter	6	discusses	the	basic	concepts	of	the	relational	model.

The	corresponding	physical	concepts	are	represented	in	Table	12.1.	A	data
item	 (also	 called	 field)	 is	 a	 collection	 of	 bits	 or	 characters	 that	 represents	 a
specific	value	on	a	physical	storage	medium.	A	stored	record	is	a	collection	of
data	 items	 that	 pertain	 to	 the	 same	 real-world	 entity	 and	 that	 represent	 all
attributes	of	this	entity.	In	this	way,	it	is	the	physical	representation	of	a	tuple	in
a	 relational	 table.	A	physical	 file	 (also	called	dataset)	 is	 a	 collection	of	 stored
records	 that	 represent	 similar	 real-world	 entities,	 such	 as	 students,	 wines,	 or
purchase	orders.	It	implements	a	relational	table	or,	in	general,	all	instances	of	a
logical	 record	 type.	 In	most	 cases,	 all	 records	 in	 a	physical	 file	have	a	 similar
structure	and	contain	data	items	that	represent	the	same	set	of	attribute	types.	On
some	 occasions,	 it	 may	 be	 required	 to	 combine	 stored	 records	 representing
different	real-world	concepts	into	a	single	file.	In	that	case,	the	records	in	the	file
may	be	different	 in	structure	and	attribute	 types	and	we	speak	of	a	mixed	file.
Moreover,	physical	files	may	contain	additional	structures,	such	as	indexes	and
pointers	 (see	Section	12.3.5)	 to	efficiently	search	and/or	update	 the	 file	and	 its
contents.

Table	12.1	Logical	and	internal	data	model	concepts

Logical	data	model
(general	terminology)

Logical	data	model
(relational	setting)

Internal	data
model

Attribute	type	and	attribute Column	name	and	(cell)
value

Data	item	or	field

(Entity)	record Row	or	tuple Stored	record

(Entity)	record	type Table	or	relation Physical	file	or
dataset

Set	of	(entity)	record	types Set	of	tables	or	relations Physical	database	or
stored	database

Logical	data	structures Foreign	keys Physical	storage
structures

Finally,	a	physical	database	 (also	called	stored	database)	 is	an	 integrated
collection	of	stored	 files.	 In	 this	way,	 it	contains	data	 items	and	stored	 records
describing	 different	 kinds	 of	 real-world	 entities	 (e.g.,	 suppliers	 and	 purchase
orders)	as	well	as	their	interrelationships	(e.g.,	the	fact	that	a	particular	purchase
order	is	placed	with	a	particular	supplier).	The	logical	structures	that	model	the
relationships	 between	 record	 types,	 such	 as	 the	 foreign	 keys	 in	 a	 relational
model,	also	yield	a	physical	representation.	A	stored	database	contains	physical
storage	structures	 to	represent	 these	 logical	 interrelations,	as	well	as	 to	support
the	 efficient	 retrieval	 and	 manipulation	 of	 stored	 records	 according	 to	 these
interrelations	(e.g.,	to	execute	a	join	query	in	a	relational	setting).

To	conclude	this	discussion,	we	present	the	example	of	a	simple	conceptual
data	 model,	 which	 is	 translated	 into	 a	 relational	 logical	 data	 model	 and,
ultimately,	 into	 an	 internal	 data	 model	 (Figure	 12.4).	 The	 relationship	 type
between	a	supplier	and	his/her	corresponding	purchase	orders	is	represented	by
means	of	a	foreign	key	in	the	relational	data	model.	In	the	internal	data	model,	it
is	 implemented	by	storing	a	supplier	 record	physically	adjacent	 to	 its	purchase
order	 records.	 If	 supplier	 records	 and	 the	 corresponding	 purchase	 orders	 are
often	retrieved	together,	this	contiguous	organization	is	beneficial,	as	they	can	be
retrieved	with	 a	 consecution	 of	 sequential	 block	 accesses,	 thus	 avoiding	more
inefficient	 random	 block	 accesses.	 In	 addition,	 a	 separate	 index	 is	 provided,
which	allows	one	to	efficiently	look	up	the	supplier	in	question.	The	latter	refers
to	 the	 suppliers	 not	 by	 means	 of	 physical	 contiguousness,	 but	 by	 means	 of
pointers.

Figure	12.4	Example	of	conceptual,	logical,	and	internal	data	model.

It	 is	 important	 to	 note	 that	Figure	12.4	provides	 just	 one	possible	way	of
physically	realizing	the	logical	data	model.	Depending	on	the	storage	device	and
the	 statistical	 properties	 of	 the	 data	 and	 queries	 (number	 of	 tuples,	 average
number	of	purchase	orders	per	 supplier,	most	 frequently	executed	query	 types,
etc.)	other	physical	models	may	be	more	appropriate.	For	example,	 if	purchase
orders	are	only	rarely	retrieved	according	to	the	supplier,	but	mostly	according	to
the	 PODate,	 an	 index	 over	 the	 POdate	 is	 more	 appropriate.	 Moreover,	 at	 all
levels	(stored	record,	physical	 file	and	physical	database)	either	direct	physical
contiguity	 or	 the	 indirection	 of	 pointers	 can	 be	 used	 to	 relate	 constructs	 (data
items,	stored	record,	index	entries,	etc.)	to	one	another.

In	the	rest	of	this	chapter	we	discuss	the	different	possible	approaches.	We
start	 with	 a	 brief	 overview	 of	 some	 elements	 of	 physical	 record	 organization,
such	as	the	way	in	which	data	items	are	organized	into	stored	records.	Then,	we
deal	 with	 file	 organization	 and	 indexing,	 including	 the	 organization	 of	 stored
records	 into	 physical	 files.	 In	 the	 next	 chapter	 we	 focus	 on	 physical	 database

organization,	with	an	emphasis	on	how	physical	storage	structures	can	enhance
the	 efficiency	 of	 querying	 data	 in	 a	 single	 table,	 as	 well	 as	 across	 tables,	 by
means	of	a	join	query.

Retention	Questions

What	is	meant	by	storage	hierarchy?

Discuss	the	basic	functioning	of	a	hard	drive.

Discuss	how	the	following	logical	data	model	concepts	can	be	mapped
to	physical	data	model	concepts	in	a	relational	setting:	attribute	type
and	attribute;	(entity)	record;	(entity)	record	type;	set	of	(entity)	record
types;	logical	data	structures.	Illustrate	with	examples.

12.2	Record	Organization

Record	organization	refers	to	the	organization	of	data	items	into	stored	records.
Each	 data	 item	 embodies	 an	 attribute	 of	 a	 particular	 real-world	 entity	 that	 is
represented	by	the	stored	record.	The	physical	implementation	of	the	data	item	is
a	 series	of	bits;	 the	actual	 format	depends	on	 the	attribute’s	data	 type.	Typical
data	 types	 in	 a	 relational	 database	 setting	 were	 discussed	 in	 Chapter	 6.	 They
include	numeric	data	types	(e.g.,	integer	and	float),	character	strings	of	variable
or	fixed	length	(e.g.,	character	or	varchar),	date	and	time-related	data	types	(e.g.,
date,	 time,	 timestamp),	 and	 the	Boolean	data	 type	 to	 represent	 truth	values.	 In
many	 cases,	 the	 data	 types	 BLOB	 and	 CLOB	 are	 also	 supported	 in	 order	 to
capture	 large	chunks	of	binary	data	and	 text	data	 respectively	 (see	Chapter	 9).
We	only	briefly	highlight	some	aspects	pertaining	to	organizing	data	items	into
stored	records,	as	a	database	administrator	typically	has	only	limited	impact	on
how	 this	 is	 realized	 in	 a	 particular	 DBMS.	 We	 focus	 on	 the	 following
techniques:	 relative	 location,	 embedded	 identification,	 and	 the	 use	 of	 pointers
and	lists.

Connections

Chapter	 6	 discusses	 the	 various	 data	 types	 in	 a	 relational	 database
setting.	Chapter	9	reviews	the	BLOB	and	CLOB	data	types.

The	 simplest,	 and	 most	 widespread,	 technique	 for	 record	 organization	 is
relative	 location.	 Here,	 only	 the	 attributes	 are	 stored.	 The	 data	 items	 that
represent	 the	 attributes	 of	 the	 same	 entity	 are	 stored	 on	 physically	 adjacent

addresses.	The	corresponding	attribute	types	are	not	stored	with	them;	they	are
determined	 implicitly	 by	 the	 relative	 ordering	 in	 which	 the	 data	 items	 occur,

based	on	metadata	about	record	structure	in	the	catalog.4	In	this	way,	each	data
item	 can	 be	 identified	 by	 its	 relative	 location.	 This	 is	 the	 simplest	 and	 most
efficient	 approach	 in	 terms	 of	 storage	 space.	 Figure	 12.5	 shows	 a	 partial
relational	table	definition	and	the	corresponding	record	structure.

Figure	12.5	Example	of	record	organization	with	relative	location.

While	 relative	 location	 is	 the	 most	 common	 approach,	 it	 becomes
somewhat	 problematic	 if	 the	 record	 structure	 is	 highly	 irregular	 (e.g.,	 if	many
attributes	 are	 not	 always	 present	 in	 each	 record).	 In	 that	 case,	 the	 relative
location	 cannot	 be	 used	 to	 determine	 which	 data	 item	 corresponds	 to	 which
attribute.	 A	 solution	 could	 be	 to	 always	 retain	 empty	 storage	 space	 for	 the
missing	attributes,	but	this	is	obviously	not	efficient	in	terms	of	storage	use	if	the
irregularities	 are	 very	 frequent.	 An	 alternative	 solution	 is	 embedded
identification.	Here,	 the	data	items	representing	attributes	are	always	preceded
by	 the	 attribute	 type.	 Only	 non-empty	 attributes	 of	 the	 record	 are	 included
(Figure	 12.6).	 Because	 the	 attribute	 types	 are	 registered	 explicitly,	 missing
attributes	are	not	a	problem	and	there	is	no	need	to	store	the	attributes	in	a	fixed
order	 to	 identify	 them.	 The	 obvious	 disadvantage	 is	 the	 extra	 storage	 space

required	for	the	attribute	types,	but	for	highly	irregular	records	this	approach	is
still	more	 efficient	 than	 relative	 location.	Note	 that	 this	way	 of	working,	with
explicitly	 embedded	 metadata	 on	 attribute	 types,	 is	 quite	 similar	 to	 the
approaches	in	languages	for	semi-structured	data	such	as	XML	and	JSON.

Figure	12.6	Example	of	record	organization	with	embedded	identification.

Connections

Chapter	10	discusses	XML	and	JSON.

A	 third	 option	 is	 to	 use	 pointers	 and	 lists.	 These	 are	 discussed	 in	 more
detail	in	Section	12.3,	but	can	also	be	used	for	the	sake	of	record	organization.
There	 are	 different	 possibilities.	 Figure	12.7	 shows	 an	 example	 in	which	 only
attributes	are	stored.	There	is	a	regular	record	structure,	except	for	the	fact	that
the	number	of	addresses	may	be	different	 for	each	person.	Therefore,	 for	each
person,	one	address	is	stored	physically	adjacent	to	the	other	data	items;	but	if	a
person	 has	multiple	 addresses,	 a	 pointer	 is	 included	 that	 refers	 to	 the	 storage
location	where	the	other	addresses	are	positioned.	In	this	way,	irregularities	can
be	dealt	with	without	affecting	the	overall	record	structure.

Figure	12.7	Example	of	record	organization	with	pointers	and	lists.

This	 is	 just	 one	 example	 of	 dealing	 with	 variable-length	 records.	 This
variability	can	have	different	causes.	A	first	cause	may	be	one	or	more	attribute
types	 that	have	a	data	 type	with	variable	 length	 (e.g.,	 the	VARCHAR	type).	A
second	possible	cause	is	that	one	or	more	attribute	types	may	be	multi-valued,	as
is	 the	 case	 with	 the	 Address	 attribute	 type	 in	 the	 example	 above.	 A	 third
possibility	 is	 that	 certain	 attribute	 types	 are	 optional	 and	 occur	 only	 for	 some
entities,	 as	 discussed	 previously.	 A	 fourth	 possible	 reason	 for	 variable-length
records	is	when	we	have	a	mixed	file	containing	different	kinds	of	records	(e.g.,
both	supplier	and	purchase	order	records).

Another	 alternative	 for	 dealing	 with	 variable	 length	 records	 is	 to	 use
delimiters	 that	 explicitly	 separate	 the	 respective	 attributes.	 Yet	 another
possibility	 is	 to	 use	 an	 indirect	 structure,	 consisting	 of	 pointers,	 which
themselves	have	a	fixed	length	and	are	stored	physically	next	to	one	another.	In
this	way,	the	record	has	a	regular	format,	but	the	pointers	point	to	the	location	of
the	actual	data	items,	which	may	have	a	variable	length.	This	level	of	indirection
is	used	very	often	when	dealing	with	BLOB	and	CLOB	data.	BLOB	and	CLOB
data	 types	 are	mostly	 stored	 separately	 from	 the	 other	 data	 types,	 as	 they	 are
much	 larger	 in	 size	 and	 thus	 require	 other	methods	 to	 be	 stored	 and	 retrieved
efficiently.	 In	 that	way,	 a	 record	 can	 contain	 the	 actual	 values	 of	 regular	 data
types	such	as	integer	and	character,	as	well	as	pointers	to	“large”	data	items,	with
the	actual	BLOB	and	CLOB	values	stored	in	a	separate	file	or	file	area.	In	Figure
12.8,	 we	 show	 some	 typical	 organizations	 of	 both	 fixed-length	 and	 variable-
length	records.

Figure	12.8	Dealing	with	fixed-	and	variable-length	records.

A	 last	 important	 concept	 in	 the	 context	 of	 record	 organization	 is	 the
blocking	 factor	 (BF).	 The	 latter	 indicates	 how	 many	 records	 are	 stored	 in	 a
single	 disk	 block.5	 For	 a	 file	 with	 fixed-length	 records,	 BF	 is	 calculated	 as
follows:

In	 this	 formula,	 BS	 denotes	 the	 block	 size	 and	 RS	 is	 the	 record	 size,	 both
represented	 in	 bytes.	 The	 floor	 function	 ⌊x⌋	 rounds	 down	 the	 x	 value	 to	 an
integer.	For	variable-length	records,	BF	denotes	 the	average	number	of	records
in	a	block.	The	blocking	factor	is	an	important	value	when	organizing	physical
records	for	efficient	access,	as	it	determines	how	many	records	are	retrieved	with
a	single	read	operation,	without	intermediate	seeks	and/or	rotational	delay.

Retention	Questions

Discuss	and	contrast	different	techniques	to	organize	data	items	into
stored	records.

12.3	File	Organization

Physical	 file	 organization	 pertains	 to	 the	 organization	 of	 stored	 records	 into
physical	files	or	datasets.	We	first	introduce	some	introductory	concepts	such	as
search	keys	and	the	distinction	between	primary	and	secondary	file	organization,
before	tackling	the	actual	file	organization	techniques.

12.3.1	Introductory	Concepts:	Search	Keys,	Primary,	and	Secondary
File	Organization

The	 records	 in	 a	 physical	 file	 are	 organized	 in	 such	 a	 way	 that	 they	 can	 be
retrieved	 efficiently	 according	 to	 one	 or	more	 search	 keys.	A	 search	key	 is	 a
single	attribute	type,	or	set	of	attribute	types,	whose	values	determine	the	criteria
according	 to	 which	 records	 are	 retrieved.	 Most	 often,	 these	 criteria	 are
formulated	by	means	of	a	query	language,	such	as	SQL	in	the	case	of	relational
databases.

Connections

Chapter	7	discusses	SQL.

A	 search	 key	 can	 be	 a	 primary	 key	 or	 candidate	 key,	 in	 which	 case	 the
search	only	yields	a	single	result	since	no	two	stored	records	can	have	the	same
primary	 or	 candidate	 key	 value	 in	 a	 physical	 file.6	 Examples	 of	 such	 unique
search	 keys	 are	 a	 customer	 ID,	 a	 license	 plate	 number,	 the	 combination	 of	 a
flight	 number	 and	 the	 date	 of	 departure,	 etc.	 For	 example,	 a	 search	 key
“customerID”	with	value	“0285719”	would	yield	only	a	single	record,	or	none	at
all	if	there	is	no	record	with	such	a	key	value	in	the	file.

Although	primary	keys	are	often	used	to	retrieve	data,	a	search	key	can	just
as	well	consist	of	one	or	more	non-key	attribute	types.	Indeed,	one	often	needs	to
retrieve	 data	 according	 to	 other	 criteria,	 which	 do	 not	 represent	 unique
identifiers.	 For	 example,	 the	 “class”	 of	 a	 flight	 seat	 (economy	 class,	 business
class,	first	class,	etc.)	 is	a	search	key	that	can	be	used	to	retrieve	seats,	but	 the
result	is	not	necessarily	unique	and	may	contain	many	seats.	A	search	key	can	be

composite.	For	example,	the	search	key	(country,	gender)	with	values	(USA,	F)
yields	all	female	customers	that	live	in	the	USA.	Finally,	search	keys	can	also	be
used	to	specify	range	queries.	These	are	queries	that	retrieve	all	records	in	which
some	attribute	value	 is	between	a	 lower	and	upper	 limit,	 such	as	all	customers
with	a	search	key	value	for	“YearOfBirth”	between	1980	and	1990.

Apart	 from	 the	 above,	 there	 are	 typically	 also	 attribute	 types	 in	 a	 stored
record	that	are	never,	or	only	rarely,	used	as	search	keys.	They	can,	however,	be
retrieved	 to	 provide	 additional	 information	 to	 a	 record	 that	 was	 selected
according	to	other	criteria.	For	example,	a	customer’s	street	address	may	never
be	used	as	a	search	key,	but	can	be	displayed	as	part	of	the	result	if	the	customer
was	 retrieved	 according	 to	 the	 customerID	 or	 the	 year	 of	 birth.	 The	 file
organization	methods	we	discuss	in	this	chapter	aim	at	optimizing	record	access
according	to	primary	keys,	according	to	other	candidate	keys	and/or	according	to
non-key	attribute	types	we	consider	as	relevant	and	frequent	search	keys.

We	distinguish	between	two	categories	of	file	organization	methods.	First,
there	are	methods	that	determine	the	physical	positioning	of	stored	records	on	a
storage	medium.	We	call	 them	primary	 file	organization	methods.	Examples
we	discuss	are	heap	files,	random	file	organization,	and	indexed	sequential	file
organization.	Some	methods	require	a	linear	search	on	the	entire	file	for	records
that	 match	 the	 search	 key:	 each	 record	 in	 the	 file	 is	 retrieved	 and	 assessed
against	 the	 search	key.	Yet,	 the	more	 advanced	methods	 specify	 a	 relationship
between	a	record’s	search	key	and	its	physical	location.	This	improves	retrieval
speed	 considerably,	 as	 it	 allows	 directly	 accessing	 the	 storage	 locations	 that
contain	 records	 that	 correspond	 to	 the	 search	 key,	 thus	 avoiding	 a	 full	 linear
search.	Hashing	 and	 indexing	 are	 the	 primary	 techniques	 to	 establish	 such	 a
relationship.	 When	 implementing	 a	 physical	 file,	 the	 records	 are	 physically
organized	according	to	the	primary	file	organization	method.

Since	 the	 primary	 file	 organization	 impacts	 the	 physical	 ordering	 of	 the
records,	we	can	apply	only	one	primary	file	organization	on	a	particular	physical
file,	 at	 least	 if	we	want	 to	 avoid	 duplicating	 the	 file.	Hence,	 it	 is	 important	 to
organize	 the	 file	 according	 to	 the	 search	 key	 that	 is	most	 often	 used,	 or	most
time-critical,	for	retrieving	the	file’s	records.	However,	in	most	cases	we	want	to
be	able	to	retrieve	records	from	the	same	file	according	to	different	criteria.	For
example,	 sometimes	 we	 want	 to	 retrieve	 customers	 according	 to	 their
customerID,	 sometimes	 according	 to	 their	 country	 or	 gender,	 or	 sometimes
according	 to	 the	 combination	 of	 both	 country	 and	 gender.	 Therefore,	we	 need
secondary	 file	 organization	methods,	 which	 provide	 constructs	 to	 efficiently
retrieve	records	according	to	a	search	key	that	was	not	used	for	the	primary	file
organization.	 Secondary	 file	 organization	 methods	 do	 not	 impact	 a	 record’s
physical	 location	 and	 invariably	 use	 some	 kind	 of	 index,	 called	 a	 secondary
index.

In	what	follows,	we	first	deal	with	the	most	important	primary	organization
methods,	 starting	 with	 heap	 files.	 Then,	 we	 overview	 the	 different	 uses	 of
pointers	to	improve	physical	file	organization.	We	conclude	with	a	discussion	of
secondary	 indexes	and	some	particularly	 important	 index	 types,	 such	a	B-trees
and	B+-trees.

12.3.2	Heap	File	Organization

The	most	basic	primary	file	organization	method	is	 the	heap	file.	New	records
are	 inserted	 at	 the	 end	 of	 the	 file;	 there	 is	 no	 relationship	 between	 a	 record’s
attributes	 and	 its	 physical	 location.	 Consequently,	 adding	 records	 is	 fairly
efficient,	but	retrieving	a	particular	record	or	set	of	records	according	to	a	search
key	is	not.	The	only	option	is	to	do	a	linear	search,	scanning	through	the	entire
file,	and	to	retain	the	records	that	match	the	selection	criteria.	If	a	single	record	is
sought	 according	 to	 its	 primary	key,	 the	 scanning	 continues	until	 the	 record	 is
found,	 or	 until	 the	 end	 of	 the	 file	 is	 reached,	 meaning	 that	 the	 record	 is	 not
present.	 For	 a	 file	with	NBLK	blocks,	 it	 takes	 on	 average	NBLK/2	 sequential
block	accesses	 to	 find	a	 record.7	Still,	 the	more	requests	occur	 for	 records	 that
turn	out	not	to	be	in	the	file,	the	more	searches	will	happen	until	the	end	of	the
file,	 requiring	 NBLK	 block	 accesses.	 Searching	 records	 according	 to	 a	 non-
unique	 search	 key	 also	 requires	 scanning	 the	 entire	 file,	 hence	 NBLK	 block
accesses.	Deleting	 a	 record	 often	 comes	 down	 to	 just	 flagging	 it	 as	 “deleted”.
The	 records	are	 then	physically	 removed	upon	periodical	 reorganization	of	 the
file.

12.3.3	Sequential	File	Organization

With	sequential	file	organization,	records	are	stored	in	ascending	or	descending
order	of	a	search	key.	This	is	often	the	primary	key,	but	a	non-unique	search	key
(i.e.,	 a	 non-key	 attribute	 type	 or	 set	 of	 attribute	 types)	 can	 also	 be	 used	 as
ordering	criterion.	An	advantage	this	has	over	heap	files	is	that	it	becomes	much
more	efficient	to	retrieve	the	records	in	the	order	determined	by	this	key,	since	it
requires	only	sequential	block	accesses.	Moreover,	as	with	heap	files,	individual
records	 can	 still	 be	 retrieved	 by	 means	 of	 a	 linear	 search,	 but	 now	 a	 more
effective	stopping	criterion	can	be	used,	since	the	search	key	is	the	same	as	the
attribute	 type(s)	 that	 determine(s)	 the	 order	 of	 the	 records.	 If	 the	 records	 are
organized	 in	 ascending/descending	 order	 of	 this	 key,	 the	 linear	 search	 can	 be
terminated	once	the	first	higher/lower	key	value	than	the	required	one	is	found;
one	can	be	assured	that	no	more	matching	records	exist	in	the	remainder	of	the
file.	In	addition,	and	even	more	importantly,	if	the	sequential	file	is	stored	on	a
direct	access	storage	device	such	as	a	HDD,	a	binary	search	 technique	can	be
used,	which	in	the	case	of	large	files	is	far	more	efficient	than	a	linear	search.	A
binary	 search	algorithm	 is	 applied	 recursively,	halving	 the	 search	 interval	with
each	 iteration.	 For	 a	 unique	 search	 key	 K,	 with	 values	 Kj,	 the	 algorithm	 to
retrieve	a	record	with	key	value	Kμ	is	as	follows:

Selection	criterion:	record	with	search	key	value	Kμ

Set	l	=	1;	h	=	number	of	blocks	in	the	file	(suppose	the	records	
are	in	ascending	order	of	the	search	key	K)

Repeat	until	h	≤	l

The	expected	number	of	block	accesses	to	retrieve	a	record	according	to	its
primary	key	in	a	sequential	file	of	NBLK	blocks	by	means	of	a	linear	search	is
still	NBLK/2	 sequential	block	accesses.	 If,	 on	 the	other	hand,	binary	 search	 is
used,	 the	 expected	 number	 is	 log2(NBLK)	 random	 block	 accesses,	 which	 is
much	 more	 efficient	 for	 high	 values	 of	 NBLK.	 Note	 that	 the	 binary	 search
algorithm	 needs	 to	 be	 modified	 slightly	 when	 searching	 according	 to	 a	 non-
unique	search	key.	In	that	case,	a	few	additional	sequential	block	accesses	may
be	called	for,	to	retrieve	all	successive	records	with	the	same	search	key	value.

For	example,	let’s	examine	a	sequential	file	with	the	following	properties:

Number	of	records	(NR):	30,000

Block	size	(BS):	2048	bytes

Record	size	(RS):	100	bytes

The	 blocking	 factor	 (BF)	 can	 be	 calculated	 in	 the	 following	 way:
BF	 =	 BS/RS	 =	 2048/100	 =	 20.	 Each	 block	 contains	 20	 records	 and	 thus	 the

–	i	=	(l	+	h)	/	2,	rounded	to	the	nearest	integer

–	Retrieve	block	i	and	examine	the	key	values	Kj	of	the	
records	in	block	i

-	if	any	Kj	=	Kμ	➔	the	record	is	found!

-	else	if	Kμ	>	all	Kj	➔	continue	with	l	=	i	+	1

-	else	if	Kμ	<	all	Kj	➔	continue	with	h	=	i	-	1

-	else	record	is	not	in	the	file

required	number	of	blocks	NBLK	to	store	the	30,000	records	is	1500.
If	 a	 single	 record	 is	 retrieved	according	 to	 its	primary	key	by	means	of	 a

linear	 search,	 the	expected	number	of	 required	block	accesses	 is	1500/2	=	750
sequential	 block	 accesses.	 On	 the	 other	 hand,	 if	 a	 binary	 search	 is	 used,	 the
expected	 number	 of	 block	 accesses	 is	 log2(1500)≈11	 random	 block	 accesses.
Even	 though	 random	 block	 accesses	 take	 more	 time	 than	 sequential	 block
accesses,	the	binary	search	algorithm	is	much	more	efficient	to	search	sequential
files	than	scanning	sequential	files	or	heap	files.

Then	again,	updating	a	sequential	file	is	more	cumbersome	than	updating	a
heap	file,	since	now	the	records	must	be	kept	 in	order	and	new	records	cannot
just	be	added	at	the	end	of	the	file.	Updates	are	often	executed	in	batch;	they	are
organized	 according	 to	 the	 same	 ordering	 attribute	 type(s)	 as	 the	 actual
sequential	 file	 and	 then	 the	 entire	 file	 is	 updated	 in	 a	 single	 run.	 A	 possible
alternative	 is	 to	 place	 newly	 added	 records,	 as	 well	 as	 records	 for	 which	 the
value	of	 the	ordering	attribute	 type(s)	 is	updated,	 in	a	 separate	“overflow”	file
(the	latter	organized	as	a	heap	file).	Deleted	records	can	just	be	flagged,	without
being	 physically	 removed.	 In	 this	 way,	 the	 file	 only	 has	 to	 be	 reorganized
periodically,	if	the	overflow	file	becomes	too	large.	Overflow	is	discussed	more
extensively	 in	 Section	 12.3.4.	 In	 a	 database	 setting,	 sequential	 files	 are	 often
combined	 with	 one	 or	 more	 indexes,	 resulting	 in	 the	 indexed	 sequential	 file
organization	method	(see	Section	12.3.5).

12.3.4	Random	File	Organization	(Hashing)

The	main	disadvantage	of	sequential	file	organization	is	that	many	other	records
need	 to	 be	 accessed	 to	 retrieve	 a	 single	 required	 record.	 This	 problem	 is
somewhat	 alleviated	 with	 binary	 search,	 but	 even	 then	 the	 number	 of
unnecessary	 record	 retrievals	 may	 become	 quite	 large.	 With	 random	 file
organization	 (also	 called	 direct	 file	 organization	 or	 hash	 file	 organization),
there	 exists	 a	 direct	 relationship	 between	 the	 value	 of	 the	 search	 key	 and	 a
record’s	physical	location.	In	this	way,	a	record	can	be	retrieved	with	one,	or	at
most	a	few,	block	accesses	if	the	key	value	is	provided.

12.3.4.1	Key-to-Address	Transformation

The	 relationship	 described	 above	 is	 based	 on	 hashing.	 A	 hashing	 algorithm
defines	 a	 key-to-address	 transformation,	 such	 that	 the	 record’s	 physical
address	 can	be	 calculated	 from	 its	 key	value.	Each	 time	a	new	 record	 is	 to	be
added	to	the	file,	this	transformation	is	applied	to	its	key,	returning	the	physical
address	 where	 the	 record	 should	 be	 stored	 (at	 least,	 if	 that	 address	 is	 still
available,	as	discussed	below).	If	later	on	the	record	is	to	be	retrieved	based	on
this	search	key,	applying	the	same	transformation	to	the	key	returns	the	address
where	the	record	can	be	found.	Clearly,	this	approach	is	only	feasible	on	a	direct
access	storage	device.

As	 discussed	 in	 Chapter	 11,	 variations	 of	 the	 hashing	 technique	 can	 be
applied	in	multiple	contexts.	Hashing	is	used	in	programming	languages	to	map
key	values	to	addresses	in	internal	memory	(e.g.,	an	array	data	type).	The	recent
wave	of	NoSQL	databases	often	relies	on	a	variant,	consistent	hashing,	to	evenly
distribute	 and	 replicate	 data	 records	 over	 the	 respective	 database	 nodes	 in	 a
cluster	 setting.	 In	 what	 follows,	 we	 focus	 on	 the	 use	 of	 hashing	 to	 transform

record	keys	into	physical	addresses	of	a	persistent	storage	device,	most	often	a
hard	 disk	 drive.	This	 approach	 is	most	 effective	when	 using	 a	 primary	 key	 or
other	 candidate	 key	 as	 a	 search	 key,	 for	 reasons	 that	 are	 clarified	 later	 in	 this
section.

Connections

Chapter	11	discusses	NoSQL	databases	and	also	introduces	hashing.

A	key-to-address	transformation	consists	of	several	steps,	as	represented	in
Figure	12.9.	 First,	 the	 key	 is	 converted	 into	 an	 integer	 numerical	 format,	 if	 it
isn’t	 an	 integer	 already.	 For	 instance,	 non-integer	 numerical	 values	 can	 be
rounded	or	alphanumerical	keys	can	be	 turned	 into	an	 integer	by	means	of	 the
characters’	 position	 in	 the	 alphabet	 or	 their	 ASCII	 codes.	 Then,	 the	 actual
hashing	algorithm	is	applied,	where	the	integer	key	values	are	transformed	into	a
spread	of	numbers	of	roughly	the	same	magnitude	as	the	desired	addresses.	The
more	uniformly	these	keys	are	distributed	over	this	range	of	numbers,	the	better.
Note	that,	quite	often,	the	generated	addresses	do	not	pertain	to	individual	record
addresses,	but	rather	to	a	contiguous	area	of	record	addresses,	called	a	bucket.	A
bucket	contains	one	or	more	stored	record	slots.	Its	size	can	be	defined	at	will,
but	can	also	be	aligned	to	the	physical	characteristics	of	the	storage	device,	such
as	an	integer	number	of	disk	blocks,	tracks,	or	cylinders.	The	hashing	algorithm
can	take	on	many	forms,	ranging	from	a	simple	hash	function	to	more	complex
algorithms.	 However,	 it	 invariably	 consists	 of	 a	 consecution	 of	 mathematical
operations,	applied	to	a	numerical	representation	of	the	key	and	returning	a	hash
value	that	corresponds	to	a	bucket	address.	In	a	next	step,	this	bucket	address	is
translated	 into	 an	 actual	 block	 address.	 For	 that	 purpose,	 it	 is	multiplied	 by	 a
constant	 that	 “compresses”	 the	 generated	 hash	 values	 into	 the	 exact	 range	 of

desired	 block	 addresses.	 The	 latter	 is	 still	 a	 relative	 block	 address,	 that	 is,
relative	to	the	first	block	of	the	file.

Figure	12.9	Key-to-address	transformation.

A	 final	 step,	 which	 is	 governed	 by	 the	 file	 system	 and	 therefore	 can	 be
considered	 beyond	 the	 scope	 of	 the	 key-to-address	 transformation,	 is	 the
translation	of	the	relative	block	address	into	an	absolute	address	consisting	of	a
device	number,	 cylinder	number,	 track	number,	 and	block	number.	 If	 a	 bucket
spans	multiple	 physical	 blocks,	 retrieving	 a	 record	 according	 to	 its	 key	 comes
down	 to	 a	 single	 random	 block	 access	 to	 the	 first	 block	 in	 the	 bucket	 as
determined	by	 the	 key-to-address	 transformation.	This	 is	 possibly	 followed	by
one	or	more	sequential	block	accesses	until	the	entire	bucket	is	retrieved	and	the
record	is	found.

A	 very	 important	 consideration	 with	 respect	 to	 hashing	 is	 that	 it	 cannot
guarantee	 that	 all	 keys	 are	 mapped	 to	 different	 hash	 values,	 hence	 bucket
addresses.	Whereas	 its	purpose	 is	 indeed	 to	distribute	 all	 keys	evenly	over	 the
available	address	space,	several	records	may	be	assigned	to	the	same	bucket.	In

that	 case,	 we	 speak	 of	 a	 collision	 and	 the	 corresponding	 records	 are	 called
synonyms.	Collisions	are	not	a	problem	per	se,	since	a	single	bucket	normally
consists	of	multiple	record	slots,	but	if	there	are	more	synonyms	than	slots	for	a
certain	 bucket,	 the	 bucket	 is	 said	 to	 be	 in	overflow.	As	discussed	 later	 in	 this
section,	there	are	different	ways	of	dealing	with	overflow,	but	regardless	of	the
actual	overflow-handling	method,	it	inevitably	causes	some	records	to	be	stored
on	a	different	location	than	where	they	were	initially	expected	according	to	the
key-to-address	 transformation.	Hence,	 additional	 block	 accesses	 are	 needed	 to
retrieve	overflow	records	and	therefore	overflow	should	be	avoided	as	much	as
possible	 so	 as	 not	 to	 jeopardize	 performance.	 For	 that	 reason,	 a	 hashing
algorithm	should	be	chosen	that	distributes	 the	keys	as	evenly	as	possible	over
the	respective	bucket	addresses,	thus	reducing	the	risk	of	overflow.

Many	hashing	techniques	have	been	developed	for	transforming	key	values
into	 addresses,	 such	 as	 division,	 digit	 analysis,	mid-square,	 folding,	 and	 base
transformation.	 We	 illustrate	 the	 hashing	 approach	 by	 one	 of	 them:	 division.
This	 is	 one	 of	 the	 simplest	 hashing	 techniques,	 yet	 in	 most	 circumstances	 it
performs	 remarkably	well.	With	 the	 division	 technique,	 the	 numerical	 form	of
the	 key	 is	 divided	 by	 a	 positive	 integer	 M.	 The	 remainder	 of	 the	 division8

becomes	the	record	address:

address(keyi)	=	keyi	mod		M

The	choice	of	M	is	very	important;	if	M	is	inappropriate	for	the	key	set	at
hand,	 many	 collisions,	 and	 therefore	 extensive	 overflow,	 will	 be	 the	 result.
Common	 factors	 between	 the	 key	 values	 and	 M	 should	 be	 avoided.	 For	 this
reason,	the	chosen	M	is	often	a	prime	number.	For	example,	Figure	12.10	shows
two	series	of	key	values,	each	time	with	the	remainder	of	division	by	20	and	by
23.	For	the	first	series,	both	20	and	23	result	in	a	nearly	uniform	distribution	of
remainders,	and	address	values,	so	they	would	both	be	adequate	as	M.	However,

in	the	second	series,	division	by	20	yields	a	much	worse	distribution,	with	many
records	attributed	to	bucket	addresses	00,	05,	10,	and	15,	whereas	other	buckets
remain	 empty.	Yet,	 division	 by	 the	 prime	 number	 23	 again	 results	 in	 a	 nearly
uniform	 distribution.	 For	 a	 particular	 key	 set,	 one	 prime	 number	 may	 still
perform	better	than	another,	so	ideally	multiple	candidates	are	tested.	Most	often,
a	prime	number	 is	 chosen	 that	 is	 close	 to,	but	a	bit	 larger	 than,	 the	number	of
available	addresses,	yielding	roughly	as	many	values	as	the	number	of	required
addresses.	 The	 next	 step	 in	 the	 key-to-address	 transformation	 then	 multiplies
them	by	a	factor	(a	bit)	smaller	than	1,	such	that	they	fit	perfectly	into	the	actual
address	space	(see	Figure	12.9).

Figure	12.10	Impact	of	hashing	technique	and	key	set	distribution	on	number
of	collisions.

12.3.4.2	Factors	that	Determine	the	Efficiency	of	Random	File
Organization

The	efficiency	of	a	hashing	algorithm	for	a	certain	dataset	is	ultimately	measured
by	 the	expected	number	of	 random	and	 sequential	block	accesses	 to	 retrieve	a
record.	 Several	 factors	 have	 an	 impact	 on	 this	 efficiency.	 Retrieving	 a	 non-
overflow	record	requires	only	a	single	random	block	access	to	the	first	block	of
the	bucket	denoted	by	 the	hashing	algorithm.	It	 is	possibly	followed	by	one	or
more	sequential	block	accesses	if	the	bucket	consists	of	multiple	physical	blocks.
To	retrieve	an	overflow	record,	additional	block	accesses	are	required,	hence	the
percentage	 of	 overflow	 records,	 as	 well	 as	 the	 overflow-handling	 technique
affect	 the	 performance.	 The	 former	 denotes	 how	 many	 records	 are	 in	 the
overflow;	 the	 latter	 determines	 where	 records	 that	 do	 not	 fit	 in	 the	 bucket	 as
determined	by	 the	hashing	 algorithm	are	 stored	 and	how	many	block	 accesses
are	 required	 to	 retrieve	 them.	We	 first	 discuss	 the	 parameters	 that	 impact	 the
percentage	 of	 overflow	 records.	After	 that,	we	 briefly	 present	 some	 overflow-
handling	techniques.

As	illustrated	in	Figure	12.10,	the	percentage	of	overflow	records	depends
on	how	appropriate	 the	hashing	algorithm	is	 to	 the	key	set.	 In	many	cases,	 the
key	values	are	not	distributed	evenly;	gaps	and	clusters	may	occur,	even	more	so
if	records	are	frequently	added	and	deleted.	It	is	up	to	the	hashing	algorithm	to
map	 this	 irregularly	 distributed	 key	 set	 as	 evenly	 as	 possible	 onto	 a	 set	 of
addresses.	The	term	“random”	file	organization	 is	somewhat	misleading	 in	 this
context:	 the	 aim	 is	 not	 to	 assign	 records	 to	 storage	 addresses	 according	 to	 a
random	statistical	distribution	function.	With	a	 random	distribution,	any	record
would	 have	 the	 same	 chance	 to	 be	 assigned	 to	 any	 physical	 address	 in	 the
available	 range.	 However,	 the	 real	 aim	 is	 to	 achieve	 a	uniform	 distribution,
spreading	the	set	of	records	evenly	over	the	set	of	available	buckets,	because	this
would	 minimize	 the	 chance	 of	 overflow	 and,	 therefore,	 performance

degradation.	 Yet,	 in	 practice,	 the	 best-performing	 hashing	 algorithms	 closely
approximate	the	results	of	a	theoretical	random	distribution,	rather	than	the	ideal
of	a	uniform	distribution.	The	statistical	properties	of	a	random	distribution	can
be	 used	 by	 the	 file	 designer	 to	 estimate	 the	 expected	 percentage	 of	 overflow
records.	Moreover,	 theoretically,	a	perfectly	uniform	distribution	would	require
only	as	many	 record	slots	as	 there	are	 records	 to	be	stored.	Still,	 the	 reality	of
less-than-uniform	 distributions	 implies	 that	 more	 record	 slots	 are	 needed,
because	 some	 buckets	 are	 fuller	 than	 others	 and	 the	 only	 way	 to	 avoid	 too
extensive	an	overflow	is	to	provide	more	record	slots	than	strictly	necessary.	The
following	formula	expresses	the	required	number	of	buckets	(NB)	as	the	number
of	records	(NR)	divided	by	the	bucket	size	(BS)	and	the	loading	factor	(LF):

NB	=	NR/(BS	×	LF)

The	 number	 of	 records	 is	 determined	 by	 the	 dataset.	 The	 bucket	 size
indicates	 the	 number	 of	 record	 slots	 in	 a	 bucket.	 The	 tradeoff	 here	 is	 that	 the
larger	the	bucket	size,	the	smaller	the	chance	of	overflow	will	be.	On	the	other
hand,	a	larger	bucket	means	more	additional	sequential	block	accesses	to	retrieve
all	non-overflow	records	in	the	bucket.	Therefore,	the	blocking	factor,	which	is
the	number	of	records	in	a	single	block,	plays	a	role	as	well.	Finally,	the	loading
factor	 represents	 the	 average	 number	 of	 records	 in	 a	 bucket	 divided	 by	 the
bucket	size	and	indicates	how	“full”	every	bucket	is	on	average.	In	this	way,	the
loading	 factor	 embodies	 the	 tradeoff	 between	 efficient	 use	 of	 storage	 capacity
and	 retrieval	performance.	A	 lower	 loading	 factor	 results	 in	 less	overflow,	and
hence	better	performance,	but	also	more	wasted	storage	space.	A	higher	loading
factor	has	the	opposite	effect.	In	practice,	the	loading	factor	is	often	set	between
0.7	and	0.9	to	balance	storage	efficiency	with	performance.	Clearly,	the	random
file	organization	is	most	effective	on	a	unique	search	key,	thus	a	primary	key	or
other	candidate	key.	Hashing	can	also	be	applied	to	non-unique	search	keys,	but

in	 that	 case	 there	 are	more	 records	with	 the	 same	key	value	 and,	 hence,	more
collisions.	The	risk	of	overflow	then	depends	on	the	average	number	of	records
sharing	the	same	search	key	value,	and	on	the	distribution	of	this	number.

The	 second	 main	 factor	 impacting	 the	 performance	 of	 random	 file
organization	 is	 the	 way	 in	 which	 overflow	 records	 are	 stored	 and	 retrieved,
known	 as	 the	 overflow-handling	 technique.	 There	 are	 different	 approaches
here,	 with	 overflow	 records	 being	 stored	 either	 in	 the	 primary	 area	 or	 in	 a
separate	overflow	area.	The	primary	area	is	the	address	space	that	also	contains
the	 non-overflow	 records;	 some	 techniques	 direct	 overflow	 records	 toward
partially	 empty	 buckets	 of	 the	 primary	 area.	 Other	 techniques	 use	 a	 separate
overflow	area	that	only	contains	overflow	records.	The	standard	key-to-address
algorithm	does	not	apply	in	the	overflow	area.

To	discuss	all	 techniques	would	be	 far	 too	much	detail,	but	 let’s	examine
the	 small	 example	 in	 Figure	 12.11	 that	 illustrates	 how	 the	 combination	 of	 an
inadequate	 transformation	 and	 inappropriate	 overflow	 handling	 may	 have	 a
negative	effect	on	retrieval	performance.	The	simplified	file	contains	18	records,
with	numeric	keys	12,	14,	15,	19,	etc.	There	are	ten	buckets,	with	a	bucket	size
of	four.	The	blocking	factor	 is	 two	and	each	bucket	spans	two	physical	blocks.
Suppose	 we	 use	 open	 addressing	 as	 a	 simple	 overflow-handling	 technique.
With	 open	 addressing,	 overflow	 records	 are	 stored	 in	 the	 primary	 area,	 more
particularly	 in	 the	 next	 free	 slot	 after	 the	 full	 bucket	 where	 the	 record	 would
normally	 have	 been	 stored	 according	 to	 the	 key-to-address	 transformation.	 A
“mod	 10”	 key-to-address	 transformation	 is	 used,	 yielding	 ten	 possible	 bucket
addresses.	The	resulting	key	distribution	is	far	from	uniform,	and	does	not	even
come	close	to	a	random	distribution,	resulting	in	bucket	5	being	overly	stacked,
whereas	 other	 buckets	 remain	 empty.	 Thus,	 despite	 the	 low	 loading	 factor	 of
0.45,	we	already	have	an	overflow	record.	Indeed,	the	record	with	key	35	would
normally	have	been	stored	in	bucket	5,	but	since	this	bucket	is	already	filled	with

other	 records	 (95,	125,	etc.),	 the	next	 free	 slot	 is	used,	 in	bucket	6.	Retrieving
record	 35	 now	 requires	 one	 random	 block	 access	 plus	 three	 sequential	 block
accesses,	whereas	 retrieving	 a	 non-overflow	 record	would	 require	 at	most	 one
sequential	 block	 access	 in	 addition	 to	 the	 random	 block	 access.	 So	 indeed,
overflow	has	a	negative	 impact	on	performance.	Moreover,	 so	 far	 record	35	 is
the	only	overflow	record,	but	if	more	records	are	added,	record	35	may	take	up
storage	 space	 of	 other	 records	 that	 would	 rightfully	 be	 directed	 to	 bucket	 6
according	to	the	key-to-address	transformation	(e.g.,	a	newly	added	record	86).
Consequently,	such	records	may	also	end	up	in	overflow,	resulting	in	a	domino
effect	 of	 more	 and	 more	 records	 being	 out	 of	 place	 and	 requiring	 additional
block	accesses	for	retrieval.

Figure	12.11	Impact	of	overflow	on	retrieval	performance.

An	 alternative	 overflow-handling	 technique	 is	 chaining.	 Here,	 overflow
records	 are	 stored	 in	 a	 separate	 overflow	 area,	 with	 subsequent	 records	 that
overflow	 from	 the	 same	 bucket	 being	 chained	 together	 by	 pointers.	 Such	 a
structure,	where	items	are	connected	sequentially	by	pointers,	is	called	a	linked
list.	It	can	be	used	in	several	contexts,	as	discussed	in	detail	in	Section	12.3.6.2.
In	 the	 context	 of	 hashing,	 linked	 lists	 can	 be	 used	 to	 access	 all	 records
overflowing	from	the	same	bucket	by	following	the	pointers	between	them.	The
advantage	is	that	they	do	not	clutter	the	primary	area,	and	therefore	cannot	cause

additional	 overflow.	 The	 downside	 is	 that	 accessing	 linked	 lists	 results	 in
additional	random	block	accesses.	Yet	another	overflow-handling	technique	is	to
use	a	 second	hashing	algorithm,	different	 to	 the	primary	one,	 to	determine	 the
location	of	overflow	records.

To	conclude	the	discussion	on	hashing,	it	is	important	to	note	that	so	far	we
have	 assumed	 that	 the	 number	 of	 records	 does	 not	 increase	 or	 decrease
significantly	 over	 time,	which	means	 the	 number	 of	 insertions	 is	more	 or	 less
equal	to	the	number	of	deletions.	If	the	number	of	records	decreases	over	time,
the	storage	capacity	will	not	be	used	efficiently	after	a	while.	Even	worse,	if	the
number	 of	 records	 increases,	 many	 buckets	 will	 be	 in	 overflow,	 resulting	 in
degrading	performance.	 In	both	cases,	 the	key-to-address	 transformation	 is	not
adequate	 anymore	 because	 of	 the	 changed	 number	 of	 records.	 A	 new
transformation	 must	 be	 chosen,	 and	 the	 entire	 file	 should	 be	 rearranged
according	 to	 the	 newly	 generated	 hash	 values.	 Luckily,	 several	 dynamic
hashing	techniques	exist	that	allow	for	a	file	to	shrink	or	grow	without	the	need
for	 it	 to	 be	 completely	 rearranged.	 It	 is	 beyond	 the	 scope	 of	 this	 overview	 to
discuss	these	techniques	in	detail.

12.3.5	Indexed	Sequential	File	Organization

While	 random	 file	 organization,	 if	 applied	 adequately,	 is	 probably	 the	 most
effective	technique	to	retrieve	individual	records	by	their	search	key	value,	it	is
very	inefficient	if	many	records	are	to	be	retrieved	in	a	certain	order	(e.g.,	sorted
according	to	that	same	key,	or	if	records	are	to	be	retrieved	according	to	a	range
of	 key	 values).	 For	 example,	 for	 retrieving	 all	 customers	 in	 order	 of	 their
customerID	 it	would	 be	 inadequate	 because	 all	 customer	 records	 are	 scattered
throughout	the	file	according	to	the	hashing	algorithm,	requiring	a	multitude	of
random	 block	 accesses.9	 In	 comparison,	 sequential	 file	 organization	would	 be
much	more	efficient	for	this	task,	since	all	records	are	already	ordered	according
to	customerID	and	just	need	to	be	retrieved	sequentially.	An	indexed	sequential
file	organization	method	reconciles	both	concerns:	in	many	situations,	it	is	only
marginally	less	efficient	in	directly	retrieving	individual	records	than	random	file
organization	 and	 it	 still	 allows	 for	 records	 to	 be	 stored	 in	 ascending	 or
descending	order	of	the	search	key,	to	cater	for	efficient	sequential	access.

12.3.5.1	Basic	Terminology	of	Indexes

Indexed	sequential	 file	organization	combines	 sequential	 file	organization	with
the	 use	 of	 one	 or	more	 indexes.	 To	 this	 end,	 the	 file	 is	 divided	 into	 different
intervals	or	partitions.	Each	 interval	 is	 represented	by	an	 index	entry,	 which
contains	 the	 search	 key	 value	 of	 the	 first	 record	 in	 the	 interval,	 as	 well	 as	 a
pointer	to	the	physical	position	of	the	first	record	in	the	interval.	Depending	on
the	case,	this	pointer	may	be	realized	as	a	block	pointer	or	a	record	pointer.	A
block	pointer	refers	to	the	physical	block	address	of	the	corresponding	record.	A
record	pointer	consists	of	the	combination	of	a	block	address	and	a	record	ID	or
offset	within	this	block	and	refers	 to	an	actual	record.	An	index	itself	 is	 then	a

sequential	file,	ordered	according	to	the	search	key	values.	The	index	consists	of
entries	with	the	following	format:

Index	entry	=	<search	key	value,	block	pointer	or	record	pointer>10

The	 search	 key	 can	 be	 atomic	 (e.g.,	 a	 customer	 ID)	 or	 composite	 (e.g.,	 the
combination	of	year	of	birth	and	gender).	In	the	case	of	composite	search	keys,
the	 key	 values	 in	 the	 index	 entries	 are	 composite	 as	 well	 (e.g.,	 <(1980,	 M),
pointer>;	 <(1976,	 F),	 pointer>).	 For	 simplicity,	 we	 use	 examples	 with	 atomic
keys	hereafter,	but	all	claims	are	valid	for	composite	keys	as	well.

In	addition,	we	discriminate	between	dense	indexes	and	sparse	indexes.	A
dense	index	has	an	index	entry	for	every	possible	value	of	the	search	key	that	it
indexes.	Therefore,	if	the	search	key	is	a	unique	key	(e.g.,	primary	key	or	other
candidate	key),	a	dense	index	has	an	index	entry	for	each	separate	record.	If	the
search	key	is	a	non-key	attribute	type	or	combination	of	attribute	types,	a	dense
index	has	an	index	entry	for	every	group	of	records	with	the	same	value	for	that
attribute	type(s).	A	sparse	index,	on	the	other	hand,	has	an	index	entry	for	only
some	of	the	search	key	values.	Each	entry	refers	to	a	group	of	records	and	there
are	 fewer	 index	 entries	 than	with	 a	 dense	 index.	 Dense	 indexes	 are	 generally
faster,	 but	 require	more	 storage	 space	 and	 are	more	 complex	 to	maintain	 than
sparse	indexes.

With	an	indexed	sequential	file	organization,	both	sequential	access,	based
on	the	physical	order	of	the	records,	and	random	access,	based	on	the	index,	are
supported.	Different	configurations,	with	one	or	more	index	levels,	are	possible.
We	discuss	the	most	typical	examples	in	the	following	subsections.

12.3.5.2	Primary	Indexes

With	primary	 index	 file	organization,	 the	data	 file	 is	ordered	on	a	unique	key
(this	can	be	a	primary	key	or	another	candidate	key)	and	an	index	is	defined	over
this	 unique	 search	 key.	 For	 now,	 we	 work	 with	 only	 a	 single	 index	 level	 –
multilevel	 indexes	 are	 covered	 in	 Section	 12.3.5.4.	 An	 example	 is	 given	 in
Figure	 12.12.	 It	 depicts	 a	 file	 with	 intervals	 of	 four	 records.	 Each	 interval
corresponds	to	a	single	disk	block;	hence	the	blocking	factor	is	four.	The	records
are	ordered	according	to	the	primary	key	CustomerID.	For	each	interval,	there	is
an	 index	 entry,	 consisting	 of	 the	 key	 of	 the	 first	 record	 in	 the	 interval	 and	 a
pointer	referring	to	the	disk	block	that	contains	the	records	in	the	interval.	There
is	an	index	entry	for	each	disk	block,	and	not	for	each	key	value,	so	the	index	is
sparse.	 To	 retrieve	 a	 record	 according	 to	 the	 required	 key	 value,	 say	 12111,	 a
binary	 search	 is	 executed	on	 the	 index	 to	 retrieve	 the	pointer	 to	 the	block	 that
should	contain	the	corresponding	record,	at	least	if	it	is	present	in	the	file.	This	is
the	 third	block	 in	 the	example.	 In	 this	way,	 instead	of	 searching	 the	entire	 file
with	data	records,	only	the	index	and	a	single	block	of	the	actual	data	file	need	to
be	accessed;	either	the	record	is	found	in	that	block,	or	it	isn’t	present	in	the	file.
Additionally,	 the	 index	entries	are	much	smaller	 than	 the	actual	stored	records.
This	means	an	index	file	occupies	considerably	fewer	disk	blocks	than	the	data
file	and	can	be	searched	much	quicker.

Figure	12.12	Example	of	primary	index.

The	expected	number	of	block	accesses	to	retrieve	a	single	record	using	a
primary	 index	 amounts	 to	 log2(NBLKI)	 random	 block	 accesses	 for	 a	 binary
search	on	the	index,	with	NBLKI	representing	the	number	of	blocks	in	the	index.
One	 additional	 random	 block	 access	 is	 needed	 to	 retrieve	 the	 actual	 record,
assuming	the	intervals	correspond	to	individual	disk	blocks.	We	summarize	the
required	block	accesses	for	respectively	linear	search,	binary	search,	and	indexed
search	in	Table	12.2.

Table	12.2	Required	block	accesses	for	linear	search,	binary	search,	and	index-
based	search

Linear	search NBLK	sba

Binary	search log2(NBLK)	rba

Index-based	search log2(NBLKI)	+	1	rba,	with
NBLKI	<<	NBLK

Let’s	 apply	 this	 to	 the	 same	 example	 as	 the	 one	 used	 for	 sequential	 file
organization	 (i.e.,	 a	 file	 consisting	 of	 1500	 blocks	 and	 a	 block	 size	 of	 2048
bytes).	 Remember	 that	 the	 expected	 number	 of	 block	 accesses	 to	 retrieve	 an
individual	record	by	means	of	a	linear	search	amounted	to	750	sequential	block
accesses,	whereas	a	binary	search	on	the	data	file	required	only	11	random	block
accesses.	 If	we	assume	index	entries	of	15	bytes	(e.g.,	a	key	of	10	bytes	and	a
block	 address	 of	 5	 bytes),	 then	 the	 blocking	 factor	 of	 the	 index	 is
	2048/15	=	136.	NBLKI	 is	 then	1500/136	=	12	blocks.	A	binary	search	on	 the
index	 requires	 log2(12)	 +	 1≈5	 random	 block	 accesses.	 Moreover,	 indexing

becomes	even	more	advantageous	in	comparison	to	pure	sequential	organization
as	the	file	sizes	grow	larger	than	the	one	in	the	rather	small	file	in	the	example.

On	 the	 other	 hand,	 if	 many	 records	 are	 to	 be	 retrieved,	 it	 may	 be	 more
efficient	 to	 process	 the	 entire	 file	 in	 a	 single	 run,	 requiring	 NBLK	 sequential
block	accesses,	rather	than	consecutively	searching	for	the	individual	records	by
means	 of	 the	 index,	 resulting	 in	 random	 block	 accesses.	 Also,	 note	 that	 the
previous	 remark	 regarding	 the	 complexity	 of	 updating	 a	 sequential	 file	 in
comparison	to	a	heap	file	also	holds	for	an	indexed	sequential	file.	Moreover,	we
now	have	the	added	complexity	that	the	index	itself	is	a	sequential	file	as	well,
which	needs	to	be	updated	along	with	insertions	and	deletions	in	the	actual	data
file.

12.3.5.3	Clustered	Indexes

A	 clustered	 index	 is	 similar	 to	 a	 primary	 index,	 with	 the	 difference	 that	 the
ordering	criterion	and	therefore	the	search	key	is	a	non-key	attribute	type	or	set
of	 attribute	 types,	 instead	 of	 a	 primary	 or	 candidate	 key.	 Consequently,	 the
search	key	values	do	not	uniquely	 identify	 a	 single	 record.11	Each	 index	entry
consists	 of	 a	 search	 key	 value,	 as	 well	 as	 the	 address	 of	 the	 first	 block	 that
contains	records	with	this	key	value	(see	Figure	12.13).	If	there	is	an	index	entry
for	each	unique	value	of	the	search	key,	the	index	is	dense.	If	only	some	search
key	values	are	 indexed,	 the	 index	 is	 sparse.	The	 search	process	 is	 the	 same	as
with	 a	 primary	 index,	 except	 additional	 sequential	 block	 accesses	 may	 be
required	 after	 the	 first	 random	 block	 access	 to	 the	 data	 file,	 to	 retrieve	 all
subsequent	records	with	the	same	search	key	value.	In	the	example,	a	clustered
index	 is	 defined	 over	 the	 search	 key	 “Country”.	A	 search	 for	 all	 records	with
“UK”	 as	 the	 value	 for	 Country	 requires	 random	 block	 accesses	 to	 search	 the
index	 and	 retrieve	 the	 second	 block	 in	 the	 file,	 which	 is	 the	 first	 to	 contain

customers	from	the	UK.	In	addition,	a	sequential	block	access	to	the	third	block
is	required,	which	contains	UK	customers	as	well.

Figure	12.13	Example	of	clustered	index.

Just	like	primary	indexes,	clustered	indexes	have	the	additional	complexity
of	keeping	the	index	up	to	date	if	records	in	the	data	file	are	inserted	or	deleted,
or	if	their	search	key	value	is	updated	(e.g.,	a	customer	moves	from	Belgium	to
France).	A	frequently	used	variation	 is	 to	start	a	new	block	 in	 the	data	 file	 for
every	new	value	of	the	search	key.	This	is	less	efficient	in	terms	of	storage	space,
as	many	blocks	will	not	be	filled	up	entirely.	On	the	other	hand,	it	alleviates	the
maintenance	problem	to	an	extent	because	there	is	room	to	add	records	with	the
same	 key	 value	 to	 a	 block	 without	 reorganizing	 the	 data	 file	 or	 the	 index.
Another	option	to	avoid	too	frequent	file	reorganization,	which	is	also	applicable
to	 primary	 indexes,	 is	 to	 provide	 a	 separate	 overflow	 section	 for	 records	 that
cannot	 be	 stored	 in	 the	 appropriate	 position	 in	 the	 regular	 sequential	 file.
However,	 as	 with	 random	 file	 organization,	 records	 being	 positioned	 on	 a
different	 location	 than	where	 they	were	 initially	 expected	 results	 in	 additional
block	accesses,	which	has	a	negative	impact	on	performance.

12.3.5.4	Multilevel	Indexes

Indexing	 is	 an	 adequate	way	 to	 preserve	 efficient	 record	 access	 for	 larger	 file
sizes,	 but	 at	 some	 point	 the	 index	 itself	 may	 grow	 too	 large	 to	 be	 searched
efficiently.	In	that	case,	one	may	need	to	introduce	a	higher-level	index.	Creating
an	 index-to-an-index	 results	 in	 multilevel	 indexes.	 In	 practice,	 many	 index
levels	may	occur;	we	 illustrate	 the	case	with	 two	 index	 levels	 in	Figure	12.14.
Each	 index	 is	 searched	 according	 to	 a	 binary	 search,	 yielding	 a	 pointer	 to	 the
appropriate	 block	 in	 the	 lower-level	 index.	 The	 lowest-level	 index	 yields	 a
pointer	to	the	appropriate	block	in	the	data	file.	In	the	case	of	a	primary	index,
all	block	accesses	are	random	block	accesses.	With	a	clustered	index,	additional
sequential	 block	 accesses	 on	 the	 data	 file	 may	 be	 called	 for	 to	 retrieve
subsequent	 records	 with	 the	 same	 search	 key	 value.	 Note	 that	 the	 number	 of
random	block	accesses	on	 the	higher-level	 indexes	 remains	 limited,	 since	 they
are	sparse	indexes	and	can	be	kept	limited	in	size	thanks	to	the	multiple	levels.
In	 addition,	 higher-level	 indexes	 can	 often	 be	 kept	 and	 searched	 in-memory,
resulting	in	even	more	efficient	processing.

Figure	12.14	Example	of	multilevel	index.

To	conclude,	it	needs	to	be	stressed	that	there	is	only	one	way	to	physically
order	a	file,	unless	the	file	is	duplicated.	A	primary	index	and	clustered	index	can

never	 occur	 together	 for	 the	 same	 file	 and	 it	 is	 important	 to	 choose	 the	most
appropriate	index	to	base	the	physical	ordering	of	the	records	on.	Nevertheless,
in	 addition	 to	 a	 primary	 index	 or	 a	 clustered	 index,	 it	 is	 possible	 to	 create
additional	 indexes	 over	 other	 search	 keys.	These	 are	 called	 secondary	 indexes
and	 have	 no	 impact	 on	 the	 physical	 ordering	 of	 the	 records,	 but	 do	 allow
speeding	 up	 retrieval	 according	 to	 criteria	 other	 than	 the	 one	 used	 for	 the
primary	file	organization.	The	use	of	 indexes	for	secondary	file	organization	 is
discussed	in	Section	12.3.7.	Also,	all	remarks	made	with	respect	to	maintenance
of	 indexes	are	even	more	pertinent	 in	 the	case	of	multiple	 index	 levels.	As	we
will	 see	 in	 Section	 12.3.8,	 B-trees	 and	 B+-trees	 provide	 a	 more	 flexible
mechanism	 in	 terms	 of	 keeping	 the	 index	 up	 to	 date	 without	 the	 need	 to
frequently	restructure	the	index	files.

12.3.6	List	Data	Organization	(Linear	and	Nonlinear	Lists)

This	section	provides	a	brief	overview	of	several	techniques	under	the	common
denominator	 “list	 data	 organization	 methods”.	 These	 techniques	 are	 used	 in
different	 contexts,	 first	 as	 a	 main	 organization	 method,	 but	 also	 to	 organize
overflow	records	or	indexes.	This	section	overviews	the	general	concepts;	some
important	elements	were	or	will	be	treated	in	more	detail	in	other	sections	of	this
chapter.

A	 list	 can	 be	 defined	 as	 an	 ordered	 set	 of	 elements.	 If	 each	 element	 has
exactly	one	successor,	except	for	 the	 last	element	 in	 the	 list,	we	call	 it	a	 linear
list.	A	 linear	 list	 can	 be	 used	 to	 represent	 sequential	 data	 structures.	All	 other
types	of	lists	are	called	nonlinear	lists.	These	can	be	used	to	represent	tree	data
structures	and	other	types	of	directed	graphs.

In	what	 follows,	we	only	 focus	on	 the	use	of	 lists	 to	 represent	 sequential
data	structures	and	tree	data	structures.	In	both,	the	ordering	can	be	represented
by	 means	 of	 either	 physical	 contiguity	 of	 the	 data	 records	 or	 by	 means	 of
pointers.

12.3.6.1	Linear	Lists

A	linear	list	embodies	a	sequential	data	structure	and	can	be	represented	in	two
ways.	 If	 the	 logical	 ordering	of	 the	 records	 is	 expressed	by	means	of	 physical
contiguity,	we	have	the	sequential	file	organization	method	already	discussed	in
this	 chapter.	 If,	 on	 the	 other	 hand,	 the	 logical	 ordering	 of	 the	 records	 is
represented	physically	by	means	of	pointers,	we	speak	of	a	linked	list.

The	simplest	linked	list	method	is	the	one-way	linked	list.	In	this	method,
records	are	physically	stored	in	an	arbitrary	order,	or	sorted	according	to	another
search	 key.	 A	 logical	 sequential	 ordering	 is	 then	 represented	 by	 means	 of

pointers,	with	each	record	containing	a	“next”	pointer	to	the	physical	location	of
its	logical	successor.	The	pointers	are	embedded	as	additional	fields	in	the	stored
records.	To	process	 the	 list,	 the	 first	 record	 is	 retrieved,	 the	pointer	 to	 the	next
record	is	followed	and	so	on,	until	a	record	is	reached	that	contains	an	end-of-list
indicator	 instead	 of	 a	 “next”	 pointer.	 The	 one-way	 linked	 list	 is	 illustrated	 in
Figure	12.15.	 The	 physical	 addresses	 are	 represented	 by	 numbers	 (10,	 11,	 12,
etc.).	 The	 search	 keys	 that	 determine	 the	 logical	 ordering	 of	 the	 records	 are
represented	 by	 letters	 (A,	 B,	 C,	 etc.).	 As	 can	 be	 seen,	 each	 record	 contains	 a
pointer	to	its	logical	successor;	the	logical	order	is	independent	from	the	physical
ordering	 of	 the	 records.	 The	 end-of-list	 is	 indicated	 by	 an	 asterisk	 (*).
Alternatively,	the	last	record	may	contain	a	pointer	that	points	back	to	the	head
of	the	list,	such	that	the	list	can	be	processed	from	any	starting	position.	Linked
lists	make	it	possible	to	define	one	or	more	logical	orderings	over	the	same	set	of
records,	 independently	of	 their	physical	ordering.	They	are	often	used	 to	chain
overflow	records	together.

Figure	12.15	Example	of	a	one-way	linked	list.

A	possible	disadvantage	of	 the	above	approach	 is	 that	all	 records	must	be
retrieved,	even	if	only	part	of	the	list	needs	to	be	processed,	because	the	pointers
to	 navigate	 the	 list	 are	 embedded	 in	 the	 records.	An	 alternative	 is	 to	 store	 the
pointers	 separately	 in	 a	directory	 (not	 to	be	 confused	with	directories	 in	 a	 file
system).	 A	 directory	 (Figure	 12.16)	 is	 a	 file	 that	 defines	 the	 relationships
between	 the	 records	 in	another	 file.	As	 the	pointers	 are	much	 smaller	 than	 the
actual	data	 records,	by	storing	 them	in	a	separate	 file	navigating	 them	requires

fewer	block	accesses	and,	hence,	less	time.	Also,	adding,	updating,	and	deleting
pointers	is	much	easier	in	a	separate	file.

Figure	12.16	Example	of	a	directory.

Another	 variant	 is	 to	 combine	 a	 linked	 list	with	 indexed	 addressing.	 The
records	are	distributed	into	intervals,	with	each	interval	being	represented	by	an
index	 entry.	 The	 index	 allows	 for	 directly	 accessing	 the	 first	 record	 of	 an
interval,	without	passing	through	all	the	records	in	previous	intervals	(see	Figure
12.17).

Figure	12.17	Example	of	linked	list	with	index.

To	calculate	the	expected	retrieval	time	of	a	linked	list,	we	can	use	the	same
formulas	we	used	for	sequential	file	organization.	The	only	difference	is	that	all
block	accesses	are	random	block	accesses,	since	the	logical	successor	of	a	record
is	no	longer	physically	adjacent	to	its	predecessor.	Also,	the	impact	of	blocking
is	 limited	 to	 non-existent,	 since	 the	 chance	 that	 logically	 related	 records	 are

stored	 physically	 in	 the	 same	 block	 is	 quite	 small.	Without	 discussing	 this	 in
detail,	 it	 is	worth	noting	that	also	the	insertion	and	deletion	of	records	requires
quite	 some	 manipulation,	 including	 the	 updating	 of	 pointers	 to	 preserve	 the
logical	 ordering.	 It	 is	 very	 common	 to	not	 actually	delete	 a	 record,	 but	 to	 just
flag	it	as	“deleted”	to	avoid	part	of	this	manipulation.	This	comes	at	the	cost	of
storage	space,	because	no	space	is	released	upon	record	deletion.

Two	disadvantages	of	a	one-way	linked	 list	are	 the	 inability	 to	return	 to	a
record’s	predecessor	in	an	efficient	way	and	the	fact	that,	if	one	of	the	pointers	is
lost	or	damaged,	 the	 logical	 sequence	of	 the	 list	cannot	be	 reconstructed.	Both
disadvantages	are	resolved	with	the	two-way	linked	list	method.	 In	a	 two-way
linked	 list,	 each	 record	 contains	 a	 “prior”	 pointer	 as	 well	 as	 a	 “next”	 pointer
(Figure	 12.18).	 In	 this	 way,	 the	 list	 can	 be	 processed	 efficiently	 in	 both
directions.	Moreover,	the	“prior”	pointers	add	a	measure	of	redundancy	that	can
be	 exploited	 to	 reconstruct	 the	 logical	 ordering	 if	 a	 pointer	 in	 the	 “other”
direction	is	lost	or	damaged.	Just	like	with	the	one-way	linked	list,	a	variant	with
a	directory	or	an	index	is	also	possible.

Figure	12.18	Example	of	two-way	linked	list.

12.3.6.2	Tree	Data	Structures

A	tree	consists	of	a	set	of	nodes	and	edges	with	the	following	properties:

There	is	exactly	one	root	node.

Tree	data	structures	are	relevant	in	several	ways.	First,	they	may	provide	a
physical	 representation	of	 a	 logical	hierarchy	or	 tree	 structure.	Examples	 are	 a
hierarchy	of	employees,	where	all	nodes	in	the	tree	then	represent	a	similar	kind
of	real-world	entity,	or	the	hierarchical	relationships	between	suppliers,	purchase
orders,	 and	 purchase	 order	 lines,	 where	 the	 nodes	 in	 the	 tree	 now	 represent
different	 kinds	 of	 real-world	 entities.	 A	 second,	 and	 even	 more	 important,
application	of	tree	data	structures	is	when	they	do	not	correspond	to	the	physical
representation	 of	 a	 logical	 hierarchy,	 but	when	 they	 provide	 a	 purely	 physical
index	structure	to	speed	up	the	search	and	retrieval	of	records	by	navigating	the
interconnected	nodes	of	 the	 tree.	We	denote	 this	 type	of	 tree	structure	with	 the

Every	node,	except	for	the	root,	has	exactly	one	parent	node.

Every	node	has	zero,	one,	or	more	children	or	child	nodes.

Nodes	with	the	same	parent	node	are	called	siblings.

All	children,	children-of-children,	etc.	of	a	node	are	called	the	node’s
descendants.

A	node	without	children	is	called	a	leaf	node.

The	tree	structure	consisting	of	a	non-root	node	and	all	of	its	descendants
is	called	a	subtree	of	the	original	tree.

The	nodes	are	distributed	in	levels,	representing	the	distance	from	the
root.	The	root	node	has	level	0;	the	level	of	a	child	node	is	equal	to	the
level	of	its	parent	plus	1.	All	siblings	have	the	same	level.

A	tree	where	all	leaf	nodes	are	at	the	same	level	is	called	balanced.	In
that	case,	the	path	from	the	root	node	to	any	leaf	node	has	the	same
length.	If	leaf	nodes	occur	at	different	levels,	the	tree	is	said	to	be
unbalanced.

general	term	search	tree.	The	most	well-known	representatives	of	this	class	are
the	B-tree	and	B+-tree,	which	are	dealt	with	in	more	detail	in	Section	12.3.8.

In	what	follows,	we	overview	the	general	aspects	of	tree	data	structures.	A
first	 way	 to	 implement	 them	 is	 by	 means	 of	 physical	 contiguity,	 where	 the
physical	position	of	the	records,	along	with	additional	information,	expresses	the
tree	 structure.	 The	 tree	 nodes	 are	 typically	 stored	 in	 a	 “top–down–left–right”
sequence:	first	the	root,	then	the	root’s	first	child,	then	the	child’s	first	child	if	it
exists,	etc.	If	a	node	has	no	more	children,	its	next	sibling	(from	left	to	right)	is
stored.	If	a	node	has	no	more	siblings,	its	parent’s	next	sibling	is	stored.	In	order
to	 reconstruct	 the	 tree	 structure,	 each	 node’s	 level	 needs	 to	 be	 included
explicitly,	 because	 the	 physical	 contiguity	 of	 two	 nodes	 does	 not	 discriminate
between	a	parent–child	and	sibling–sibling	relationship.	Figure	12.19	 illustrates
how	 a	 logical	 tree	 structure	 is	 represented	 physically	 in	 this	 way.	 The	 letters
represent	 the	 record	 keys,	 the	 numbers	 denote	 the	 level	 in	 the	 tree	 for	 the
physical	records.	Such	a	representation	is	only	navigable	in	a	sequential	way.	For
example,	 it	 is	not	possible	 to	directly	navigate	from	node	B	to	node	C	without
passing	through	all	of	B’s	descendants.

Figure	12.19	Example	of	tree	structure	represented	as	a	physically	contiguous
list.

A	 linked	 list	 can	also	be	used	 to	 represent	 a	 tree	 structure.	Here,	physical
contiguity	is	complemented	with	pointers	to	improve	navigability.	The	nodes	are
stored	 in	 the	 same	 physical	 sequence	 as	 described	 previously	 but,	 in	 addition,
each	node	has	a	pointer	to	its	next	sibling,	if	the	latter	exists.	This	is	illustrated	in
Figure	12.20.	 In	 this	way,	both	parent–child	 and	 sibling–sibling	navigation	 are
supported,	 respectively	 by	 accessing	 the	 physically	 subsequent	 record	 and
following	 the	 pointer.	 Also,	 there	 is	 no	 need	 to	 store	 each	 node’s	 level:	 this
information	 can	be	 inferred	 from	 the	physical	 positions	 and	 the	pointers.	Still,
for	 reasons	 of	 efficiency,	 a	 single	 bit	 is	 often	 added	 to	 each	 node,	 indicating
whether	the	node	is	a	leaf	node	(bit	=	0)	or	not	(bit	=	1).

Figure	12.20	Example	of	tree	structure	represented	as	a	linked	list.

Many	 variations	 of	 the	 above	 exist,	 where	 the	 physical	 ordering	 of	 the
nodes	can	be	kept	entirely	independent	from	the	tree	structure;	both	parent–child
and	 sibling–sibling	 relations	 are	 represented	 by	 pointers	 (Figure	 12.21a).	 In
some	 cases,	 other	 pointers	 (e.g.,	 child–parent	 pointers,	 Figure	 12.21b)	 are
included	as	well,	to	accommodate	for	navigability	in	all	directions	of	the	tree.

Figure	12.21	Alternative	formats	to	represent	tree	structures	with	pointers.

12.3.7	Secondary	Indexes	and	Inverted	Files

The	 previous	 sections	 described	 different	 techniques	 for	 primary	 file
organization	aimed	at	organizing	records	physically	in	such	a	way	that	they	can
be	 retrieved	 efficiently	 according	 to	 a	particular	 search	key.	However,	 in	most
contexts,	access	to	the	same	dataset	might	occur	according	to	different	criteria	or
search	keys.	Only	one	of	these	can	be	used	as	a	basis	for	physically	ordering	the
data,	 unless	multiple	 copies	 of	 the	 same	 file	 are	 held,	 with	 different	 ordering
criteria,	which	is	obviously	not	efficient	in	terms	of	storage	space.	For	example,
the	 aforementioned	 Customers	 dataset	 could	 be	 queried	 according	 to	 both	 the
unique	 CustomerID	 or	 the	 non-unique	 Country.	 The	 data	 are	 either	 ordered
according	to	CustomerID	(resulting	in	a	primary	index	on	this	attribute	type)	or
according	 to	 Country	 (resulting	 in	 a	 clustered	 index	 on	 Country).	 Yet,
complementary	 techniques	 are	 needed	 to	 speed	up	 access	 to	 data	 according	 to
those	search	keys	that	had	no	impact	on	the	physical	ordering	of	the	data.	These
techniques,	 which	 we	 refer	 to	 as	 secondary	 file	 organization,	 always	 involve
indexes,	called	secondary	indexes.

12.3.7.1	Characteristics	of	Secondary	Indexes

In	contrast	to	a	primary	index	or	a	clustered	index,	a	secondary	index	is	based	on
an	attribute	type	or	set	of	attribute	types	that	is/are	not	used	as	ordering	criteria
of	the	actual	data	file.	There	can	only	be	a	single	primary	or	clustered	index	for	a
data	 file,	 but	 in	 addition	 there	 can	 be	 several	 secondary	 indexes.	 Secondary
indexes	 can	 also	be	 combined	with	other	primary	 file	organization	 techniques,
such	as	random	file	organization	or	heap	files.

A	secondary	index’s	search	key	can	be	atomic	or	composite,	consisting	of
multiple	attribute	types.	It	can	be	either	a	primary	key	or	other	candidate	key,	or

a	non-key	attribute	type	or	combination	of	attribute	types.	In	the	former	case,	the
search	 key	 uniquely	 identifies	 a	 single	 record.	 In	 the	 latter	 case,	 it	 yields
selection	criteria	to	retrieve	zero,	one,	or	more	records.	The	index	itself	is	again
a	sequential	file	that	can	be	searched	by	means	of	the	binary	search	technique.

Overall,	 the	 index	 entries	 have	 the	 following	 format:	 <key	 value,	 record
pointer,	or	block	pointer>.	If	the	search	key	is	unique	(i.e.,	it	is	a	primary	key	or
a	candidate	key),	there	is	one	index	entry	for	each	key	value,	and	hence	record,
in	 the	 data	 file.	 The	 index,	 therefore,	 is	 dense.12	 Each	 entry	 contains	 the	 key
value	and	a	pointer	to	the	record	or	block	with	this	key	value	(Figure	12.22).

Figure	12.22	Example	of	secondary	index.

If	the	search	key	is	non-unique,	multiple	records	correspond	to	a	particular
key	value.	 In	 that	 case,	 there	 are	 several	 possibilities.	One	option	 is	 to	 have	 a
dense	index,	with	an	index	entry	for	each	record	and	thus	multiple	entries	with
the	 same	 key	 value.	 A	 more	 commonly	 used	 alternative	 is	 to	 add	 a	 level	 of
indirection,	with	each	index	entry	referring	to	a	separate	block	that	contains	all
pointers	 to	 records	 with	 the	 corresponding	 search	 key	 value.	 In	 that	 case,	 we
speak	of	an	inverted	file,	as	discussed	in	the	next	section.	Also,	as	was	the	case
with	primary	and	clustered	indexes,	additional	index	levels	can	be	created	on	top

of	a	lowest-level	secondary	index,	resulting	in	a	multilevel	index.	We	come	back
to	multilevel	 indexes	 later	 in	 this	 chapter,	when	we	deal	with	B-trees	 and	B+-
trees	(Section	12.3.8).

Before	 continuing,	 let’s	 assess	 the	 pros	 and	 cons	 of	 secondary	 indexes.
They	are	additional	constructs	 that	need	 to	be	updated	 if	 the	data	 file	changes,
but	the	performance	increase	they	offer	may	be	even	bigger	than	with	primary	or
clustered	 indexes.	 Indeed,	because	 the	data	 file	 is	not	ordered	according	 to	 the
search	key	of	 a	 secondary	 index,	 it	would	not	be	possible	 to	 conduct	 a	binary
search	on	the	data	file	itself,	and	a	full	linear	search	of	the	file	would	be	required
if	a	secondary	index	was	not	available.

For	example,	 let’s	explore	once	more	 the	 sample	 file	with	30,000	 records
and	1500	blocks,	which	we	introduced	earlier.	Suppose	we	are	using	a	secondary
index,	 defined	 over	 a	 unique	 search	 key.	 The	 index	 contains	 30,000	 index
entries,	one	 for	each	search	key	value.	 If	we	assume	an	 index	entry	size	of	15
bytes,	the	blocking	factor	of	the	index	is	again	136.	In	that	case,	NBLKI	equals
30,	000/136	=	221	blocks.	The	expected	number	of	block	accesses	to	retrieve	a
record	 by	 means	 of	 the	 secondary	 index	 then	 amounts	 to	 log2(221)	 +	 1≈9
random	block	accesses.	Without	a	secondary	index,	it	would	take	a	full	file	scan,
hence	 on	 average	 1500/2	 =	 750	 sequential	 block	 accesses,	 to	 find	 a	 record
according	to	the	search	key.

12.3.7.2	Inverted	Files

As	 discussed	 in	 the	 previous	 section,	 an	 inverted	 file	 defines	 an	 index	 over	 a
non-unique,	non-ordering	search	key	of	a	dataset.	There	 is	one	 index	entry	per
key	value	and	hence	each	entry	may	refer	to	multiple	records	with	that	same	key
value.	The	index	entries	have	the	following	format:	<key	value,	block	address>.

The	block	address	refers	to	a	block	containing	record	pointers	or	block	pointers
to	all	records	with	that	particular	key	value.	This	is	illustrated	in	Figure	12.23.

Figure	12.23	Example	of	inverted	file.

In	comparison	to	the	previous	calculations	with	respect	to	index	usage,	this
approach	requires	an	additional	random	block	access	to	the	block	with	pointers
to	 records	 that	 correspond	 to	 an	 index	 entry.	 However,	 it	 allows	 avoiding	 the
creation	of	a	large,	dense	index.	Also,	as	discussed	in	the	next	chapter,	queries
that	 involve	multiple	 attribute	 types	 can	 be	 executed	 efficiently	 by	 taking	 the
intersection	of	the	blocks	with	pointers	corresponding	to	an	individual	attribute
type.	For	example,	if	two	indexes	exist,	one	on	Country	and	one	on	Gender,	then
all	males	living	in	the	UK	can	be	retrieved	by	taking	the	intersection	between	the
block	with	“UK”	pointers	and	the	block	with	“male”	pointers.	The	resulting	set
of	pointers	refers	to	data	rows	with	a	“UK”	value	for	Country	and	an	“M”	value
for	Gender.

12.3.7.3	Multicolumn	Indexes

The	previous	sections	stated	that	a	search	key	can	be	either	atomic	or	composite,
and	 that	 the	 same	 indexing	 principles	 pertain	 to	 both	 atomic	 and	 composite
search	keys.	In	 this	section	we	show	an	example	of	an	index	over	a	composite

search	key,	resulting	in	a	so-called	multicolumn	index.	If	certain	combinations	of
attribute	types	are	often	used	together	in	a	query,	it	can	be	advantageous	to	create
a	multicolumn	index	over	these	attribute	types,	to	speed	up	retrieval	according	to
combinations	of	their	values.	This	principle	can	be	applied	to	primary,	clustered,
and	secondary	 indexes.	 In	 the	case	of	a	secondary	 index,	 if	 the	composition	of
the	indexed	attribute	types	is	not	a	primary	key	nor	a	candidate	key,	the	inverted
file	approach	can	be	used,	as	discussed	 in	 the	previous	section.	An	example	 is
given	 in	 Figure	 12.24.	 The	 search	 key	 consists	 of	 the	 Country	 and	 Gender
attribute	 types,	 and	 all	 index	 entries	 consist	 of	 combinations	 of	 (Country,
Gender)	values.	Since	the	combination	is	non-unique	and	since	the	data	records
are	 not	 sorted	 according	 to	 the	 search	 key,	 the	 inverted	 file	 approach	 is	 used,
with	 intermediate	 blocks	 containing	 all	 pointers	 to	 data	 records	with	 a	 certain
(Country,	Gender)	combination.

Figure	12.24	Example	of	multicolumn	index.

Note	 that	 the	 index	can	be	used	 to	efficiently	 retrieve	all	 records	with	 the
desired	 (Country,	 Gender)	 values.	 For	 the	 rows	 depicted	 in	 the	 example,	 all
males	 living	 in	 the	UK	 can	 be	 retrieved	with	 a	 binary	 search	 on	 the	 index,	 a
random	block	access	to	the	appropriate	block	with	pointers	and	two	more	block
accesses	to	the	data	file,	according	to	these	pointers.

Also,	all	people	 living	 in	a	certain	country,	 regardless	of	 their	gender,	can
be	retrieved	efficiently,	since	all	index	entries	pertaining	to	the	same	country	are
adjacent.	For	example,	retrieving	all	persons	(male	and	female)	living	in	the	UK
requires	 a	 binary	 search	 on	 the	 index,	 followed	 by	 two	 block	 accesses	 to	 the
blocks	with	pointers	(one	for	males	and	one	for	females)	and	three	more	block
accesses	 to	 the	 data	 file,	 according	 to	 these	 pointers.	 However,	 retrieving	 all
males	regardless	of	the	country	will	not	be	so	efficient,	since	all	index	entries	for
people	with	the	same	gender	are	scattered	throughout	the	index.	A	binary	search
is	 not	 possible,	 so	 the	 entire	 index	 has	 to	 be	 scanned	 linearly.	 This	 is	 a
consequence	 of	 the	 way	 in	 which	 multicolumn	 indexes	 are	 sorted,	 with	 the
attribute	 types	 in	 rightmost	 columns	 taking	 on	 all	 their	 consecutive	 values,
whereas	the	values	in	the	leftmost	columns	are	kept	stable.	Using	a	multicolumn
index	to	retrieve	data	according	to	a	search	key	that	involves	only	a	subset	of	the
index’s	columns	 is	 therefore	mainly	efficient	 if	 the	 leftmost	 index	columns	are
used.

12.3.7.4	Other	Index	Types

Many	database	vendors	also	introduced	other	types	of	indexes,	to	accommodate
specific	purposes	or	data	 retrieval	 tasks.	For	 example,	hash	 indexes	 provide	 a
secondary	 file	 organization	 method	 that	 combines	 hashing	 with	 indexed
retrieval.	 The	 index	 entries	 have	 the	 same	 format	 as	 in	 a	 normal	 secondary
index;	they	consist	of	<key	value,	pointer>	pairs.	Yet,	the	index	is	organized	not
as	a	sequential	file,	but	as	a	hash	file.	Applying	the	hash	function	to	the	search
key	yields	 the	 index	block	where	 the	corresponding	 index	entry	can	be	 found.
Based	on	the	pointer	in	this	entry,	the	actual	record(s)	can	be	retrieved.

Another	index	type	worth	mentioning	is	the	bitmap	index.	Bitmap	indexes
are	mostly	efficient	for	attribute	types	with	only	a	limited	set	of	possible	values.

Instead	of	 these	values,	bitmap	indexes	contain	a	row	ID	and	a	series	of	bits	–
one	bit	for	each	possible	value	of	the	indexed	attribute	type.	For	each	entry,	the
bit	position	that	corresponds	to	the	actual	value	for	the	row	at	hand	is	set	 to	1.
The	 row	 IDs	 can	 be	 mapped	 to	 record	 pointers.	 Bitmap	 indexes	 for	 the
“Country”	 and	 “Gender”	 attribute	 types	 from	 Figure	 12.24	 are	 represented	 in
Figure	12.25.

Figure	12.25	Example	of	bitmap	indexes.

When	looked	at	vertically,	each	column	can	be	considered	as	a	bitmap	or	bit
vector	 indicating	 which	 tuples	 have	 the	 values	 indicated	 by	 the	 column.	 By
applying	 Boolean	 operations	 to	 bit	 vectors	 from	 multiple	 bitmap	 indexes,	 it
becomes	 very	 efficient	 to	 identify	 records	 that	 satisfy	 certain	 criteria,	 such	 as
male	customers	that	live	in	the	UK.	For	attribute	types	with	a	limited	number	of
different	 values,	 bitmap	 indexes	 can	 be	 stored	 efficiently	 by	 means	 of
compression	techniques.

A	final	example	of	a	specific	index	type	is	the	join	index	as	supported	by
some	RDBMSs.	The	latter	is	a	multicolumn	index	that	combines	attribute	types
from	two	or	more	tables	in	such	a	way	that	it	contains	the	precalculated	result	of
a	 join	 between	 these	 tables.	 In	 this	 way,	 join	 queries	 can	 be	 executed	 very
efficiently.

12.3.8	B-Trees	and	B+-Trees

B-trees	 and	 B+-trees	 are	 tree-structured	 index	 types	 that	 are	 heavily	 used	 in
many	 commercial	 database	 products.	 Before	 discussing	 them	 in	 detail,	 we
position	them	in	the	general	context	of	multilevel	indexes	and	search	trees.

12.3.8.1	Multilevel	Indexes	Revisited

As	discussed	previously,	multilevel	indexes	are	very	useful	for	speeding	up	data
access	 if	 the	 lowest-level	 index	 itself	 becomes	 too	 large	 to	 be	 searched
efficiently.	 An	 index	 can	 be	 considered	 as	 a	 sequential	 file	 and	 building	 an
index-to-the-index	improves	 the	access	 to	 this	sequential	 file.	This	higher-level
index	is,	again,	a	sequential	file	to	which	an	index	can	be	built	and	so	on.	This
principle	 can	 be	 applied	 to	 primary,	 clustering,	 and	 secondary	 indexes.	 The
lowest-level	 index	 entries	 may	 contain	 pointers	 to	 disk	 blocks	 or	 individual
records.	Each	higher-level	index	contains	as	many	entries	as	there	are	blocks	in
the	 immediately	 lower-level	 index.	 Each	 index	 entry	 consists	 of	 a	 search	 key
value	and	a	reference	to	the	corresponding	block	in	the	lower-level	index.	Index
levels	can	be	added	until	the	highest-level	index	fits	entirely	within	a	single	disk
block.	In	this	context,	we	speak	of	a	first-level	index,	second-level	index,	third-
level	index,	etc.

The	 performance	 gain	 induced	 by	 higher-level	 indexes	 is	 because	 an
individual	 index	 is	 searched	 according	 to	 the	 binary	 search	 technique.	With	 a
binary	search	on	a	single	index,	the	search	interval,	consisting	of	disk	blocks,	is
reduced	 by	 a	 factor	 of	 two	 with	 every	 iteration	 and	 therefore	 it	 requires
approximately	 log2(NBLKI)	 random	 block	 accesses	 to	 search	 an	 index
consisting	of	NBLKI	blocks.	One	additional	 random	block	access	 is	needed	 to
the	actual	data	file.	With	a	multilevel	index,	the	search	interval	is	reduced	by	a

factor	BFI	with	every	 index	 level,	BFI	being	 the	blocking	 factor	of	 the	 index.
BFI	denotes	how	many	index	entries	fit	within	a	single	disk	block,	resulting	in	a
single	 entry	 for	 the	 higher-level	 index.	This	 reduction	 factor	 is	 also	 called	 the
fan-out	of	 the	 index.	Searching	a	data	file	according	to	a	multilevel	 index	then
requires	⌈logBFI(NBLKI)	+	2⌉	random	block	accesses,	with	NBLKI	denoting	the
number	of	blocks	in	the	first-level	index.	This	formula	can	be	derived	as	follows:

BFI	 is	 typically	 much	 higher	 than	 two,	 so	 using	 a	 multilevel	 index	 is	 more
efficient	than	a	binary	search	on	a	single-level	index.

Let’s	apply	these	insights	to	the	same	30,000	records	sample	file.	Suppose
we	 retain	 the	 lowest-level	 index	 from	 the	 secondary	 index	 example	 (i.e.,	 a
secondary	index	over	a	unique	search	key).	The	index	entries	are	15	bytes	in	size

We	need	to	add	index	levels	until	the	highest-level	index	fits	within	a
single	disk	block.

The	number	of	required	blocks	for	index	level	i	can	be	calculated	as
follows:	⌈NBLKIi	=	NBLKIi	-	1/BFI	⌉	for	i	=	2,3,…

By	applying	the	previous	formula	(i–1)	times,	we	derive	that
⌈NBLKIi	=	NBLKI/(BFIi	-	1)⌉	for	i	=	2,3,…	and	with	NBLKI	the	number
of	blocks	in	the	lowest-level	index.

For	the	highest-level	index,	consisting	of	only	one	block,	it	then	holds
that	1	=	⌈NBLKI/(BFIh	−	1)⌉,	with	h	denoting	the	highest	index	level.

Therefore,	h–1	=	⌈logBFI(NBLKI)⌉	and	hence	h	=	⌈logBFI(NBLKI)	+	1⌉.

The	number	of	block	accesses	to	retrieve	a	record	by	means	of	a
multilevel	index	then	corresponds	to	a	random	block	access	for	each
index	level,	plus	a	random	block	access	to	the	data	file,	which	thus
equals	⌈logBFI(NBLKI)	+	2⌉.

and	BFI	 is	136.	The	number	of	blocks	 in	 the	first-level	 index	(NBLKI)	=	221.
The	second-level	index	then	contains	221	entries	and	consumes	221/136	=	2	disk
blocks.	If	a	third	index	level	is	introduced,	it	contains	two	index	entries	and	fits
within	a	single	disk	block.13	Searching	a	record	by	means	of	the	multilevel	index
requires	four	random	block	accesses;	three	to	the	respective	index	levels	and	one
to	the	actual	data	file.	This	can	also	be	calculated	as	follows:	⌈log136(221)	+	2⌉	=
4.	Remember	 that	 nine	 random	block	 accesses	were	 required	when	only	using
the	lowest-level	index.

A	multilevel	index	can	be	considered	as	a	so-called	search	tree,	with	each
index	level	representing	a	level	in	the	tree,	each	index	block	representing	a	node,
and	each	access	to	the	index	resulting	in	navigation	toward	a	subtree	in	the	tree,
hence	reducing	the	search	interval.	The	problem	is	that	multilevel	indexes	may
speed	up	data	retrieval,	but	large	multilevel	indexes	require	a	lot	of	maintenance
if	 the	 data	 file	 is	 updated.	 Hence,	 traditional	 multilevel	 indexes	 have	 quite	 a
negative	 impact	 on	 update	 performance	 of	 the	 database.	 For	 that	 reason,	 so-
called	B-trees	 and	B+-trees	 are	 a	 better	 alternative:	 they	keep	 the	 essence	of	 a
search	 tree,	 but	 leave	 some	 space	 in	 the	 tree	 nodes	 (i.e.,	 disk	 blocks)	 to
accommodate	for	inserts,	deletions,	and	updates	in	the	data	file	without	having	to
rearrange	the	entire	index.	We	discuss	these	in	the	next	sections.

12.3.8.2	Binary	Search	Trees

Drill	Down

The	online	playground	provides	visualization	of	several	 tree-based	data
structures	(i.e.,	binary	search	trees,	B-trees,	and	B+-trees)	as	discussed	in
this	chapter	(see	the	Appendix	for	more	details).

The	functioning	of	B-trees	and	B+-trees	is	easier	to	grasp	if	we	first	introduce	the
concept	of	binary	search	trees.	A	binary	search	tree	is	a	physical	tree	structure
in	which	each	node	has	at	most	two	children.	Each	tree	node	contains	a	search
key	value	and	a	maximum	of	two	pointers	to	children.	Both	children	are	the	root
nodes	 of	 subtrees,	with	 one	 subtree	 only	 containing	 key	 values	 that	 are	 lower
than	the	key	value	in	the	original	node,	and	the	other	subtree	only	containing	key
values	that	are	higher.

Navigating	a	binary	search	tree	is	very	similar	to	applying	the	binary	search
technique	already	discussed	 in	 the	context	of	sequential	 file	organization.	Here
also,	search	efficiency	is	 improved	by	“skipping”	half	of	 the	search	key	values
with	every	 step,	 rather	 than	 linearly	navigating	all	key	values.	Now	 the	 search
space	is	not	narrowed	by	splitting	the	physical	range	of	addresses	in	half,	as	with
the	binary	search	technique,	but	by	navigating	a	tree	structure,	and	in	each	node
choosing	 between	 a	 “left”	 and	 a	 “right”	 subtree.	 More	 concretely,	 suppose	 a
search	key	K	is	used	with	values	Ki.	To	find	the	node	with	search	key	value	Kμ,
the	key	value	Ki	in	the	root	node	is	compared	to	Kμ.	If	Ki	=	Kμ,	the	search	key	is
found.	If	Ki>Kμ,	then	the	pointer	to	the	root	of	the	“left”	subtree	with	only	key
values	lower	than	Ki	is	followed.	Otherwise,	if	Ki	<	Kμ,	the	pointer	to	the	root	of
the	“right”	subtree	is	followed.	This	subtree	contains	only	key	values	higher	than
Ki.	 The	 same	 procedure	 is	 applied	 recursively	 to	 the	 chosen	 subtree	 until	 the
node	with	Kμ	is	found	or	until	a	leaf	node	is	reached,	meaning	that	the	key	value
Kμ	 is	not	present	 in	 the	 tree.	This	 is	 illustrated	 in	Figure	12.26,	with	Kμ	 =	 24.
The	appropriate	node	 is	 found	after	 three	steps,	whereas	a	 linear	 search	would
have	taken	nine	steps	in	this	case.	As	already	discussed	in	the	context	of	binary
search,	 this	 performance	 gain	 becomes	 larger	 as	 the	 number	 of	 key	 values
increases.

Figure	12.26	Example	of	binary	search	tree.

The	 performance	 could	 be	 increased	 even	 further	 if	 each	 node	 contained
more	than	one	key	value	and	more	than	two	children.	In	that	case,	with	an	equal
total	number	of	key	values,	the	height	of	the	tree	would	be	reduced	and	therefore
the	 average	 and	 maximal	 number	 of	 steps	 would	 be	 lower.	 This	 exact
consideration	is	the	basis	of	the	B-tree	concept,	as	discussed	in	the	next	section.

12.3.8.3	B-Trees

A	B-tree	 is	 a	 tree-structured	 index.	B-trees	 can	 be	 considered	 as	 variations	 of
search	trees	that	are	explicitly	designed	for	hard	disk	storage.	In	particular,	each
node	corresponds	to	a	disk	block	and	nodes	are	kept	between	half	full	and	full	to
cater	for	a	certain	dynamism	of	the	index,	hereby	accommodating	changes	in	the
data	file	without	the	need	for	too	extensive	rearrangements	of	the	index.

Every	node	contains	a	set	of	search	key	values,	a	set	of	tree	pointers	 that
refer	 to	 child	 nodes	 and	 a	 set	 of	 data	 pointers	 that	 refer	 to	 data	 records,	 or
blocks	 with	 data	 records,	 that	 correspond	 to	 the	 search	 key	 values.	 The	 data
records	are	stored	separately	and	are	not	part	of	the	B-tree.	A	B-tree	of	order	k
holds	the	following	properties:

Hence,	every	non-leaf	node	with	q	key	values	should	have	q	data	pointers	and
q	 +	 1	 tree	 pointers	 to	 child	 nodes.	 If	 the	 indexed	 search	 key	 is	 non-unique,	 a

Every	non-leaf	node	is	of	the	following	format:14	<P0,	<K1,	Pd1>,	P1,
<K2,	Pd2>,	…	<Kq,	Pdq>,	Pq>,	with	q	≤	2k.	Every	Pi	is	a	tree	pointer:	it
points	to	another	node	in	the	tree.	This	node	is	the	root	of	the	subtree	that
Pi	refers	to.	Every	Pdi	is	a	data	pointer:	it	points	to	the	record	with	key
value	Ki,15	or	to	the	disk	block	that	contains	this	record.

A	B-tree	is	a	balanced	tree;	all	leaf	nodes	are	at	the	same	level	in	the	tree.
Every	path	from	the	root	of	the	B-tree	to	any	leaf	node	thus	has	the	same
length,	which	is	called	the	height	of	the	B-tree.	Leaf	nodes	have	the	same
structure	as	non-leaf	nodes,	except	that	all	their	tree	pointers	Pi	are	null.

Within	a	node,	the	property	holds	that	K1	<	K2	<	…	<	Kq.

For	every	key	value	X	in	the	subtree	referred	to	by	Pi,	the	following
holds:

–	Ki	<	X	<	Ki+1	for	0	<	i	<	q

–	X	<	Ki+1	for	i	=	0

–	Ki	<	X	for	i	=	q

The	B-tree’s	root	node	has	a	number	of	key	values,	and	an	equal	number
of	data	pointers,	that	varies	between	1	and	2k.	The	number	of	tree
pointers	and	child	nodes	then	varies	between	2	and	2k	+	1.

All	“normal”	nodes	(i.e.,	internal	nodes:	non-root	and	non-leaf	nodes)
have	a	number	of	key	values	and	data	pointers	between	k	and	2k.	The
number	of	tree	pointers	and	child	nodes	varies	between	k	+	1	and	2k	+	1.

Every	leaf	node	has	a	number	of	key	values	and	data	pointers	between	k
and	2k	and	no	tree	pointers.

level	of	indirection	is	introduced,	similar	to	the	inverted	file	approach	discussed
in	Section	12.3.7.2.	The	data	pointers	Pdi	then	don’t	point	to	the	records	directly,
but	to	a	block	containing	pointers	to	all	records	satisfying	the	search	key	value
Ki.	Figure	12.27	provides	a	few	simple	examples	to	illustrate	the	principles	of	B-
trees,	 with	 varying	 order	 and	 height.	 The	 numbers	 represent	 key	 values	 Ki,
whereas	 the	 arrows	 represent	 tree	 pointers	 Pi.	 The	 data	 pointers	 Pdi	 are	 not
depicted	so	as	not	to	clutter	the	illustration,	but	in	reality	there	is	a	data	pointer
for	every	key	value.

Figure	12.27	Examples	of	a	B-tree.

A	B-tree	 is	 searched	 starting	 from	 the	 root.	 If	 the	 desired	 key	 value	X	 is
found	 in	 a	 node	 (say	 Ki	 =	 X),	 then	 the	 corresponding	 data	 record(s)	 can	 be
accessed	in	the	data	file	by	following	the	data	pointer	Pdi.	If	the	desired	value	is
not	found	in	the	node,	a	tree	pointer	is	followed	to	the	subtree	that	contains	the
appropriate	 range	 of	 key	 values.	 More	 precisely,	 the	 subtree	 pointer	 Pi	 to	 be
followed	is	the	one	corresponding	to	the	smallest	value	of	i	for	which	X	<	Ki+1.
If	 X	 >	 all	 Ki	 then	 the	 tree	 pointer	 Pi+1	 is	 followed.	 The	 same	 procedure	 is
repeated	for	this	subtree	and	so	on,	until	the	desired	key	value	is	found	in	a	node
or	until	a	leaf	node	is	reached,	meaning	that	the	desired	search	key	value	is	not

present.	 This	 approach	 is	 again	 very	 similar	 to	 a	 binary	 search	 algorithm,	 but
since	 the	 number	 of	 tree	 pointers	 is	 much	 higher	 than	 two,	 the	 fan-out	 and
therefore	search	efficiency	is	much	higher	than	with	a	binary	search.

The	capacity	of	a	node	equals	the	size	of	a	disk	block,	and	all	nodes,	except
for	the	root,	are	filled	to	at	least	50%.	Hence,	a	B-tree	uses	the	storage	capacity
efficiently,	but	still	leaves	room	for	additions	to	the	data	file	without	the	need	for
impactful	rearrangements	of	the	index	structure.	If	data	records,	and	hence	key
values,	 are	 added,	 the	 empty	 space	 in	 a	 node	 is	 filled	 up.	 If	 all	 nodes	 in	 the
appropriate	 subtree	 for	 that	 key	 value	 are	 already	 filled	 to	 capacity,	 a	 node	 is
split	into	two	half-full	nodes.	Both	will	be	sibling	children	of	the	original	node’s
parent.	 If,	 upon	 deletion	 of	 records	 and	 key	 values,	 a	 node	 becomes	 less	 than
half	full,	it	is	merged	with	one	of	its	siblings	to	produce	a	node	filled	to	at	least
50%.	Note	that	splitting	or	merging	a	node	also	impacts	the	parent	node,	where	a
tree	pointer	and	key	value	are	added	or	deleted,	respectively.	Therefore,	a	node
split	or	merger	at	the	parent’s	level	may	be	called	for	as	well.	In	rare	cases,	these
changes	may	work	 their	way	up	 to	 the	root	node,	but	even	 then	 the	number	of
changes	is	limited	to	the	height	of	the	B-tree.	This	is	still	substantially	less	than
the	required	changes	if	the	index	had	been	organized	as	a	sequential	file.

It	is	very	complex	to	make	exact	predictions	about	the	required	number	of
block	accesses	when	searching	a	B-tree.	There	are	many	possible	configurations,
every	node	may	contain	between	k	and	2k	key	values	(except	for	the	root),	and
the	tree	may	assume	different	shapes	depending	on	node	splits	and	mergers.	For
example,	 in	 Figure	 12.27,	 searching	 for	 key	 value	 24	 requires	 three	 random
block	accesses	in	the	first	B-tree,	one	block	access	in	the	second	B-tree,	and	two
block	accesses	in	the	third	tree.	Searching	for	key	value	17	requires	three,	two,
and	 one	 block	 accesses,	 respectively.	 The	 height	 of	 the	 tree,	 and	 hence	 the
maximum	number	of	 random	block	accesses	 to	 find	a	certain	key	value	 in	 the
tree,	will	decrease	as	the	order	of	the	tree	increases.	Note	also	that	a	B-tree	being

balanced	is	an	important	property	in	this	context.	With	a	non-balanced	tree,	the
path	from	root	to	leaf	node	would	not	be	the	same	for	all	leaf	nodes,	resulting	in
even	more	variation	in	search	time.

Finally,	 it	 is	worth	mentioning	 that	 sometimes	B-trees	 are	 also	 used	 as	 a
primary	 file	 organization	 technique,	 hence	 organizing	 the	 actual	 data	 file	 as	 a
search	 tree.	 The	 nodes	 then	 still	 contain	 search	 key	 values	 and	 tree	 pointers.
However,	 instead	 of	 data	 pointers,	 they	 contain	 the	 actual	 data	 fields	 of	 the
records	 that	 correspond	 to	 the	 search	 key	 values.	 This	 approach	 can	 be	 very
efficient	 with	 small	 files	 and	 records	 with	 a	 very	 limited	 number	 of	 fields.
Otherwise,	 the	 number	 of	 tree	 levels	 quickly	 becomes	 too	 large	 for	 efficient
access.

Drill	Down

B-trees	were	originally	 invented	 in	 1971	by	Rudolf	Bayer	 and	Edward
McCreight,	who	then	worked	for	Boeing	Research	Labs.	It	is	not	entirely
clear	what	 the	“B”	stands	for;	according	 to	Edward	McCreight	 it	could
be	 multiple	 things:	 “Boeing,”	 “balanced”,	 and	 even	 “Bayer”	 (Rudolf
Bayer	was	 the	 senior	 author	 of	 the	 two).	However,	 as	 he	 stated	 at	 the
24th	Symposium	on	Combinatorial	Pattern	Matching	in	2013:	“The	more
you	think	about	what	the	B	in	B-trees	means,	the	better	you	understand
B-trees”.

12.3.8.4	B+-Trees

Most	DBMS	implementations	use	indexes	based	on	B+-trees	rather	than	B-trees.
The	 main	 difference	 is	 that	 in	 a	 B+-tree,	 only	 the	 leaf	 nodes	 contain	 data
pointers.	In	addition,	all	key	values	that	exist	in	the	non-leaf	nodes	are	repeated

in	the	leaf	nodes,	such	that	every	key	value	occurs	in	a	leaf	node,	along	with	a
corresponding	data	pointer.	The	higher-level	nodes	only	contain	a	subset	of	the
key	values	present	 in	 the	 leaf	nodes.	Finally,	every	 leaf	node	of	a	B+-tree	 also
has	 one	 tree	 pointer,	 pointing	 to	 its	 next	 sibling.	 In	 this	 way,	 the	 latter	 tree
pointers	create	a	 linked	 list	of	 leaf	nodes,	 sequentially	arranging	all	 leaf	nodes
according	to	the	key	values	they	contain.

Figure	12.28	presents	some	simple	B+-tree	examples,	with	 the	same	order
and	 search	 key	 values	 as	 the	B-tree	 example.	Again,	 the	 data	 pointers,	which
now	only	exist	in	the	leaf	nodes,	are	not	represented.	In	contrast	to	the	B-trees,
the	B+-trees	contain	some	redundancy	in	their	search	key	values.	Note	also	the
“next”	tree	pointers	in	the	leaf	nodes.	Sometimes	“previous”	pointers	are	present
as	well.

Figure	12.28	Examples	of	a	B+-tree.

Searching	and	updating	a	B+-tree	occurs	in	a	similar	way	as	with	a	B-tree.
Since	only	the	leaf	nodes	contain	data	pointers,	every	search	must	continue	until
the	leaf	nodes,	which	was	not	the	case	with	B-trees.	Still,	B+-trees	are	often	more
efficient,	because	 the	non-leaf	nodes	do	not	 contain	any	data	pointers,	 so	with
the	 same	 block	 size	 their	 order	 can	 be	 higher	 than	 with	 a	 B-tree.	 As	 a
consequence,	 the	 height	 of	 a	B+-tree	 is	 often	 smaller,	 resulting	 in	 fewer	 block

accesses	to	search	the	tree.	In	most	cases,	the	leaf	nodes	of	a	B+-tree,	which	do
contain	data	pointers,	have	a	different	order	than	the	other	tree	nodes.

Also,	the	“next”	tree	pointers	in	the	leaf	nodes,	in	combination	with	the	fact
that	all	search	key	values	and	data	pointers	are	present	in	the	leaf	nodes,	provide
for	an	additional	way	of	traversing	the	tree.	The	tree	is	then	not	navigated	top-
down,	but	by	accessing	several	leaf	nodes	consecutively,	starting	from	a	leftmost
leaf	 node	 and	 following	 the	 next	 pointers	 between	 them.	The	 latter	 allows	 for
more	efficient	processing	of	range	queries,	as	discussed	in	the	next	chapter.

It	 is	worth	noting	 that	other	variants	 exist	 as	well.	 In	particular,	 there	 are
variations	on	the	fill	factor,	which	denotes	how	“full”	a	non-leaf	node	must	be,
which	is	50%	for	standard	B-trees	and	B+-trees.	For	example,	a	B-tree	with	a	fill
factor	of	two-thirds	is	often	called	a	B*-tree.

Retention	Questions

What	are	the	differences	between	primary	and	secondary	file
organization?

Discuss	and	contrast	the	most	important	primary	file	organization
methods.

Discuss	and	contrast	the	most	important	secondary	file	organization
methods.

Discuss	and	contrast	B-trees	and	B+-trees.

Summary

In	 this	 chapter	 we	 dealt	 with	 different	 aspects	 pertaining	 to	 physical	 file
organization.	First,	we	presented	the	characteristics	of	storage	devices	and	how
these	 affect	 the	 performance	 of	 physical	 data	 access.	 Then,	 we	 discussed	 the
organization	of,	respectively,	stored	records	and	physical	files.	We	distinguished
between	 primary	 and	 secondary	 file	 organization	 methods.	 In	 this	 context,
special	 attention	was	paid	 to	different	 types	of	 indexes	 and	 the	ways	 in	which
they	 improve	 search	 performance.	 B-trees	 and	 B+-trees	 in	 particular	 were
discussed	as	 index	 types	 that	often	occur	 in	DBMS	products.	The	next	chapter
builds	 on	 these	 findings	 to	 discuss	 physical	 database	 organization,	 with	 the
physical	database	consisting	of	a	set	of	physical	files	and	indexes.

Connections

Chapter	 13	 applies	 the	 principles	 of	 record	 organization	 and	 file
organization	 in	 the	 context	 of	 physical	 database	 organization.	 It	 also
comes	back	to	the	topic	of	storage	hardware,	discussing	how	individual
storage	 devices	 are	 clustered	 and	 managed	 as	 larger	 entities,	 called
enterprise	storage	subsystems.

Scenario	Conclusion

Now	 that	Sober	has	 learned	about	various	 file	organization	methods,	 it
has	 decided	 to	 physically	 implement	 each	 relational	 table	 using	 the
indexed	sequential	 file	organization	method.	Moreover,	 to	speed	up	 the

execution	 time	 of	 its	 queries	 it	 has	 decided	 to	 define	 the	 following
indexes:

Table Index

CAR(CAR-NR,	CARTYPE) Primary	index	on	CAR-NR;
secondary	index	on	CARTYPE

SOBER	CAR(S-CAR-NR) Primary	index	on	S-CAR-NR

OTHER	CAR(O-CAR-NR,	O-
CUST-NR)

Primary	index	on	O-CAR-NR

ACCIDENT(ACC-NR,	ACC-
DATE-TIME,	ACC-LOCATION)

Clustered	index	on	ACC-
LOCATION

INVOLVED(I-CAR-NR,	I-ACC-
NR,	DAMAGE	AMOUNT)

Primary	index	on	I-CAR-NR,	I-
ACC-NR;	secondary	index	on
DAMAGE	AMOUNT

RIDE(RIDE-NR,	PICKUP-
DATE-TIME,	DROPOFF-DATE-
TIME,	DURATION,	PICKUP-
LOC,	DROPOFF-LOC,
DISTANCE,	FEE,	R-CAR-NR)

Clustered	index	on	PICKUP-
LOC;	secondary	index	on	FEE

RIDE	HAILING(H-RIDE-NR,
PASSENGERS,	WAIT-TIME,
REQUEST-TYPE,	H-CUST-NR)

Clustered	index	on	WAIT-TIME:
secondary	on	PASSENGERS

RIDE	SHARING(S-RIDE-NR) Primary	index	on	S-RIDE-NR

CUSTOMER(CUST-NR,	CUST-
NAME)

Primary	index	on	CUST-NR

BOOK(B-CUST-NR,	B-S-RIDE- Primary	index	on	B-CUST-NR,

NR) B-S-RIDE-NR

Key	Terms	List

absolute	address

actuator

binary	search

binary	search	trees

bitmap	index

block	pointer

blocking	factor

blocking	factor	of	the	index	(BFI)

B-tree

B+-trees

bucket

central	storage

chaining

clustered	index

collision

cylinder

data	item

data	pointers

delimiters

dense	indexes

directly	accessible	storage	devices	(DASDs)

directory

disk	blocks

dynamic	hashing

embedded	identification

hard	disk	controller

hash	indexes

hashing

heap	file

I/O

I/O	boundary

index	entry

indexed	sequential	file	organization

indexing

intervals

inverted	file

join	index

key-to-address	transformation

latency

linear	list

linear	search

linked	list

lists

loading	factor

mixed	file

multilevel	indexes

nonlinear	list

one-way	linked	list

open	addressing

overflow

overflow	area

overflow-handling	technique

partitions

persistent	storage	media

physical	database

physical	file

pointers

primary	area

primary	file	organization	methods

primary	index

primary	storage

random	file	organization

read/write	heads

record	pointer

relative	block	address

relative	location

rotational	delay

search	key

search	key	values

search	tree

secondary	file	organization	methods

secondary	index

secondary	storage

sectors

seek	time

sequential	file	organization

sparse	indexes

spindle

stored	record

synonyms

tracks

transfer	time

tree	pointers

uniform	distribution

variable	length	records

volatile	memory

Review	Questions

12.1.	What	does	DASD	stand	for?

a.	Database	appropriate	storage	device.

b.	Directly	accumulative	storage	device.

c.	Directly	accessible	storage	device.

d.	Data	accumulative	storage	device.

12.2.	When	translating	a	logical	data	model	into	an	internal	data	model,
what	should	be	taken	into	account?

a.	The	physical	storage	properties.

b.	The	types	of	operations	that	will	be	executed	on	the	data.

c.	The	size	of	the	database.

d.	All	of	the	above	should	be	taken	into	account.

12.3.	How	is	a	row/tuple	translated	into	an	internal	data	model?

a.	Data	item.

b.	Stored	record.

c.	Dataset.

d.	Physical	storage	structure.

12.4.	When	can	the	relative	location	technique	for	record	organization	be
problematic?

a.	When	there	are	many	missing	values	in	records.

b.	When	there	is	a	large	number	of	records.

c.	When	there	are	many	different	data	types.

d.	When	there	are	a	lot	of	relations.

12.5.	In	which	of	these	cases	can	we	make	use	of	delimiters	to	separate
attributes?

a.	The	data	are	stored	in	mixed	files.

b.	Some	attributes	have	data	types	that	can	have	variable	lengths	as
input.

c.	Some	attributes	are	multi-valued.

d.	All	of	the	above.

12.6.	Why	is	the	blocking	factor	important	to	know?

a.	For	calculating	the	seek	time	of	a	hard	disk	drive.

b.	For	achieving	efficient	access	to	records.

c.	For	determining	the	maximum	size	of	the	database.

d.	None	of	the	above.

12.7.	Which	of	the	following	statements	with	regards	to	search	keys	is
not	correct?

a.	A	search	key	can	be	composite,	meaning	that	it	can	consist	of	a
combination	of	values.

b.	A	search	key	needs	to	be	a	unique	identifier	of	a	record.

c.	A	search	key	can	be	used	to	retrieve	all	records	of	which	a	certain
attribute	type	falls	within	a	range.

d.	A	search	key	determines	the	criteria	for	retrieving	records.

12.8.	Which	of	the	following	file	organization	methods	is	not	a	primary
file	organization	method?

a.	Linked	lists.

b.	Sequential	file	organization.

c.	Heap	files.

d.	Hash	file	organization.

12.9.	Which	of	the	following	statements	with	regards	to	random	file
organization	is	correct?

a.	In	order	to	avoid	overflow,	the	hashing	algorithm	that	distributes
keys	to	bucket	addresses	needs	to	be	carefully	chosen.

b.	A	higher	loading	factor	leads	to	less	overflow	but	also	more	wasted
storage	space.

c.	Retrieving	a	record	only	requires	a	single	block	access,	more
particularly	a	random	block	access	to	the	first	block	of	the	bucket
indicated	by	the	hashing	algorithm.

d.	Division,	a	hashing	technique	that	divides	the	key	by	a	positive
integer	M	and	takes	the	remainder	as	the	record	address,	frequently
performs	very	poorly.

12.10.	Which	of	the	following	statements	with	regards	to	indexed
sequential	file	organization	is	correct?

a.	The	search	key	of	a	sparse	index	is	a	unique	key	(i.e.,	a	primary	key
or	candidate	key).

b.	Sparse	indexes	are	generally	faster	than	dense	indexes.

c.	Entries	of	dense	indexes	always	refer	to	a	group	of	records.

d.	Dense	indexes	are	more	complex	to	maintain	than	sparse	indexes.

12.11.	Which	of	the	following	statements	is	correct?

a.	Secondary	file	organization	methods	make	insertion	and	deletion	of
records	a	lot	easier.

b.	An	important	application	of	tree	data	structures	is	when	they
provide	a	physical	index	structure	to	speed	up	retrieval	of	records.

c.	An	advantage	of	one-way	linked	lists,	where	each	record	contains	a
pointer	to	its	logical	successor,	is	that	not	all	records	must	be	retrieved
any	longer,	because	frequently	only	part	of	the	list	needs	to	be
processed.

d.	An	inverted	file	defines	an	index	over	a	unique,	ordered	search	key
of	the	dataset.

12.12.	Which	of	the	following	statements	with	regards	to	search	trees,	B-
trees,	and	B+-trees	is	correct?

a.	An	unbalanced	B-tree	allows	for	additional	performance	gain	by
reducing	the	height	of	the	tree.

b.	B-trees	are	a	primary	file	organization	method	and	directly	impact
the	physical	location	of	records.

c.	Search	trees	are	a	good	alternative	to	B-trees	and	B+-trees	because
they	allow	for	better	maintenance.

d.	The	performance	gain	of	binary	search	trees	over	linear	search	trees
becomes	larger	as	the	number	of	key	values	increases.

Problems	and	Exercises

12.1E	What	is	the	I/O	boundary?	Where	are	databases	situated	with	regards	to
this	boundary?

12.2E	What	is	the	expected	time	for	a	sequential	block	access	and	the	expected
time	for	a	random	block	access	given	a	hard	disk	drive	with	the	following
characteristics?

12.3E	If	a	food	delivery	service	wants	to	gather	the	personal	information	of	new
clients	and	uses	an	online	form	in	which	all	fields	are	required	to	be	filled	in,
which	record	organization	technique	would	be	preferred	for	this	purpose?	Why
would	this	be	the	best	choice?	And	what	if	not	all	fields	were	mandatory?

12.4E	How	can	we	improve	the	speed	of	physically	retrieving	a	record	based	on
a	search	key?

12.5E	What	is	the	difference	between	a	bucket	address,	a	relative	block	address,
and	an	absolute	block	address	when	talking	about	key-to-address	transformation
(a	hashing	algorithm)?

Average	seek	time	=	7.5	ms

Spindle	speed	=	5400	rpm

Transfer	rate	=	200	MBps

Block	size	=	512	bytes

12.6E	Discuss	the	advantages	and	disadvantages	of	secondary	indexes.	When
would	it	be	useful	to	maintain	a	secondary	index?

12.7E	Discuss	the	differences	between	and	(dis)advantages	of	heap	files,
sequential	files,	and	random	file	organization.

1	Some	very	specific	aspects	regarding	physical	database	organization,	which
are	particular	to	a	certain	type	of	DBMS,	are	dealt	with	in	the	chapter
discussing	that	DBMS	type	(e.g.,	physical	aspects	of	NoSQL	databases).

2	To	this	end,	the	operating	system	implements	a	file	system	that	keeps	track	of
which	file	(fragment)	is	positioned	where	on	the	storage	devices.	However,	as
we	discuss	in	the	next	chapter,	high-performance	DBMSs	often	bypass	the
operating	system’s	file	system,	directly	accessing	and	managing	the	data	on
the	storage	devices.

3	This	is	in	contrast	to	tape	storage,	which	is	only	sequentially	accessible
(SASD:	sequentially	accessible	storage	device);	the	entire	tape	has	to	be	read
until	the	section	containing	the	required	data	is	reached.

4	In	a	purely	file-based	approach,	without	the	use	of	a	DBMS,	this	information
has	to	be	encoded	in	every	separate	application	that	uses	the	data,	instead	of	in
the	DBMS’s	catalog	(see	Chapter	1).

5	Given	the	typical	size	of	records	and	disk	blocks,	in	most	cases	at	least	one
entire	record	will	fit	in	a	single	disk	block.	In	the	rare	cases	where	the	record
size	is	larger	than	the	block	size,	a	single	record	will	span	multiple	blocks.	A
pointer	can	be	included	with	the	record	data	to	refer	to	the	next	block
containing	data	items	from	the	same	record.

6	If	the	primary	key	or	candidate	is	composite,	they	could	have	the	same	value
for	one	or	more	component	attribute	types	of	the	key,	but	never	for	the	entirety

of	the	key	attribute	types.

7	NBLK	stands	for	number	of	blocks.

8	The	mathematical	operator	that	takes	the	remainder	after	a	division	is	called
the	modulo,	abbreviated	as	“mod.”

9	In	practice,	in	such	a	situation	the	records	would	probably	be	retrieved	in	the
(random)	order	in	which	they	are	stored,	and	then	sorted	afterwards.	Still,	this
also	induces	a	considerable	amount	of	overhead.

10	From	now	on,	we	just	use	the	term	“pointer”	and	make	abstraction	from	the
distinction	between	record	pointer	and	block	pointer.

11	Sometimes	also	alternative	terminology	is	used,	where	the	term	clustered
index	pertains	to	indexes	over	both	unique	and	non-unique	search	keys.	In	that
case,	one	speaks	of	unique	and	non-unique	clustered	indexes.

12	A	sparse	index	is	not	useful	in	the	context	of	secondary	indexes,	because
the	file	is	not	physically	ordered	in	the	appropriate	way.	As	a	consequence,
records	for	which	the	search	key	value	was	not	in	the	index	cannot	be
retrieved	through	consecutive	sequential	block	accesses	to	the	data	file.

13	In	practice,	it	would	probably	be	more	efficient	to	use	only	a	second-level
and	first-level	index,	with	the	second-level	index	maintained	and	searched	in
internal	memory.

14	Some	authors	define	the	order	differently	and	state	a	B-tree	of	this	format	to
be	of	order	2k	instead	of	k.

15	As	always,	a	search	key	can	be	atomic	or	composite,	combining	multiple
attribute	types.	Ki	may	represent	a	single	atomic	or	single	composite	key
value.

13

Physical	Database	Organization
◈

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

Opening	Scenario

Now	that	Sober	knows	what	indexes	it	needs,	it	wants	to	understand	how
these	indexes	can	be	implemented	in	SQL.	The	company	is	also	curious
to	 find	 out	 how	 the	 query	 optimizer	 works	 and	 how	 it	 decides	 on	 the
access	 path	 to	 the	 data	 for	 a	 given	 query.	 Sober	wonders	what	 type	 of
storage	hardware	 it	 should	 adopt.	Finally,	 the	 company	wants	 to	 figure

grasp	the	basic	concepts	of	physical	database	organization;

identify	various	database	access	methods;

understand	how	individual	devices	can	be	pooled	and	managed	as	so-
called	enterprise	storage	subsystems;

understand	the	importance	of	business	continuity.

out	how	 it	 can	guarantee	 its	uninterrupted	 functioning,	despite	possible

planned	or	unplanned	downtime	of	the	hard-	and	software.

This	chapter	deals	with	physical	database	organization	 in	 its	broadest	 sense.	A
primary	focus	 is	on	physical	database	design	–	 the	 translation	of	a	 logical	data
model	 into	an	internal	data	model,	 including	the	design	of	 indexes	to	speed	up
data	 access.	 In	 this	 respect,	 this	 chapter	 builds	 on	 the	 insights	 gained	 from
Chapter	12	in	relation	to	physical	record	and	file	organization.	However,	we	also
zoom	out	 to	other	concerns	of	physical	data	storage,	such	as	 technological	and
management	aspects,	as	well	as	the	important	area	of	business	continuity.

First,	we	discuss	 the	concepts	of	 tablespaces	and	 index	spaces,	as	well	as
other	basic	building	blocks	of	physical	database	organization.	The	principles	of
file	organization	acquired	in	the	previous	chapter	are	then	applied	in	the	context
of	database	organization.	Here,	we	deal	with	the	role	of	the	query	optimizer	and
how	the	latter	uses	indexes	and	other	techniques	to	determine	the	optimal	access
plan	to	execute	a	query.	We	also	pay	particular	attention	to	different	alternatives
for	join	implementation.	In	the	second	half	of	this	chapter,	we	return	to	storage
hardware,	but	now	from	a	more	global	perspective	than	in	Chapter	12.	We	deal
with	RAID	technology	 and	 different	 approaches	 to	networked	storage,	 such	 as
SAN	and	NAS.	We	conclude	with	a	discussion	on	how	these	techniques	can	be
applied	 in	 the	 context	 of	 business	 continuity.	 By	 no	 means	 do	 we	 claim
exhaustiveness	with	respect	to	the	topics	covered	in	this	chapter.	Rather,	we	aim
to	provide	the	reader	with	a	broad	perspective	on	the	many	angles	and	concerns
of	physical	data	storage	and	management.	Just	like	in	Chapter	12,	we	assume	a
relational	database	setting	unless	noted	otherwise,	although	most	concepts	apply
to	other	database	types	as	well.

13.1	Physical	Database	Organization	and
Database	Access	Methods

Physical	 database	 organization	 focuses	 on	 conceiving	 the	 internal	 data	model.
Therefore,	 this	 section	 applies	 the	 principles	 discussed	 in	 the	 previous	 chapter
with	respect	to	the	physical	organization	of	individual	records	and	files,	but	adds
provisions	for	efficient	retrieval	of	related	records	belonging	to	different	record
types	or	datasets,	 as	 is	 the	case	with,	 e.g.,	 a	 join	query	 in	SQL.	 In	addition,	 it
focuses	on	how	the	generic	 file	organization	principles	are	 implemented	 in	 the
concrete	 setting	 of	 a	 database	 management	 system,	 particularly	 a	 relational
DBMS.	As	a	starting	point,	it	is	advised	to	re-visit	the	discussion	related	to	Table
12.1	in	the	previous	chapter,	which	presented	the	mapping	between	logical	data
model	and	internal	data	model	concepts.

Connections

Chapter	 6	 discusses	 relational	 DBMSs.	 Join	 SQL	 queries	 were
introduced	 in	 Chapter	 7.	 Physical	 record	 organization	 and	 file
organization	were	dealt	with	in	Chapter	12.	This	chapter	also	overviewed
the	 physical	 properties	 of	 storage	 devices	 (and	 particularly	 hard	 disk
drives	 [HDDs])	 and	 their	 impact	 on	 the	 respective	 file	 organization
techniques.

It	 should	be	 stressed	 that	 the	more	 recent	versions	of	SQL	do	not	 impose
any	standardization	on	the	internal	data	model	or	on	the	way	in	which	a	logical
relational	 data	model	 is	 implemented	 physically.	 Different	 DBMS	 vendors	 all

have	 their	 own	 approaches	 in	 improving	 DBMS	 performance	 by	 means	 of
different	file	organization	techniques,	index	types,	database	access	methods,	join
implementations,	 and	 tuning	 facilities.	 Speaking	 of	 “the”	 physical	 database
organization	 method	 is	 thus	 meaningless	 and	 the	 reader	 is	 encouraged	 to
carefully	 examine	 a	 particular	 DBMS’s	 configuration	 and	 tuning	 manual	 for
specifics.	 Still,	 the	 following	 sections	 aim	 at	 providing	 an	 overview	 of	 some
widely	 applied	 principles	 with	 respect	 to	 physical	 database	 design	 and	 the
impact	of	 certain	design	decisions	on	performance.	We	 focus	on	 index	design,
different	possible	access	paths	given	particular	properties	of	queries,	tables	and
indexes,	and	different	ways	of	efficiently	implementing	join	queries.

13.1.1	From	Database	to	Tablespace

We	can	discriminate	between	 the	user	 databases	 and	 the	 system	database.	The
user	 databases	 have	 a	 physical	 structure	 that	 is	 determined	 by	 the	 database
designer	 and	 contain	 data	 that	 represents	 an	 organization’s	 state.	 The	 system
database’s	structure	is	predefined	by	the	database	vendor	and	holds	the	catalog
tables	 that	 support	 the	DBMS’s	 exploitation.	 In	 its	most	 simple	 incarnation,	 a
physical	 user	 database	 is	 a	 collection	 of	 index	 files	 and	 data	 files,	 organized
according	to	the	principles	of	record	organization	and	file	organization	discussed
in	 the	previous	 chapter.	However,	many	DBMS	 implementations	 introduce	 an
additional	 level	of	 indirection	between	a	 logical	database	and	the	physical	data
files,	called	a	tablespace.

A	tablespace	can	be	considered	as	a	physical	container	of	database	objects.
It	consists	of	one	or	more	physical	files,	often	with	the	option	of	distributing	the
files	over	multiple	 storage	devices.	 In	 smaller-scale	database	 systems,	 the	 files
are	managed	by	 the	operating	 system’s	 file	 system,	whereas	high	performance
DBMSs	often	manage	the	files	themselves,	interacting	directly	with	the	storage
devices,	 bypassing	 the	 overhead	 of	 the	 operating	 system’s	 file	 management
features.	 Every	 logical	 table	 is	 assigned	 to	 a	 tablespace	 to	 be	 persisted
physically.	We	then	speak	of	a	stored	table.	A	stored	table	occupies	one	or	more
disk	blocks	or	pages1	in	the	tablespace.	A	tablespace	can	contain	indexes	as	well,
although	sometimes	separate	index	spaces	are	used	for	this	purpose.

The	use	of	tablespaces	as	a	level	of	indirection	when	mapping	stored	tables
onto	physical	 files	and	storage	devices	provides	a	 first	 important	 instrument	 to
the	database	administrator	to	tune	the	DBMS’s	performance.	For	example,	data
from	the	same	table	can	be	distributed	over	multiple	storage	devices.	Different
subsets	 of	 the	 data	 can	 then	 be	 searched	 in	 parallel	 in	 the	 context	 of	 a	 single,

complex	query	for	improved	performance.	We	call	this	intra-query	parallelism.
On	 the	other	hand,	 it	 can	also	be	desirable	 to	avoid	 involving	multiple	 storage
devices	 in	 the	 same	 query	 and	 rather	 to	 optimize	 the	 system	 for	 inter-query
parallelism,	where	many	 simple	queries	 can	be	 executed	 in	parallel.	 It	 is	 also
possible	to	cluster	data	from	multiple	tables	into	a	single	tablespace	to	cater	for
efficient	retrieval	of	strongly	interrelated	data.

Connections

Chapter	 4	 discussed	 the	 roles	 of	 the	 database	 designer	 and	 database
administrator.

Physical	 database	 design	 comes	 down	 to	 attributing	 logical	 concepts	 to
physical	constructs,	as	illustrated	in	Figure	13.1.	This	is	a	joint	responsibility	of
the	database	designer	and	the	database	administrator.	A	first	decision	pertains	to
the	 choice	 of	 storage	 devices.	 It	 can	 be	 a	 deliberate	 option	 to	 provide	 storage
devices	 with	 different	 cost	 and	 performance	 characteristics,	 as	 not	 all	 logical
tables	require	the	same	retrieval	and/or	update	performance.	Sometimes,	several
devices	are	pooled	into	larger	entities	for	better	performance	and	reliability,	but
also	for	more	effective	management,	as	discussed	in	Section	13.2.	On	the	chosen
storage	devices,	files	are	created	which	form	the	tablespaces	and	index	spaces.	In
line	 with	 the	 aforementioned	 considerations,	 tables	 are	 then	 attributed	 to
tablespaces.	In	this	way,	if	desired,	they	can	be	distributed	over	multiple	physical
files.	 If	 the	 DBMS	 does	 not	 provide	 the	 indirection	 of	 tablespaces,	 tables	 are
mapped	directly	onto	data	files.	Some	indexes	are	generated	automatically	by	the
DBMS	according	 to	 the	 logical	data	model	 (e.g.,	 to	 enforce	uniqueness	 for	 all
primary	 keys).	 Other	 indexes	 are	 created	 explicitly	 by	 the	 database
administrator;	we	discuss	the	choices	and	criteria	with	respect	to	index	design	in

detail	in	the	next	section.	Indexes	are	assigned	to	tablespaces	or	to	separate	index
spaces.	 Particularly	 in	 the	 latter	 case,	 secondary	 indexes	 can	 be	 added	 or
removed	without	any	impact	on	the	physical	data	files.	Remember	that	a	primary
or	clustered	index	determines	the	physical	ordering	of	the	data	records	in	a	file,
so	creation	or	deletion	of	such	an	index	deserves	particular	consideration.

Figure	13.1	Stored	tables,	indexes,	tablespaces,	and	index	spaces.

Fortunately,	 most	 contemporary	 DBMSs	 are	 equipped	 with	 extensive
performance-tuning	 facilities.	 These	 pertain	 to	 decisions	 with	 respect	 to
distributing	 data	 and	 tables	 over	 storage	 media,	 detecting	 and	 resolving	 I/O
problems	 of	 storage	 devices,	 providing	 index-tuning	 wizards	 to	 monitor	 and
optimize	 the	 use	 of	 indexes,	 monitoring	 and	 optimizing	 the	 access	 paths
involved	in	query	execution,	etc.	Even	though	most	DBMSs	provide	ample	auto-
configuring	and	self-tuning	 features,	 this	 responsibility	 remains	 to	a	very	 large
extent	with	 the	 database	 administrator.	 The	 number	 of	 parameters	 that	 can	 be
manipulated	by	the	latter	is	often	very	extensive;	in	the	next	sections,	we	offer	an
overview	 of	 some	 essential	 aspects,	 but	 certainly	 without	 claiming	 to	 be
exhaustive.

13.1.2	Index	Design

Although	indexing	was	already	discussed	extensively	in	the	previous	chapter,	 it
is	 useful	 to	 further	 focus	 on	 the	 question	 of	 which	 indexes	 to	 create	 in	 the
context	of	actual	database	organization.	On	the	one	hand,	 indexes	are	probably
the	 most	 important	 tuning	 instrument	 to	 the	 database	 designer	 and	 database
administrator;	it	is	discussed	in	the	next	section	on	database	access	methods	how
indexes	directly	impact	the	decisions	made	by	the	query	optimizer	with	 respect
to	 how	 a	 query	 is	 implemented	 and	 optimized	 physically.	 On	 the	 other	 hand,
there	 are	 also	 other	 reasons	 to	 define	 an	 index	 than	 just	 efficient	 query
processing.	This	 section	 focuses	 on	 the	 criteria	 a	 database	designer	 can	use	 to
decide	which	indexes	to	create,	and	which	indexes	not	to	create.	We	start	off	by
summarizing	in	Table	13.1	the	respective	index	types	presented	in	the	previous
chapter.

Table	13.1	Summary	of	different	index	types

Index	type Impacts	physical	ordering
of	tuples

Unique	search
key

Dense	or
sparse

Primary Yes Yes Sparse

Clustered Yes No Dense	or
sparse

Secondary No Yes Dense

No Dense	or
inverted
file

Since	 indexes	 belong	 to	 the	 internal	 data	model,	which	 is	 not	 part	 of	 the
most	 recent	versions	of	 the	SQL	standard,	 there	 is	no	standard	SQL	syntax	for
index	creation.	Still,	most	DBMSs	use	a	similar	syntax,	which	looks	as	follows:

CREATE	[UNIQUE]	INDEX	INDEX_NAME
ON	TABLE_NAME	(COLUMN_NAME	[ORDER]	{,	
COLUMN_NAME	[ORDER]})
[CLUSTER]

The	 UNIQUE	 and	 CLUSTER	 clauses	 are	 optional.	 We	 show	 some	 concrete
examples,	which	are	further	explained	in	the	discussion	on	index	creation	below:

a.

CREATE	UNIQUE	INDEX	PRODNR_INDEX
ON	PRODUCT(PRODNR	ASC)

b.

CREATE	INDEX	PRODUCTDATA_INDEX
ON	PRODUCT(PRODPRICE	DESC,	PRODTYPE	ASC)

c.

CREATE	INDEX	PRODNAME_INDEX
ON	PRODUCT(PRODNAME	ASC)
CLUSTER

d.

CREATE	INDEX	PRODSUPPLIER_INDEX

ON	PRODUCT(SUPPLIERNR	ASC)

The	main	reasons	for	index	creation	are	the	following:

Efficient	retrieval	of	rows	according	to	certain	queries	or	selection
criteria:	An	index	can	be	created	on	any	column	or	combination	of
columns	in	a	table.	As	shown	in	the	next	section,	retrieval	is	much	more
efficient	for	search	keys	that	are	indexed.	Selection	criteria	aiming	at	a
unique	tuple	can	be	supported	by	a	primary	index	or	by	a	secondary
index	on	a	candidate	key	–	see	index	(a)	above.	Selection	criteria
targeting	a	set	of	tuples	can	be	supported	by	a	clustered	index	or	by	a
secondary	index	on	a	non-key	attribute	type	or	combination	of	attribute
types,	as	shown	in	indexes	(c)	and	(b)	respectively.	In	many	cases,	even
if	only	some	of	the	attribute	types	of	a	composite	search	key	are	indexed,
retrieval	performance	will	increase.

Efficient	performance	of	join	queries:	As	stated	previously,	the	join	is
one	of	the	most	expensive	operations,	performance	wise,	in	query
execution.	Indexes	can	be	used	to	perform	the	search	for	related	tuples	in
both	tables	(i.e.,	tuples	that	match	the	join	criteria)	in	a	more	efficient
way.	Such	an	index	often	involves	a	foreign	key,	as	these	are	typical
candidates	to	appear	in	join	conditions.	The	latter	is	illustrated	in	index
(d).	More	details	are	provided	in	Section	13.1.4.

Enforce	uniqueness	on	a	column	value	or	combination	of	column	values:
It	would	be	very	inefficient	for	a	DBMS	to	enforce	a	uniqueness
constraint	on	an	attribute	type	or	set	of	attribute	types	without	using	an
index.	In	that	case,	every	time	a	tuple	is	added	or	an	attribute	is	updated,
the	DBMS	would	have	to	linearly	scan	the	entire	table	to	verify	whether
the	uniqueness	constraint	has	not	been	violated.	Therefore,	enforcing	a

uniqueness	constraint	requires	that	an	index	is	created	over	the

corresponding	attribute	type(s),	such	that	the	DBMS	only	has	to	search
the	index	to	make	sure	there	are	no	duplicate	values.	We	call	such	an
index	a	unique	index;	it	is	denoted	by	the	UNIQUE	clause	in	the
abovementioned	syntax	for	query	creation,	as	shown	in	index	(a).	A
unique	index	is	generated	automatically	for	every	primary	key.	Other
unique	indexes	can	be	defined	explicitly	over	other	candidate	keys	by	the
database	designer.	If	the	unique	attribute	type	or	combination	of	attribute
types	determines	the	physical	ordering	of	the	rows	in	the	table,	the
unique	index	is	a	primary	index.	If	this	is	not	the	case,	the	unique	index
is	a	secondary	index.

Logical	ordering	of	rows	in	a	table:	Every	index	is	ordered	in	a	certain
way,	according	to	the	attribute	type(s)	it	involves.	This	can	be	specified
by	means	of	the	ASC	(for	ascending)	or	DESC	(for	descending)	clause	in
the	syntax.	As	such,	the	index	also	specifies	a	logical	ordering	on	the
actual	tuples	in	the	table,	which	contain,	among	others,	these	same
attribute	types.	The	number	of	secondary	indexes	that	can	be	created	is	in
theory	only	limited	by	the	number	of	attribute	types	in	a	table.	Thus,	one
can	define	numerous	logical	ordering	criteria	on	the	same	physically
ordered	stored	table.	This	is	illustrated	in	all	index	examples	above.

Physical	ordering	of	rows	in	a	table:	The	ordering	of	the	index	entries
can	also	be	used	to	determine	the	physical	order	of	the	rows	in	a	stored
table.	In	that	case,	the	values	to	the	index’s	search	key(s)	determine	the
physical	positioning	of	the	respective	rows	on	the	disk.	If	every	value	or
combination	of	values	in	the	search	key	is	unique,	we	have	a	primary
index.	Otherwise,	it	is	a	clustered	index.	Consequently,	retrieving	the
tuples	in	this	order	(e.g.,	in	the	context	of	an	ORDER	BY	clause	in	an

Apart	 from	 a	 single	 primary	 or	 clustered	 index	 for	 every	 table,	 one	 can
define	as	many	secondary	indexes	as	desired.	However,	every	index	also	comes
with	a	cost:	it	consumes	storage	capacity	and	may	slow	down	update	queries,	as
the	 corresponding	 indexes	 need	 to	 be	 updated	 as	 well.	 The	 database
administrator	must	rely	on	statistical	 information	 in	 the	catalog	(see	below),	as
well	 as	his/her	own	experience	 to	decide	which	 indexes	 to	 create.	Fortunately,
because	 of	 the	 physical	 data	 independence	 discussed	 earlier,	 indexes	 can	 be
added	or	deleted	in	light	of	altered	requirements	or	new	insights	into	data	usage,
without	affecting	 the	 logical	data	model	or	applications.	 In	addition,	secondary
indexes	 can	 be	 constructed	 or	 removed	without	 affecting	 the	 actual	 data	 files.
This	is	not	the	case	for	primary	indexes	and	clustered	indexes.

Connections

Chapter	1	discussed	physical	data	independence.

Attribute	 types	 that	 are	 typical	 candidates	 to	be	 indexed	are	primary	keys
and	other	candidate	keys	to	enforce	uniqueness,	foreign	keys	and	other	attribute

SQL	query)	becomes	very	efficient.	Also,	as	illustrated	hereafter,	range
queries	can	be	performed	more	efficiently	on	attribute	types	for	which
such	an	index	is	available.	Unfortunately,	since	it	determines	the	physical
ordering	of	the	tuples,	there	can	be	only	one	such	index	(either	a	primary
index	or	a	clustered	index)	for	every	table.	Hence,	the	choice	of	which
attribute	types	to	involve	should	be	made	very	carefully,	in	light	of	the
expected	frequency	and	importance	of	this	type	of	query.	The	clustering
property	can	be	set	by	the	optional	CLUSTER	clause	when	creating	an
index	–	see	index	(c)	in	the	above	example.

types	 that	 are	 often	 used	 in	 join	 conditions,	 and	 attribute	 types	 that	 occur
frequently	as	selection	criteria	 in	queries.	Overall,	 it	 is	better	 to	avoid	attribute
types	 that	 are	 large	 or	 variable	 in	 size	 (e.g.,	 large	 character	 strings	 or	 varchar
attribute	 types),	 as	 these	 render	 index	 search	 and	 maintenance	 less	 efficient.
Other	pertinent	factors	are	the	size	of	the	tables,	as	an	index	over	a	small	table
often	 induces	 more	 overhead	 than	 performance	 gain,	 and	 the	 proportion	 of
retrieval	and	update	queries.	Typically,	retrieval	is	sped	up,	whereas	updates	are
slowed	down.

13.1.3	Database	Access	Methods

13.1.3.1	Functioning	of	the	Query	Optimizer

In	 contrast	 to	 legacy	 environments	 such	 as	 CODASYL,	 an	 essential
characteristic	of	RDBMSs	and	other	more	 recent	DBMS	types	 is	 that	 they	are
non-navigational	 (see	 Chapter	 5).	 In	 this	 respect,	 SQL	 is	 a	 declarative	 query
language	in	which	a	developer	specifies	which	data	are	required,	but	not	how	the
data	are	to	be	located	and	retrieved	from	the	physical	database	files	(see	Chapter
7).

Connections

Chapter	5	introduced	navigational	DBMSs	such	as	CODASYL.	SQL	was
discussed	in	Chapter	7.

In	many	cases,	different	access	paths	exist	to	get	to	the	same	data,	although
the	time	to	accomplish	the	retrieval	task	may	vary	greatly.	For	each	query,	it	 is
the	 responsibility	 of	 the	 optimizer	 to	 translate	 the	 different	 possible	 ways	 of
resolving	 the	 query	 into	 different	access	plans	 and	 to	 select	 the	 plan	with	 the
highest	 estimated	 efficiency.	 Modern	 cost-based	 optimizers	 calculate	 the
optimal2	 access	plan	according	 to	 a	 set	 of	built-in	 cost	 formulas	 similar	 to	 the
ones	discussed	in	Chapter	12	on	file	organization,	as	well	as	information	such	as
the	table(s)	involved	in	the	query,	the	available	indexes,	the	statistical	properties
of	the	data	in	the	tables,	etc.

The	respective	steps	of	query	execution	and	the	role	of	the	optimizer	were
already	discussed	in	Chapter	2.	 In	summary,	 the	query	processor	 is	 the	DBMS
component	 that	 assists	 in	 the	 execution	 of	 both	 retrieval	 and	 update	 queries

against	 the	 database.	 It	 consists	 of	 a	 DML	 compiler,	 a	 query	 parser,	 a	 query
rewriter,	 a	 query	 optimizer,	 and	 a	 query	 executor.	 The	 DML	 compiler	 first
extracts	 the	 DML	 statements	 from	 the	 host	 language.	 The	 query	 parser	 then
parses	the	query	into	an	internal	representation	format	and	checks	the	query	for
syntactical	 and	 semantical	 correctness.	 This	 representation	 is	 rewritten	 by	 the
query	 rewriter.	 The	 latter	 optimizes	 the	 query,	 independently	 of	 the	 current
database	 state,	 by	 simplifying	 it	 according	 to	 a	 set	 of	 predefined	 rules	 and
heuristics.	Then	the	query	optimizer	kicks	 in.	 It	optimizes	 the	query,	 taking	the
current	 database	 state	 into	 account,	 as	 well	 as	 information	 in	 the	 catalog	 and
available	access	structures	such	as	indexes.	The	result	of	the	query	optimization
procedure	is	a	final	access	plan	which	is	then	handed	over	to	the	query	executor
for	execution.

The	DBMS	maintains	the	following	statistical	data	in	its	catalog,	to	be	used
by	the	optimizer	to	calculate	the	optimal	access	plan:

Table-related	data:

–	number	of	rows;

–	number	of	disk	blocks	occupied	by	the	table;

–	number	of	overflow	records	associated	with	the	table.

Column-related	data:

–	number	of	different	column	values;

–	statistical	distribution	of	the	column	values.

Index-related	data:

–	number	of	different	values	for	indexed	search	keys	and	for	individual
attribute	types	of	composite	search	keys;

–	number	of	disk	blocks	occupied	by	the	index;

It	would	lead	us	too	far	to	discuss	all	elements	in	detail,	but	we	illustrate	a
few	essential	aspects	below.	A	first	important	concept	is	the	filter	factor,	or	FF
for	 short.3	 An	 FF	 is	 associated	 with	 a	 query	 predicate.	 The	 query	 predicate
specifies	the	selection	condition	with	respect	to	a	particular	attribute	type	Ai	in
the	query,	 (e.g.,	 “CustomerID	=	11349”	or	 “Gender	=	M”	or	 “Year	 of	Birth	 ≥
1970”).	The	FFi	of	a	query	predicate	represents	the	fraction	of	the	total	number
of	rows	that	is	expected	to	satisfy	the	predicate	associated	with	attribute	type	Ai.
In	other	words,	the	FF	denotes	the	chance	that	a	particular	row	will	be	selected
according	to	 the	query	predicate.	For	queries	over	a	single	 table,4	the	expected
query	cardinality	 (QC;	 the	number	of	 rows	 selected	by	 the	query)	 equals	 the
table	 cardinality	 (TC;	 the	 number	 of	 rows	 in	 the	 table)	 multiplied	 by	 the
product	of	the	filter	factors	of	the	respective	search	predicates	in	the	query:

QC	=	TC	×	FF1	×	FF2	×	…FFn

If	no	further	statistical	information	is	available,	then	an	estimate	for	FFi	is	1/NVi,
with	NVi	representing	the	number	of	different	values	of	attribute	type	Ai.

For	 example,	 suppose	 the	 Customer	 table	 as	 illustrated	 in	 Figure	 12.24
contains	10,000	customers.	Let’s	examine	the	following	query:

SELECT	CUSTOMERID
FROM	CUSTOMERTABLE
WHERE	COUNTRY	=	'UK'

–	index	type:	primary/clustered	or	secondary.

Tablespace-related	data:

–	number	and	size	of	tables	in	the	tablespace;

–	device-specific	I/O	properties	of	the	device	on	which	the	table
resides.

AND	GENDER	=	'M'

The	 TC	 =	 10,000,	 as	 there	 are	 10,000	 rows	 in	 the	 table.	 Suppose	 the	 table
contains	20	different	countries	and	Gender	has	two	values	“M”	and	“F”.	In	that
case,	FFCountry	 =	 0.05	 and	 FFGender	 =	 0.5.	 The	 expected	 query	 cardinality	 can
then	be	calculated	as:

QC	=	10,	000	×	0.05	×	0.5	=	250

Thus,	we	expect	250	rows	in	the	data	file	to	have	both	the	properties	“Country	=
UK”	and	“Gender	=	M”.	Suppose	the	optimizer	must	choose	between	two	access
plans.	A	first	option	is	an	access	plan	in	which	all	rows	that	satisfy	“Country	=
UK”	are	retrieved,	by	means	of	an	index	over	“Country”.	The	second	option	is
an	 access	 plan	 in	which	 all	 rows	 that	 satisfy	 “Gender	 =	M”	 are	 retrieved,	 by
means	of	an	index	over	“Gender”.	In	the	first	case,	the	expected	number	of	rows
to	be	retrieved	is	10,000	×	0.05	=	500.	Since	QC	=	250,	we	expect	half	of	these
500	to	satisfy	the	query	and	half	of	them	to	be	discarded	(because	they	have	the
wrong	value	for	“Gender”).	In	the	second	case,	the	expected	number	of	rows	to
be	retrieved	is	10,000	×	0.5	=	5000.	Of	these,	we	expect	only	250	to	be	retained
and	4750	to	be	discarded	because	they	have	the	wrong	value	for	“Country”.	The
first	 strategy	will	be	considered	as	more	efficient	 than	 the	second,	as	 fewer,	 in
hindsight	 useless,	 record	 retrievals	 have	 to	 be	 performed.	 Yet,	 in	 fact,	 the
situation	is	often	a	bit	more	complicated	than	that.	For	example,	it	could	be	that
the	records	are	sorted	according	to	gender,	which	may	make	retrieval	according
to	 that	 criterion	 more	 efficient,	 because	 only	 sequential	 block	 accesses	 are
performed.	 Also,	 additional	 statistical	 information	 could	 be	 available	 –	 for
example,	 the	 fact	 that	many	more	 customers	 live	 in	 the	UK	 than	 in	 any	 other
country.	 In	 that	 case,	 the	 second	 alternative	may	 turn	 out	 to	 be	more	 efficient
after	all.

The	 latter	 illustrates	an	optimizer’s	“reasoning”	over	statistical	data	 in	 the
catalog,	in	combination	with	properties	of	the	query	at	hand,	to	draw	conclusions
about	 the	most	efficient	 access	path.	 In	what	 follows,	we	discuss	 some	 typical
situations	 in	which	 a	 different	 access	 path	may	be	 chosen	 for	 the	 same	query,
depending	on	the	physical	table	properties,	availability,	and	type	of	indexes,	for
example.

13.1.3.2	Index	Search	(with	Atomic	Search	Key)

Let’s	first	examine	the	situation	with	a	single	query	predicate,	in	which	the	query
involves	a	search	key	with	only	a	single	attribute	type.	If	an	index	exists	for	this
attribute	type,	an	index	search	is	usually	the	most	efficient	way	of	implementing
the	query.	This	approach	is	applicable	to	queries	targeting	a	single	value	as	well
as	 range	 queries.	 Let’s	 revisit	 the	B+-tree	 index	 example	 from	Chapter	 12,	 as
depicted	again	in	Figure	13.2.	We	assume	the	following	range	query:

SELECT	*
FROM	MY_TABLE
WHERE	MY_KEY	>=	12
AND	MY_KEY	<=	24

The	index	allows	filtering	which	data	rows	should	be	retrieved,	hence	avoiding
unnecessary	 retrievals	 and	 therefore	 greatly	 improving	 performance	 of	 query
execution.	The	following	steps	are	taken,	as	illustrated	in	Figure	13.2:

Starting	from	the	index’s	root	node,	descend	the	B+-tree	along	the	tree
pointers	according	to	the	search	key	values	onto	the	first	leaf	node	that
contains	key	values	satisfying	the	search	condition.

From	this	leaf	node,	follow	the	data	pointers	to	retrieve	the	data	rows
satisfying	the	search	key	values.

Figure	13.2	Example	of	index	search	by	means	of	a	B+-tree.

If	 the	 query	 involves	 only	 a	 single	 search	 key	 value,	 and	 not	 a	 range	 of
values,	 an	 efficient	 alternative	would	be	 to	organize	 the	 table	 according	 to	 the
random	 file	 organization	 method,	 mapping	 search	 key	 values	 onto	 physical
locations	by	means	of	hashing,	instead	of	using	an	index.	Note	that	this	approach
is	 not	 efficient	 in	 supporting	 range	queries,	where	 an	 interval	 of	 key	values	 is
used	as	a	search	criterion.

As	to	range	queries,	a	primary	or	clustered	index	is	even	more	efficient	than
a	secondary	index.	Indeed,	if	the	data	records	are	stored	in	the	same	order	as	the
search	 key,	 the	 B+-tree’s	 leaf	 nodes	 can	 be	 accessed	 by	 means	 of	 the	 “next”
pointers	 and	 the	 data	 rows	 can	 be	 retrieved	 in	 the	 same	 order	 by	 means	 of
sequential	 block	 accesses.	On	 the	other	 hand,	 applying	 the	 same	procedure	by
means	 of	 a	 secondary	 index	would	 result	 in	 all	 random	block	 accesses	 on	 the
data	 file,	 “jumping”	 back	 and	 forth	 because	 the	 data	 records	 are	 not	 in	 the
appropriate	physical	order.	This	is	illustrated	in	Figure	13.3.	In	such	a	case,	the
DBMS	would	probably	first	sort	the	pointers	to	the	disk	blocks	to	be	accessed,
according	to	their	physical	address,	but	this	sorting	also	induces	a	certain	amount
of	overhead.

Follow	the	“next”	tree	pointers5	in	the	leaf	nodes	to	subsequently	access
all	nodes	that	contain	key	values	still	within	the	desired	range	of	the
search	key.	For	each	of	these	nodes,	follow	the	data	pointers	to	retrieve
the	corresponding	data	rows.

Figure	13.3	Example	of	range	query	with	primary	versus	secondary	index.

13.1.3.3	Multiple	Index	and	Multicolumn	Index	Search

If	 the	search	key	is	composite,	a	similar	approach	is	feasible,	but	other	options
exist	as	well,	depending	on	the	availability	of	single-column	and/or	multicolumn
indexes,	 which	 cover	 all	 or	 part	 of	 the	 attribute	 types	 that	 occur	 in	 the	 query
predicates.

If	 the	 indexed	 attribute	 types	 are	 the	 same	 as	 the	 attribute	 types	 in	 the
search	 key,	 then	 the	 approach	 in	 the	 previous	 section	 is	 usually	 the	 most
efficient.	The	multicolumn	index	 then	 allows	 filtering	out	 and	 retrieving	only
these	data	rows	that	satisfy	the	query.	In	most	cases,	it	is	not	feasible	to	create	a
multicolumn	 index	 for	 every	 possible	 combination	 of	 search	 keys,	 as	 these
indexes	 would	 become	 very	 large.	 Indeed,	 if	 we	 assume	 there	 are	 n	 possible
attribute	 types	Ai	 to	 be	 used	 in	 a	 search	 key	 (i	 =	 1..n),	 with	 attribute	 type	Ai

having	NVi	possible	values,	then	a	dense	index	created	over	all	Ai	has	
entries.6	 If,	 instead,	 we	 create	 separate	 dense	 indexes	 over	 each	 individual
attribute	 type,	we	have	n	 indexes	with	 respectively	NVi	 entries	 (i	=	1..n).	 The

total	 number	 of	 entries	 over	 all	 indexes	 is	 then	 only	 ,	 which	 is
considerably	 lower.7	 For	 example,	 a	 search	 key	with	 five	 attribute	 types,	 each
with	ten	possible	values,	would	yield	a	multicolumn	index	with	100,000	entries.

When	 using	 single-column	 indexes	 instead,	 there	would	 be	 five	 indexes,	 each
with	ten	entries,	thus	50	entries	in	total.

The	 case	 becomes	 even	 more	 complex	 if	 not	 only	 queries	 involving	 all
search	attribute	types	are	executed,	but	also	queries	involving	an	arbitrary	subset
of	 these	 attribute	 types.	 As	 already	 explained	 in	 Chapter	 12,	 to	 efficiently
support	 these	 kinds	 of	 queries,	 a	 multicolumn	 index	 should	 have	 all	 attribute
types	 involved	 in	 the	 query	 predicates	 in	 its	 leftmost	 columns.	 In	 order	 to
support	all	possible	queries	with	n	or	fewer	attribute	types,	multiple	multicolumn
redundant	 indexes	could	be	created	with	 the	same	n	 attribute	 types,	but	with	a
different	ordering	of	the	columns.	It	can	be	proven	that,	to	cater	for	all	possible

search	 keys	with	n	 attribute	 types	 or	 less,	 	 indexes	 are	 required.8	 For

example,	with	 three	 attribute	 types,	 	 =	 3	 indexes	 are	 required.	 The	 index
combinations	(A1,	A2,	A3),	(A2,	A3,	A1),	and	(A3,	A1,	A2)	accommodate	for	any
query	that	includes	A1,	A2	and/or	A3.	A	few	cases	are	illustrated	below:

It	 is	 clear	 from	 the	 formula	 that	 the	 number	 of	 possible	 attribute	 type
combinations,	 and	 therefore	 the	number	of	 required	 indexes,	 grows	quickly	 as
the	number	of	 attribute	 types	 increases.	For	 example,	 if	we	have	 five	 attribute
types,	this	requires	already	ten	redundant	indexes	over	the	same	attribute	types.
Hence,	 multicolumn	 indexes	 are	 only	 appropriate	 for	 selective	 cases,	 such	 as
queries	 that	 are	 executed	 very	 often	 or	 that	 are	 very	 time	 critical.	 As	 already

A	query	involving	A1,	A2,	and	A3	→	any	index	can	be	used.

A	query	involving	A1	and	A3	→	use	(A3,	A1,	A2).

A	query	involving	A2	and	A3	→	use	(A2,	A3,	A1).

A	query	involving	only	A1	→	use	(A1,	A2,	A3).

explained,	 they	 are	 also	 used	 to	 enforce	 uniqueness	 constraints,	 but	 then	 the
number	of	attribute	types	is	limited	and	there	is	no	need	for	redundant	indexes.

Fortunately,	 an	 efficient	 alternative	 to	 a	 multicolumn	 index	 is	 to	 use
multiple	 single-column	 indexes,	 or	 indexes	 with	 fewer	 columns,	 as	 already
briefly	discussed	in	Chapter	12.	If	we	have	a	query	of	the	following	format:

SELECT	*
FROM	MY_TABLE
WHERE	A1	=	VALUE1

AND	A2	=	VALUE2

AND	…
AND	An	=	VALUEn

and	 we	 have	 single-column	 indexes	 for	 every	 attribute	 type	 Ai,	 then	 the
intersection	 can	be	 taken	between	 the	 sets	of	pointers	 in	 the	 index	entries	 that
correspond	to	the	desired	values	of	Ai.	This	intersection	yields	the	pointers	to	all
records	that	satisfy	the	query.	On	the	other	hand,	for	queries	of	the	type:

SELECT	*
FROM	MY_TABLE
WHERE	A1	=	VALUE1

OR	A2	=	VALUE2

OR	…
OR	An	=	VALUEn

we	can	take	the	union	of	the	sets	of	pointers	to	yield	the	records	that	qualify.
As	 an	 example,	 Figure	 13.4	 illustrates	 the	 use	 of	 two	 indexes,	 one	 on

Country	and	one	on	Gender,	to	execute	the	already	familiar	query:

SELECT	CUSTOMERID
FROM	CUSTOMERTABLE

WHERE	COUNTRY	=	'UK'
AND	GENDER	=	'M'

Figure	13.4	Example	of	using	two	indexes	to	execute	query	with	multiple
predicates.

By	 taking	 the	 intersection	 between	 the	 set	 of	 pointers	 referring	 to	 people
living	in	the	UK	and	the	set	of	pointers	referring	to	males,9	all	pointers	to	males
living	 in	 the	 UK	 can	 be	 identified.	 Note	 that	 this	 approach	 works	 best	 with
record	pointers,	because	then	the	selection	can	actually	be	made	at	record	level.
Since	 in	 this	 case	 every	 block	 contains	 both	 males	 and	 females,	 an	 index	 on
Gender	with	just	block	pointers	will	not	contribute	to	more	selectivity	on	which
blocks	 to	 access.	 Compare	 this	 example	 to	 the	 example	 with	 a	 multicolumn

index	 on	 (Country,	 Gender)	 in	 Figure	 12.24.	 An	 alternative	 approach,	 as

supported	 by	 an	 increasing	 number	 of	 DBMS	 implementations,	 is	 the	 use	 of
bitmap	indexes.	As	discussed	in	Chapter	12,	each	bitmap	denotes	 tuples	with	a
certain	 attribute.	 By	 applying	 Boolean	 operations	 to	 bitmaps	 from	 multiple
indexes,	tuples	that	satisfy	a	combination	of	predicates	can	be	identified.

Finally,	 it	 is	 also	 possible	 to	 use	 a	 single	 index,	 or	 a	 few	 indexes,	 that
together	cover	only	a	subset	of	the	attribute	types	involved	in	the	search	key.	In
that	case,	the	index(es)	can	be	used	to	retrieve	only	those	records	that	satisfy	the
predicates	associated	with	these	attribute	types.	Each	of	these	records	has	to	be
retrieved	and	tested	for	compliance	with	the	predicates	associated	with	the	non-
indexed	attribute	 types.	The	efficiency	of	 this	approach	depends	 largely	on	 the
filter	factors	of	the	query	predicates	associated	with	the	indexed	attribute	types.
The	more	selective	these	predicates,	the	fewer	data	rows	will	be	retrieved	in	vain
because	they	ultimately	do	not	comply	with	the	query	predicates	associated	with
the	non-indexed	attribute	types.	The	most	extreme	case	is	that	one	of	the	indexed
attribute	types	is	the	primary	key	or	another	candidate	key;	in	that	case,	the	total
number	of	records	 to	be	retrieved	is	zero	or	one,	so	most	of	 the	 inefficiency	is
mitigated	anyway.

Let’s	 resume	 the	 discussion	 considering	 the	 example	 in	 Figure	 13.4.
Suppose	 only	 the	 index	 on	 “Country”	 exists.	 In	 support	 of	 the	 same	 query,
searching	for	all	male	customers	in	the	UK,	the	index	can	be	used	to	retrieve	all
data	 rows	 representing	 customers	 in	 the	 UK.	 For	 these	 rows,	 the	 “Gender”
attribute	type	is	inspected,	resulting	in	two	rows	depicted	in	the	example	being
retained	(Gender	=	“M”)	and	one	row	being	discarded	(Gender	=	“F”).	If,	on	the
other	hand,	only	the	index	on	“Gender”	existed,	we	would	have	retrieved	seven
rows	 depicted	 in	 the	 example,	 each	 representing	 a	 male	 customer.	 After
inspecting	every	one	of	 these	for	 the	“Country”	attribute	 type,	only	 two	would
have	 been	 retained	 (Country	 =	 “UK”)	 and	 five	 would	 have	 been	 discarded

because	they	have	the	wrong	country.	If	a	multicolumn	index	had	been	used	on
(Country,	Gender),	two	rows	would	have	been	retrieved,	which	both	satisfy	the
query.	No	rows	are	retrieved	unnecessarily.	These	results	based	on	the	limited	set
of	 rows	 depicted	 in	 the	 example	 align	 with	 the	 efficiency	 estimates	 made	 in
Section	 13.1.3.1.	 There,	 according	 to	 the	 filter	 factors,	 we	 saw	 that	 the
selectivity,	and	therefore	the	efficiency	of	using	the	corresponding	index,	of	the
predicate	 associated	 with	 “Country”	 was	 much	 higher	 than	 the	 selectivity
associated	with	the	predicate	on	“Gender”.

To	summarize,	the	optimizer	has	complex	decisions	to	make	in	the	case	of
queries	with	many	predicates.	A	multicolumn	index	over	all	 these	predicates	 is
the	most	efficient	alternative:	its	FF	is	equal	to	the	query’s	FF,	so	only	the	data
rows	that	satisfy	the	query	are	retrieved.	Still,	this	approach	becomes	unfeasible
if	 many	 attribute	 types	 are	 used	 in	 query	 predicates,	 as	 the	 indexes	 would
become	 very	 large	 and,	 possibly,	 redundancy	 is	 required	 to	 accommodate	 for
queries	with	predicates	for	only	a	subset	of	the	attribute	types.	As	an	alternative,
multiple	 indexes	 can	 be	 combined,	 if	 they	 exist,	 to	 cover	 as	 many	 query
predicates	as	possible.	This	requires	more	indexes,	but	with	a	much	lower	total
number	 of	 index	 entries	 than	 in	 the	 case	 of	 a	 composite	 index.	 Generally
speaking,	 the	more	selective	a	query	predicate’s	FF,	 the	more	desirable	 it	 is	 to
use	the	index	on	the	corresponding	attribute	type	in	the	access	plan.	If	the	filter
factors	 associated	 with	 non-indexed	 attribute	 types	 are	 in	 their	 turn	 very
selective,	many	 records	 are	 retrieved	 in	 vain,	which	 is	 inefficient.	 Apart	 from
these	considerations,	it	is	important	to	keep	in	mind	that	ultimately	the	number
of	block	accesses	determines	the	performance,	not	the	number	of	rows	retrieved.
Thus,	 the	 impact	 of	 clustering	 always	 needs	 to	 be	 investigated,	 since	 despite
what	the	filter	factors	indicate,	using	a	primary	index	or	a	clustered	index	may
be	more	efficient	than	using	a	secondary	index,	especially	for	range	queries.

13.1.3.4	Index-Only	Access

In	some	cases,	 the	optimizer	might	be	extremely	“lucky”,	 in	 the	sense	 that	 the
query	can	be	executed	entirely	without	accessing	the	data	files,	based	solely	on
information	in	the	index.	In	that	case,	not	only	should	the	attribute	types	used	in
the	search	key	be	indexed,	but	also	the	attribute	types	that	occur	in	the	query’s
SELECT	clause.	For	example,	consider	the	following	query:

SELECT	LASTNAME
FROM	CUSTOMERTABLE
WHERE	COUNTRY	=	'UK'
AND	GENDER	=	'M'

If	there	exists	a	multicolumn	index,	or	a	combination	of	single-column	indexes,
over	 the	 attribute	 types	 LastName,	 Country,	 and	 Gender,	 then	 the	 data	 in	 the
index(es)	suffice	to	yield	the	query	result.	In	that	case,	access	to	the	actual	data
rows	can	be	avoided.	This	is	especially	efficient	if	the	data	rows	consist	of	many
attribute	 types,	 and	 take	much	more	 time	 to	 retrieve	 than	 index	entries.	 Index-
only	 access	 is	 thus	 an	 additional	 reason	 for	 creating	 multicolumn	 indexes.	 A
particular	application	of	index-only	access	is	the	use	of	a	join	index,	as	discussed
in	Section	12.3.7.4.	Here,	the	result	of	a	join	query	between	two	or	more	tables
can	be	 retrieved	based	on	 just	 the	 index,	without	accessing	 the	 respective	base
tables	involved.

Of	course,	the	more	attribute	types	are	included	in	the	index,	the	higher	the
negative	performance	impact	is	on	update	queries,	since	the	index	entries	need	to
be	updated	as	well.	Note	that,	because	the	data	rows	are	not	retrieved	anyway,	a
primary	or	clustered	 index	does	not	yield	better	performance	 than	a	 secondary
index	for	index-only	access.

13.1.3.5	Full	Table	Scan

If	 no	 index	 is	 available	 for	 the	 attribute	 type(s)	 and	 table(s)	 involved	 in	 the
query,	 there	 is	no	other	option	 than	 to	 linearly	 search	 the	entire	 table	 for	 rows
that	 satisfy	 the	 query.	 This	 means	 that	 all	 corresponding	 disk	 blocks	 in	 the
tablespace	will	be	retrieved,	and	their	rows	examined	in	main	memory,	even	if
they	turn	out	not	to	contain	any	rows	that	satisfy	the	query.	Thus,	the	higher	the
query’s	FF	and/or	the	larger	the	table,	the	less	efficient	a	full	table	scan	will	be.
However,	for	very	small	tables,	or	for	queries	that	require	nearly	all	of	a	table’s
tuples	anyway	(e.g.,	range	queries	with	a	very	extensive	range),	a	full	table	scan
might	 actually	 be	 more	 efficient	 than	 using	 an	 index,	 with	 all	 its	 overhead
involved.	 In	 the	 specific	 situation	 in	 which	 the	 data	 records	 are	 ordered
according	to	the	attribute	type(s)	in	the	search	key,	a	binary	search	on	the	actual
data	 file	 can	 also	 be	 an	 efficient	 alternative	 to	 a	 linear	 search.	 These
considerations	can	be	a	guide	for	the	database	designer	or	database	administrator
when	 deciding	 on	 the	 creation	 of	 indexes,	 obviously	 also	 taking	 into	 account
how	frequently	the	particular	type	of	query	will	be	executed.

Finally,	 it	 is	 important	 to	 note	 that	 several	 of	 the	 file	 organization
techniques	 we	 discussed	 involve	 overflow	 records.	 If	 these	 techniques	 are
applied	 in	 the	 context	 of	 physical	 database	 organization,	we	 also	 need	 to	 deal
with	this	overflow.	We	are	confronted	with	overflow	if	a	stored	record	is	added
or	updated	and	does	not	“fit”	 in	 the	position	where	 it	belongs	according	 to	 the
applicable	 file	 organization	 technique.	 The	 record	 is	 then	 placed	 in	 another
location,	according	to	 the	chosen	overflow-handling	technique.	Overflow	has	a
negative	impact	on	the	efficiency	of	a	clustering	index;	the	more	rows	are	out	of
place;	 the	more	additional	block	accesses	are	needed	to	retrieve	the	data	 in	 the
corresponding	 order.	 Clearly,	 if	 the	 number	 of	 overflow	 records	 becomes	 too
high,	the	stored	table	needs	to	be	reorganized.

13.1.4	Join	Implementations

Connections

Chapter	7	introduced	join	SQL	queries.

One	 of	 the	 key	 differences	 between	 database	 organization	 and	 just	 file
organization	 is	 the	 fact	 that	database	organization	should	also	cater	 for	queries
that	involve	multiple	tables,	by	means	of	a	join	construct	in	SQL.	A	join	query
between	 two	 tables	 specifies	 selection	 criteria	 that	 relate	 tuples	 from	 the	 two
tables	to	one	another,	according	to	a	so-called	join	operator.	It	is	one	of	the	most
time-consuming	 operations	 in	 an	 RDBMS	 and	 therefore	 deserves	 special
attention.	We	restrict	ourselves	to	the	inner	join.	The	general	notation	of	an	inner
join	between	tables	R	and	S	is	as	follows:

R	⋈	S
r(a)	θ	s(b)

The	θ-operator	specifies	 the	 join	condition,	which	 is	 the	criteria	 that	determine
which	 rows	 from	 table	R	are	combined	with	which	 rows	 from	 table	S.	To	 this
end,	a	set	of	attributes	a	of	tuples	r	 in	R	is	compared	to	a	set	of	attributes	b	of
tuples	 s	 in	 S.	 The	 comparison	 operator	 may	 involve	 an	 equality	 such	 as
r(a)	 =	 s(b)	 or	 an	 inequality	 such	 as	 r(a)	 ≥	 s(b).	 In	 what	 follows,	 we	 limit
ourselves	to	joins	based	on	an	equality	condition.

The	tuples	in	the	individual	tables	are	retrieved	by	means	of	one	or	more	of
the	 access	 methods	 outlined	 in	 the	 previous	 section	 (e.g.,	 index	 search,	 table
scan,	 etc.).	 The	 tuples	 that	 match	 according	 to	 the	 join	 condition	 are	 then
combined	into	a	unified	result.	This	is	illustrated	in	Figure	13.5.	A	join	between

n	tables	with	n>2	is	realized	as	a	series	of	(n–1)	consecutive	joins	between	two
tables.

Figure	13.5	Illustration	of	a	join.

Different	 techniques	 exist	 to	 physically	 implement	 a	 join;	 their	 efficiency
depends	on	the	properties	of	the	tables	and	columns	involved,	as	well	as	on	the
availability	of	indexes.	We	discuss	three	of	the	main	techniques:	the	nested-loop
join,	the	sort-merge	join,	and	the	hash	join.

13.1.4.1	Nested-Loop	Join

With	a	nested-loop	join,	one	of	the	tables	is	denoted	as	the	inner	table	and	 the
other	becomes	the	outer	table.10	For	every	row	in	the	outer	table,	all	rows	of	the
inner	table	are	retrieved	and	compared	to	the	current	row	of	the	outer	table.	If	the
join	condition	is	satisfied,	both	rows	are	joined	and	put	in	an	output	buffer.	The
inner	 table	 is	 traversed	as	many	times	as	 there	are	rows	in	 the	outer	 table.	The
algorithm	is	as	follows:

R	⋈	S
r(a)	=	s(b)

Denote	S	→	outer	table

For	every	row	s	in	S	do
				{for	every	row	r	in	R	do
								{if	r(a)	=	s(b)	then	join	r	with	s	and	place	in	output	buffer}
				}

As	mentioned	above,	the	inner	table	is	traversed	as	many	times	as	there	are	rows
in	the	outer	table.	Therefore,	this	approach	is	mainly	effective	if	the	inner	table	is
very	small	or	if	the	internal	data	model	provides	facilities	for	efficient	access	to
the	 inner	 table,	such	as	by	means	of	a	primary	or	clustered	index	over	 the	 join
columns	of	the	inner	table.	This	approach	is	also	more	efficient	if	the	filter	factor
of	 the	 other	 query	 predicates	 is	 very	 restrictive	 with	 respect	 to	 the	 rows	 that
qualify	in	the	inner	table.

13.1.4.2	Sort-Merge	Join

With	a	sort-merge	join,	the	tuples	in	both	tables	are	first	sorted	according	to	the
attribute	 types	 involved	 in	 the	 join	condition.	Both	 tables	are	 then	 traversed	 in
this	order,	with	the	rows	that	satisfy	the	join	condition	being	combined	and	put
in	an	output	buffer.	The	algorithm	is	represented	below:

R	⋈	S
r(a)	=	s(b)

Stage	1:	sort	R	according	to	r(a)
									sort	S	according	to	s(b)
Stage	2:	retrieve	the	first	row	r	of	R
									retrieve	the	first	row	s	of	S
									for	every	row	r	in	R
													{while	s(b)	<	r(a)
													read	the	next	row	s	of	S
													if	r(a)	=	s(b)	then	join	r	with	s	and	place	in	output	buffer}

In	 contrast	 to	 a	 nested-loop	 join,	 every	 table	 is	 traversed	 only	 once.	 This
approach	is	appropriate	if	many	rows	in	both	tables	satisfy	the	query	predicates
and/or	if	there	exist	no	indexes	over	the	join	columns.	The	sorting	algorithm	that
is	applied	in	stage	1	may	be	quite	time	consuming,	hence	a	sort-merge	join	will
be	more	efficient	if	the	tuples	in	R	and/or	S	are	already	physically	ordered	in	the
stored	tables	according	to	the	attribute	types	used	in	the	join	condition.

13.1.4.3	Hash	Join

Finally,	with	 a	hash	 join,	 a	 hashing	 algorithm	 is	 applied	 to	 the	 values	 of	 the
attribute	types	involved	in	the	join	condition	for	table	R.	Based	on	the	resulting
hash	values,	the	corresponding	rows	are	assigned	to	buckets	in	a	hash	file.	The
same	hashing	algorithm	is	then	applied	to	the	join	attribute	types	of	the	second
table	S.	If	a	hash	value	for	S	refers	to	a	non-empty	bucket	 in	the	hash	file,	 the
corresponding	rows	of	R	and	S	are	compared	according	to	the	join	condition.	If
the	 join	 condition	 is	 satisfied,	 the	 rows	 of	 R	 and	 S	 are	 joined	 and	 put	 in	 the
output	 buffer.	 Still,	 given	 the	 possibility	 of	 collisions,	 rows	 with	 different
column	values	may	still	be	assigned	to	the	same	bucket,	so	not	all	rows	assigned
to	the	same	bucket	will	necessarily	satisfy	the	join	condition.	The	performance
of	this	approach	depends	on	the	size	of	the	hash	file.	If,	instead	of	a	physical	file,
the	hash	structure	can	be	maintained	entirely	in	internal	memory,	a	hash	join	can
be	very	efficient.

Retention	Questions

Contrast	primary	indexes	versus	clustered	indexes	versus	secondary
indexes	in	terms	of	impact	on	physical	ordering	of	tuples;	unique
search	keys	and	sparseness.

Elaborate	on	the	functioning	of	the	query	optimizer.

Discuss	and	contrast	various	types	of	database	access	methods.
Discuss	and	contrast	three	techniques	to	physically	implement	a	join.

13.2	Enterprise	Storage	Subsystems	and	Business
Continuity

We	continue	 this	chapter	on	physical	database	organization	by	 returning	 to	 the
storage	hardware.	 In	contrast	 to	 the	previous	chapter,	we	will	not	 focus	on	 the
individual	storage	devices,	but	rather	on	the	broader	aspect	of	pooling	individual
devices	and	managing	them	as	so-called	enterprise	storage	subsystems.	First,	we
discuss	disk	arrays	and	RAID	as	a	mechanism	of	combining	multiple	physical
devices	 into	 a	 single,	 larger,	 logical	 device.	 Then,	 we	 deal	 with	 networked
storage	 techniques	 such	 as	 SAN	 and	NAS.	We	 conclude	with	 a	 discussion	 on
how	these	techniques	can	be	applied	in	the	context	of	business	continuity,	which
is	a	primary	concern	to	most	organizations.

13.2.1	Disk	Arrays	and	RAID

Whereas	 the	 storage	 capacity	 of	 hard	 disk	 drives	 has	 increased	 tremendously
over	the	last	two	decades,	their	performance	has	not	increased	at	the	same	rate.
Consequently,	 it	 is	 often	 more	 efficient	 to	 combine	 multiple	 smaller	 physical
disk	drives	into	one	larger	logical	drive.	The	reason	is	twofold.	First,	distributing
data	over	multiple	physical	drives	allows	for	parallel	retrieval,	resulting	in	much
improved	 performance.	 Second,	 each	 additional	 drive	 increases	 the	 risk	 of
failure,	but	if	a	certain	measure	of	data	redundancy	is	introduced,	this	risk	can	be
mitigated,	 and	 the	 reliability	 actually	 becomes	much	 better	 than	with	 a	 single
physical	drive.	Both	considerations	are	at	the	core	of	the	Redundant	Array	of
Independent	Disks	(RAID)	concept	(Figure	13.6).

Figure	13.6	Example	of	a	RAID	set-up	from	the	IBM	Power	S824L	server.

RAID	is	a	technology	in	which	standard	HDDs	are	coupled	to	a	dedicated
hard	 disk	 controller	 (the	RAID	 controller)	 to	 make	 them	 appear	 as	 a	 single
logical	drive.	The	same	can	be	realized	by	a	software	RAID	controller,	without
dedicated	 hardware,	 but	 in	 that	 case	 the	 performance	 increase	 is	 lower.	 The
following	techniques	are	applied	in	RAID:

Data	striping:	Subsections	of	a	data	file	(called	strips)	are	distributed
over	multiple	disks	to	be	read	and	written	in	parallel.	The	strips	can

consist	of	individual	bits	or	entire	disk	blocks.	With	n	disks,	bit	or	block	i
is	written	to	disk	(i	mod	n)	+	1.
With	bit-level	data	striping,	a	byte	is	split	into	eight	individual	bits,	to

be	distributed	over	the	available	disks.	For	example,	four	disks	each
contain	two	bits	of	the	same	byte.	Disk	1	contains	bits	1	and	5,	disk	2
contains	bits	2	and	6,	etc.	In	that	case,	every	disk	participates	in	every
read/write	operation.	The	number	of	disk	accesses	per	unit	of	time
remains	the	same,	but	the	number	of	bits	retrieved	in	a	single	access
increases	with	a	factor	equal	to	the	number	of	disks,	resulting	in	higher
transfer	rates	for	a	single	transfer.
With	block-level	data	striping,	each	block	is	stored	in	its	entirety	on	a

single	disk,	but	the	respective	blocks	of	the	same	file	are	distributed	over
the	disks.	In	this	way,	individual	block	accesses	remain	independent.
Efficiency	of	a	single	block	access	is	not	increased,	but	different
processes	can	read	blocks	in	parallel	from	the	same	logical	disk,	hence
reducing	the	queuing	time.	Also,	a	single	large	process	can	read	multiple
blocks	in	parallel,	hence	reducing	the	total	transfer	time.

Redundancy:	Redundant	data	are	stored	along	with	the	original	data	to
increase	reliability.	The	redundant	data	consist	of	error	detection	and
correcting	codes	such	as	Hamming	codes	or	parity	bits.	Parity	bits	are	a
very	simple	kind	of	error-detecting	code,	adding	one	redundant	bit	to	a
series	of	bits	to	ensure	that	the	total	number	of	1–bits	in	the	series	is
either	always	even	or	always	odd.	In	this	way,	individual	bit	errors	can	be
detected.	If	a	bit	is	not	readable,	its	value	can	be	derived	from	the	other
bits	and	the	parity	bit.	It	would	lead	us	too	far	to	discuss	Hamming	codes
in	detail,	but	it	suffices	to	say	that	they	provide	stronger	error-correcting

There	 exist	multiple	RAID	 configurations,	 called	RAID	 levels.	 The	 term
“level”	 here	 is	 somewhat	 misleading,	 as	 a	 higher	 level	 does	 not	 necessarily
imply	 a	 “better”	 level.	 The	 levels	 should	 just	 be	 considered	 as	 different
configurations,	with	a	different	combination	of	the	abovementioned	techniques,
resulting	in	different	characteristics	in	terms	of	performance	and	reliability.	We
summarize	the	properties	of	the	respective	original	RAID	levels	in	Table	13.2.

Table	13.2	Overview	of	original	RAID	levels

RAID
level Description

Fault
tolerance Performance

0 Block-level
striping

No	error
correction

Improved	read	and	write
performance	due	to	parallelism
(multiple	processes	can	read
individual	blocks	in	parallel)

1 Disk	mirroring Error
correction
due	to
complete
duplication	of

Improved	read	performance:	both
disks	can	be	accessed	by	different
processes	in	parallel

Write	performance	is	slightly

capabilities	than	parity	bits,	but	they	are	also	more	computationally
heavy	and	induce	more	redundancy	than	parity	bits.

Disk	mirroring:	This	is	an	extreme	form	of	redundancy,	where	for	each
disk	there	is	an	exact	copy,	called	the	mirror,	containing	the	same	data.
Note	that,	if	the	probability	of	a	single	disk	failure	is	p,	the	probability	of
one	of	n	disks	in	a	RAID	set-up	failing	is	n	times	as	high.	However,
when	mirroring	the	disks,	the	chance	of	both	copies	failing	is	p2,	which	is
much	lower	than	p.	On	the	downside,	mirroring	consumes	much	more
storage	space	than	the	error-correcting	codes.

data worse,	since	data	need	to	be
written	twice

2 Bit-level
striping,	with
separate
checksum	disk

Error
correction
through
Hamming
codes

Improved	read	performance
through	parallelism

Slower	write	performance:
calculation	of	checksum;
checksum	disk	involved	in	every
write	may	become	a	bottleneck

3 Bit-level
striping,	with
parity	bits	on
separate	parity
disk

Error
correction
through	parity
bits

Improved	read	performance
through	parallelism,	especially	for
large,	sequential	transfers

Slower	write	performance:	less
calculation	overhead	than	with
RAID	2,	but	parity	disk	involved
in	every	write	may	still	become	a
bottleneck

4 Block-level
striping,	with
parity	bits	on
separate	parity
disk

Error
correction
through	parity
bits

No	improved	read	performance
for	individual	blocks,	but	support
for	efficient	parallel	block
accesses

Slower	write	performance;	see
RAID	3

5 Block-level
striping,	with
distributed
parity	bits

Error
correction
through	parity
bits

Read	performance:	see	RAID	4

Better	write	performance	than
RAID	4:	parity	bits	distributed
over	data	disks,	so	no	parity	drive
as	bottleneck

Some	typical	raid	levels	are	illustrated	in	Figure	13.7.	The	letters	represent
blocks;	 the	 combinations	of	 letters	 and	numbers	 represent	bits	 in	 a	block.	The
colored	disks	or	disk	sections	denote	redundancy.

Figure	13.7	Illustration	of	RAID	levels	0,	1,	3,	and	5.

RAID	 0	 is	 used	 if	 performance	 is	 more	 important	 than	 fault	 tolerance.
RAID	1	 is	mostly	 used	 for	 very	 critical	 data	 –	 for	 example,	 the	 logfile	 of	 the
DBMS.	This	configuration	is	 the	best	 in	terms	of	continuity,	as	there	is	always
an	exact	copy	available	in	the	event	of	disk	failure.	In	contrast,	the	other	RAID
levels	that	include	redundancy	invariably	require	reading	the	other	disks	in	order
to	reconstruct	the	data	from	a	failed	disk.	On	the	other	hand,	the	fault	tolerance
in	 RAID	 1	 comes	 at	 the	 cost	 of	 a	 higher	 degree	 of	 redundancy,	 therefore
requiring	more	storage	capacity.	RAID	5	is	quite	popular	overall,	as	it	strikes	a
balance	 between	 read	 and	 write	 performance,	 storage	 efficiency,	 and	 fault
tolerance.

Connections

Chapter	14	discusses	the	logfile	of	a	DBMS.

Since	the	inception	of	the	original	RAID	levels,	some	levels	have	become
more	 or	 less	 obsolete,	 whereas	 others	 have	 been	 added.	 For	 example,	 RAID
level	 0+1	 combines	 the	 properties	 of	 level	 0	 and	 1.	 RAID	 level	 6	 aims	 at
tolerance	 against	 two	 simultaneous	 disk	 failures.	 This	 can	 be	 realized	 by
extending	RAID	level	5	with	a	second	series	of	parity	bits	distributed	across	the
drives,	independent	of	the	first	one.

13.2.2	Enterprise	Storage	Subsystems

Whereas	RAID	technology	already	aims	at	pooling	multiple	physical	hard	disk
drives	into	a	single	logical	one,	typical	organization-wide	storage	solutions	tend
to	take	this	idea	even	further.	They	combine	storage	devices,	which	will	often	be
RAID-based,	into	larger	entities,	called	enterprise	storage	subsystems.	A	storage
subsystem	 can	 be	 defined	 as	 a	 separate,	 external	 entity	with	 a	 certain	 level	of
“onboard”	intelligence	that	contains	at	least	two	storage	devices.	By	“external”
we	 mean	 external	 to	 the	 server(s)	 (i.e.,	 the	 devices	 containing	 the	 CPUs	 that
process	the	data).

13.2.2.1	Overview	and	Classification

Enterprise	 storage	 subsystems	 emanate	 from	 the	 insight	 that	 the	 management
cost	 of	 storage	 tends	 to	 exceed	 by	 far	 the	 sheer	 cost	 of	 purchasing	 storage
hardware.	 In	 addition,	 the	 often-perceived	 rigor	 of	 purely	 centralized	 data
centers	 resulted	 in	 the	need	 for	more	 flexible,	distributed	storage	architectures,
which	still	offer	centralized	management	capabilities.	Modern	enterprise	storage
subsystems	 often	 involve	 networked	 storage,	 which	 is	 connected	 to	 high-end
servers	 by	means	 of	 high-speed	 interconnects.	The	 network	 topology	 provides
for	transparent	any-to-any	connectivity	between	servers	and	storage	devices	and
in	 this	 way	 functions	 as	 a	 “black	 box”	 of	 storage.	 It	 combines	 large	 storage
capacity	 with	 features	 such	 as	 high-speed	 data	 transfer,	 high	 availability,	 and
sophisticated	management	tools.

The	 main	 characteristics	 of	 state-of-the-art	 enterprise	 storage	 subsystems
can	be	summarized	as	follows:

accommodate	for	high	performance	data	storage;

We	can	classify	the	technologies	for	realizing	storage	subsystems	according
to	three	criteria:	the	connectivity,	the	medium,	and	the	I/O	protocol.

By	 connectivity,	 we	 refer	 to	 the	 way	 in	 which	 the	 storage	 devices	 are
connected	to	processors	and/or	servers.	These	are	illustrated	in	Figure	13.8.

cater	for	scalability,	and	in	particular	independent	scaling	of	storage
capacity	and	server	capacity;

support	data	distribution	and	location	transparency;11

support	interoperability	and	data	sharing	between	heterogeneous	systems
and	users;

reliability	and	near	continuous	availability;

protection	against	hardware	and	software	malfunctions	and	data	loss,	as
well	as	abusive	users	and	hackers;

improve	manageability	and	reduce	management	cost	through	centralized
management	of	storage	facilities,	which	may	themselves	be	distributed.

Direct	attach	refers	to	storage	devices	with	a	one-to-one	connection
between	server	and	storage	device.

Network	attach	refers	to	storage	devices	in	a	many-to-many	connection
with	the	corresponding	servers	by	means	of	network	technology.

Figure	13.8	Direct	attach	versus	network	attach.

By	medium,	we	 refer	 to	 the	physical	 cabling	and	corresponding	 low-level
protocol	 to	 realize	 the	 abovementioned	 connectivity,	 i.e.,	 to	 transfer	 data
between	 storage	 medium	 and	 server.	 We	 discriminate	 between	 the	 following
main	technologies:

SCSI	(Small	Computer	Systems	Interface):	This	has	been	a	standard	to
connect	storage	devices	to	servers	and/or	processors	for	decades,
although	in	several	incarnations.	Despite	the	“small”	in	the	naming,	SCSI
is	currently	mainly	used	for	high-performance	and	high-capacity
workstations	and	servers,	whereas	consumer	devices	often	use	other
technologies	such	as	Serial	Advanced	Technology	Attachment	(SATA).
Without	going	into	too	much	detail,	it	is	important	to	note	that	the	SCSI
specification	involves	two	elements:	on	the	one	hand,	a	command	set	to
communicate	with	storage	devices,	and	on	the	other	hand,	specifications
for	a	low-level	protocol	and	cabling	to	transfer	SCSI	commands	and	data
between	servers	and	storage	devices.	It	is	the	latter	that	is	relevant	in	this
“medium”	category;	the	command	set	belongs	to	the	“I/O	protocol”
category	discussed	hereafter	and	can	also	be	combined	with	other	(non-
SCSI)	cabling.

Ethernet:	This	is	the	long-standing	standard	medium	for	local	area
networks	(LANs)	and	sometimes	wide	area	networks	(WANs),	mostly	in
combination	with	the	internet	protocol	stack	TCP/IP	(Transmission
Control	Protocol/Internet	Protocol).	It	is	not	specifically	aimed	at
storage-related	data	transfer.

Fibre	Channel	(FC):	This	is	a	more	recent	medium,	developed
specifically	to	connect	high-end	storage	systems	to	servers.	Originally,	it

Whereas	the	abovementioned	medium	referred	to	the	cabling	and	low-level
protocol	to	transport	bits	in	the	context	of	storage-related	traffic	over	a	cable	or
network,	 the	 I/O	 protocol	 denotes	 the	 command	 set	 to	 communicate	 with	 the
storage	 device.	 With	 this	 high-level	 protocol,	 the	 transported	 bits	 take	 the
meaning	of	I/O	requests	exchanged	between	servers	and	storage	devices.	In	this
context,	we	discriminate	between	the	following:

was	based	on	fiber-optic	cable	(hence	the	name),	but	nowadays	it	also
supports	other	cabling	such	as	copper	wire.	Depending	on	the	vendor,
different	topologies	(e.g.,	from	point-to-point	set-ups	to	more	complex
configurations	with	hubs	and	switches)	are	possible.

Block-level	I/O	protocols:	The	I/O	commands	are	defined	at	the	level	of
requests	for	individual	blocks	on	the	storage	device.	The	SCSI	command
set	is	widely	used	for	this	purpose.	Originally,	SCSI	I/O	commands	could
only	be	exchanged	over	SCSI	cabling,	but	nowadays	other	media	such	as
Fibre	Channel	and	Ethernet	can	also	be	used	for	transporting	SCSI
commands.

File-level	I/O	protocols:	The	commands	are	defined	at	the	level	of
requests	for	entire	files	on	the	storage	device.	The	protocol	is	device-
independent,	as	it	is	situated	at	the	file	level	and	therefore	not	impacted
by	the	physical	block	position	of	the	data	on	the	storage	device.
Widespread	file-level	I/O	protocols	are	Network	File	System	(NFS),
originating	in	the	UNIX	and	Linux	world,	and	Common	Internet	File
System	(CIFS),	also	known	as	Server	Message	Block	(SMB),	mainly
popular	in	Windows	environments.	Also,	some	internet	application
protocols	can	be	positioned	under	this	denominator,	in	particular	HTTP
(HyperText	Transfer	Protocol)	and	FTP	(File	Transfer	Protocol).

Based	 on	 these	 three	 criteria,	 we	 can	 distinguish	 between	 the	 following
storage	architectures:	Directly	Attached	Storage	 (DAS);	Storage	Area	Network
(SAN);	Network	Attached	Storage	 (NAS);	NAS	gateway,	 and	Storage	over	 IP
(iSCSI).	We	discuss	each	of	these	in	more	detail.

13.2.2.2	DAS	(Directly	Attached	Storage)

With	DAS,	the	storage	devices	(HDDs,	but	possibly	also	tape	drives	and	others)
are	directly	connected	to	individual	servers	(see	Figure	13.9).	A	block-level	I/O
protocol	 is	used;	 servers	communicate	with	 storage	devices	by	means	of	SCSI
I/O	 commands.	Different	 options	 for	 the	medium	are	 possible:	 this	 could	be	 a
standard	SCSI	cable,	but	the	SCSI	commands	can	also	be	exchanged	over	point-
to-point	 Fibre	 Channel	 or,	 although	 less	 common	 in	 this	 setting,	 an	 Ethernet
cable.	 Each	 storage	 device	 is	 connected	 to	 a	 single	 server	 or,	 for	 the	 sake	 of
failover,12	to	two	separate	servers.	In	this	configuration,	no	network	is	used	for
traffic	between	servers	and	storage	devices,	although	servers	and	clients	can	be
connected	to	a	standard	IP-network	for	LAN	or	WAN	functionality.

Figure	13.9	Illustration	of	DAS.

A	DAS	set-up	is	the	simplest	and	least	expensive	solution.	However,	it	does
not	 offer	 out-of-the-box	 capabilities	 for	 centralized	 storage	 management	 and
sharing	 unused	 disk	 capacity	 across	 servers.13	 Even	 more	 important,	 this
approach	 is	 reasonably	 vulnerable	 to	 hardware	 failures	 in	 servers,	 storage

devices,	and	cabling,	since	there	is	only	a	single	path	between	individual	servers
and	storage	units.	In	the	case	of	failure	of	any	of	these	components,	part	of	the
data	may	not	be	reachable.

13.2.2.3	SAN	(Storage	Area	Network)

In	 a	 SAN	 setting,	 all	 storage-related	 data	 transfer	 occurs	 over	 a	 dedicated
network	(see	Figure	13.10).	Again,	servers	and	storage	devices	communicate	by
means	of	a	block-level	I/O	protocol	(i.e.,	SCSI	commands),	but	now	the	network
provides	an	any-to-any	connectivity	between	servers	and	storage	devices.	Most
often,	 Fibre	 Channel	 is	 used	 as	 a	 medium,	 with	 different	 possible	 network
topologies.	Ethernet-based	SANs	are	possible	as	well,	but	these	are	discussed	in
Section	13.2.2.6.	Apart	 from	 the	 separate	 storage	 network,	 clients	 and	 servers
can	communicate	over	a	standard	IP-based	LAN	or	WAN.

Figure	13.10	Illustration	of	SAN.

A	SAN	set-up	has	some	unmistakable	advantages.	Foremost,	 it	 is	superior
to	 DAS	 in	 terms	 of	 availability,	 given	 the	 any-to-any	 connectivity	 between
servers	 and	 storage	 devices	 and	 the	 redundancy	 in	 access	 paths,	 given	 the
network	 setting.	 The	 latter	 also	 facilitates	 data	 sharing,	 hence	 reducing
unnecessary	 data	 redundancy.	 Note	 that	 data	 redundancy	 is	 not	 mitigated
entirely,	 because	 redundant	 copies	 are	 still	 needed	 for	 reasons	 of	 availability

(e.g.,	by	means	of	RAID	technology),	but	redundancy	is	not	needed	for	the	sake
of	providing	the	same	data	to	multiple	unconnected	servers.	A	SAN	is	typically
also	 the	best	 solution	 in	 terms	of	performance;	a	 first	 reason	 is	 the	high-speed
interconnections	 and	 the	 Fibre	 Channel	 medium	 that	 is	 very	 efficient	 for	 this
purpose.	A	second	reason	is	that	the	SAN	relieves	the	actual	LAN	or	WAN	from
storage-related	 traffic,	 resulting	 in	 higher	 network	 throughput	 for	 data
processing-related	 tasks.	 An	 example	 here	 is	 the	 so-called	 LAN-free	 backup,
where	 the	often-large	 transfers	between	storage	devices	and	backup14	 facilities
are	 not	 routed	 over	 the	 LAN,	 but	 over	 the	 SAN.	A	 third	 reason	 is	 that	 Fibre
Channel-compatible	 storage	 devices	 come	 with	 some	 measure	 of	 onboard
intelligence,	 allowing	 them	 to	 perform	 certain	 tasks	 autonomously,	 without
interference	 by	 a	 server.	 An	 example	 here	 are	 so-called	 server-free	 backups,
which	 can	 be	 performed	 entirely	 by	 the	 storage	 devices	 themselves,	 without
burdening	 server	 performance.	 Other	 advantages	 are	 the	 flexibility	 and
scalability	 of	 being	 able	 to	make	 separate	 decisions	 about	 adding	 servers	 and
storage	 devices	 to	 the	 SAN.	 These	 decisions	 are	much	more	 intertwined	 in	 a
one-to-one	setting.	Given	the	network	technology,	a	SAN	is	also	able	to	bridge
larger	distances	than	direct	connections	between	storage	devices	and	servers.	In
addition,	 the	 connectivity	 between	 the	 devices	 offers	 possibilities	 for	 storage
pooling	and	centralized	management.	On	the	other	hand,	SAN	technology	is	still
rather	complex	and	expensive,	with	the	added	burden	of	ever-evolving	standards
of	 hardware	 and	 software.	 Hence,	 the	 SAN	 approach	 is	 mainly	 beneficial	 to
larger	organizations,	with	sufficient	expertise	and	financial	resources.

13.2.2.4	NAS	(Network	Attached	Storage)

In	contrast	 to	SAN,	NAS	is	essentially	a	quite	straightforward	and	inexpensive
way	of	organizing	storage	facilities	into	a	network	(Figure	13.11).	A	NAS	device

is	 often	 called	 a	 “NAS	 appliance”	 because	 of	 its	 relative	 simplicity.	 It	 is	 a
specialized	device	for	file	storage	that	can	be	“plugged”	straightforwardly	into	a
TCP/IP-based	LAN	or	WAN,	hence	the	medium	is	Ethernet.	To	put	it	simply,	a
NAS	device	can	be	considered	as	a	stripped-down	file	server15	 that	consists	of
an	 integrated	 combination	 of	 a	 processor,	 operating	 system,	 and	 a	 set	 of	 hard
disk	drives.	Yet,	in	contrast	to	a	real	server,	there	is	no	keyboard	or	screen,	and
the	 operating	 system	 is	 stripped	 to	 the	 bare	 minimum	 necessary	 for	 its	 sole
purpose:	serving	files	to	the	network.	In	this	way,	a	NAS	appliance	is	not	only
less	expensive	than	a	full-blown	server,	but	 there	is	also	less	complexity	in	the
hardware	and	software	that	may	cause	failures.	Also	in	contrast	to	a	SAN,	NAS
devices	 are	 accessed	 through	 a	 file-level	 I/O	 protocol	 such	 as	 CIFS,	 NFS,	 or
sometimes	HTTP	or	FTP.	The	NAS	offers	 a	 file	system16	 to	 the	network,	with
file	 requests	being	 translated	by	 the	NAS’s	 internal	processor	 into	SCSI	block
I/O	 commands	 onto	 the	 actual	 HDDs.	 This	 conversion	 is	 transparent	 to	 the
outside	world.	From	a	client	perspective,	a	NAS	behaves	similarly	to	a	general-
purpose	 file	 server.	There	exists	a	very	extensive	 range	of	NAS	devices;	 some
have	very	 limited	 functionality	apart	 from	basic	 file	 serving,	whereas	high-end
NAS	 devices	 offer	 more	 advanced	 features	 such	 as	 automated	 backup	 and
recovery,	 support	 for	 RAID,	 email-based	 error	 notifications,	 remote
administration,	etc.

Figure	13.11	Illustration	of	NAS.

The	 main	 advantage	 of	 NAS	 technology	 is	 that	 it	 offers	 very	 flexible,
relatively	 simple	 and	 inexpensive	 facilities	 to	 add	 additional	 storage	 to	 the
network	in	a	“plug	and	play”	fashion.	In	this	way,	it	is	good	for	file	sharing	on
the	network,	possibly	between	different	servers	and	platforms.	Yet,	performance
is	in	most	cases	lower	than	with	a	SAN	set-up.	This	is	because	all	storage-related
traffic	 passes	 over	 the	 standard	 LAN	 or	 WAN,	 rather	 than	 over	 a	 dedicated
network.	 The	 file-level	 access	makes	 life	 easy	when	 the	main	 aim	 is	 to	 share
unstructured	 files	 on	 a	 network.	On	 the	 downside,	 the	 indirection	 of	 file-level
access	 being	 translated	 into	 block-level	 access	 is	 less	 efficient,	 especially	 to
high-end	DBMSs,	which	often	prefer	to	directly	access	the	raw	storage	devices
at	block	level,	hence	bypassing	the	file	system	provided	by	the	operating	system
or	NAS	device.

13.2.2.5	NAS	Gateway

A	NAS	gateway	is	similar	to	a	NAS	device,	but	without	the	HDDs;	it	consists	of
only	a	processor	and	a	stripped-down	operating	system	(Figure	13.12).	On	one
side,	 a	 NAS	 gateway	 can	 be	 plugged	 into	 a	 TCP/IP-based	 LAN	 or	 WAN,
whereas	on	the	other	it	can	be	connected	to	external	disk	drives.	This	connection
can	be	realized	by	either	DAS	or	SAN	technology.	In	this	way,	the	NAS	gateway
receives	file-level	I/O	requests	from	servers	connected	to	the	LAN	or	WAN	and
translates	 these	 into	 SCSI	 block	 I/O	 commands	 to	 access	 the	 external	 storage
devices.

Figure	13.12	Illustration	of	a	NAS	gateway.

In	 comparison	 to	 a	 normal	 NAS	 device,	 a	 NAS	 gateway	 offers	 more
flexibility	regarding	the	choice	of	disk	drives,	as	well	as	more	scalability,	since	it
is	not	confined	by	the	physical	boundaries	of	the	NAS	box.	More	importantly,	it
allows	plugging	an	existing	disk	 array	 into	 a	LAN	or	WAN,	hence	making	 its
content	 accessible	 to	 the	 entire	 network.	 In	 this	 way,	 the	 same	 disk	 array
becomes	accessible	by	means	of	both	 file-level	 I/O	 through	 the	NAS	gateway,
and	 block-level	 I/O	 via	 DAS	 or	 SAN.	 As	 such,	 a	 NAS	 gateway	 can	 yield	 a
hybrid	NAS/SAN	environment	in	which	an	existing	SAN	can	also	be	accessed	at
the	file	level	from	a	LAN	or	WAN	through	the	NAS	gateway	acting	as	a	front-
end.

13.2.2.6	iSCSI/Storage	Over	IP

iSCSI,	also	called	 internet	SCSI	or,	with	a	more	general	term,	Storage	over	IP,
offers	a	set-up	that	is	similar	to	a	SAN,	but	instead	of	Fibre	Channel,	the	much
more	familiar	Ethernet	is	used	as	a	medium	(Figure	13.13).	SCSI	block-level	I/O
commands	are	packaged	and	sent	over	a	TCP/IP	network.	This	network	can	be
the	normal	LAN	or	WAN,	or	a	 separate	network	dedicated	 to	 storage,	but	 still
based	on	familiar	LAN	technology	and	protocols.	This	results	in	a	SAN-like	set-
up,	although	iSCSI	can	also	be	used	for	a	direct	connection	between	server	and
storage	device	(DAS).

Figure	13.13	Illustration	of	iSCSI.

iSCSI	 solutions	 sit	 somewhere	 between	 SAN	 and	 NAS:	 they	 allow	 for
block-level	disk	access	like	SAN,	but	they	are	Ethernet-based	like	NAS.	Overall,
they	provide	for	a	lower-cost	alternative	to	SANs,	since	the	Ethernet	hardware	is
often	 less	 expensive	 than	 Fibre	 Channel.	 It	 is	 also	 possible	 to	 re-use	 existing
LAN	 components	 in	 this	way.	 In	 addition,	 Ethernet	 technology	 is	much	more
familiar	 to	most	 than	Fibre	Channel,	and	 less	prone	 to	 incompatibilities	and/or
teething	problems.	For	 that	 reason,	 iSCSI	 is	 particularly	popular	 in	 small-	 and
medium-sized	organizations	in	comparison	to	SANs.	On	average,	iSCSI	can	also
cover	larger	distances	than	FC-based	SANs,	but	typically	it	is	a	bit	slower	than
Fibre	Channel.

To	 summarize	 this	 section	 on	 enterprise	 storage	 subsystems,	 we	 refer	 to
Table	 13.3	 with	 the	 defining	 properties	 of	 each	 technology.	 Note	 that	 this
overview	provides	the	main	categories	in	a	continuously	evolving	landscape,	and
that	many	vendors	offer	variations	and/or	hybrid	approaches	as	well.

Table	13.3	Overview	of	DAS,	SAN,	NAS	(gateway),	and	iSCSI

Technology Connectivity Medium I/O
protocol

DAS Direct	attach SCSI	cable,	point-to-point	Fibre
Channel	(or	Ethernet)

SCSI
block-
level	I/O

SAN Network
attach

Fibre	Channel SCSI
block-
level	I/O

NAS	+	NAS
gateway

Network
attach

Ethernet File-level
I/O

iSCSI Network
attach

Ethernet SCSI
block-
level	I/O

Drill	Down

Recently,	 the	 concept	 of	 object	 storage	 (aka	 object-based	 storage)	 has
been	put	forward	as	an	alternative	to	file-level	and	block-level	storage.	In
fact,	the	object	storage	label	is	used	for	many	different,	although	related,
technologies,	with	as	a	common	denominator	the	fact	that	they	provide	a
means	to	store	and	retrieve	chunks	of	data	(objects)	according	to	a	single
identifier	 that	 is	 unique	 across	 the	 entire	 storage	 space.	The	 latter	 is	 in
most	cases	a	distributed	system.

Object	storage	is	often	contrasted	to	the	more	traditional	block-	and
file-level	storage	approaches,	which	both	rely	on	a	file	system,	with	the
files	being	organized	in	a	hierarchy	of	folders.	Files	are	associated	with	a
path	 according	 to	 these	 folders,	 as	 well	 as	 with	 a	 limited	 amount	 of
metadata	 (e.g.,	 the	 file’s	 creation	 date).	 With	 block-level	 I/O,	 the	 file
system	 is	 external	 to	 the	 devices	 (e.g.,	 in	 a	 storage	 area	 network),
whereas	 with	 file-level	 I/O,	 it	 is	 internal	 (e.g.,	 in	 a	 NAS	 appliance).

However,	 object	 storage	 does	 away	 with	 hierarchical	 file	 systems
altogether	and	persists	chunks	of	data	 through	a	 flat	system	of	globally
unique	identifiers,	not	unlike	the	domain	name	system	of	the	internet.	In
this	way,	 the	unwieldy	file	system	structure	can	be	avoided	and	objects
of	arbitrary	size	are	stored	and	retrieved	according	to	(only)	their	unique
key,	 resulting	 in	 more	 speedy	 access.	 As	 a	 result,	 object	 storage	 is
massively	scalable,	even	to	billions	of	objects,	because	the	complexity	of
the	 file	 organization	 does	 not	 increase	 considerably	 as	 the	 number	 of
objects	 grows.	 In	 addition,	 extensive	 user-definable	 metadata	 can	 be
added,	which	offers	improved	capabilities	for	search	and	analytics.

The	abovementioned	principles	have	been	implemented	in	different
formats.	 First,	 object	 storage	 can	 refer	 to	 the	 organization	 of	 arrays	 of
physical	 storage	 devices.	A	 primary	 aim	 is	 to	 abstract	 away	 the	 lower
storage	 layers	 from	 applications	 and	 users.	 Data	 are	 exposed	 and
managed	 as	 variable-size	 objects	 instead	 of	 files	 or	 fixed-size	 physical
disk	blocks.	A	term	often	used	in	this	context	is	RAIN	(Redundant	Array
of	 Independent	 Nodes,	 as	 opposed	 to	 RAID),	 which	 organizes	 a
collection	of	storages	devices	as	a	set	of	nodes	in	a	cluster	and	exposes	a
simple	 “put”	 and	 “get”	 API	 on	 top	 of	 it	 to	 store	 and	 retrieve	 objects
according	 to	 their	 ID,	 transparently	 offering	 features	 such	 as	 data
replication	and	load	balancing.

The	 same	 principles	 have	 been	 implemented	 in	 cloud	 storage
offerings	 such	as	Amazon	Simple	Storage	Service	 (S3)	 and	OpenStack
Swift.	 Here,	 the	 “put”	 and	 “get”	 functionality	 is	 typically	 offered	 via
RESTful	HTTP	APIs	(see	also	Chapter	10).	Proprietary	implementations
also	 exist	 under	 the	 hood	 of	well-known	web-based	 platforms	 such	 as
Spotify,	Dropbox,	and	Facebook	(the	latter	for	photo	storage	by	means	of
a	product	called	Haystack).

Sometimes,	 the	 line	 between	 object	 storage	 technology	 and	 some
NoSQL	database	products,	notably	key–value	stores	and	document	stores
(see	Chapter	 11),	 is	 somewhat	 blurred.	 They	 have	 in	 common	 that	 an
arbitrary	chunk	of	data	can	be	stored	and	retrieved	according	to	a	unique
ID,	 possibly	with	 the	 addition	 of	 some	 attribute–value	pairs.	However,
the	focus	of	object	storage	is	more	purely	on	storage	capacity	for	fairly
stable	data	and	less	on	database	functionality	and	rapidly	changing	data.

Overall,	 object	 storage	 is	 best	 suited	 for	 large	 datasets	 of
unstructured	 data	 (e.g.,	 web	 pages	 or	 multimedia	 data)	 in	 which	 the
objects	do	not	change	too	frequently.	They	are	not	really	suited	for	more
mainstream	transactional	database	processing.	Therefore,	object	storage
should	be	considered	as	complementary	to	block	and	file	storage,	rather
than	as	a	substitute.

13.2.3	Business	Continuity

We	conclude	this	chapter	with	a	brief	discussion	on	business	continuity.	This	is
a	 very	 important	 topic	 to	 any	 business,	 which	 covers	 a	 very	 broad	 range	 of
concerns	related	to	ICT	as	well	as	organization	and	logistics.	It	is	recommended
to	 at	 least	 pinpoint	 some	 elements	 with	 respect	 to	 data	 and	 database
functionality.

In	the	context	of	database	management,	business	continuity	can	be	defined
as	an	organization’s	 ability	 to	 guarantee	 its	 uninterrupted	 functioning,	 despite
possible	 planned	 or	 unplanned	 downtime	 of	 the	 hardware	 and	 software
supporting	its	database	functionality.	Planned	downtime	can	be	due	to	backups,
maintenance,	upgrades,	etc.	Unplanned	downtime	can	be	due	to	malfunctioning
of	 the	 server	hardware,	 the	 storage	devices,	 the	operating	system,	 the	database
software,	 or	 business	 applications.	 A	 very	 specific,	 and	 extreme,	 aspect	 of
business	 continuity	 is	 an	 organization’s	 endurance	 against	 human-	 or	 nature-
induced	disasters.	In	that	context,	we	speak	of	disaster	tolerance.

13.2.3.1	Contingency	Planning,	Recovery	Point,	and	Recovery	Time

An	 organization’s	 measures	 with	 respect	 to	 business	 continuity	 and	 recovery
from	any	calamities	are	 formalized	 in	a	contingency	plan.	Without	going	 into
too	 much	 detail,	 a	 primary	 element	 of	 such	 a	 plan	 is	 the	 quantification	 of
recovery	objectives,	considering	an	organization’s	strategic	priorities:

The	Recovery	Time	Objective	(RTO)	specifies	the	amount	of	downtime
that	is	acceptable	after	a	calamity	occurs.	The	estimated	cost	of	this
downtime	provides	guidance	as	to	the	investments	an	organization	is
prepared	to	make	to	keep	this	downtime	as	minimal	as	possible.	The
closer	the	RTO	is	to	the	calamity,	the	less	downtime	there	will	be,	but

The	consequences	of	RPO	and	RTO	are	depicted	in	Figure	13.14.

Figure	13.14	Illustration	of	RPO	and	RTO.

also	the	higher	the	required	investments	in	measures	to	restore	database
systems	to	a	functioning	state	after	planned	or	unplanned	downtime.	The
RTO	is	different	for	each	organization.	For	example,	a	worldwide	online
shop	will	push	for	zero	downtime,	as	even	the	slightest	downtime	costs
vast	amounts	in	lost	sales.	On	the	other	hand,	a	secondary	school	may	be
able	to	cope	with	a	few	hours	of	downtime,	so	there	is	no	need	to	make
investments	to	recover	from	a	calamity	in	a	matter	of	minutes.

The	Recovery	Point	Objective	(RPO)	specifies	the	degree	to	which	data
loss	is	acceptable	after	a	calamity.	Or	to	put	it	differently,	it	specifies
which	point	in	time	the	system	should	be	restored	to,	once	the	system	is
up	and	running	again.	The	closer	the	RPO	is	to	the	time	of	the	calamity,
the	fewer	data	will	be	lost,	but	also	the	higher	the	required	investments	in
state-of-the-art	backup	facilities,	data	redundancy,	etc.	The	RPO	differs
from	organization	to	organization.	For	example,	although	a	higher	RTO
is	acceptable	for	a	secondary	school,	its	RPO	is	probably	closer	to	zero,
as	loss	of	data	with	respect	to,	e.g.,	pupils’	exam	results	is	quite
unacceptable.	On	the	other	hand,	a	weather	observatory	is	better	off	with
a	low	RTO	than	with	a	low	RPO,	as	it	is	probably	important	to	be	able	to
resume	observations	as	soon	as	possible,	but	a	certain	loss	of	past	data
from	just	before	the	calamity	may	be	less	dramatic.

The	aim	of	a	contingency	plan	is	to	minimize	the	RPO	and/or	RTO,	or	to	at
least	 guarantee	 a	 level	 that	 is	 appropriate	 to	 the	 organization,	 department,	 or
process	 at	 hand.	 A	 crucial	 aspect	 in	 this	 context	 is	 to	 avoid	 single	 points	 of
failure,	 as	 these	 represent	 the	 Achilles	 heel	 of	 the	 organization’s	 information
systems.	With	respect	to	database	management,	the	following	“points	of	failure”
can	be	identified:	availability	and	accessibility	of	storage	devices,	availability	of
database	functionality,	and	availability	of	 the	data	themselves.	 In	each	of	these
domains,	 some	 form	 of	 redundancy	 is	 called	 for	 to	 mitigate	 single	 points	 of
failure.	We	discuss	the	respective	domains	in	the	following	subsections.

13.2.3.2	Availability	and	Accessibility	of	Storage	Devices

The	availability	and	accessibility	of	storage	devices	was	already	covered	when
discussing	 RAID	 and	 enterprise	 storage	 subsystems.	 For	 example,	 networked
storage,	 in	 addition	 to	 other	 considerations,	 avoids	 the	 single	 points	 of	 failure
that	a	DAS	set-up	implies	with	respect	to	the	connectivity	between	servers	and
storage	devices.	In	addition,	the	different	RAID	levels	impact	not	only	the	RPO
by	avoiding	data	 loss	 through	redundancy,	but	also	 the	RTO.	For	example,	 the
mirror	 set-up	 in	RAID	1	 allows	 for	uninterrupted	 storage	device	 access,	 as	 all
processes	 can	 be	 instantaneously	 redirected	 to	 the	mirror	 drive	 if	 the	 primary
drive	fails.	In	contrast,	the	redundancy	in	the	format	of	parity	bits	in	other	RAID
levels	requires	some	time	to	reconstruct	 the	data,	 if	 the	content	of	one	drive	in
the	RAID	configuration	is	damaged.

13.2.3.3	Availability	of	Database	Functionality

Safeguarding	 access	 to	 storage	 devices	 is	 useless	 if	 the	 organization	 cannot
guarantee	a	DBMS	that	is	permanently	up	and	running	as	well.	A	first,	simple,
approach	 here	 is	 to	 provide	 for	manual	 failover	 of	DBMS	 functionality.	 This

means	 that	 a	 spare	 server	 with	 DBMS	 software	 is	 in	 standby,	 possibly	 with
shared	 access	 to	 the	 same	 storage	 devices	 as	 the	 primary	 server.	 However,	 in
case	of	a	calamity,	manual	intervention	is	needed,	initiating	startup	scripts,	etc.,
to	 transfer	 the	workload	 from	 the	 primary	 database	 server	 over	 to	 the	 backup
server.	This	inevitably	takes	some	time,	hence	pushing	back	the	RTO.

A	more	complex	and	expensive	solution,	but	with	a	much	better	impact	on
the	 RTO,	 is	 the	 use	 of	 clustering.	 In	 general,	 clustering	 refers	 to	 multiple
interconnected	 computer	 systems	working	 together	 to	 be	 perceived,	 in	 certain
aspects,	as	a	unity.	The	individual	computer	systems	are	denoted	as	the	nodes	in
the	 cluster.	 The	 purpose	 of	 cluster	 computing	 is	 to	 improve	 performance	 by
means	 of	 parallelism	 and/or	 availability	 through	 redundancy	 in	 hardware,
software,	and	data.	Cluster	computing	for	the	sake	of	performance	is	discussed
in	 more	 detail	 in	 Chapter	 11	 on	 NoSQL	 databases,	 but	 it	 can	 also	 play	 an
important	role	in	the	context	of	business	continuity.	Availability	is	guaranteed	by
automated	failover,	in	that	other	nodes	in	the	cluster	are	configured	to	take	over
the	 workload	 of	 a	 failing	 node	 without	 halting	 the	 system.	 In	 the	 same	 way,
planned	downtime	can	be	avoided.	A	typical	example	here	are	rolling	upgrades,
where	 software	upgrades	 are	 applied	one	node	 at	 a	 time,	with	 the	other	 nodes
temporarily	 taking	 over	 the	workload.	 The	 coordination	 of	DBMS	 nodes	 in	 a
cluster	 can	 be	 organized	 at	 different	 levels.	 It	 can	 be	 the	 responsibility	 of	 the
operating	system,	which	then	provides	specific	facilities	for	exploiting	a	cluster
environment.	 Several	 DBMS	 vendors	 also	 offer	 tailored	 DBMS
implementations,	with	the	DBMS	software	itself	taking	on	the	responsibility	of
coordinating	 and	 synchronizing	 different	 DBMS	 instances	 in	 a	 distributed
setting.

Connections

Chapter	 11	 discusses	 NoSQL	 databases	 and	 cluster	 computing.	 Other
aspects	of	cluster	computing	are	tackled	in	Chapter	16.

13.2.3.4	Data	Availability

A	last	concern	in	the	context	of	business	continuity	is	the	availability	of	the	data
themselves.	Many	techniques	exist	to	safeguard	data	by	means	of	backup	and/or
replication.	These	techniques	all	have	a	different	impact	on	the	RPO	and	RTO,
resulting	in	a	different	answer	to	the	respective	questions	“how	much	data	will
be	lost	since	the	last	backup,	in	the	case	of	a	calamity	?”	and	“how	long	does	it
take	 to	 restore	 the	backup	 copy	 ?”	Of	 course,	 also	 here,	 a	 tighter	RPO	 and/or
RTO	often	comes	at	a	higher	cost.	We	present	some	typical	approaches:

Drill	Down

Tape	backup:	With	tape	backup,	the	database	files	are	copied
periodically	to	a	tape	storage	medium	for	safekeeping.	Tape	backup	is
still	the	least	expensive	backup	solution.	However,	it	is	a	time-consuming
process,	so	the	frequency	is	necessarily	somewhat	lower,	which	has	a
negative	impact	on	the	RPO.	Therefore,	tape	backup	is	often	combined
with	other	precautions,	such	as	maintaining	multiple	online	copies	of	the
logfile.	The	logfile	is	an	essential	tool	in	the	context	of	transaction
management	and	is	discussed	in	more	detail	in	Chapter	14.	Restoring	a
backup	copy	from	tape	onto	a	functional	database	server	after	a	calamity
is	a	time-intensive	process	as	well.	Tape	backup	thus	has	an	equally
negative	impact	on	the	RTO	as	on	the	RPO.

Even	although	tape-based	storage	has	existed	for	quite	a	while,	it	is	still
used	frequently	for	archiving	and	backup	of	data.	The	Linear	Tape-Open
(LTO)	 consortium,	 composed	 of	 IBM,	HP,	 and	Quantum,	 the	 three	 big
players	in	tape	storage	technology,	has	decided	on	a	roadmap	regarding
future	tape-based	storage	solutions.	The	roadmap	goes	all	the	way	from
LTO4	(able	to	store	800	GB	on	a	tape	cartridge	and	already	available)	to
LTO10	 (with	 the	 ability	 to	 store	 120	 TB!).	 Who’s	 using	 it?	 Clients
dealing	 with	 exponential	 data	 growth	 and	 a	 need	 for	 deep	 storage
solutions.	This	includes	media	companies	such	as	ABC,	NBC,	Comcast,
ESPN,	 PBS,	 Showtime,	 Sony,	 and	 dozens	 of	 individual	 television
stations	around	the	world,	as	well	as	the	health	and	banking	industries.

Hard	disk	backup:	The	process	of	making	and	restoring	backups
to/from	hard	disk	is	more	efficient	than	tape	backup	because	of	the
device	characteristics,	such	as	better	access	times	and	transfer	rate.	This
has	a	positive	impact	on	the	RTO	and	possibly	also	on	the	RPO.	Still,	as
to	the	latter,	the	frequency	of	backups	not	only	depends	on	the
characteristics	of	the	backup	medium,	but	also	on	the	infrastructure
within	which	the	primary	copy	of	the	data	resides.	For	example,	the
workload	of	the	source	system,	and	the	possible	performance	impact	on
the	latter,	may	be	an	important	factor	to	determine	backup	frequency.	As
already	discussed	earlier	in	this	chapter,	storage	networks,	taking	the
burden	of	data	and	backup-related	traffic	from	the	LAN	and	from	the
servers,	can	be	a	solution	here.

Electronic	vaulting:	Creating	backups	is	key	to	business	continuity,	but
in	most	cases	it	is	also	essential	to	safeguard	the	backup	copies	at	a
remote	site	a	sufficient	distance	from	the	primary	site	to	avoid	them	both

being	involved	in	the	same	incident	or	disaster.	A	simple	but	error-prone
approach	here	is	to	manually	transport	the	offline	tape	backups	to	the
remote	site.	A	more	efficient	technique	is	electronic	vaulting.	Here,
backup	data	are	transmitted	over	a	network	to	hard	disk	or	tape	devices	at
a	secure	vaulting	facility	or	at	an	alternate	data	center.	This	process	can
be	largely	automated.

Replication	and	mirroring:	The	techniques	mentioned	thus	far	are	all
asynchronous	approaches;	backup	copies	of	the	data	are	only	created
periodically.	Therefore,	whatever	the	frequency,	there	is	always	a	certain
amount	of	data	loss	and	the	RPO	will	never	coincide	with	the	moment	of
the	calamity.	To	avoid	data	loss	altogether,	synchronous	techniques	are
needed,	maintaining	redundant	copies	of	the	data	in	real-time.	Two
closely	related	terms	in	this	context	are	replication	and	mirroring.	Some
authors	consider	them	to	be	synonyms,	some	define	them	in	slightly
different	ways.	We	refer	to	mirroring	as	the	act	of	performing	the	same
write	operations	on	two	or	more	identical	disks	simultaneously.
Mirroring	is	always	synchronous.	The	most	well-known	implementation
of	mirroring	is	RAID	1.	Replication	is	the	act	of	propagating	data	written
to	one	device	over	a	network	onto	another	device.	This	can	be	done
synchronously,	semi-synchronously,	or	asynchronously.	Many	SAN	and
NAS	implementations,	and	also	DBMSs	and	dedicated	replication
servers,17	feature	replication	facilities.	Synchronous	replication	and
mirroring	provide	near-real-time	redundant	copies	of	the	data	and	thus
cater	for	a	very	strict	RPO.	Of	course,	the	tradeoff	is	the	cost	of	the
solution,	but	also	the	performance	impact	that	real-time	replication	may
have	on	the	source	system	and	sometimes	the	network.	Asynchronous
replication	is	more	flexible	in	this	respect.

Disaster	tolerance:	To	guarantee	a	tight	RPO	and	RTO	under	any
circumstances,	remote	data	replication	is	needed	to	an	actual	second	data
center	at	a	sufficiently	distant	location.	The	data	can	be	replicated	over	a
dedicated	network	(e.g.,	WAN)	or	over	public	lines.	The	same
considerations	exist	with	respect	to	synchronous	versus	asynchronous
replication,	with	the	addition	that	asynchronous	replication	is	less
sensitive	to	network	latency,	which	may	be	an	important	factor,	given	the
distance.	The	remote	site	should	be	fully	operational,	and	in	that	case,	it
may	also	handle	some	workload	to	relieve	the	primary	site,	or	at	least	be
able	to	become	fully	operational	in	a	very	limited	amount	of	time.	This
means	that	not	only	up-to-date	data	should	be	available,	but	also	DBMS
functionality	should	be	up	and	running	or	at	least	on	standby.	In	some
implementations,	both	the	primary	and	the	backup	DBMS	are	conceived
as	nodes	in	a	cluster	that	spans	both	the	primary	and	remote	data	center.
We	refer	to	this	as	a	stretched	cluster.	In	this	way,	failover,	but	also	load
balancing,	for	example,	can	be	managed	efficiently	between	the	primary
and	backup	facilities.	This	is	illustrated	in	Figure	13.15.	Of	course,	at
each	individual	site	there	is	still	the	need	to	mitigate	single	points	of
failure	by	providing	redundant	storage	devices	as	well	as	servers,
network	components,	power	supplies,	etc.

Transaction	recovery:	As	a	final	remark,	it	must	be	stressed	that
replicating	the	data	alone	does	not	always	suffice	to	guarantee	database
integrity	in	the	case	of	calamities.	Also,	the	transaction	context	must	be
preserved.	For	example,	suppose	disaster	strikes	in	a	bank	amid	a	set	of
database	operations	in	which	money	is	withdrawn	from	one	account	and
is	about	to	be	transferred	to	another	account.	Even	if	the	data	files
themselves	were	replicated	synchronously	from	the	primary	site	to	the

Figure	13.15	Illustration	of	stretched	cluster	with	primary	and	remote	site.

Connections

Chapter	 14	 discusses	 transaction	 management	 and	 the	 logfile	 of	 a
DBMS.	Chapter	16	 focuses	 in	more	 detail	 on	 transaction	management,
replication,	and	recovery	in	a	distributed	setting.

remote	site,	the	remote	database	is	not	necessarily	aware	that	a
transaction	was	going	on	in	which	money	was	already	retrieved	from	one
account,	but	not	yet	deposited	in	the	other	account.	This	information,
which	is	vital	to	the	consistency	of	the	database,	is	what	we	call	the
transaction	context.	If	the	overall	data	replication	is	coordinated	at	the
DBMS	level,	and	not	at	the	operating	system	or	network	level,	then
typically	the	transaction	context	is	also	transferred	between	the	DBMSs.
One	popular	technique	here	is	called	log	shipping.	This	means	that	the
logfile,	which	keeps	account	of	ongoing	transactions,	is	replicated
between	both	DBMSs.	The	remote	DBMS	can	use	this	logfile	for
transaction	recovery,	i.e.,	to	restore	the	context	of	the	transactions	that
were	ongoing	at	the	primary	site.	Transaction	recovery	and	the	role	of	the
logfile	are	discussed	in	detail	in	Chapters	14	and	16.

Retention	Questions

Discuss	various	ways	of	pooling	and	managing	individual	devices	as
so-called	enterprise	storage	subsystems.

Discuss	how	these	techniques	can	be	applied	in	the	context	of	business
continuity.

Summary

In	 this	 chapter	 we	 dealt	 with	 a	 broad	 range	 of	 aspects	 pertaining	 to	 physical
database	 organization.	 First,	 we	 presented	 the	 building	 blocks	 of	 physical
databases,	 such	 as	 tablespaces	 and	 indexes.	 In	 this	 way,	 we	 built	 upon	 the
insights	into	physical	record	organization	and	file	organization	from	the	previous
chapter.	 We	 explained	 how	 the	 presence	 or	 absence	 of	 different	 index	 types
affects	query	performance	according	to	an	optimal	access	path	as	determined	by
the	query	optimizer.	We	also	focused	on	several	ways	of	physically	realizing	join
operations.	In	the	final	parts	of	the	chapter,	we	returned	to	the	hardware	aspects
of	 storage,	 discussing	 technologies	 such	 as	 RAID,	 SAN,	 and	 NAS.	 We
concluded	with	an	overview	of	some	database-related	concerns	with	 respect	 to
business	continuity.

Scenario	Conclusion

Sober	 has	 now	 learned	 how	 it	 can	 implement	 the	 indexes	 defined	 in
Chapter	6	 using	SQL.	 For	 example,	 the	 primary	 index	 on	CAR-NR	 in
CAR	can	be	defined	as	follows:

CREATE	UNIQUE	INDEX	CAR-NR_INDEX
ON	CAR(CAR-NR	ASC)

Likewise,	 the	clustered	 index	on	ACC-LOCATION	in	ACCIDENT	can
be	defined	as	follows:

CREATE	INDEX	ACC-LOCATION_INDEX
ON	ACCIDENT(ACC-LOCATION	ASC)

CLUSTER

The	 company	 now	 also	 has	 a	 good	 understanding	 of	 various	 database
access	methods	and	join	implementations.

Since	 the	 company	 is	 a	 startup,	 it	will	 kick	 off	with	 a	 LAN	with
NAS	appliances.	As	it	continues	to	grow,	it	might	switch	to	a	full-blown
SAN	at	a	later	stage.

To	safeguard	business	continuity,	Sober	has	decided	 to	work	out	a
contingency	plan.	This	will	include	a	secure	vaulting	facility	using	tape
backup.

Key	Terms	List

access	paths

block-level	I/O	protocol

business	continuity

clustering

connectivity

contingency	plan

cost-based	optimizer

data	striping

DAS	(directly	attached	storage)

direct	attach

disaster	tolerance

disk	mirroring

electronic	vaulting

Ethernet

Fibre	Channel	(FC)

file-level	I/O	protocol

filter	factor	(FF)

hard	disk	backup

hash	join

index	spaces

inter-query	parallelism

intra-query	parallelism

iSCSI

manual	failover

mirroring

multicolumn	index

NAS	(network	attached	storage)

NAS	gateway

nested-loop	join

network	attach

query	cardinality	(QC)

query	predicate

RAID	controller

RAID	levels

redundancy

Redundant	Array	of	Independent	Disks	(RAID)

replication

SAN	(storage	area	network)

SCSI	(Small	Computer	Systems	Interface)

single	points	of	failure

sort-merge	join

stored	table

stretched	cluster

table	cardinality	(TC)

tablespace

tape	backup

transaction	recovery

Review	Questions

13.1.	Which	of	the	following	statements	is	correct?

a.	Current	versions	of	SQL	require	a	specific	internal	data	model.

b.	Current	versions	of	SQL	impose	a	specific	physical	implementation
of	internal	data	models.

c.	Current	versions	of	SQL	require	both	a	specific	internal	data	model
and	a	specific	physical	implementation	of	that	data	model.

d.	Current	versions	of	SQL	do	not	impose	any	standardization	on	the
internal	data	model	or	on	the	way	in	which	a	relational	data	model	is
implemented	physically.

13.2.	Which	of	the	following	statements	is	not	correct?

a.	Index	creation	can	help	improve	the	performance	of	join	queries.

b.	Indexing	makes	it	harder	to	enforce	uniqueness	on	a	(combination
of)	column(s).

c.	An	index	implies	a	logical	ordering	of	the	rows	in	a	table.

d.	An	index	can	be	used	to	create	a	physical	ordering	of	rows.

13.3.	Which	of	the	following	statements	is	not	correct?

a.	The	more	selective	a	query	predicate’s	FF,	the	less	desirable	it	is	to
use	the	index	on	the	corresponding	attribute	type	in	the	access	plan.

b.	For	range	queries,	a	primary	or	clustered	index	is	more	efficient
than	a	secondary	index.

c.	The	number	of	block	accesses	determines	the	performance,	not	the
number	of	rows	retrieved.

d.	The	more	attribute	types	are	included	in	the	index,	the	higher	the
performance	impact	is	on	update	queries.

13.4.	Given	two	tables	R	and	S,	which	of	the	following	join	strategies	is
described	by	the	following	algorithm:

Denote	S	→	outer	table
For	every	row	s	in	S	do
					for	every	row	r	in	R	do
					{if	r(a)	=	s(b)	then	join	r	with	s	and	place	in	output	buffer}
					}

a.	Hash	join.

b.	Sort-merge	join.

c.	Nested-loop	join.

d.	None	of	the	above.

13.5.	Given	two	tables	R	and	S,	which	of	the	following	join	strategies	is
described	by	the	following	algorithm:

Stage	1:	sort	R	according	to	r(a)
									sort	S	according	to	s(b)
Stage	2:	retrieve	the	first	row	r	of	R
									retrieve	the	first	row	s	of	S
									for	every	row	r	in	R
									{while	s(b)	<	r(a)
												read	the	next	row	s	of	S
												if	r(a)	=	s(b)	then	join	r	with	s	and	place	in	output	
buffer}

a.	Hash	join.

b.	Sort-merge	join.

c.	Nested-loop	join.

d.	None	of	the	above.

13.6.	Which	of	the	following	statements	is	correct?

a.	SQL	is	a	declarative	language,	meaning	that	the	programmer	has	to
specify	which	data	to	retrieve	and	how	the	data	are	to	be	located	and
retrieved	from	the	physical	database	files.

b.	The	filter	factor	of	a	predicate	is	the	fraction	of	rows	that	contain	a
missing	value	for	that	predicate.

c.	If	no	further	statistical	information	about	a	predicate	is	available,	the
filter	factor	of	that	predicate	can	be	estimated	by	dividing	1	by	the
number	of	different	values	the	attribute	type	can	have.

d.	Table	cardinality	is	another	way	of	referring	to	the	number	of
columns	in	a	table.

13.7.	Which	statement	is	not	correct?

a.	RAID	level	0	is	used	if	performance	is	more	important	than	fault
tolerance.

b.	To	store	the	same	amount	of	data,	RAID	1	needs	twice	the	amount
of	storage	capacity	compared	to	RAID	0.

c.	RAID	level	5	strikes	a	balance	between	read	and	write	performance,
storage	efficiency,	and	fault	tolerance.

d.	Block-level	striping	as	used	in	RAID	0	does	not	increase	read
performance.

13.8.	Which	statement	is	not	correct?

a.	It	is	often	more	efficient	to	combine	multiple	smaller	physical	disk
drives	into	one	larger	logical	drive	because	having	multiple	physical
drives	allows	for	parallel	retrieval,	which	results	in	much	more
improved	performance.

b.	It	is	often	more	efficient	to	combine	multiple	smaller	physical	disk
drives	into	one	larger	logical	drive	because	reliability	can	be	improved
by	introducing	some	measure	of	data	redundancy.

c.	With	bit-level	data	striping,	every	disk	participates	in	each	read	or
write	operation.

d.	Using	error-correcting	codes	for	fault	tolerance	requires	extra
storage	space,	almost	as	much	as	when	opting	for	disk	mirroring.

13.9.	Which	statement	is	not	correct?

a.	The	management	of	data	storage	is	more	expensive	than	the
purchase	of	storage	hardware,	which	is	why	businesses	opt	for
enterprise	storage	subsystems.

b.	“Network	attach”	refers	to	establishing	a	many-to-many	connection
between	storage	devices	and	the	corresponding	servers	by	means	of
network	technology.

c.	Although	SCSI	has	been	a	popular	medium	for	connecting	storage
devices	to	servers	and/or	processors	in	the	past,	nowadays	it	is	not
used	for	high-performance	and	high-capacity	workstations	and
servers.

d.	The	SCSI	I/O	command	set	is	a	type	of	block-level	I/O	protocol
which	can	be	exchanged	over	SCSI,	Ethernet,	or	Fibre	Channel
cabling.

13.10.	Which	statement	is	not	correct?

a.	A	DAS	does	not	offer	out-of-the-box	capabilities	for	centralized
storage	management	and	sharing	unused	disk	capacity	across	servers.

b.	A	SAN	is	typically	best	in	terms	of	performance	because	it	often
uses	Fibre	Channel,	the	LAN	network	is	freed	from	storage-related
traffic,	and	Fibre	Channel-compatible	storage	devices	have	some
onboard	intelligence,	which	allows	them	to	perform	certain	tasks
autonomously,	e.g.,	server-free	backups.

c.	Compared	to	SAN,	a	NAS	is	much	less	expensive	and	much	simpler
in	software	and	hardware.	However,	it	achieves	performance	similar	to
a	NAS	set-up.

d.	A	NAS	gateway	receives	file-level	I/O	requests	from	servers
connected	to	the	LAN	or	WAN	and	translates	these	into	SCSI	block
I/O	commands	to	access	the	external	storage	devices;	this	latter
connection	can	be	organized	by	DAS	or	SAN	technology.

13.11.	Which	statement	is	not	correct?

a.	A	primary	element	of	a	contingency	plan	is	the	quantification	of
recovery	objectives	in	RTO	and	RPO,	given	the	organization’s
strategic	priorities.

b.	The	only	points	of	failure	of	a	database	system	are	the	availability
of	database	functionality	and	the	availability	of	the	data	themselves.

c.	The	manual	failover	of	DBMS	functionality	is	a	simple	and	not	very
expensive	solution	to	guarantee	the	availability	of	DBMS	functionality
in	the	case	of	a	calamity.

d.	Rolling	upgrades	are	an	example	of	how	to	avoid	downtime	in	a
cluster	computing	set-up.

13.12.	Statement	1:	When	opting	for	hard	drive	backups	to	maintain	data
availability	in	case	of	a	calamity,	the	RPO	depends	on	the	underlying
infrastructure.	Choosing	a	SAN	as	a	storage	subsystem	might	be	a
solution	here,	as	it	keeps	the	burden	of	data	and	backup-related	traffic
from	the	LAN	and	from	the	servers.
Statement	2:	Log	shipping	is	a	technique	that	is	used	for	preserving

the	transaction	context	of	a	DBMS	in	the	case	of	a	calamity.	The	remote
DBMS	used	for	replication	can	use	the	primary	log	for	restoring
transactions	that	were	ongoing	at	the	primary	site.
Which	statements	are	correct	or	incorrect?

a.	Both	statements	are	correct.

b.	Statement	1	is	correct,	statement	2	is	incorrect.

c.	Statement	1	is	incorrect,	statement	2	is	correct.

d.	Both	statements	are	incorrect.

Problems	and	Exercises

13.1E	What	is	intra-query	parallelism?	How	does	the	concept	of	a	tablespace
enable	it?

13.2E	Illustrate	how	SQL	can	be	used	to	create	an	index	called
CUSTOMER_INDEX,	on	the	table	with	name	CUSTOMERS	based	on	the
CUSTOMER_AGE	(descending)	and	CUSTOMER_ZIPCODE	(ascending)
attribute	types.	Give	a	minimum	of	three	reasons	why	choosing	an	appropriate
index	can	be	beneficial.

13.3E	Discuss	and	compare	three	different	techniques	to	physically	implement	a
join.

13.4E	Which	three	techniques	are	used	in	a	RAID	set-up?	Which	configuration
of	options	of	each	of	these	three	techniques	is	best	used	for	very	critical	data,	in
terms	of	business	continuity?

13.5E	Along	which	three	criteria	can	storage	subsystems	be	classified?	Situate
the	DAS,	SAN,	NAS,	NAS	gateway,	and	iSCSI	approaches	along	each	of	these
three	criteria.

13.6E	Suppose	you	work	for	a	bank	and	have	to	create	a	contingency	plan.
Compare	your	RTO	and	RPO	objectives	with	other	businesses	and	organizations.

What	kind	of	RAID	set-up	would	you	choose?	What	kind	of	enterprise	storage
subsystem?

1	In	file	organization	literature,	the	term	“block”	is	used	most	often,	but	in
actual	database	literature	the	term	“page”	is	more	frequent.

2	In	fact,	real	optimality	cannot	be	guaranteed	in	most	cases.	The	optimizer
uses	heuristics	to	determine	the	best	access	plan	possible,	based	on	the
available	information	and	within	the	boundaries	of	calculation	time.

3	Other	terms	are	used	as	well	for	this	concept,	e.g.,	the	selectivity	of	a	query.

4	Join	queries	are	discussed	in	a	later	section.

5	This	step	is	not	needed	if	the	query	is	not	a	range	query	but	only	uses	a
single	search	key	value	e.g.,	“MY_KEY	=	12”.

6	 	refers	to	the	mathematical	“product”	notation.	 	equals
NV1	×	NV2	×	NV3	…	×	NVn.

7	 	refers	to	the	mathematical	“summation”	notation.	 	equals
NV1	+	NV2	+	NV3	…	+	NVn.

8	 	refers	to	the	mathematical	“combination”	notation.	 .

9	Note	that,	since	both	indexes	are	secondary	indexes	on	non-key	attribute
types,	we	used	the	inverted	file	approach,	associating	each	index	entry	with	a
block	of	pointers	to	all	corresponding	records,	as	discussed	in	Chapter	12.

10	The	outer	table	is	not	to	be	confused	with	the	concept	of	an	outer	join	as
discussed	in	Chapter	7.	This	overview	on	join	implementations	is	limited	to
inner	joins.

11	Location	transparency	refers	to	the	fact	that	the	users	and	applications	are
insulated	from	the	complexity	of	the	data	being	distributed	across	multiple
locations.

12	Failover	means	switching	to	a	redundant	or	standby	system	in	case	of
malfunction	of	the	primary	system.

13	There	are	software-based	solutions	for	all	of	this,	but	these	are	typically	less
efficient.

14	We	come	back	to	different	types	of	backup	in	Section	13.2.3.2.

15	A	file	server	stores	and	provides	access	to	entire	files	that	are	shared	in	a
network.	This	and	other	client–server	configurations	are	discussed	in	more
detail	in	Chapter	15.

16	See	also	the	discussion	on	storage	devices	in	Chapter	12.

17	Replication	as	a	data	integration	technique	is	discussed	in	more	detail	in
Chapter	18.

14

Basics	of	Transaction	Management
◈

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

understand	the	concepts	of	transactions,	recovery,	and	concurrency
control;

identify	the	various	steps	of	a	transaction	lifecycle	as	well	as	the
DBMS	components	involved	and	the	role	of	the	logfile;

discern	different	types	of	failures	and	how	to	deal	with	them;

understand	different	types	of	concurrency	problems	as	well	as	the
importance	of	schedules,	serial	schedules,	and	serializable	schedules;

discern	the	differences	between	optimistic	and	pessimistic	schedulers;

grasp	the	importance	of	locking	and	locking	protocols;

understand	the	responsibility	of	the	DBMS’s	transaction	management
facilities	to	ensure	the	ACID	properties	of	a	transaction.

Opening	Scenario

Since	many	users	will	interact	simultaneously	with	Sober’s	database,	the
company	 wants	 to	 understand	 any	 problems	 that	 may	 occur.
Furthermore,	Sober	also	wants	 to	mitigate	 the	 risks	of	various	 types	of
failures	that	may	make	its	data	incorrect.

The	 majority	 of	 databases	 in	 actual	 organizational	 settings	 are	 multi-user
databases.	This	implies	that	many	applications	and	users	can	access	the	data	in
the	database	in	parallel.	This	concurrent	access	to	the	same	data,	if	not	managed
properly,	 may	 induce	 different	 types	 of	 anomalies	 or	 unexpected	 problems.
Moreover,	 various	 kinds	 of	 errors	 or	 calamities	 may	 occur	 in	 the	 respective
DBMS	 components	 or	 its	 environment	 –	 such	 as	 the	 operating	 system,	 the
applications	 interacting	 with	 the	 DBMS,	 or	 the	 storage	 subsystem	 –	 possibly
rendering	the	database	data	into	an	inconsistent	state.	Fortunately,	most	database
systems	provide	a	realm	of	transparent,	although	often	configurable,	solutions	to
avoid	or	otherwise	deal	with	such	problems.	In	this	way,	the	DBMS	supports	the
ACID	 (Atomicity,	 Consistency,	 Isolation,	 Durability)	 properties	 already
mentioned	 in	 Chapter	 1.	 At	 the	 heart	 of	 these	 solutions	 are	 the	 concepts	 of
transactions	 and	 transaction	 management,	 recovery,	 and	 concurrency
control.	 In	 this	 chapter,	 we	 first	 introduce	 each	 of	 these	 concepts.	 Then,	 we
focus	 in	 more	 detail	 on	 transaction	 management	 and	 the	 DBMS	 components
involved.	 After	 that,	 we	 discuss	 recovery	 and	 the	 different	 techniques	 to	 deal
with	 calamities	 in	 the	 DBMS	 or	 application	 program,	 as	 well	 as	 the	 storage
media.	 Finally,	 we	 describe	 in	 detail	 how	 concurrency	 control	 techniques,	 in
interplay	 with	 transaction	 management	 and	 recovery,	 guarantee	 seamless
concurrent	access	by	multiple	users	to	shared	data.

14.1	Transactions,	Recovery,	and	Concurrency
Control

A	transaction	is	a	set	of	database	operations	(e.g.,	a	sequence	of	SQL	statements
in	a	 relational	database)	 induced	by	a	single	user	or	application	 that	 should	be
considered	 as	 one	undividable	 unit	 of	work.	A	 typical	 example	 illustrating	 the
importance	of	transactions	is	the	transfer	between	two	bank	accounts	of	the	same
customer.	This	transfer	should	be	considered	as	a	single	transaction,	but	actually
involves	at	 least	 two	database	operations;	one	update	 to	debit	 the	 first	 account
and	 a	 second	 update	 to	 credit	 the	 other	 account	 for	 the	 same	 amount.	 Users
should	only	see	a	“before”	and	“after”	of	 this	 logical	unit	of	work,	and	should
never	be	confronted	with	the	possible	inconsistent	states	that	occur	between	the
respective	 operations	 that	 are	 part	 of	 the	 transaction.	 Also,	 it	 should	 not	 be
possible	to	terminate	a	transaction	in	such	a	way	that	the	database	remains	in	an
inconsistent	state,	because	some	operations	of	a	single	transaction	were	executed
successfully	 and	 others	 were	 not;	 otherwise,	 either	 the	 customer	 or	 the	 bank
would	 be	 deprived.	 In	 other	 words,	 a	 transaction	 should	 always	 “succeed”	 or
“fail”	in	its	entirety.	In	the	event	of	a	failure,	no	effects	whatsoever	of	partially
executed	 statements	 should	 remain	 in	 the	 database.	 In	 this	 way,	 a	 transaction
represents	 a	 set	 of	 database	 operations	 that	 renders	 the	 database	 from	 one
consistent	state	into	another	consistent	state.	The	inconsistent	intermediate	states
that	may	occur	during	the	execution	of	the	transaction	should	remain	hidden	to
users.

During	 transaction	 execution,	 different	 types	 of	 errors	 or	 problems	 may
occur.	 There	may	 be	 a	 hard	 disk	 failure;	 the	 application,	 operating	 system,	 or
DBMS	 may	 crash	 or	 there	 may	 even	 be	 a	 power	 outage.	 Moreover,	 the

transaction	 itself	 may	 run	 into	 an	 error	 (e.g.,	 because	 of	 a	 division	 by	 zero).
Recovery	 is	 the	 activity	 of	 ensuring	 that,	whichever	 of	 the	 problems	occurred,
the	database	is	returned	to	a	consistent	state	without	any	data	loss	afterwards.	In
particular,	 for	 transactions	 that	 were	 completed	 successfully	 (i.e.,	 committed
transactions,	 see	Section	14.2.1)	 the	 database	 system	 should	 guarantee	 that	 all
changes	 are	 persisted	 into	 the	 database,	 even	 if	 one	 of	 the	 errors	 occurred
between	 the	 moment	 when	 the	 DBMS	 (logically)	 signaled	 transaction
completion	 and	 the	 moment	 when	 it	 (physically)	 updated	 the	 actual	 database
files.	 In	 the	 same	 way,	 recovery	 involves	 ensuring	 that	 no	 effects	 remain	 of
transactions	that	ended	unsuccessfully;	to	the	outside	world,	it	should	appear	as
if	the	unsuccessful	transaction	never	happened.

Finally,	 even	 if	 every	 transaction	by	 itself	would	 bring	 the	 database	 from
one	 consistent	 state	 into	 another,	 transactions	 do	 not	 exist	 in	 isolation.
Transactions	 are	 frequently	 executed	 concurrently,	 on	 partially	 the	 same	 data.
This	 interleaved	 execution	 of	 different	 transactions	 may	 introduce	 many
interferences	 between	 the	 transactions,	 which	 bring	 about	 inconsistencies	 that
would	 not	 exist	 if	 the	 transactions	 were	 executed	 serially	 (i.e.,	 one	 after	 the
other).	However,	 a	purely	 serial	 execution	would,	 in	most	 cases,	 require	many
transactions	 to	 wait	 for	 one	 another,	 and	 therefore	 would	 have	 a	 severely
negative	 impact	 on	 transaction	 throughput	 and	 performance.	 It	 is	 therefore
important	 to	 oversee	 a	 non-serial	 execution	 in	 such	 a	 way	 that	 interference
problems	between	transactions	are	avoided	or	resolved.	This	activity,	known	as
concurrency	 control,	 is	 the	 coordination	 of	 transactions	 that	 execute
simultaneously	on	the	same	data	so	that	they	do	not	cause	inconsistencies	in	the
data	because	of	mutual	interference.	Different	strategies,	with	different	tradeoffs,
exist	for	this	purpose,	as	explained	in	Section	14.4.

Retention	Questions

Define	the	following	concepts:	transaction,	recovery,	and	concurrency
control.

14.2	Transactions	and	Transaction	Management

In	this	section,	we	first	elaborate	on	delineating	transactions	and	the	transaction
lifecycle.	 We	 then	 discuss	 the	 DBMS	 components	 involved	 in	 transaction
management.	 We	 conclude	 by	 reviewing	 the	 essential	 role	 of	 the	 logfile	 in
transaction	management.

14.2.1	Delineating	Transactions	and	the	Transaction	Lifecycle

A	 database	 application	 may	 uphold	 multiple	 operations,	 and	 even	 multiple
ongoing	transactions,	at	the	same	time.	For	a	database	system	to	be	able	to	assess
which	 operations	 belong	 to	 which	 transaction,	 it	 is	 necessary	 to	 specify	 the
transaction	 boundaries	 –	 to	delineate	 the	 transaction.	 This	 can	 be	 done	 in	 an
implicit	or	an	explicit	way.

The	program	can	mark	the	first	operation	of	a	new	transaction	explicitly	by
means	 of	 a	 begin_transaction	 instruction.	 Alternatively,	 without	 an	 explicit
notification,	 the	 database	 management	 system	 will	 assume	 that	 the	 first
executable	SQL	statement	 in	a	program	execution	 thread	denotes	 the	start	of	a
new	 transaction.1	 The	 transaction’s	 operations	 are	 received	 by	 the	 transaction
manager	and	put	 into	a	schedule,	 along	with	other	ongoing	 transactions.	Once
the	first	operation	is	executed,	the	transaction	is	active.

The	 end	 of	 a	 transaction	 is	 marked	 explicitly	 by	 means	 of	 an
end_transaction	 instruction.	 Upon	 completion	 of	 a	 transaction,	 it	 is	 to	 be
decided	whether	the	changes	made	by	the	transaction	should	be	persisted	into	the
database,	 or	 should	 be	 undone.	 If	 the	 transaction	 completed	 successfully,	 all
changes	made	by	the	individual	operations	belonging	to	that	transaction	should
be	 made	 permanent;	 the	 transaction	 is	 committed.	 After	 the	 transaction	 is
committed,	 the	 changes	 become	 visible	 to	 other	 users	 and	 cannot	 be	 undone
(unless,	 of	 course,	 another	 transaction	 would	 induce	 exactly	 the	 opposite
changes	 afterwards).	 However,	 if	 the	 transaction	 is	aborted,	 it	 means	 that	 an
error	or	anomaly	occurred	during	the	transaction’s	execution.	This	anomaly	may
have	 happened	 at	 different	 levels	 (application,	 operating	 system,	 database
system,	 see	 Section	 14.3),	 but,	 whatever	 the	 cause,	 the	 transaction	 did	 not
complete	 successfully.	 It	 is	 possible	 that	 the	 transaction,	 before	 being	 aborted,

already	made	some	partial	changes	 to	 the	database.	 In	 that	case,	a	rollback	 of
the	 transaction	 is	 required:	 all	 changes	 made	 by	 the	 transaction’s	 respective
operations	should	be	undone	in	such	a	way	that,	after	completion	of	the	rollback,
it	appears	as	if	the	faulty	transaction	never	happened.

Drill	Down

In	 the	 context	 of	 loosely	 coupled	 systems	 and	 so-called	 long-running
transactions	 (see	 Chapter	 16),	 the	 principle	 of	 compensation	 is	 often
applied.	 In	 that	 case,	 instead	 of	 the	 database	 system	 mechanically
undoing	any	changes	made	by	the	transaction,	a	new	transaction	is	issued
that	induces	the	exact	opposite	changes,	or	more	generally,	changes	that
somehow	“make	up”	 for	 the	 previous	 transaction.	However,	 this	 is	 the
responsibility	 of	 the	 application	 programmer	 rather	 than	 the	 database
system.

Let’s	examine	the	following	simple	example:

<begin_transaction>

UPDATE	account
SET	balance	=	balance	-	:amount
WHERE	accountnumber	=	:account_to_debit

UPDATE	account
SET	balance	=	balance	+	:amount
WHERE	accountnumber	=	:account_to_credit

<end_transaction>

This	 bank	 transfer	 between	 two	 accounts	 of	 the	 same	 customer	 can	 be
considered	a	single	 logical	unit	of	work	 that	 involves	 two	database	operations.
The	start	of	a	new	transaction	is	signaled	by	the	<begin_transaction>	instruction.
In	particular,	two	update	operations	are	required,	respectively	to	debit	and	credit
the	 two	 accounts	 (in	 this	 case:	 two	 tuples	 in	 the	 same	 table)	 according	 to	 the
same	variable2	 :amount.	The	 two	account	 tuples	 involved	are	 identified	by	 the
respective	 variables	 :account_to_debit	 and	 :account_to_credit.	 Once	 the
<end_transaction>	 instruction	 is	 reached,	 the	 database	 system	 decides	 on	 the
transaction’s	outcome.	If	everything	went	well,	the	transaction	is	committed;	the
changes	are	persisted	into	the	database	and	the	two	updated	balance	values	in	the
table	become	visible	to	the	other	database	users	and	transactions.	However,	if	the
transaction	 fails	 to	 complete	 successfully,	 or	 if	 an	 error	 occurred	 before	 the
end_transaction	 instruction,	 the	 transaction	 is	 aborted.	 If,	 let’s	 say,	 the	 first
update	 operation	 was	 already	 completed	 before	 the	 anomaly	 occurred,	 this
update	needs	to	be	rolled	back	and	the	original	balance	value	is	restored.	After
that,	the	two	(unchanged)	account	tuples	are	made	available	again	to	other	users
and	transactions;	no	traces	of	the	faulty	transaction	should	remain.

After	 the	 transaction	 is	 committed	 or	 aborted,	 a	 new	 transaction	 can	 be
started,	depending	on	the	program	logic.	Alternatively,	if	the	abort	was	the	result
of	a	program	malfunction,	the	program	itself	may	be	terminated.	If	the	program
code	 does	 not	 contain	 explicit	 transaction	 delimiters,	 the	 database	 system	will
typically	attempt	to	commit	transactions	induced	by	programs	or	procedures	that
completed	successfully	and	abort	transactions	otherwise.

14.2.2	DBMS	Components	Involved	in	Transaction	Management

The	main	DBMS	component	responsible	for	coordinating	transaction	execution
is	 called	 the	 transaction	manager.	 Figure	 14.1	 depicts	 the	 functioning	 of	 the
transaction	manager	 in	 interaction	with	 the	other	main	components	 involved	in
transaction	 management:	 the	 scheduler,	 the	 stored	 data	 manager,	 the	 buffer
manager,	and	the	recovery	manager.

Figure	14.1	DBMS	components	involved	in	transaction	management.

Connections

We	already	briefly	introduced	the	transaction	manager	in	Chapter	2	when
we	discussed	the	architecture	of	a	DBMS.

The	 transaction	 manager	 informs	 the	 scheduler	 of	 new	 transactions	 that
were	 presented	 to	 its	 input	 area	 (1).	 The	 scheduler	 plans	 the	 start	 of	 the
transactions	 and	 the	 execution	 of	 their	 respective	 operations,	 aiming	 at
optimizing	KPIs	such	as	query	response	times	and	transaction	throughput	rates.
As	 soon	 as	 a	 transaction	 can	 be	 started,	 the	 recovery	manager	 and	 the	 stored
data	manager	 are	 notified	 (2).	 The	 stored	 data	 manager	 coordinates	 the	 I/O
instructions	and	hence	the	physical	interactions	with	the	database	files.	However,
for	 reasons	 of	 performance,	 physical	 file	 operations	 are	 not	 executed
immediately	 when	 a	 database	 read	 or	 write	 instruction	 is	 received.	 Rather,	 a
database	buffer	 in	 (fast)	 internal	memory	 is	used	 as	 an	 intermediary,	 such	 that
access	to	(slow)	external	memory	can	be	postponed	a	bit.	In	this	way,	physical
file	operations	can	be	buffered	and	are	executed	in	an	optimized	way,	according
to	 physical	 file	 structure,	 parallel	 disk	 access,	 etc.	 In	 this	 context,	 the	 buffer
manager	 is	 responsible	 for	 data	 exchange	between	 the	 database	 buffer	 and	 the
physical	database	files.

Connections

Chapters	 12	 and	 13	 discuss	 physical	 database	 organization	 in	 more
detail.

Once	the	transaction	has	started,	its	state	is	said	to	be	active.	As	the	input
area	 receives	 the	 respective	operations	belonging	 to	 the	 transaction,	 as	well	 as
operations	 belonging	 to	 other	 active	 transactions,	 the	 scheduler	 plans	 their
execution	order	(3).	Upon	execution,	 the	operations	trigger	 interaction	with	the
database	 through	 the	stored	data	manager	 (4).	The	 latter	 informs	 the	 scheduler
about	the	outcome	of	the	execution.	When	a	transaction	has	completed	(5b),	and
if	 no	 calamities	 have	 occurred,	 the	 transaction	 reaches	 the	 committed	 state.

Updates	 as	 induced	 by	 the	 transaction,	 which	may	 still	 reside	 in	 the	 database
buffer,	can	be	considered	as	permanent	and	should	be	persisted	into	the	physical
database	 files.	 The	 recovery	 manager	 is	 invoked	 to	 coordinate	 this	 (5b2).	 If,
however,	 the	transaction	was	completed	unsuccessfully	because	a	problem	was
detected	 (5b1)	or	 if	 the	 transaction	was	 terminated	before	completion	 (5a),	 the
transaction	reaches	an	aborted	state.	If	any	(intermediate)	changes	were	already
written	 to	 disk,	 they	 should	 be	 undone.	 To	 coordinate	 the	 latter,	 again,	 the
recovery	manager	is	invoked.

14.2.3	The	Logfile

Aside	from	the	functional	DBMS	components	described	above,	 the	 logfile	 is	a
vital	 element	 in	 transaction	 management	 and	 recovery.	 Although	 the	 logfile
essentially	contains	redundant	data,	this	redundancy	is	of	absolute	importance	if,
for	 whatever	 reason,	 data	 are	 lost	 or	 damaged	 in	 the	 context	 of	 transaction
execution.	Should	 this	occur,	 the	 recovery	manager	will	 attempt	 to	 recover	 the
lost	data	by	means	of	 the	 registrations	on	 the	 logfile.	For	each	 transaction	and
each	operation,	relevant	 information	is	registered	on	the	logfile	 in	 log	records.
In	this	way,	the	logfile	is	a	sequential	file,	consisting	of	log	records	that	contain
the	following	information:

a	unique	log	sequence	number	to	identify	the	log	record;

a	unique	transaction	identifier,	relating	the	log	registration	to	an
individual	transaction;

a	marking	to	denote	the	start	of	a	transaction,	along	with	the	transaction’s
start	time	and	an	indication	of	whether	the	transaction	is	read	only	or
read/write;

identifiers	of	the	database	records	involved	in	the	transaction,	as	well	as
the	operation(s)	they	were	subjected	to	(select,	update,	insert,	delete);

before	images	of	all	records	that	participated	in	the	transaction;	these	are
the	original	values,	before	the	records	were	updated.	Before	images	are
used	to	undo	unwanted	effects	of	failed	transactions;

after	images	of	all	records	that	were	changed	by	the	transaction;	these
are	the	new	values,	after	the	update.	After	images	are	used	to	redo

The	 logfile	may	 also	 contain	 checkpoints.	 These	 denote	 synchronization
points	–	moments	when	buffered	updates	by	active	transactions,	as	present	in	the
database	buffer,	are	written	to	disk	at	once.	In	this	context,	it	is	important	that	all
updates	are	registered	on	 the	 logfile	before	 they	can	be	written	 to	disk.	This	 is
called	 the	write	 ahead	 log	 strategy.	 In	 this	 way,	 before	 images	 are	 always
recorded	 on	 the	 logfile	 prior	 to	 the	 actual	 values	 being	 overwritten	 in	 the
physical	database	files,	in	order	to	be	prepared	for	a	possible	rollback.	Moreover,
a	 transaction	 should	 only	 attain	 the	 “committed”	 state	 after	 recording	 the
necessary	 after	 images	 on	 the	 logfile,	 as	 well	 as	 the	 “commit”	 sign.	 Changes
made	by	committed	transactions	can	be	redone	afterwards	if	a	problem	occurred
before	all	of	its	buffered	updates	could	be	written	to	disk.

Given	the	essential	role	of	the	logfile	in	the	context	of	recovery,	it	is	often
duplicated	 (e.g.,	 in	 a	 RAID	 level	 1	 configuration).	 The	 latter,	 in	 combination
with	other	precautions,	makes	sure	that,	should	a	calamity	occur,	an	intact	copy
of	the	logfile	can	be	recovered	at	all	times.

Connections

Chapter	13	discussed	the	RAID	level	1	configuration.

Retention	Questions

changes	that	were	not	adequately	persisted	in	the	physical	database	files
in	the	first	place;

the	current	state	of	the	transaction	(active,	committed,	or	aborted).

Discuss	the	various	steps	in	the	transaction	lifecycle.

What	DBMS	components	are	involved	in	transaction	management?

What	is	the	role	of	the	logfile?

14.3	Recovery

In	 this	 section,	we	 first	 elaborate	 on	 different	 types	 of	 failures	 that	 can	 occur
when	executing	a	transaction.	We	then	discuss	both	system	and	media	recovery,
which	are	different	 recovery	 techniques	 that	may	be	appropriate,	depending	on
the	type	of	failure.

14.3.1	Types	of	Failures

As	 previously	 mentioned,	 the	 correct	 execution	 of	 a	 transaction	 can	 be
obstructed	by	several	types	of	failures.	To	understand	the	modalities	of	recovery
and	the	role	of	the	recovery	manager,	it	is	useful	to	consider	the	actual	failures
that	may	occur.	These	can	be	classified	into	three	broad	categories,	according	to
their	causes:	transaction	failure,	system	failure,	and	media	failure.

A	transaction	failure	results	from	an	error	in	the	logic	that	drives	the
transaction’s	operations	(e.g.,	wrong	input,	uninitialized	variables,
incorrect	statements,	etc.)	and/or	in	the	application	logic.	As	a
consequence,	the	transaction	cannot	be	completed	successfully	and
should	be	aborted.	This	decision	is	typically	made	by	the	application	or
by	the	database	system	itself.	If	any	tentative	changes	were	made	by	the
transaction,	these	should	be	rolled	back.

A	system	failure	occurs	if	the	operating	system	or	the	database	system
crashes	due	to	a	bug	or	a	power	outage,	for	example.	This	may	result	in
loss	of	the	primary	storage’s	content	and,	consequently,	the	database
buffer.

Media	failure	occurs	if	the	secondary	storage	(hard	disk	drive	or	in	some
cases	flash	memory)	that	contains	the	database	files,	and	possibly	the
logfile,	is	damaged	or	inaccessible	due	to	a	disk	crash,	a	malfunction	in
the	storage	network,	etc.	Although	the	transaction	may	have	been
logically	executed	correctly,	and	hence	the	application	or	user	that
induced	the	transaction	was	informed	that	the	transaction	was	committed
successfully,	the	physical	files	may	not	be	able	to	capture	or	reflect	the
updates	induced	by	the	transaction.

In	 what	 follows,	 we	 discriminate	 between	 system	 recovery	 and	 media
recovery.	System	recovery	will	be	called	for	in	the	event	of	system	failure	and	in
some	cases	of	 transaction	 failure.	Media	 recovery	will	be	needed	 to	cope	with
media	failures.

14.3.2	System	Recovery

Let’s	assume	that	a	system	failure	occurs,	causing	loss	of	the	database	buffer’s
contents.	 Updates	 that	 resided	 in	 this	 buffer	 can	 be	 ascribed	 to	 transactions
belonging	 to	 two	possible	categories:	 transactions	 that	already	had	 reached	 the
committed	state	before	the	failure	occurred,	and	transactions	that	were	still	in	an
active	state.	For	each	of	these	transactions,	UNDO	or	REDO	operations	may	be
required,	 depending	 on	which	 updates	were	 already	written	 to	 disk	 and	which
changes	were	still	pending	in	the	database	buffer	upon	system	failure.	The	latter
is	 determined	 by	 the	 moment	 when	 the	 buffer	 manager	 last	 “flushed”	 the
database	buffer	 to	disk.	This	moment	 is	marked	as	a	checkpoint	on	the	logfile.
The	different	possible	situations	are	represented	in	Figure	14.2.

Figure	14.2	Required	UNDO	and	REDO	operations	upon	system	failure.

Figure	14.2	presents	five	transactions	(T1	to	T5)	 that	are	executed	more	or
less	simultaneously.	Let’s	assume	for	now	that	the	transactions	do	not	interfere;
we	will	 cover	 concurrency	 control	 in	 Section	14.4.	 Suppose	 a	 checkpoint	was
registered	on	the	logfile	at	time	tc,	marking	the	last	time	when	pending	updates
in	 the	 database	 buffer	were	 persisted	 into	 the	 physical	 database	 files.	Later,	 at
time	tf,	a	system	fault	occurred,	resulting	in	loss	of	the	database	buffer.

Transaction	 T1	 committed	 before	 time	 tc,	 when	 the	 checkpoint	 was
registered.	For	this	 transaction,	no	recovery	operations	are	required.	Indeed,	all

the	 transaction’s	 updates	 were	 already	 written	 to	 disk,	 so	 a	 REDO	 is	 not
necessary.	 Moreover,	 since	 the	 transaction	 was	 successfully	 committed,	 no
UNDO	operations	are	required	either.

Transaction	 T2,	 was	 still	 active	 on	 time	 tc.	 However,	 the	 transaction
committed	 successfully	 before	 the	 actual	 system	 fault	 at	 time	 tf.	 Since	 the
transaction	 committed,	 but	 not	 all	 updates	 were	 written	 to	 disk	 before	 the
database	 buffer	 was	 lost,	 a	 REDO	 is	 required	 to	 eventually	 persist	 all	 the
transaction’s	updates.

Transaction	T3	was	 still	 active	when	 the	 system	 fault	 occurred	 at	 time	 tf.
Some	of	its	updates	were	still	pending	in	the	database	buffer	and	disappeared	by
themselves	 when	 the	 buffer	 was	 lost.	 However,	 other	 updates,	 the	 ones	made
before	 tc,	 were	 already	 written	 to	 disk.	 Since	 the	 transaction	 cannot	 continue
because	of	 the	system	fault,	 it	cannot	commit	and	must	be	aborted.	The	partial
changes	 already	 written	 to	 disk	 must	 be	 rolled	 back	 by	 means	 of	 UNDO
operations.

Transaction	T4	started	after	time	tc	and	committed	before	the	system	fault	at
time	tf.	Since	all	of	its	updates	were	still	pending	in	the	database	buffer,	a	REDO
is	required	to	persist	its	effects	into	the	database.

Transaction	T5	also	started	after	tc.	Since	the	transaction	was	still	active	at
time	 tf,	 it	 cannot	 continue	 because	 of	 the	 system	 fault	 and	 will	 be	 aborted.
However,	 since	 all	 its	 updates	 were	 still	 pending	 in	 the	 database	 buffer,	 they
disappear	along	with	the	rest	of	the	buffer’s	contents.	No	UNDO	is	required.

The	logfile	is	indispensable	to	take	account	of	which	updates	were	made	by
which	transactions	(and	when)	in	the	above	situations	and	to	keep	track	of	before
images	 and	 after	 images.	 Based	 on	 this	 information,	 the	 recovery	 manager
coordinates	 the	 required	 UNDO	 and	 REDO	 operations.	 Whereas	 the	 above-
discussed	system	recovery	focused	on	system	failure,	a	similar	reasoning	can	be
applied	in	case	of	transaction	failure.	However,	in	that	case,	only	the	situations

for	T3	and	T5	will	occur,	as	a	transaction	will	never	be	committed	in	the	case	of
transaction	failure.

Finally,	 it	 is	 important	 to	 note	 that	 different	 approaches	 to	 coordinate	 the
flushing	 of	 the	 database	 buffer	 are	 available.	 In	 some	 situations,	 the	 buffer	 is
simply	 flushed	when	 it	 is	“full”	 (i.e.,	without	any	 involvement	of	 the	 recovery
manager).	However,	in	many	implementations,	the	recovery	manager	supervises
this	process	and	periodically	instructs	the	buffer	manager	to	flush	(parts	of)	the
buffer’s	content.	In	this	case,	many	variations	are	possible.	For	example,	if	only
pending	 updates	 from	 already	 committed	 transactions	 can	 be	 written	 to	 disk,
there	will	never	be	a	need	for	UNDO	operations,	but	REDO	operations	may	still
be	 required.	We	call	 this	a	deferred	update	 or	NO-UNDO/REDO	policy.	The
opposite	is	the	immediate	update	policy,	which	means	that	the	database	may	be
updated	before	 a	 transaction	 is	 committed.	A	particular	 case	here	 is	 if	 all	 of	 a
transaction’s	 buffered	 updates	 are	 persisted	 immediately	 upon	 transaction
commit.	We	speak	of	an	UNDO/NO-REDO	policy,	because	a	REDO	will	never
be	called	for.	Still,	in	most	cases,	such	approaches	would	not	be	optimal	from	the
perspective	of	physical	file	management	and	hence	performance,	so	UNDO	and
REDO	 operations	 are	 an	 integral	 element	 of	 most	 implementations	 of	 system
recovery.

14.3.3	Media	Recovery

Media	 recovery	 is	 required	 if	 the	physical	 database	 files	 and/or	 the	 logfile	 are
unavailable	or	damaged	due	to	a	malfunction	of	the	storage	media	or	the	storage
subsystem	(e.g.,	 the	storage	network).	Although	many	alternatives	exist,	media
recovery	 is	 invariably	 based	 on	 some	 type	 of	 data	 redundancy:	 additional
(redundant)	 copies	of	 the	 files	or	data	are	 stored	on	offline	media	 (e.g.,	 a	 tape
vault)	or	online	media	 (e.g.,	on	an	online	backup	hard	disk	drive,	or	even	 in	a
full-blown	redundant	database	node).

Connections

An	extensive	discussion	of	data	 redundancy	and	backup	approaches,	 in
the	 context	 of	 business	 continuity,	 was	 provided	 in	 Chapter	 13.	 We
briefly	 review	 some	 elements	 in	 this	 section,	 with	 an	 emphasis	 on
recovery.

Each	solution	 typically	entails	a	 tradeoff	between	 the	cost	 to	maintain	 the
redundant	 data,	 along	 with	 its	 storage	 environment,	 and	 the	 time	 needed	 to
recover	 the	 files	and	restore	 the	system	to	a	 fully	 functional	state.	Considering
this	 tradeoff,	 two	 techniques	 are	 often	 distinguished:	mirroring	 and	 archiving.
Note,	however,	that	this	classification	is	not	absolute	and	that	each	technique	has
a	myriad	of	variants;	many	hybrid	approaches	exist	as	well.

Disk	mirroring3	 is	 a	 (near)	 real-time	 approach	 that	 writes	 the	 same	 data
simultaneously	 to	 two	 or	 more	 physical	 disks.	 This	 can	 be	 implemented	 in
different	ways,	with	varying	performance,	by	either	software	or	hardware	(e.g.,
by	the	operating	system;	by	the	hard	disk	controller	in	a	RAID	set-up;	or	by	the

components	of	a	storage	area	network).	The	identical	disks	(as	well	as	servers,
etc.)	can	be	located	at	the	same	premises	or	at	separate	locations,	particularly	for
reasons	 of	 disaster	 recovery.	 Because	 of	 the	 real-time	 element,	 mirroring
typically	only	requires	limited	failover	time	to	have	the	system	up	and	running
again,	with	up-to-date	data,	after	a	media	malfunction.	However,	the	technology
required	is	often	costlier	than	archiving.	In	terms	of	performance,	the	duplicate
writing	 may	 have	 a	 (limited)	 negative	 impact	 on	 write	 performance,	 but	 the
redundant	 copy	 of	 the	 data	 can	 sometimes	 be	 exploited	 for	 parallel	 access,
improving	 read	performance.	Aside	 from	 the	physical	 file	 level,	mirroring	 can
also	be	 realized	at	 the	database	 level,	where	not	only	 the	actual	database	 files,
but	 also	 the	 transaction	 state	 and	 the	 database	 system	 itself,	 are	 duplicated	 on
different	 servers.	 This	 means	 the	 data	 and	 the	 transaction	 context	 can	 be
preserved,	i.e.,	transactions	that	are	still	active	at	the	moment	of	a	disk	crash	can
failover	to	the	redundant	database	server	and	continue	their	execution,	instead	of
being	aborted.

Archiving	is	an	approach	in	which	database	files	are	periodically	copied	to
other	storage	media,	such	as	tape	or	another	hard	disk.	Such	a	copy	is	called	the
backup	copy.	If	the	original	file	is	damaged,	the	backup	copy	can	be	restored	to
recover	 the	 lost	 data.	 However,	 as	 the	 backup	 is	 only	 made	 periodically,	 the
changes	since	 the	 last	copy	will	be	missing.	Therefore,	 there	will	be	a	 tradeoff
between	the	cost	(overhead	and	storage	cost)	of	more	frequent	backups	and	the
cost	 of	 lost	 data	 because	 of	 less	 frequent	 backups.	 In	 a	 database	 setting,	 if
archiving	 is	applied	 to	 the	database	 files,	 then	at	 least	 the	 logfile	will	often	be
mirrored,	 such	 that	 the	 older	 data	 as	 restored	 from	 the	 backup	 copy	 can	 be
complemented	with	 (a	 redo	of)	 the	more	 recent	 transactions	as	 recorded	 in	 the
logfile.	 This	 activity	 is	 called	rollforward	 recovery.	 Besides	 the	 frequency,	 a
backup	 strategy	 is	 typically	 subject	 to	 other	 parameters	 as	 well,	 such	 as	 the
periodicity	 of	 an	 intermittent	 full	 backup,	 coupled	 with	 more	 frequent

incremental	 backups,	 to	 capture	 the	 changes	 since	 the	 last	 full	 backup.	 A
restore	 operation	 will	 then	 boil	 down	 to	 first	 restoring	 the	 last	 full	 backup,
followed	 by	 chronologically	 restoring	 all	 incremental	 backups	made	 since	 the
last	full	backup.	Other	variation	points	that	impact	the	tradeoff	between	cost	and
the	time	needed	for	recovery	are:	the	choice	of	backup	media	(e.g.,	tape	versus
disk);	whether	the	backup	is	offline	or	online;	offsite	or	onsite	backup,	etc.

More	 recently,	 another	 tradeoff	 has	 come	 forward	 in	 the	 context	 of
redundancy:	 the	 one	 between	 performance	 and	 consistency.	 As	 discussed	 in
Chapter	 11,	 several	 newly	 developed	 large	 scale	 (NoSQL)	 databases	 have
redundancy	at	 the	core	of	 their	architecture,	both	 for	 reasons	of	 fault	 tolerance
and	 for	 the	 sake	 of	 performance	 (parallel	 access).	 Moreover,	 performance	 is
further	 increased	 by	 avoiding	 the	 transactional	 overhead	 required	 to	 keep	 the
redundant	copies	of	the	same	data	item	in	sync	at	all	times.	Hence,	such	systems
allow	for	a	certain	measure	of	 temporary	 inconsistency,	 in	 return	 for	 increased
performance.	 This	 transaction	 paradigm,	 referred	 to	 as	 eventual	 consistency,
contrasts	the	approach	of	traditional	relational	databases,	which	typically	favors
absolute	data	consistency	over	performance.	Moreover,	many	NoSQL	database
systems	 support	 multiple	 configurations,	 with	 a	 different	 positioning	 on	 the
tradeoff	between	consistency	and	performance.

Connections

The	particularities	of	eventual	consistency	and	redundancy	in	the	context
of	NoSQL	databases	are	discussed	further	in	Chapter	16.

Retention	Questions

Discuss	the	different	types	of	failures	and	how	to	deal	with	them.

14.4	Concurrency	Control

In	this	section,	we	start	by	illustrating	typical	concurrency	problems	such	as	the
lost	update	problem,	the	uncommitted	dependency	problem,	and	the	inconsistent
analysis	 problem.	 We	 then	 define	 the	 concepts	 of	 a	 schedule	 and	 a	 serial
schedule.	Next,	we	review	the	constraints	for	a	schedule	 to	be	serializable.	We
conclude	by	discussing	both	optimistic	and	pessimistic	schedulers.

14.4.1	Typical	Concurrency	Problems

The	 scheduler,	 as	 a	 component	 of	 the	 transaction	 manager,	 is	 responsible	 for
planning	the	execution	of	transactions	and	their	individual	operations.	The	most
straightforward	 approach	would	 be	 simply	 scheduling	 all	 transactions	 serially,
according	to	the	order	in	which	they	are	submitted	to	the	scheduler.	In	that	way,
all	 of	 a	 transaction’s	 operations	would	 be	 completed	 before	 a	 new	 transaction
can	be	started,	guaranteeing	that	no	transactions	can	interfere	with	one	another.
Unfortunately,	 such	 a	 serial	 execution	 would	 be	 very	 inefficient,	 with	 many
transactions	waiting	endlessly	for	 their	predecessors	 to	 finish,	 resulting	 in	very
poor	 response	 times	 and	 transaction	 throughput.	 The	 typical	 capabilities	 for
parallel	 processing	 of	 both	 operating	 systems	 and	 storage	 systems	 would	 be
vastly	underexploited.

Instead,	 the	 scheduler	 will	 ensure	 that	 the	 operations	 of	 the	 respective
transactions	 can	 be	 executed	 in	 an	 interleaved	 way,	 drastically	 increasing
performance.	 Caution	 should	 be	 taken	 to	 not	 focus	 purely	 on	 parallelism,
because	 interference	 problems	 would	 occur	 between	 transactions	 that	 access
(and	particularly	those	that	update)	the	same	data	items.	This	would	result	in	an
inconsistent	 database	 which,	 in	 most	 cases,4	 is	 even	 less	 desirable	 than	 poor
performance.	 Before	 presenting	 possible	 solutions,	 we	 first	 discuss	 the	 most
typical	interference	problems	that	occur	in	the	context	of	(lack	of)	concurrency
control:	the	lost	update	problem,	the	uncommitted	dependency	problem,	and	the
inconsistent	analysis	problem.

14.4.1.1	Lost	Update	Problem

A	lost	update	problem	occurs	if	an	otherwise	successful	update	of	a	data	item
by	a	transaction	is	overwritten	by	another	transaction	that	wasn’t	“aware”	of	the

first	update.	This	 is	 illustrated	in	Figure	14.3:	 two	 transactions	T1	and	T2	have
started	around	the	same	time.	They	both	read	the	amount	on	the	same	account	x.
T1	 reduces	 the	 amount	 by	 50,	 whereas	 T2	 increases	 the	 amount	 by	 120.	 The
execution	of	both	transactions’	operations	is	interleaved.	Consequently,	since	T1
uses	a	version	of	amountx	that	was	read	before	it	was	updated	by	T2,	and	since
afterwards	amountx	 is	updated	by	T1,	 the	update	by	T2	 is	 “overwritten”	 and	 is
completely	 lost.	 This	 is	 a	 first	 illustration	 of	 the	 fact	 that,	 even	 though	 two
transactions	may	be	completely	correct	by	themselves,	problems	can	still	occur
if	the	transactions	interfere	with	one	another.

Figure	14.3	Illustration	of	the	lost	update	problem.

14.4.1.2	Uncommitted	Dependency	Problem	(aka	Dirty	Read	Problem)

If	a	transaction	reads	one	or	more	data	items	that	are	being	updated	by	another,
as	yet	uncommitted,	transaction,	we	may	run	into	the	uncommitted	dependency
problem.	This	is	the	case	if	the	other	transaction	is	ultimately	aborted	and	rolled
back,	 such	 that	 the	 first	 transaction	 ends	 up	 in	 a	 situation	 where	 it	 has	 read
tentative	values	it	never	should	have	“seen”	in	the	first	place.	This	is	illustrated
in	Figure	14.4:	again,	 two	transactions	T1	and	T2	have	started	around	 the	same
time.	Both	transactions	read	the	amount	on	account	x.	T1	reduces	the	amount	by
50,	 whereas	 T2	 increases	 the	 same	 amount	 by	 120.	 Both	 transactions	 are
executed	in	an	interleaved	manner,	although	this	time	T1	is	aware	of	the	update
by	T2,	since	it	reads	amountx	at	time	t5,	after	it	was	written	by	T2.	Unfortunately,
T2	was	still	uncommitted	at	t5	and	is	rolled	back	afterwards	(at	t6),	which	means

that	no	traces	of	it	should	be	left	in	the	database	state.	In	the	meantime,	however,
T1	has	read,	and	possibly	used,	this	“non-existent”	value	of	amountx.

Figure	14.4	Illustration	of	the	uncommitted	dependency	problem.

14.4.1.3	Inconsistent	Analysis	Problem

The	 inconsistent	 analysis	problem	 denotes	 a	 situation	 in	which	 a	 transaction
reads	partial	results	of	another	transaction	that	simultaneously	interacts	with	(and
updates)	the	same	data	items.	The	problem	typically	occurs	when	one	transaction
calculates	 an	 aggregate	 value	 based	 on	 multiple	 data	 items,	 whereas	 another
transaction	is	concurrently	updating	some	of	these	items.	The	example	in	Figure
14.5	 involves	 three	 accounts	 x,	 y,	 and	 z.	 The	 initial	 amounts	 are	 respectively
100,	75,	and	60.	T1	is	to	transfer	$50	from	account	x	to	account	z.	T2	calculates
the	 sum	of	 the	 three	 amounts.	Both	 transactions	 are	 initiated	 at	 approximately
the	same	 time;	 the	execution	of	 their	operations	 is	 interleaved.	The	problem	 is
that	T1	subtracts	an	amount	from	account	x	when	its	value	was	already	read	by
T2,	 whereas	 T1	 adds	 an	 amount	 to	 account	 z	 before	 it	 will	 be	 read	 by	 T2.
Consequently,	the	$50	transferred	by	T1	is	included	twice	in	the	sum	calculated
by	T2	;	the	result	is	285	instead	of	235.

Figure	14.5	Illustration	of	the	inconsistent	analysis	problem.

Note	 that	 in	 this	example,	 the	final	database	state	may	not	be	 inconsistent
(the	 value	 of	 amount	 x,	 y,	 and	 z	 is	what	 it	 ought	 to	 be),	 but	 the	 query	 result
returned	 to	a	client	application	 (the	sum	of	amount	x,	y,	and	z)	 is	nevertheless
incorrect.	In	this	way,	the	lost	update	problem	always	results	in	an	inconsistent
database	 state,	 whereas	 an	 uncommitted	 dependency	 or	 inconsistent	 analysis
may	 yield	 either	 an	 inconsistent	 database	 state	 or	 an	 incorrect	 query	 result,
depending	on	whether	the	incorrect	value	is	stored	into	the	database	or	returned
to	the	client	application.

14.4.1.4	Other	Concurrency-Related	Problems

There	are	other	typical	concurrency	problems	than	the	ones	above.	For	example,
nonrepeatable	 read	 (also	 known	 as	 unrepeatable	 read)	 occurs	 when	 a
transaction	 T1	 reads	 the	 same	 row	 multiple	 times,	 but	 obtains	 different
subsequent	 values,	 because	 another	 transaction	 T2	 updated	 this	 row	 in	 the
meantime.	Another	somewhat	related	example	are	phantom	reads.	In	this	case,
a	transaction	T2	is	executing	insert	or	delete	operations	on	a	set	of	rows	that	are
being	read	by	a	transaction	T1.	It	could	be	that,	if	T1	reads	the	same	set	of	rows	a
second	 time,	 additional	 rows	 turn	 up,	 or	 previously	 existing	 rows	 disappear,
because	they	have	been	inserted	or	deleted	by	T2	in	the	meantime.

14.4.2	Schedules	and	Serial	Schedules

We	define	a	schedule	S	as	a	set	of	n	transactions,	and	a	sequential	ordering	over
the	statements	of	these	transactions,	for	which	the	following	property	holds:

For	each	transaction	T	that	participates	in	a	schedule	S	and	for	all
statements	si	and	sj	that	belong	to	the	same	transaction	T:	if	statement	si
precedes	statement	sj	in	T,	then	si	is	scheduled	to	be	executed	before	sj	in	S.

In	other	words,	 the	definition	of	a	schedule	implies	 that	 the	schedule	preserves
the	 ordering	 of	 the	 individual	 statements	 within	 each	 respective	 transaction,
whereas	 it	 allows	an	arbitrary	ordering	of	 the	 statements	between	 transactions.
Each	alternate	ordering	yields	a	different	schedule.

A	 schedule	 S	 is	 serial	 if	 all	 statements	 si	 of	 the	 same	 transaction	 T	 are
scheduled	consecutively,	without	any	interleave	with	statements	from	a	different
transaction.	As	 a	 consequence,	 a	 set	 of	n	 transactions	yields	n!	 different	 serial
schedules.

If	 we	 assume	 that	 each	 transaction,	 if	 executed	 in	 complete	 isolation,	 is
correct	 and	 the	 transactions	 in	 the	 schedule	 are	 independent	 from	one	another,
then,	 logically,	 each	 serial	 schedule	 will	 be	 correct	 as	 well.	 A	 serial	 schedule
guarantees	 that	 there	will	 be	 no	 interferences	 between	 the	 transactions,	 which
would	result	in	database	inconsistency.	Yet,	as	previously	stated,	serial	schedules
prevent	parallel	 transaction	execution	and	put	a	heavy	burden	on	performance.
For	that	reason,	they	are	undesirable	by	themselves;	what	we	need	is	a	non-serial
schedule	that	is	still	correct.

14.4.3	Serializable	Schedules

All	examples	in	the	previous	section	represented	non-serial	schedules,	but	 they
resulted	 in	 inconsistent	 database	 states,	 or	 at	 least	 incorrect	 query	 results.
Therefore,	 these	 schedules	 were	 obviously	 incorrect.	 The	 question	 arises
whether	we	 can	 conceive	 non-serial	 schedules	 that	 are	 still	 correct.	 Suppose	 a
non-serial	 schedule	 is	 equivalent	 to	 (i.e.,	 yields	 the	 same	 outcome	 as)	 a	 serial
schedule.	This	means	 that	 the	 final	 database	 state,	 as	well	 as	 the	query	 results
returned	to	the	client,	are	exactly	the	same.	In	that	case,	the	non-serial	schedule
will	 still	be	correct,	while	at	 the	same	 time	 typically	much	more	efficient	 than
the	corresponding	serial	schedule.	We	call	such	a	schedule	serializable.

Formally,	two	schedules	S1	and	S2	(encompassing	the	same	transactions	T1,
T2,	…,	Tn)	are	equivalent	if	these	two	conditions	are	satisfied:

The	example	 in	Figure	14.6	compares	a	 serial	 schedule	S1	 to	 a	non-serial
schedule	 S2.	 As	 can	 be	 seen,	 S2	 is	 not	 equivalent	 to	 S1,	 because	 the
read(amounty)	operation	of	T2	in	S1	reads	the	value	of	amounty	as	written	by	T1,
whereas	the	same	operation	in	S2	reads	the	original	value	of	amounty.	This	is	a
violation	 of	 the	 first	 of	 the	 two	 conditions	 above.	 In	 this	 case,	 there	 does	 not

For	each	operation	readx	of	Ti	in	S1	the	following	holds:	if	a	value	x	that
is	read	by	this	operation	was	last	written	by	an	operation	writex	of	a
transaction	Tj	in	S1,	then	that	same	operation	readx	of	Ti	in	S2	should
read	the	value	of	x,	as	written	by	the	same	operation	writex	of	Tj	in	S2.

For	each	value	x	that	is	affected	by	a	write	operation	in	these	schedules,
the	last	write	operation	writex	in	schedule	S1,	as	executed	as	part	of
transaction	Ti,	should	also	be	the	last	write	operation	on	x	in	schedule	S2,
again	as	part	of	transaction	Ti.

exist	any	other	serial	schedule	that	is	equivalent	to	S2	either.	Consequently,	S2	is
not	serializable	and	therefore	not	correct.

Figure	14.6	Comparison	of	a	serial	and	a	non-serial	schedule.

To	test	a	schedule	for	serializability,	a	precedence	graph	can	be	used.	Such
a	graph	is	drawn	up	in	the	following	way:

It	can	be	proven	that	if	the	precedence	graph	contains	a	cycle,	the	schedule	is	not
serializable.	In	the	previous	example,	S2	clearly	contains	a	cycle.

Create	a	node	for	each	transaction	Ti.

Create	a	directed	edge	Ti	→	Tj	if	Tj	reads	a	value	after	it	was	written	by
Ti.

Create	a	directed	edge	Ti	→	Tj	if	Tj	writes	a	value	after	it	was	read	by	Ti.

Create	a	directed	edge	Ti	→	Tj	if	Tj	writes	a	value	after	it	was	written	by
Ti.

14.4.4	Optimistic	and	Pessimistic	Schedulers

Theoretically,	 each	 non-serial	 schedule	 could	 be	 continuously	 monitored	 for
serializability,	but	this	is	not	recommended	in	practice	because	of	the	overhead
involved.	Instead,	the	scheduler	will	apply	a	scheduling	protocol	that	guarantees
the	ensuing	schedule	 to	be	serializable.	 In	general,	we	can	distinguish	between
optimistic	schedulers	(applying	optimistic	protocols)	and	pessimistic	schedulers
(applying	pessimistic	protocols).

An	 optimistic	 protocol	 assumes	 that	 conflicts	 between	 simultaneous
transactions	are	exceptional.	This	is	the	case,	for	example,	when	the	transactions
operate	on	more	or	less	disjoint	subsets	of	the	database,	or	if	most	operations	are
read	 operations.	 With	 optimistic	 protocols,	 a	 transaction’s	 operations	 are
scheduled	without	 delay.	When	 the	 transaction	 has	 completed	 and	 is	 ready	 to
commit,	it	is	verified	for	conflicts	with	other	transactions	during	its	execution.	If
no	conflicts	are	detected,	 the	 transaction	 is	committed.	Otherwise,	 it	 is	aborted
and	rolled	back.	A	rollback	brings	about	quite	a	bit	of	overhead,	so	this	approach
is	only	feasible	if	the	chances	of	conflicts	are	rather	small.

On	 the	 other	 hand,	 a	pessimistic	 protocol	 assumes	 it	 is	 very	 likely	 that
transactions	 will	 interfere	 and	 cause	 conflicts.	 Therefore,	 the	 execution	 of	 a
transaction’s	 operations	 is	 somewhat	 delayed	 until	 the	 scheduler	 can	 schedule
them	in	such	a	way	that	any	conflicts	are	avoided,	or	at	least	made	very	unlikely.
This	 delay	 will	 reduce	 the	 throughput	 to	 some	 extent,	 but	 the	 impact	 on
performance	will	be	lower	than	the	impact	of	the	numerous	rollbacks	that	would
otherwise	 occur,	 given	 the	 high	 risk	 of	 conflicts.	 A	 serial	 scheduler	 can	 be
considered	as	an	extreme	case	of	a	(very)	pessimistic	scheduler.

Both	 optimistic	 and	 pessimistic	 concurrency	 are	 applied	 in	 practice.	 The
most	 well-known	 technique	 is	 locking.	 In	 the	 context	 of	 pessimistic

concurrency,	 locking	 is	 used	 in	 a	 pre-emptive	way	 to	 limit	 the	 simultaneity	 of
transaction	 execution	 to	 some	 extent,	 with	 the	 locks	 indicating	 which
transactions	are	allowed	to	access	which	data	at	a	certain	moment	 in	 time,	and
which	 transactions	 are	 required	 to	 wait,	 hence	 reducing	 the	 risk	 of	 conflicts.
With	 optimistic	 concurrency,	 locks	 are	 not	 used	 to	 limit	 simultaneity,	 but	 to
detect	conflicts	during	transaction	execution	that	will	need	to	be	resolved	before
transaction	 commit.	For	 example,	 they	will	 signal	 that	 a	 transaction	 ran	 into	 a
dirty	read	problem,	which	will	require	the	transaction	to	be	rolled	back.

Another	popular	technique	to	resolve	concurrency	issues	is	timestamping.
Read	and	write	timestamps	are	attributes	associated	with	a	database	object.	They
indicate	 the	 last	 time	 at	which	 the	 object	was	 read	 and/or	 the	 last	 time	 it	was
written.	By	keeping	track	of	these	timing	aspects,	it	is	possible	to	enforce	that	a
set	 of	 transactions’	 operations	 is	 executed	 in	 the	 appropriate	 order	 and	 hence
guarantees	 serializability,	 or	 to	 verify	 afterwards	 whether	 serializability
conditions	were	violated.	 In	 the	 remainder	of	 this	chapter	we	focus	on	 locking
and,	 for	 the	 most	 part,	 pessimistic	 concurrency;	 timestamping	 and	 optimistic
concurrency	are	dealt	with	in	more	detail	in	Chapter	16,	as	they	are	applied	often
in	the	context	of	distributed	and	loosely	coupled	databases.

14.4.5	Locking	and	Locking	Protocols

In	 this	 section,	we	 first	 introduce	 the	purposes	of	 locking.	We	 then	 review	 the
Two-Phase	Locking	Protocol	 (2PL).	Next,	we	 zoom	 in	 on	 cascading	 rollbacks
and	 discuss	 how	 to	 deal	 with	 deadlocks.	We	 conclude	 by	 discussing	 isolation
levels	and	lock	granularity.

14.4.5.1	Purposes	of	Locking

From	 the	 previous	 examples,	 it	 is	 clear	 that	 conflicts	 between	 transactions
always	 emanate	 from	 two	 or	 more	 transactions	 accessing	 the	 same	 database
object,	with	at	least	one	of	them	writing	to	this	object.	If	the	same	object	is	only
read	 by	 multiple	 transactions	 at	 the	 same	 time,	 this	 can	 never	 be	 a	 cause	 of
conflict,	 because	 no	 data	 are	 changed	 and	 therefore	 no	 inconsistencies	 can	 be
incurred.	For	now,	we	assume	that	a	database	object	corresponds	to	an	individual
tuple	 in	 a	 table.	 In	Section	14.4.5.6,	we	will	 take	 other	 granularity	 levels	 into
account,	such	as	a	column	or	an	entire	table.

The	purpose	of	locking	and	locking	protocols	is	to	ensure	that,	in	situations
where	 different	 concurrent	 transactions	 attempt	 to	 access	 the	 same	 database
object,	 access	 is	 only	 granted	 in	 such	 a	 way	 that	 no	 conflicts	 can	 occur.	 The
latter	is	achieved	by	placing	a	lock	on	the	object.	We	can	look	upon	a	lock	as	a
variable	 that	 is	 associated	 with	 a	 database	 object,	 where	 the	 variable’s	 value
constrains	the	types	of	operations	that	are	allowed	to	be	executed	on	the	object	at
that	time.	Operations	that	do	not	comply	with	these	constraints	are	postponed	for
some	time,	until	they	are	no	longer	in	a	position	to	cause	any	conflict.	The	lock
manager	 is	 responsible	 for	 granting	 locks	 (locking)	 and	 releasing	 locks
(unlocking).	The	lock	manager	applies	a	locking	protocol	that	specifies	the	rules
and	conditions	of	when	to	lock	and	unlock	database	objects.

Many	 types	 of	 locks	 and	 locking	 protocols	 exist.	 In	 the	 most
straightforward	 situation,	we	discriminate	 between	 shared	 locks	 (also	 called	 s-
locks	or	read	locks)	and	exclusive	locks	(also	called	x-locks	or	write	locks).	An
exclusive	 lock	 means	 that	 a	 single	 transaction	 acquires	 the	 sole	 privilege	 to
interact	with	that	specific	database	object	at	that	time;	no	other	transactions	are
allowed	to	read	from	it	or	write	to	it	until	the	lock	is	released.	Therefore,	the	first
transaction	 is	 able	 to	 both	 read	 and	 update	 the	 object,	 without	 any	 risk	 of
conflicts	with	other	transactions	accessing	the	same	object	at	the	same	time.	On
the	other	hand,	if	a	transaction	acquires	a	shared	lock,	this	means	that	it	gets	the
guarantee	that	no	other	 transactions	will	update	 that	same	object	for	as	 long	as
the	lock	is	held.	As	a	consequence,	the	first	transaction	can	read	from	the	object
without	 the	 risk	of	conflicts	with	other	 transactions	 that	write	 to	 it.	Still,	other
transactions	may	hold	a	 shared	 lock	on	 that	 same	object	 as	well.	This	 is	not	 a
problem,	since	all	transactions	holding	a	shared	lock	on	the	same	object	are	only
allowed	to	read	from	it,	which	can	never	be	a	cause	of	conflict.

The	above	means	that	multiple	transactions	can	acquire	a	lock	on	the	same
object,	 on	 the	 condition	 that	 these	 are	 all	 shared	 locks	 and,	 therefore,	 all	 the
transactions	can	only	read	the	object.	If	a	transaction	wants	to	update	the	object,
an	 exclusive	 lock	 is	 required.	 The	 latter	 can	 only	 be	 acquired	 if	 no	 other
transactions	hold	any	lock	on	the	object	and,	consequently,	no	other	transactions
can	read	or	update	 the	object	at	 that	 time.	These	rules	can	be	summarized	 in	a
compatibility	matrix,	as	represented	in	Figure	14.7.	The	figure	indicates	which
request	 will	 be	 granted	 for	 a	 particular	 database	 object	 (cf.	 the	 first	 column)
based	on	the	locks	currently	in	place	on	that	same	object	(cf.	the	first	row).	If	a
transaction’s	 request	 cannot	 be	 granted,	 this	 means	 that	 the	 corresponding
operation	 would	 cause	 a	 concurrency	 problem.	 The	 scheduler	 will	 put	 the
transaction	in	a	wait	state	until	other	transactions’	locks	on	the	same	object	are

released.	After	that,	the	lock	can	be	granted	and	the	first	transaction	can	continue
without	any	risk	of	conflicts.

Figure	14.7	Simple	compatibility	matrix	with	shared	and	exclusive	locks.

Locking	and	unlocking	requests	can	be	made	explicitly	by	a	transaction,	or
could	remain	implicit.	In	implicit	requests,	read	and	write	operations	will	induce
s-locks	and	x-locks,	respectively,	whereas	a	commit	or	rollback	will	result	in	an
unlock	 instruction.	 The	 transaction	 manager	 interacts	 with	 the	 lock	 manager,
requesting	locks	on	behalf	of	individual	transactions.	If	a	lock	is	not	granted,	the
corresponding	 operation	 is	 postponed	 by	 the	 scheduler.	 The	 lock	 manager
implements	a	locking	protocol	as	a	set	of	rules	 to	determine	what	 locks	can	be
granted	in	what	situation.	The	compatibility	matrix	is	a	primary	element	of	this
locking	protocol.	The	 lock	manager	also	uses	a	 lock	table.	The	 latter	 contains
information	 about	which	 locks	 are	 currently	 held	 by	which	 transaction;	which
transactions	are	waiting	to	acquire	certain	locks,	etc.

The	lock	manager	has	an	important	responsibility	with	respect	to	“fairness”
of	 transaction	 scheduling.	 Indeed,	 when	 an	 exclusive	 lock	 is	 released,	 the
corresponding	 database	 object	 is	 in	 an	 unlocked	 state	 and	 a	 new	 lock	 can	 be
granted	to	any	of	the	waiting	transactions.	However,	if	a	shared	lock	is	released,
it	 could	 be	 that	 other	 shared	 locks	 are	 still	 held	 by	 other	 transactions	 on	 that
same	 object.	 The	 lock	manager	will	 have	 to	 decide	whether	 additional	 shared
locks	 can	 be	 granted	 on	 this	 object,	 or	 whether	 the	 shared	 locks	 should	 be
gradually	 phased	 out	 in	 favor	 of	 transactions	 that	 are	 waiting	 to	 acquire	 an

exclusive	 lock	 on	 the	 object.	 If	 an	 inappropriate	 priority	 schema	 is	 used,	 such
situations	 could	 result	 in	 so-called	 starvation,	 with	 some	 transactions	waiting
endlessly	 for	 the	 required	 exclusive	 locks,	 whereas	 the	 other	 transactions
continue	normally.

14.4.5.2	The	Two-Phase	Locking	Protocol	(2PL)

In	practice,	many	locking	protocols	exist,	but	the	most	well	known,	and	the	most
prevalent	 in	 a	 standalone	 database	 context,	 is	Two-Phase	 Locking	 (2PL).	 In
addition	to	applying	a	compatibility	matrix,	the	locking	protocol	also	determines
when	lock	and	unlock	instructions	are	allowed	in	a	transaction’s	lifecycle.

The	2PL	protocol	entails	the	following	rules:

1.	Before	a	transaction	can	read	a	database	object,	it	should	acquire	a	shared
lock	on	that	object.	Before	it	can	update	the	object,	it	should	acquire	an
exclusive	lock.

2.	The	lock	manager	determines	whether	requested	locks	do	not	cause	any
conflicts	and	can	be	granted,	based	on	the	compatibility	matrix.
Transactions	whose	locking	requests	cannot	be	granted	are	put	on	hold	until
the	request	can	be	granted.

3.	Acquiring	and	releasing	locks	occurs	in	two	phases	for	each	transaction:
a	growth	phase	in	which	new	locks	can	be	acquired	but	no	locks	can	be
released,	and	a	shrink	phase	in	which	locks	are	gradually	released,	and	no
additional	locks	can	be	acquired.	To	put	it	in	other	words:	all	locking
requests	should	precede	the	first	unlock	instruction.

According	 to	 the	 basic	 2PL	 protocol,	 a	 transaction	 can	 already	 start	 releasing
locks	 before	 it	 has	 attained	 the	 “committed”	 state,	 on	 the	 condition	 that	 no
further	 locks	 are	 acquired	 after	 releasing	 the	 first	 lock.	 In	 most	 DBMS

implementations,	a	variant	to	2PL	is	applied,	called	Rigorous	2PL.	The	protocol
specifies	that	the	transaction	holds	all	its	locks	until	it	is	committed.	Yet	another
variant	is	Static	2PL	(aka	Conservative	2PL).	With	this	protocol,	a	transaction
acquires	 all	 its	 locks	 right	 at	 the	 start	 of	 the	 transaction.5	 The	 different	 2PL
variants	are	represented	schematically	in	Figure	14.8.

Figure	14.8	Illustration	of	2PL	variants.

When	applying	 the	2PL	Protocol,	 concurrency	problems	 such	as	 the	ones
mentioned	 in	 Section	 14.4.1	 are	 avoided.	 Figure	 14.9	 illustrates	 how	 the	 lost
update	problem	is	resolved,	because	transaction	T1	has	to	wait	until	amountx	 is
unlocked	by	T2	before	T1	can	acquire	a	write	lock	on	it.	As	a	consequence,	T1	is
now	 aware	 of	 the	 update	 of	 amountx	 by	T2	 and,	 consequently,	 the	 lost	 update
problem	 is	 resolved.	 A	 similar	 reasoning	 can	 be	 applied	 for	 the	 inconsistent
analysis	problem.

Figure	14.9	Resolution	of	the	lost	update	problem.

In	the	same	way,	Figure	14.10	illustrates	how	the	uncommitted	dependency
problem	is	resolved	by	2PL.

Figure	14.10	Resolution	of	the	uncommitted	dependency	problem.

14.4.5.3	Cascading	Rollbacks

Even	 if	 transactions	 are	managed	 and	 scheduled	 according	 to	 a	 solid	protocol,
undesirable	effects	may	still	occur,	emanating	from	the	mutual	 impact	between
concurrency	 control	 and	 recovery.	 Let’s	 revisit	 the	 uncommitted	 dependency
problem	in	the	context	of	2PL.	As	can	be	seen	in	Figure	14.10,	 the	problem	is
resolved	if	T2	holds	all	its	locks	until	it	is	rolled	back.

However,	 with	 the	 basic	 2PL	 Protocol,	 there	 is	 a	 shrink	 phase	 in	 which
locks	can	already	be	 released	before	 the	 transaction	commits	or	aborts.	 In	 that
case,	it	is	still	possible	for	a	transaction	T1	to	read	values	written	by	T2,	with	T2
subsequently	aborting.	This	is	illustrated	in	Figure	14.11.

Figure	14.11	Illustration	of	the	need	for	cascading	rollbacks	with	basic	2PL.

Therefore,	before	any	transaction	T1	can	be	committed,	 the	DBMS	should
make	 sure	 that	 all	 transactions	 that	 made	 changes	 to	 data	 items	 that	 were
subsequently	 read	 by	T1	 are	 committed	 first.	 Even	 then,	 if	 a	 transaction	 T2	 is
rolled	back,	all	uncommitted	transactions	Tu	that	have	read	values	written	by	T2
need	to	be	rolled	back	as	well	to	avoid	the	uncommitted	dependency	problem.	In
addition,	 all	 transactions	 that	 have	 in	 their	 turn	 read	 values	 written	 by	 the
transactions	Tu	need	to	be	rolled	back	as	well,	and	so	forth.	This	escalating	series
of	 rollbacks	 is	 called	 a	 cascading	rollback.	 Such	 rollbacks	 should	 be	 applied
recursively	–	transactions	that	read	data	that	were	written	by	transactions	marked
for	rollback	in	the	previous	step	have	to	be	rolled	back	as	well	and	so	on.	It	goes
without	 saying	 that	 cascading	 rollbacks	 can	be	very	 time-consuming.	The	best
way	 to	 avoid	 this	 is	 for	 all	 transactions	 to	 hold	 their	 locks	 until	 they	 have
reached	the	“committed”	state.	Therefore,	most	DBMSs	apply	the	Rigorous	2PL
Protocol,	or	yet	another	variant,	rather	than	basic	2PL.

14.4.5.4	Dealing	with	Deadlocks

One	of	the	disadvantages	of	protocols	such	as	2PL,	including	Rigorous	2PL,	is
that	 they	may	cause	deadlocks.	A	deadlock	occurs	 if	 two	or	more	 transactions
are	waiting	for	one	another’s	locks	to	be	released.	Since	each	transaction	holds

one	 or	more	 locks	 that	 are	 required	 by	 another	 transaction	 for	 it	 to	 be	 able	 to
continue,	 all	 transactions	 remain	 in	 an	 endless	 wait	 state.	 We	 illustrate	 a
deadlock	situation	with	two	transactions	in	the	context	of	2PL	in	Figure	14.12:
T1	holds	an	exclusive	lock	on	amountx,	but	later	also	requests	a	lock	on	amounty.
However,	 the	latter	 is	 locked	by	T2,	which	 in	 turn	requests	a	 lock	on	amountx.
Neither	 transaction	 will	 ever	 acquire	 the	 requested	 lock	 and	 therefore	 both
transactions	 will	 wait	 endlessly	 for	 one	 another.	 Of	 course,	 in	 practice,	 a
deadlock	will	often	involve	more	than	two	transactions.

Figure	14.12	Illustration	of	a	deadlock.

There	 are	 multiple	 ways	 of	 dealing	 with	 deadlocks.	 One	 possibility	 is
deadlock	 prevention,	 which	 is	 achieved	 by	 static	 2PL.	 With	 static	 2PL,	 a
transaction	must	 acquire	 all	 its	 locks	 upon	 the	 start.	 If	 this	 is	 not	 possible,	 no
locks	are	granted	and	the	transaction	is	put	in	a	wait	state	until	the	locks	can	be
acquired.	 In	 this	 way,	 deadlocks	 are	 avoided.	 However,	 throughput	 may	 be
severely	impacted	for	two	reasons:	locks	are	held	longer	than	with	basic	2PL	and
the	transaction	is	forced	to	request	all	locks	it	may	need	for	its	execution,	rather
than	acquiring	the	locks	when	they	are	actually	needed.

In	most	practical	 cases,	deadlock,	 detection	 and	 resolution	 is	 preferable
over	 deadlock	 prevention.	 Deadlocks	 are	 detected	 according	 to	 a	 wait-for
graph.	A	wait-for	graph	consists	of	nodes	 representing	active	 transactions	and
directed	edges	Ti	→	Tj	 for	each	 transaction	Ti	 that	 is	waiting	 to	acquire	a	 lock

currently	 held	 by	 transaction	 Tj.	 A	 deadlock	 exists	 only	 if	 the	 wait-for	 graph
contains	a	cycle.	Deadlock	detection	 then	comes	down	 to	an	algorithm	that,	at
fixed	 time	 intervals,	 inspects	 the	wait-for	 graph	 for	 any	 cycles.	Note	 that	 this
time	interval	is	an	important	parameter:	too	short	an	interval	will	cause	a	lot	of
unnecessary	 overhead,	 but	with	 an	 interval	 that	 is	 too	 long,	 deadlocks	will	 go
unnoticed	for	quite	some	time.

Once	 a	 deadlock	 is	 detected,	 it	 still	 needs	 to	 be	 resolved.	 In	 this	 context,
victim	selection	means	choosing	and	aborting	one	of	 the	 transactions	 involved
in	the	deadlock.	Several	criteria	can	be	applied,	such	as	different	priorities	of	the
transactions	 or	 the	 concern	 to	 select	 a	 transaction	 with	 a	 minimal	 number	 of
updates	 to	 avoid	 the	 overhead	 of	 an	 extensive	 rollback	 when	 aborting	 the
transaction.

14.4.5.5	Isolation	Levels

It	 often	 occurs	 that	 the	 level	 of	 transaction	 isolation	 offered	 by	 2PL	 is	 too
stringent	with	too	negative	an	effect	on	transaction	throughput.	For	many	types
of	 transactions,	 a	 limited	amount	of	 interference	 is	 acceptable	 if	 this	 implies	 a
better	throughput	because	fewer	transactions	have	to	be	put	in	a	wait	state.	For
that	 reason,	 most	 DBMSs	 allow	 for	 different	 isolation	 levels,	 such	 as	 read
uncommitted,	read	committed,	repeatable	read,	and	serializable.

Before	we	 can	 discuss	 these	 respective	 isolation	 levels,	 it	 is	 necessary	 to
introduce	the	concept	of	short-term	locks.	A	short-term	lock	is	only	held	during
the	 time	 interval	 needed	 to	 complete	 the	 associated	 operation.	 This	 contrasts
with	 long-term	locks,	which	are	granted	and	 released	according	 to	a	protocol,
and	 are	 held	 for	 a	 longer	 time,	 until	 the	 transaction	 is	 committed.	 The	 use	 of
short-term	 locks	 violates	 rule	 3	 of	 the	 2PL	 Protocol,	 so	 serializability	 can	 no
longer	 be	 guaranteed.	 Still,	 sometimes	 it	 is	 acceptable	 to	 use	 them,	 if	 this

improves	the	throughput	and	the	transaction	type	at	hand	isn’t	too	sensitive	to	a
certain	 amount	 of	 interference.	 The	 use	 of	 short-term	 and/or	 long-term	 locks
results	in	different	possible	isolation	levels.	We	discuss	the	most	important	ones
below:

Read	uncommitted	is	the	lowest	isolation	level.	Long-term	locks	are	not
taken	into	account;	it	is	assumed	that	concurrency	conflicts	do	not	occur
or	simply	that	their	impact	on	the	transactions	with	this	isolation	level	are
not	problematic.	This	isolation	level	is	typically	only	allowed	for	read-
only	transactions,	which	do	not	perform	updates	anyway.

Read	committed	uses	long-term	write	locks,	but	short-term	read	locks.
In	this	way,	a	transaction	is	guaranteed	not	to	read	any	data	that	are	still
being	updated	by	a	yet-uncommitted	transaction.	This	resolves	the	lost
update	as	well	as	the	uncommitted	dependency	problem.	However,	the
inconsistent	analysis	problem	may	still	occur	with	this	isolation	level,	as
well	as	nonrepeatable	reads	and	phantom	reads.

Repeatable	read	uses	both	long-term	read	locks	and	write	locks.	Thus,	a
transaction	can	read	the	same	row	repeatedly,	without	interference	from
insert,	update,	or	delete	operations	by	other	transactions.	Still,	the
problem	of	phantom	reads	remains	unresolved	with	this	isolation	level.

Serializable	is	the	strongest	isolation	level	and	corresponds	roughly	to	an
implementation	of	2PL.	Now	phantom	reads	are	also	avoided.	Note	that
in	practice,	the	definition	of	serializability	in	the	context	of	isolation
levels	merely	comes	down	to	the	absence	of	concurrency	problems,	such
as	nonrepeatable	reads	and	phantom	reads,	and	does	not	correspond
entirely	to	the	theoretical	definition	we	provided	in	Section	14.4.3.

Table	14.1	provides	an	overview	of	these	isolation	levels	and	the	resultant
occurrence	of	concurrency	problems.

Table	14.1	Isolation	levels	and	their	impact	on	concurrency	problems

Isolation
level

Lost
update

Uncommitted
dependency

Inconsistent
analysis

Nonrepeatable
read

Phantom
read

Read
uncommitted

Yes Yes Yes Yes Yes

Read
committed

No6 No Yes Yes Yes

Repeatable
read

No No No No Yes

Serializable No No No No No

14.4.5.6	Lock	Granularity

So	 far,	we	 have	 not	 been	 specific	 as	 to	which	 kind	 of	 database	 object	 can	 be
subject	to	locking;	in	a	relational	database	context,	such	database	objects	can	be
a	tuple,	a	column,	a	table,	a	tablespace,	a	disk	block,	etc.	There	will	always	be	a
tradeoff	 though.	 On	 the	 one	 hand,	 locking	 at	 a	 fine-grained	 level	 (e.g.,	 an
individual	 tuple)	has	 the	 least	negative	 impact	on	 throughput,	because	 the	only
transactions	affected	are	those	that	concurrently	try	to	access	that	very	tuple.	On
the	 other	 hand,	 if	 many	 tuples	 are	 involved	 in	 the	 transaction,	 locking	 each
individual	 tuple	 causes	 a	 lot	 of	 overhead	 in	 granting	 and	 releasing	 locks	 and
keeping	 track	 of	 all	 locks	 held.	 In	 that	 case,	 locking	 at	 a	 coarse-grained	 level
(e.g.,	 an	 entire	 table)	 is	 more	 efficient	 overhead-wise,	 but	may	 have	 a	 severe
impact	on	 throughput	because	 transactions	 interacting	with	 the	same	table	may

be	put	in	a	wait	state,	even	if	they	access	different	tuples	of	that	table.	Because
choosing	the	most	appropriate	level	of	lock	granularity	is	not	always	easy,	many
DBMSs	provide	the	option	to	have	the	optimal	granularity	level	determined	by
the	database	system,	depending	on	the	required	isolation	level	and	the	number	of
tuples	involved	in	the	transaction.

To	guarantee	 serializability	 in	 a	 situation	 in	which	 locks	 can	be	placed	 at
multiple	 granularity	 levels,	 additional	 types	 of	 locks	 are	 required	 and	 the	 2PL
Protocol	 is	 to	 be	 extended	 into	 a	Multiple	 Granularity	 Locking	 Protocol
(MGL	Protocol).	The	MGL	Protocol	is	to	ensure	that	the	respective	transactions
that	acquired	locks	on	database	objects	that	are	interrelated	hierarchically	(e.g.,
tablespace–table–disk	 block–tuple)	 cannot	 conflict	 with	 one	 another.	 For
example,	 it	 is	 to	 be	 avoided	 that	 if	 transaction	 Ti	 holds	 an	 s-lock	 on	 a	 table,
another	 transaction	Tj	 can	 acquire	 an	x-lock	on	 a	 tablespace	 that	 encompasses
that	table.

The	 MGL	 Protocol	 introduces	 additional	 types	 of	 locks:	 an	 intention
shared	 lock	(is-lock),	an	 intention	exclusive	 lock	(ix-lock)	and	a	shared	and
intention	exclusive	 lock	 (six-lock).	An	 is-lock	only	 conflicts	with	 x-locks;	 an
ix-lock	conflicts	with	both	x-locks	and	s-locks.	A	six-lock	conflicts	with	all	other
lock	types,	except	for	an	is-lock.	This	is	summarized	in	the	compatibility	matrix
for	an	MGL	Protocol,	as	represented	in	Figure	14.13.

Figure	14.13	Compatibility	matrix	for	an	MGL	Protocol.

Before	 a	 lock	 on	 object	 x	 can	 be	 granted,	 the	 lock	 manager	 needs	 to
ascertain	 that	 no	 locks	 are	 held	 (or	 granted	 later)	 on	 coarser-grained	 database
objects	 that	 encompass	 object	 x,	 and	 which	 may	 conflict	 with	 the	 lock	 type
requested	 on	 x.	 To	 do	 so,	 an	 intention	 lock	 is	 placed	 on	 all	 coarser-grained
objects	 encompassing	 x.	 In	 concrete,	 if	 a	 transaction	 requests	 an	 s-lock	 on	 a
particular	tuple,	an	is-lock	will	be	placed	on	the	tablespace,	table,	and	disk	block
that	contain	that	tuple.	If	a	transaction	requests	an	x-lock	on	a	tuple,	an	ix-lock
will	be	placed	on	the	coarser-grained	objects	that	contain	that	tuple.	It	could	also
be	 that	 a	 transaction	 intends	 to	 read	 a	 hierarchy	 of	 objects,	 but	 only	 aims	 at
updating	some	of	the	objects	in	this	hierarchy.	In	that	case,	a	six-lock	is	required,
which	combines	the	properties	of	an	s-lock	and	an	ix-lock.	The	locks	will	only
be	granted	if	they	do	not	cause	any	conflicts	according	to	the	MGL	compatibility
matrix.

According	to	the	MGL	Protocol,	a	transaction	Ti	can	lock	an	object	that	is
part	of	a	hierarchical	structure,	if	the	following	constraints	are	satisfied:

1.	All	compatibilities	are	respected	as	represented	in	the	compatibility
matrix.

2.	An	initial	lock	should	be	placed	on	the	root	of	the	hierarchy.

3.	Before	Ti	can	acquire	an	s-lock	or	an	is-lock	on	an	object	x,	it	should
acquire	an	is-lock	or	an	ix-lock	on	the	parent	of	x.

4.	Before	Ti	can	acquire	an	x-lock,	six-lock,	or	an	ix-lock	on	an	object	x,	it
should	acquire	an	ix-lock	or	a	six-lock	on	the	parent	of	x.

5.	Ti	can	only	acquire	additional	locks	if	it	hasn’t	released	any	locks	yet	(cf.
2PL).

6.	Before	Ti	can	release	a	lock	on	x,	it	should	have	released	all	locks	on	all
children	of	x.

Summarizing,	according	to	the	MGL	Protocol,	locks	are	acquired	top-down,
but	released	bottom-up	in	the	hierarchy.

Retention	Questions

Discuss	the	different	types	of	concurrency	problems.	Illustrate	with	an
example.

What	is	the	relevance	of	schedules,	serial	schedules,	and	serializable
schedules?

What	is	the	difference	between	optimistic	and	pessimistic	schedulers?

What	is	the	purpose	of	locking?

Discuss	the	Two-Phase	Locking	Protocol	(2PL).

What	are	cascading	rollbacks?	Illustrate	with	an	example.

How	can	we	deal	with	deadlocks?

What	is	the	meaning	of	the	following	isolation	levels:	read
uncommitted,	read	committed,	repeatable	read,	and	serializable?

Discuss	the	impact	of	lock	granularity.

14.5	The	ACID	Properties	of	Transactions

To	 conclude	 this	 chapter,	 we	 return	 to	 the	 ACID	 properties	 of	 transactions,
which	were	already	mentioned	briefly	in	Chapter	1.	ACID	stands	for	Atomicity,
Consistency,	 Isolation,	 and	 Durability.	 These	 represent	 four	 properties	 in	 the
context	 of	 transaction	 management	 that	 are	 desirable	 to	 most	 conventional
DBMSs.	Note	 that,	 as	we	will	 see	 in	Chapter	16,	 some	particular	 settings	 like
NoSQL	 databases	 may	 require	 other	 transaction	 paradigms	 such	 as	 BASE
(Basically	Available,	Soft	state,	Eventually	consistent).

Atomicity	 guarantees	 that	 multiple	 database	 operations	 that	 alter	 the
database	 state	 can	 be	 treated	 as	 one	 indivisible	 unit	 of	work.	 This	means	 that
either	 all	 changes	 as	 induced	 by	 a	 transaction’s	 respective	 operations	 are
persisted	 into	 the	 database,	 or	 none	 at	 all.	 This	 is	 the	 responsibility	 of	 the
recovery	manager,	 which	will	 induce	 rollbacks	 where	 necessary,	 by	means	 of
UNDO	operations,	such	that	no	partial	traces	of	failed	transactions	remain	in	the
database.

Consistency	 refers	 to	 the	 fact	 that	 a	 transaction,	 if	 executed	 in	 isolation,
renders	the	database	from	one	consistent	state	into	another	consistent	state.	The
developer,	who	is	to	ensure	that	the	application	logic	that	drives	the	transactions
is	 flawless,	 is	 primarily	 responsible	 for	 the	 consistency	 property.	 However,
consistency	 is	 also	 an	 overarching	 responsibility	 of	 the	 DBMS’s	 transaction
management	 system,	 since	 lack	 of	 any	 of	 the	 other	 properties	 (atomicity,
isolation	and	durability)	will	also	result	in	an	inconsistent	database	state.

Isolation	 denotes	 that,	 in	 situations	 in	 which	 multiple	 transactions	 are
executed	 concurrently,	 the	outcome	 should	be	 the	 same	as	 if	 every	 transaction
were	executed	 in	 isolation.	This	means	 that	 interleaved	 transactions	should	not

interfere,	 nor	 should	 they	 present	 intermediate	 results	 to	 one	 another,	 before
having	reached	a	committed	state.	Guaranteeing	isolation	is	the	responsibility	of
the	 concurrency	 control	 mechanisms	 of	 the	 DBMS,	 as	 coordinated	 by	 the
scheduler.	The	scheduler	typically	makes	use	of	a	locking	protocol	and	interacts
with	 a	 lock	 manager,	 although	 other	 optimistic	 and	 pessimistic	 concurrency
control	techniques	exist	as	well.

Durability	 refers	 to	 the	 fact	 that	 the	 effects	 of	 a	 committed	 transaction
should	 always	 be	 persisted	 into	 the	 database.	 If	 a	 calamity	 occurs	 after
transaction	commit	but	before	the	updates	that	reside	in	the	database	buffer	are
written	 to	 the	 physical	 files,	 the	 recovery	manager	 is	 responsible	 for	 ensuring
that	the	transaction’s	updates	are	eventually	written	to	the	database	by	means	of
REDO	operations.	Similarly,	the	recovery	manager	should	safeguard	the	DBMS
from	 the	 effects	 of	 damaged	 storage	 media	 through	 some	 form	 of	 data
redundancy.

Retention	Questions

Discuss	the	responsibility	of	the	DBMS’s	transaction	management
facilities	to	ensure	the	ACID	properties	of	a	transaction.

Summary

This	 chapter	 discussed	 how	 DBMSs	 consider	 transactions	 as	 atomic	 units	 of
work.	 First,	 we	 introduced	 the	 concepts	 of	 transaction	management,	 recovery,
and	concurrency	control.	Then,	we	presented	the	respective	DBMS	components
involved	in	transaction	management,	as	well	as	the	logfile.	The	latter	keeps	track
of	 all	 operations	 performed	 by	 a	 transaction,	 for	 the	 sake	 of	 recovery.	 In	 this
context,	we	discriminated	between	system	recovery	and	media	 recovery.	Then,
we	discussed	how	concurrency	control	aims	at	avoiding	the	calamities	that	may
result	from	interference	between	two	or	more	simultaneous	transactions	that	act
upon	the	same	data.	Two	crucial	concepts	here	are	serializability	and	locking.	In
particular,	we	 discussed	 the	Two-Phase	Locking	 Protocol.	We	 then	 introduced
additional	variation	points,	such	as	different	isolation	levels	between	transactions
and	 different	 granularity	 levels	 for	 locking.	 We	 concluded	 by	 revisiting	 the
ACID	 properties,	 which	 represent	 four	 desirable	 principles	 that	 should	 be
supported	by	a	DBMS	in	the	context	of	transaction	management.

Scenario	Conclusion

Sober	has	now	gained	a	good	understanding	of	the	basics	of	transaction
management.	Although	 this	will	 automatically	 be	 taken	 care	 of	 by	 the
DBMS,	it	is	good	for	the	company	to	know	how	the	DBMS’s	transaction
management	 facilities	 work	 to	 ensure	 the	 ACID	 properties	 of	 all
transactions	that	interact	with	its	database.

Key	Terms	List

aborted

after	images

archiving

backup

before	image

begin_transaction

cascading	rollback

checkpoints

committed

compatibility	matrix

concurrency	control

conservative	2PL

data	redundancy

deadlock	detection	and	resolution

deadlock	prevention

deferred	update

delineate

end_transaction

exclusive	lock

failover	time

full	backup

immediate	update	policy

inconsistent	analysis	problem

incremental	backups

intention	exclusive	lock	(ix-lock)

intention	lock

intention	shared	lock	(is-lock)

lock	table

locking

locking	protocol

log	records

logfile

long-term	locks

lost	update	problem

media	failure

multi-user	database

Multiple	Granularity	Locking	(MGL)Protocol

nonrepeatable	read

optimistic	protocol

pessimistic	protocol

phantom	reads

precedence	graph

read	committed

read	uncommitted

recovery

repeatable	read

rigorous	2PL

rollback

rollforward	recovery

schedule

scheduler

serializable

serially

shared	and	intention	exclusive	lock	(six-lock)

shared	lock

short-term	locks

starvation

static	2PL

stored	data	manager

system	failure

timestamping

transaction

transaction	failure

transaction	management

transaction	manager

Two-Phase	Locking	(2PL)

uncommitted	dependency	problem

unrepeatable	read

victim	selection

wait-for	graph

write	ahead	log	strategy

Review	Questions

14.1.	Which	statement	is	not	correct?

a.	A	transaction	is	a	set	of	database	operations	(e.g.,	a	consecution	of
SQL	statements	in	a	relational	database),	induced	by	a	single	user	or
application,	that	should	be	considered	as	one	undividable	unit	of	work.

b.	Transactions	typically	exist	in	isolation,	and	cannot	be	executed
concurrently	with	other	transactions	on	the	same	data.

c.	It	should	not	be	possible	to	terminate	a	transaction	in	such	a	way
that	the	database	remains	in	an	inconsistent	state,	because	some
operations	of	a	single	transaction	were	executed	successfully	and
others	were	not.

d.	Recovery	is	the	activity	of	ensuring	that,	whichever	problem
occurred,	the	database	is	returned	to	a	consistent	state	afterwards,

without	any	data	loss.

14.2.	When	a	transaction	is	aborted,	it	is	important	that…

a.	all	changes	made	by	the	individual	operations	belonging	to	that
transaction	should	be	made	permanent.

b.	a	rollback	of	the	transaction	is	executed:	all	changes	made	by	the
transaction’s	respective	operations	should	be	undone.

14.3.	Which	of	the	following	DBMS	components	is	involved	in
transaction	management?

a.	Scheduler.

b.	Stored	data	manager.

c.	Buffer	manager.

d.	Recovery	manager.

e.	All	of	the	above.

14.4.	Which	statement	is	not	correct?

a.	The	logfile	contains	all	updates	after	they	have	been	written	to	disk.

b.	The	logfile	contains	redundant	data.

c.	The	logfile	can	be	implemented	as	a	sequential	file.

d.	The	logfile	is	often	duplicated,	e.g.,	in	a	RAID	level	1
configuration.

14.5.	The	following	figure	presents	five	transactions	(T1	until	T5)	that	are
executed	more	or	less	simultaneously.	Suppose	a	checkpoint	was
registered	on	the	logfile	at	time	tc,	marking	the	last	time	when	pending
updates	in	the	database	buffer	were	persisted	into	the	physical	database
files.	Later,	at	time	tf,	a	system	fault	occurred,	resulting	in	loss	of	the
database	buffer.

What	recovery	operations	are	required?

a.	T1:	nothing;	T2:	UNDO;	T3:	REDO;	T4:	REDO;	T5:	nothing.

b.	T1:	nothing;	T2:	REDO;	T3:	UNDO;	T4:	REDO;	T5:	nothing.

c.	T1:	REDO;	T2:	UNDO;	T3:	REDO;	T4:	nothing;	T5:	nothing.

d.	T1:	nothing;	T2:	REDO;	T3:	REDO;	T4:	REDO;	T5:	nothing.

14.6.	Which	statement	is	not	correct?

a.	Disk	mirroring	is	a	(near)	real-time	approach	that	writes	the	same
data	simultaneously	to	two	or	more	physical	disks.

b.	Archiving	is	an	approach	in	which	database	files	are	copied
periodically	to	other	storage	media,	such	as	tape	or	(another)	hard
disk.

c.	Traditional	relational	databases	allow	for	a	certain	measure	of
temporary	inconsistency,	in	return	for	increased	performance.

d.	There	is	a	tradeoff	between	the	cost	(overhead	and	storage	cost)	of
more	frequent	backups	and	the	cost	of	lost	data	because	of	less
frequent	backups.

14.7.	Which	statement	is	not	correct?

a.	A	lost	update	problem	occurs	if	an	otherwise	successful	update	of	a
data	item	by	a	transaction	is	overwritten	by	another	transaction	that
wasn’t	“aware”	of	the	first	update.

b.	If	a	transaction	reads	one	or	more	data	items	that	are	being	updated
by	another,	as	yet	uncommitted,	transaction,	we	may	run	into	the
uncommitted	dependency	problem.

c.	The	inconsistent	analysis	problem	denotes	a	situation	in	which	a
transaction	reads	partial	results	of	another	transaction	that
simultaneously	interacts	with	(and	updates)	the	same	data	items.

d.	The	lost	update	problem	does	not	always	result	in	an	inconsistent
database	state,	whereas	an	uncommitted	dependency	or	inconsistent
analysis	always	yields	an	inconsistent	database	state.

14.8.	If	the	precedence	graph	contains	a	cycle,	the	schedule	is…

a.	serializable.

b.	not	serializable.

14.9.	Which	statement	is	not	correct?

a.	An	optimistic	protocol	assumes	that	conflicts	between	simultaneous
transactions	are	exceptional.

b.	A	pessimistic	protocol	assumes	it	to	be	very	likely	that	transactions
will	interfere	and	cause	conflicts.

c.	A	serial	scheduler	can	be	considered	as	an	extreme	case	of	a	(very)
optimistic	scheduler.

d.	With	optimistic	concurrency,	locks	are	not	used	to	limit
simultaneity,	but	to	detect	conflicts	during	transaction	execution	that
will	need	to	be	resolved	before	transaction	commit.

14.10.	Which	statement	is	correct?

a.	Multiple	transactions	may	hold	a	shared	lock	on	the	same	object.

b.	Multiple	transactions	may	hold	an	exclusive	lock	on	the	same
object.

14.11.	Which	statement	is	not	correct?

a.	Deadlock	prevention	can	be	achieved	by	static	2PL.

b.	One	approach	for	deadlock	resolution	is	victim	selection,	which
means	choosing	and	aborting	one	of	the	transactions	involved	in	the
deadlock.

c.	The	use	of	short-term	locks	violates	rule	3	of	the	2PL	Protocol,	so
serializability	can	no	longer	be	guaranteed.

d.	The	read	committed	isolation	level	uses	long-term	read	locks,	but
short-term	write	locks.

14.12.	According	to	the	MGL	Protocol…

a.	locks	are	acquired	top-down,	but	released	bottom-up	in	the
hierarchy.

b.	locks	are	acquired	bottom-up,	but	released	top-down	in	the
hierarchy.

Problems	and	Exercises

14.1E	What	DBMS	components	are	typically	involved	in	transaction
management?

14.2E	Discuss	the	lost	update,	uncommitted	dependency,	and	inconsistent
analysis	problem.	Illustrate	with	an	example.	Which	ones	result	in	an
inconsistent	database	state?

14.3E	What	is	the	difference	between	a	serial	and	serializable	schedule	and	why
is	this	difference	important?	How	can	a	schedule	be	tested	for	serializability?

14.4E	Discuss	the	difference	between	optimistic	and	pessimistic	schedulers	and
the	role	of	locking.

14.5E	Work	out	the	compatibility	matrix	illustrating	which	requests	can	be
granted	given	the	locks	(shared	or	exclusive)	currently	held	on	a	database	object.

14.6E	Discuss	the	Two-Phase	Locking	Protocol	and	the	different	variants
thereof.	Illustrate	how	this	protocol	can	help	address	the	lost	update,
uncommitted	dependency,	and	inconsistent	analysis	problems.

14.7E	What	is	a	deadlock?	Illustrate	with	an	example.

14.8E	Complete	the	following	table	by	indicating	which	concurrency	problems
can	occur	based	on	the	isolation	level.

Isolation
level

Lost
update

Uncommitted
dependency

Inconsistent
analysis

Nonrepeatable
read

Phantom
read

Read
uncommitted

Read
committed

Repeatable
read

Serializable

14.9E	Work	out	the	compatibility	matrix	for	the	MGL	Protocol,	illustrating
which	requests	can	be	granted	given	the	locks	currently	held	on	a	database
object.

14.10E	Discuss	the	ACID	properties	of	transaction	management	and	the
responsibility	of	the	DBMS’s	transaction	management	system	to	ensure	this.

1	In	this	chapter	we	will	assume	a	relational	database	environment,	although
many	concepts	equally	apply	to	non-relational	systems.

2	Chapter	15	will	discuss	in	more	detail	the	mechanisms	for	passing	variables
as	input	to	an	SQL	query.

3	In	fact,	a	further	distinction	can	be	made	between	mirroring	and	replication.
For	details,	refer	to	Chapter	13.

4	As	mentioned	previously,	many	NoSQL	database	systems	actually	do	allow
for	a	certain	measure	of	inconsistency,	in	return	for	increased	performance.
See	Chapter	16	for	details.

5	It	is	not	always	possible	to	predict	which	locks	will	be	required	–	for
example,	if	the	next	operations	can	only	be	determined	based	on	the	results	of
previous	operations.	In	that	case,	all	locks	that	may	be	needed	should	be
requested,	instead	of	all	locks	that	will	actually	be	needed.

6	The	lost	update	problem	is	defined	somewhat	differently	by	different
authors.	Depending	on	this	definition,	higher	isolation	levels	(repeatable	read
or	even	serializable)	may	be	needed	to	prevent	lost	updates.

15

Accessing	Databases	and	Database
APIs
◈

Chapter	Objectives

In	this	chapter,	you	will	learn:

Opening	Scenario

how	database	systems	can	be	accessed	from	the	outside	world;

what	is	meant	by	a	database	application	programming	interface	(API);

to	understand	the	differences	between	proprietary	versus	universal
APIs,	between	embedded	versus	call-level	APIs,	and	early	binding
versus	late	binding;

which	universal	database	application	programming	interfaces	are
available	to	interact	with	database	systems;

how	DBMSs	play	their	role	within	the	World	Wide	Web	and	the
internet.

Sober	 has	 decided	 on	 a	 relational	 DBMS	 vendor,	 has	 drawn	 up	 the
relational	 schema	 to	 implement,	 and	 has	 verified	 that	 the	 database	 is
working	 as	 planned	 by	 importing	 sample	 data	 and	 testing	 some	 SQL
queries.	However,	 a	DBMS	 system	does	 not	 live	 in	 isolation.	 Sober	 is
planning	to	develop	several	applications	that	will	have	to	connect	 to	 its
DBMS.	For	instance,	Sober	is	thinking	about	a	website	where	customers
can	book	cabs	and	retrieve	their	order	history,	and	a	mobile	app	that	will
have	 to	 fetch	 information	 from	 the	 DBMS.	 Finally,	 Sober	 is	 also
planning	to	develop	a	desktop	application	for	the	customer	support	team
that	will	 be	 used	 internally,	 but	 also	 has	 to	 be	 able	 to	 access	 the	 same
DBMS.	 Sober	 is	 still	 thinking	 about	 different	 options	 in	 terms	 of
programming	languages	to	develop	these	applications,	but	wonders	how
easy	 it	will	 be	 for	 these	 applications	 to	 access	 the	database	 in	order	 to
store	and	retrieve	information	from	it.

In	this	chapter,	we	take	a	closer	look	at	the	forms	of	accessing	database	systems.
Naturally,	the	manner	of	how	a	DBMS	is	interfaced	with	heavily	depends	on	the
system	architecture	it	applies.	Accessing	a	DBMS	in	a	legacy	mainframe	set-up
is	different	than	interfacing	with	a	DBMS	in	a	client–server-based	architecture,
so	 we	 open	 this	 chapter	 with	 an	 overview	 of	 different	 database	 system
architectures.	 Next,	 we	 turn	 our	 attention	 toward	 the	 different	 database
application	programming	interfaces,	or	APIs	for	short.	As	the	name	suggests,	a
database	API	 exposes	 an	 interface	 through	which	 clients,	 third-party,	 and	 end-
user	applications	can	access,	query,	and	manage	the	DBMS.	Finally,	we	look	at
DBMSs’	role	and	place	within	 the	World	Wide	Web,	and	how	recent	 trends	 in
this	 landscape	 are	 influencing	 and	 shaping	 the	 requirements	 imposed	 on
DBMSs.

15.1	Database	System	Architectures

In	Chapter	2,	the	different	system	architectures	of	DBMSs	were	already	briefly
mentioned.	In	what	follows,	we	revisit	the	different	ways	a	DBMS	can	be	set	up
and	 placed	 in	 an	 overall	 information	 system.	 This	 will	 serve	 as	 important
background	information	as	the	different	ways	in	which	a	DBMS	is	located	in	an
overall	 set-up	will	 lead	 to	 the	next	 logical	 question:	 how	 to	 access	 the	DBMS
within	these	different	environments?

Connections

Refer	 to	 Chapter	 2	 for	 a	 quick	 introduction	 regarding	 DBMS
architectures.

15.1.1	Centralized	System	Architectures

In	 a	 centralized	 DBMS	 architecture,	 all	 responsibilities	 of	 the	 DBMSs	 are
handled	 by	 one	 centralized	 entity,	 meaning	 that	 the	 DBMS	 logic,	 the	 data
themselves	and	the	application	logic	and	presentation	logic	(also	called	the	user
interface),	are	all	handled	by	the	same	system.

Such	 a	 set-up	 was	 appealing	 in	 early	 implementations,	 such	 as	 the	 ones
found	on	mainframes.	Hence,	a	popular	centralized	DBMS	architecture	is	that	of
mainframe	 database	 computing	 (also	 called	 host-based	 computing),	 where	 the
execution	 of	 applications	 (the	 application	 logic),	 querying	 operations	 and
storage	of	data	(the	DBMS)	and	even	the	presentation	of	results	and	the	overall
user	interface	(the	presentation	logic)	are	all	happening	on	a	central	mainframe.
Nevertheless,	 the	 concept	 of	 system	 access	 is	 still	 important	 in	 this	 form,	 as
typically	 many	 workstations	 would	 connect	 to	 a	 mainframe	 system	 that	 can
handle	 sessions	 for	multiple	 users.	Note,	 however,	 that	 no	 form	 of	 processing
would	occur	on	these	workstations,	often	denoted	as	terminals:	input	commands
are	 sent	 directly	 to	 the	 mainframe,	 which	 then	 performs	 the	 necessary
computations	 and	 interactions	 with	 the	 DBMS	 on	 its	 side,	 and	 formats	 and
returns	 the	 results	 together	with	 the	 full	 composition	 (i.e.,	 drawing	of	 the	user
interface	that	the	terminal	would	then	depict	to	the	end-user).	The	system	access
exists	 solely	 on	 a	 basic,	 raw	 level	 (see	 Figure	 15.1).	 Such	monolithic	 set-ups
were	common	in	the	early	growth	of	computing,	as	this	was	the	most	viable	way
to	provide	complex	applications	in	a	multi-user	fashion.	Nowadays,	this	system
architecture	has	become	rare,	expensive,	and	difficult	to	maintain.

Figure	15.1	A	centralized	database	architecture	running	on	a	mainframe.

The	rise	of	the	PC	introduced	a	paradigm	shift	in	which	it	became	possible
to	 replace	 monolithic,	 heavy-weight	 mainframes	 with	 powerful,	 affordable,
personal	 computers.	 Hence,	 another	 form	 of	 a	 centralized	 system	 architecture
moves	 the	 complete	DBMS	 stack,	 together	with	 the	 application	 logic	 and	 the
presentation	 logic	 (including	 drawing	 of	 the	 user	 interface),	 to	 a	 personal
computer.	 In	 this	 set-up,	 the	DBMS	runs	on	 the	PC,	as	well	as	 the	application
that	uses	the	DBMS	and	the	user	interface	that	exposes	it	to	the	end-user.

In	some	cases,	however,	the	database	itself	can	also	be	stored	on	a	separate
file	 server,	 so	 the	 next	 scenario	 offers	 a	 first	 example	 of	 a	 client–server
architecture.	When	the	DBMS	(here	acting	as	the	client)	requests	data,	a	request
is	 sent	 to	 the	 file	 server	 (the	 server),	which	 is	 responsible	 for	 file	 storage	 and
management,	 including	 the	database	 files.	The	 file	server	 returns	 the	 requested
files	to	the	DBMS.	Figure	15.2	illustrates	this	set-up.	This	can	cause	a	lot	of	data
exchange	 and	 network	 traffic	 to	 and	 from	 the	 file	 server,	 as	 entire	 files	 are
transferred,	 potentially	 causing	 performance	 issues.	 In	 addition,	 maintenance
concerns	remain	an	issue	in	this	set-up,	as	now	a	fleet	of	PCs	must	be	maintained
and	 kept	 up-to-date	 with	 the	 DBMS,	 application	 logic,	 and	 user	 interface
functionality.

Figure	15.2	Illustration	of	PC/file	server-based	computing.

Nevertheless,	 this	 system	 is	 still	 relatively	 common,	 especially	 in
environments	where	 other	 (non-database)	 data	 files	 are	 served	 to	 the	 network,
particularly	 in	 the	 form	 of	 unstructured	 data	 such	 as	 text	 documents	 or
multimedia	data.

Connections

See	 Chapter	 13	 for	 an	 overview	 of	 file-level	 access	 techniques	 and
storage	architectures.

15.1.2	Tiered	System	Architectures

Contrary	to	a	centralized	system,	where	either	a	mainframe	or	single	PC	handles
all	the	workload,	a	tiered	system	architecture	aims	to	decouple	this	centralized
set-up	by	 combining	 the	 computing	 capabilities	 of	 powerful	 central	 computers
with	 the	 flexibility	 of	 PCs.	The	 latter	 act	 as	 active	 clients,	 requesting	 services
from	 the	 former,	 the	passive	 server.	Multiple	variants	 of	 this	 architecture,	 also
denoted	as	a	two-tier	architecture	(or	also	a	client–server	architecture),	exist.
As	illustrated	in	Figure	15.3,	in	the	“fat”	client	variant,	the	presentation	logic	and
application	logic	are	handled	by	the	client	(i.e.,	the	PC).	This	is	common	where
it	makes	sense	 to	couple	an	application’s	workflow	(e.g.,	opening	of	windows,
screens,	 and	 forms)	with	 its	 look	and	 feel	 (i.e.,	 its	 front-end,	 the	way	 it	 shows
itself	to	the	user).	The	DBMS,	however,	now	runs	fully	on	the	database	server.
When	an	application	running	on	a	PC,	the	client,	needs	data	or	wishes	to	execute
a	query,	a	 request	 is	 sent	 to	 the	 server,	which	will	perform	 the	actual	database
commands	on	its	side	before	sending	the	results	back.

Figure	15.3	Client–server	architecture	with	“fat”	clients.

In	a	second	variant	of	this	set-up,	only	the	presentation	logic	is	handled	by
the	client.	Applications	and	database	commands	are	both	executed	on	the	server.
This	form	is	common	when	application	logic	and	database	logic	are	very	tightly
coupled	 or	 similar.	 This	 variant	 is	 denoted	 as	 a	 “fat”	 server,	 or	 a	 thin	 client
architecture.1

It	is	possible	to	decouple	application	logic	from	the	DBMS	and	place	this	in
a	 separate	 layer	 (i.e.,	 on	 an	 application	 server).	 This	 set-up	 is	 a	 three-tier
architecture,	illustrated	in	Figure	15.4.

Figure	15.4	Three-tier	architecture.

This	 set-up	 allows	 different	 applications	 on	 the	 application	 server	 (e.g.,	 a
marketing	application,	a	logistics	application,	an	accounting	application,	etc.)	to
access	the	same	database.	If	the	applications	on	the	application	server,	and/or	the
functionalities	on	the	other	tiers,	are	spread	over	multiple	tiers,	we	speak	of	an	n-
tier	architecture.

A	 common,	 modern	 example	 of	 an	 n-tier	 architecture	 consists	 of	 a	 web
browser	 acting	 as	 the	 client	 (i.e.,	 handling	 some	 of	 the	 presentation	 logic,
drawing	the	user	interface,	and	handling	user	inputs),	which	sends	and	receives
web	 requests	 to	 a	 web	 server	 (an	 example	 of	 such	 a	 command	 can	 be	 the
navigation	toward	an	overview	of	recent	orders	for	a	retail	website,	as	indicated
by	 a	URL).	 To	 prepare	 the	 result	 page	 to	 be	 sent	 back	 to	 the	 client,	 the	web
server	can	then	initiate	multiple	queries	 to	the	database	server	–	for	instance,	a
query	 to	 get	 a	 list	 of	 recent	 orders	 for	 user	 “cust203”	 in	 the	 event	 that	 a	 user
visits	the	page	“www.myshop.com/orders/cust203”.	The	results	of	this	query	are
then	used	 to	 construct	 the	HTML	source	 code	of	 the	web	page	 (also	 handling
part	of	the	presentation	logic),	which	is	then	sent	back	to	the	web	browser,	which
will	render	and	display	the	page	to	the	user.

In	some	set-ups,	this	decomposition	is	taken	one	step	further,	by	only	using
the	web	server	as	a	gateway	intercepting	requests	from	the	web	browser,	which

is	 then	 translated	 in	 a	 series	 of	 requests	made	 to	 a	 separate	 application	 server,
containing	the	actual	business	logic	(Figure	15.5).	In	this	set-up,	the	application
server	will	perform	the	necessary	queries	 to	 the	database	server,	and	return	the
results	in	a	structured	format	to	the	web	server,	who	can	then	(still)	use	these	to
construct	 a	 web	 page	 to	 send	 back	 to	 the	 browser.	 This	 set-up	 has	 the	 added
benefit	 that	 the	 database	 server	 can	be	 completely	 decoupled	 from	 the	 outside
world,	only	allowing	communication	from	and	to	the	application	server,	adding	a
layer	of	security.	This	also	allows	for	types	of	programs	other	than	web	browsers
to	 access	 the	 application	 server	 –	 for	 instance,	 a	 desktop	 application	 talking
directly	to	the	application	server.

Figure	15.5	Example	of	an	n-tier	architecture	using	a	web	browser,	web	and
application	server,	and	database	server.

Note	 that	 what	 we	 show	 as	 a	 single	 “application	 server”	 or	 “database
server”	 can	 in	 fact	 consist	 of	 multiple	 physical,	 distributed	 machines.	 This
becomes	 especially	 relevant	 when	 talking	 about	 a	 cloud-based	 DBMS
architecture,	 where	 the	 DBMS	 and	 database	 will	 be	 hosted	 by	 a	 third-party
provider.	 The	 DBMS	 functionality	 and	 data	 can	 then	 be	 distributed	 across
multiple	computers.

Connections

The	 ability	 to	 distribute	 a	 DBMS	 across	 different	 machines	 plays	 an
important	 role	 in	 environments	where	 scalability	 is	 a	 desirable	 trait.	 In
Chapter	11	we	saw	how	many	NoSQL	DBMSs	are	built	specifically	with
this	 concern	 in	mind	 –	 to	 be	 easily	 scalable	 across	multiple	machines.
The	 general	 concept	 of	 DBMS	 and	 data	 distribution	 over	 multiple
physical	servers	is	discussed	in	Chapter	16.

Retention	Questions

Which	types	of	database	system	architectures	exist?

What	are	the	advantages	of	a	tiered	system	architecture?

15.2	Classification	of	Database	APIs

We	have	seen	how,	in	a	tiered	DBMS	system	architecture,	client	applications	can
query	database	servers	and	 receive	 the	 results.	The	question	now	remains	how
exactly	such	access	is	performed.

Client	applications	that	wish	to	utilize	the	services	provided	by	a	DBMS	are
commonly	programmed	 to	use	a	 specific	application	programming	 interface
(API)	provided	by	the	DBMS.	This	database	API	exposes	an	interface	through
which	 client	 applications	 can	 access	 and	 query	 a	 DBMS.	 In	 a	 two-tiered
client–server	architecture	with	a	fat	client,	this	interface	is	present	on	the	client’s
side,	 together	 with	 the	 application	 logic.	 In	 an	 n-tiered	 environment,	 the
application	 server	will	 contain	 the	 database	API.	The	 database	 server	 receives
calls	made	by	 the	clients	 through	 its	 server	 interface	and	executes	 the	 relevant
operations	 before	 returning	 the	 results.	 In	 many	 cases,	 the	 client	 and	 server
interfaces	 are	 implemented	 in	 the	 form	of	network	sockets;	 a	 server	 runs	 on	 a
specific	 computer	 and	 has	 a	 socket	 (a	 virtual	 endpoint	 in	 a	 two-way
communication	line	managed	by	the	underlying	operating	system)	that	is	bound
to	a	specific	network	port	number.	The	server	then	waits,	listening	to	the	socket
for	a	client	to	make	a	connection	request.	Once	a	connection	is	set	up,	the	client
and	server	can	communicate	over	the	network.

The	main	 goal	 of	 database	APIs	 is	 to	 expose	 an	 interface	 through	which
other	parties	can	utilize	the	services	provided	by	the	DBMS,	though	the	API	can
also	serve	additional	objectives,	such	as	hiding	network-related	aspects	(e.g.,	by
enabling	clients	to	access	a	DBMS	as	if	it	were	running	locally).	An	additional
benefit	is	that	application	programmers	do	not	have	to	concern	themselves	with
implementing	 a	 full	 communication	 protocol,	 but	 can	 focus	 on	 creating	 their

applications	and	 talking	 to	 the	DBMS	 through	a	common	 language,	SQL.	The
database	 API	 is	 then	 responsible	 to	 implement	 and	 handle	 the	 underlying
protocols	and	formats.	Figure	15.6	shows	the	position	of	the	database	API.

Figure	15.6	Position	of	the	database	API.

Drill	Down

It	 is	 important	 to	 note	 that	 we	 discuss	 database	 APIs	 in	 this	 chapter:
interfaces	 offered	 to	 programmers	 and	 system	 administrators	 to	 access
and	 integrate	 DBMSs.	 Besides	 this,	 you’ll	 see	 the	 term	 “API”	 being
mentioned	 and	 used	 outside	 the	 realm	 of	 databases	 as	 well.	 Consider
Facebook’s	graph	API,	Spotify’s	API,	and	so	on.	The	goal	of	such	“open
APIs”	 is	 the	 same:	 to	 provide	 an	 interface	 to	 programmers,	 end-users,
and	application	builders	to	utilize	and	query	the	services	and	data	these
parties	are	offering.	The	difference	between	these	and	the	database	APIs
that	we’re	discussing	in	this	chapter	is	that	Facebook	does	not	provide	a
database	API	that	would	give	third	parties	direct	access	to	its	underlying
DBMS.	Instead,	these	APIs	operate	at	a	higher	level,	offering	a	number
of	 predetermined	 endpoints	 you	 can	 utilize.	 This	 does	 not	 mean	 that,
underlyingly,	 no	 connection	 to	 a	 DBMS	 is	made,	 but	 only	 that	 this	 is
done	in	a	way	that	is	transparent	to	the	API	user.	To	provide	an	example:
say	you	use	Facebook’s	API	to	get	a	list	of	friends	for	a	particular	user.
The	“getFriends”	service	is	something	Facebook’s	API	offers.	To	prepare

the	result,	Facebook’s	API	servers	naturally	have	to	perform	queries	to	a
database,	 so	 your	 API	 call	 will	 get	 translated	 behind	 the	 scenes	 to	 a
number	of	 internal	 queries,	which	 are	 then	performed	using	one	of	 the
database	 access	APIs	 that	we	will	 discuss	 in	what	 follows.	The	 reason
companies	such	as	Facebook,	Twitter,	or	Spotify	do	not	expose	a	direct
API	to	their	database	is	not	only	due	to	security	reasons,	but	also	to	make
them	easier	 to	use:	 instead	of	having	 to	know	how	Facebook	organizes
its	databases	and	which	SQL	queries	you	should	perform	(something	that
might	also	change	 frequently),	 the	Facebook	API	 instead	exposes	a	 list
of	simple,	high-level	services	you	can	use.

15.2.1	Proprietary	versus	Universal	APIs

Most	DBMS	vendors	include	a	proprietary,	DBMS-specific	API	together	with
the	DBMS	software.	The	disadvantage	of	this	approach	is	that	client	applications
must	be	aware	of	the	DBMS	that	will	be	utilized	on	the	server	side.	If	a	different
DBMS	is	to	be	used,	the	client	application	needs	to	be	modified	to	interact	with
the	new	database	API.	Of	course,	a	change	of	DBMS	will	not	happen	frequently,
but	 nevertheless	 this	 creates	 an	 often	 undesirable	 dependency	 between
application	and	DBMS.	In	addition,	being	able	to	write	efficient	application	code
“toward”	yet	 another	DBMS	creates	 a	 steep	 learning	 curve	 for	 developers.	 To
overcome	this	 issue,	many	generic,	vendor-agnostic	universal	APIs	 have	been
proposed,	 so	 any	vendor-specific	 details	 are	 hidden	 away.	Applications	 can	be
easily	ported	to	multiple	DBMSs.	However,	it	needs	to	be	noted	that	differences
in	support	regarding	different	versions	of	the	SQL	standard	and	vendor-specific
extensions	or	interpretative	details	can	still	lead	to	issues	regarding	portability.	In
addition,	 utilizing	 a	 universal	 API	 also	 means	 that	 some	 vendor-specific
optimizations	 and	 performance	 tweaks	 cannot	 be	 utilized,	 which	 might	 be
present	when	opting	to	use	a	proprietary	API.

Both	 proprietary	 and	 universal	 APIs	 have	 their	 advantages	 and
disadvantages.	Most	available	DBMSs	opt	to	provide	a	universal	API	according
to	one	of	 the	available	 standards,	 such	as	ODBC,	 JDBC,	or	ADO.NET,	which
will	be	discussed	further	on	in	this	chapter.

15.2.2	Embedded	versus	Call-Level	APIs

Besides	 proprietary	 and	 universal	 APIs,	 another	 taxonomy	 can	 be	 applied	 to
categorize	database	APIs	–	namely	whether	 they	are	embedded	or	operate	at	 a
call	 level.	Understanding	 the	differences	between	 these	 two	 types	 is	 important,
as	they	influence	the	way	in	which	the	API	itself	will	be	utilized	by	the	user	of
the	API	to	access	the	DBMS.

As	 the	 name	 suggests,	 an	embedded	API	 embeds	SQL	 statements	 in	 the
host	programming	 language,	or	host	 language	 for	 short,	meaning	 that	 the	SQL
statement(s)	will	end	up	being	an	integral	part	of	the	source	code	of	a	program.
Before	the	program	is	compiled,2	an	“SQL	pre-compiler”	parses	the	SQL-related
instructions	and	 replaces	 these	with	 source	code	 instructions	native	 to	 the	host
programming	 language	 used,	 invoking	 a	 separate	 code	 library.	 The	 converted
source	code	is	then	sent	to	the	actual	compiler	to	construct	a	runnable	program.

An	 advantage	 of	 embedded	 APIs	 is	 that	 the	 pre-compiler	 can	 perform
specific	 syntax	 checks	 to	 make	 sure	 the	 embedded	 SQL	 is	 correct.	 The	 pre-
compiler	 can	 also	 perform	 an	 early	 binding	 step	 (see	 the	 next	 section),	which
helps	 to	 generate	 an	 efficient	 query	 plan	 before	 the	 program	 is	 run,	 hence
improving	performance.

However,	 the	 facts	 that	 a	 pre-processing	 step	 is	 required	 and	 that	 the
mixture	between	host-language	code	and	SQL	statements	can	lead	to	harder-to-
maintain	 code	 have	 caused	 embedded	 database	 APIs	 to	 become	 a	 rarity	 in
contemporary	DBMS	implementations.	The	SQLJ	specification	is	one	of	the	few
remaining	universal	embedded	API	standards	of	importance	these	days,	and	was
proposed	 by	 IBM,	Oracle,	Compaq,	 Informix,	 Sybase,	 and	 others	 to	 allow	 for
the	creation	of	embedded	APIs	to	use	in	tandem	with	Java	as	the	host	language.

We	will	 discuss	 SQLJ	 in	more	 detail	 in	 Section	 15.3.6.	 Still,	 SQLJ	 (and
other	embedded	APIs)	are	not	widely	in	use	anymore,	with	call-level	APIs	being
far	more	widespread.	When	interacting	with	such	an	API,	SQL	instructions	are
passed	to	the	DBMS	by	means	of	direct	calls	to	a	series	of	procedures,	functions,
or	methods	 as	 provided	 by	 the	API	 to	 perform	 the	 necessary	 actions,	 such	 as
setting	up	a	database	connection,	 sending	queries,	 and	 iterating	over	 the	query
result.	Call-level	APIs	were	 developed	 in	 the	 early	 1990s	 and	 standardized	by
the	 International	 Organization	 for	 Standardization	 (ISO)	 and	 International
Electrotechnical	Commission	(IEC).	The	most	widespread	implementation	of	the
standard	 is	 found	 in	 the	Open	Database	Connectivity	 (ODBC)	 specification,
which	 remains	 in	wide	 use:	many	 programming	 languages	 support	 the	ODBC
specification	and	many	DBMS	vendors	provide	APIs	for	it	as	well.

15.2.3	Early	Binding	versus	Late	Binding

Another	important	pair	of	concepts	to	discuss	when	talking	about	database	APIs
is	that	of	early	versus	late	binding.	SQL	binding	refers	to	the	translation	of	SQL
code	 to	 a	 lower-level	 representation	 that	 can	 be	 executed	 by	 the	DBMS,	 after
performing	tasks	such	as	validation	of	table	and	field	names,	checking	whether
the	 user	 or	 client	 has	 sufficient	 access	 rights	 and	 generating	 a	 query	 plan	 to
access	the	physical	data	in	the	most	performant	way	possible.	Early	versus	late
binding	then	refers	to	the	actual	moment	when	this	binding	step	is	performed.

The	 distinction	 between	 early	 and	 late	 binding	 coincides	 with	 the
distinction	 between	 embedded	 and	 call-level	 APIs.	 That	 is,	 early	 binding
typically	occurs	if	a	pre-compiler	is	used,	which	will	then	perform	this	binding
step,	and	is	therefore	mostly	paired	with	an	embedded	API.3	This	is	beneficial	in
terms	 of	 performance,	 as	 the	 binding	 step	 happens	 (and	 thus	 consumes	 time)
before	 the	program	is	executed	and	not	during	 the	actual	execution.	Moreover,
the	binding	only	needs	 to	be	performed	once,	which	can	 result	 in	a	 significant
performance	benefit	if	the	same	query	has	to	be	executed	many	times	afterwards.
An	additional	benefit	is	that	the	pre-compiler	can	perform	specific	syntax	checks
and	 immediately	warn	 the	 programmer	 if	 badly	 formatted	SQL	 statements	 are
present	or	table	names	are	misspelled.	In	this	way,	errors	are	detected	before	the
actual	 execution	 of	 the	 code,	 rather	 than	 causing	 the	 program	 to	 crash	 or
malfunction	because	the	errors	occur	during	the	execution.

Late	 binding	 performs	 the	 binding	 of	 SQL	 statements	 at	 runtime	 (i.e.,
during	 the	actual	 execution	of	 the	application).	The	benefit	of	 this	approach	 is
the	additional	flexibility	 it	offers:	SQL	statements	can	be	generated	at	 runtime,
so	this	is	also	called	“dynamic	SQL”	rather	than	the	“static	SQL”	as	employed
by	 early	 binding.	 A	 drawback	 of	 this	 approach	 is	 that	 syntax	 errors	 or

authorization	issues	will	remain	hidden	until	the	program	is	executed.	The	SQL
statements	will	typically	look	like	textual	“strings”	placed	in	the	source	code	of
the	program,	and	are	hence	treated	as	such	during	compilation	without	additional
checks	taking	place.	This	can	make	testing	the	application	harder,	though	more
feature-rich	development	environments	can	perform	some	of	these	static	checks.
An	 additional	 drawback	 is	 that	 late	 binding	 is	 less	 efficient,	 especially	 for
queries	 that	must	 be	 executed	multiple	 times,	 because	 the	 binding	 is	 repeated
with	 every	 execution	 of	 the	 query.	 However,	 this	 problem	 can	 be	 avoided	 by
using	“prepared”	SQL	statements,	in	which	the	database	API	can	be	instructed	to
perform	the	binding	of	a	query	once	(though	still	at	runtime),	which	can	then	be
re-used	multiple	 times	within	 the	same	session	of	 the	program.	As	we	will	see
later,	most	APIs	provide	support	for	parametrized	prepared	queries,	so	the	same
SQL	statement	can	be	executed	using	different	input	parameters	–	for	example,
subsequently	 retrieving	different	customers	according	 to	different	values	of	 the
customerID.	The	DBMS	will	still	try	to	optimize	toward	the	most	efficient	query
plan,	 even	 though	 the	 actual	 values	 for	 the	 input	 parameters	 are	 not	 yet	 given
during	the	preparation	of	the	statement.

When	using	an	embedded	API,	the	involvement	of	a	pre-processor	couples
this	API	 type	 to	 the	use	of	early	binding.	For	call-level	APIs,	 late-binding	will
often	be	used.	However,	 it	 is	possible	even	when	using	call-level	APIs	 to	pre-
compile	SQL	statements	and	call	 these	at	 runtime,	by	defining	such	statements
as	 “stored	 procedures”	 in	 the	DBMS.	 The	 call-level	 API	 can	 then	 be	 used	 to
indicate	 that	 a	 client	 application	 wishes	 to	 call	 a	 stored	 procedure,	 which	 is
early-bound	by	the	DBMS.	Using	this	approach,	early	binding	can	be	combined
with	 call-level	 APIs,	 though	 one	 needs	 to	 define	 the	 stored	 procedures	 first,
making	the	queries	less	“dynamic”	in	nature.

Connections

For	more	information	on	stored	procedures,	see	Chapter	9.

The	overview	table	in	the	Comparison	Box	contrasts	the	usage	of	early	and
late	binding	with	embedded	and	call-level	APIs:

Comparison	Box

Embedded	APIs Call-level	APIs

Early	binding
(“static”
SQL)

Possible	as	a	pre-compiler
is	used

Only	possible
through	stored
procedures

Late	binding
(“dynamic”
SQL)

Not	used	with	embedded
APIs

Necessary	as	no
pre-compiler	is	used

Performance	benefit,
especially	when	the
same	query	must	be
executed	many	times

Pre-compiler	detects
errors	before	the
actual	execution	of
the	code

SQL	queries	must	be
known	upfront

Flexibility
benefit:	SQL
statements
can	be
dynamically

Retention	Questions

generated	and
used	during
execution

Errors	are
only	detected
during	the
execution	of
the	program

Possibility	to
use	prepared
SQL
statements	to
perform
binding	once
during
execution

Explain	what	is	meant	by	“proprietary”	and	“universal”	APIs.

Explain	embedded	versus	call-level	APIs,	and	early	binding	versus
late	binding.	What	is	the	relationship	between	these	two	pairs	of
terms?

15.3	Universal	Database	APIs

Recall	 that	most	 database	 vendors	 provide	 database	 access	 these	 days	 using	 a
universal	 API	 standard,	 rather	 than	 only	 offering	 a	 proprietary	 access
mechanism.	Many	 different	 universal	 API	 standards	 have	 been	 proposed	 over
the	years,	which	differ	in	terms	of	them	being	embedded	or	call-level	APIs,	and
in	the	programming	languages	they	can	be	used	in,	and	the	functionalities	they
provide	 to	 the	programmer	working	with	 them.	 In	 this	 section,	we	discuss	 the
most	prevalent	universal	API	standards,	starting	with	ODBC.

15.3.1	ODBC

ODBC	 stands	 for	 Open	 DataBase	 Connectivity.	 ODBC	 is	 an	 open	 standard,
developed	by	Microsoft,	with	the	aim	to	offer	applications	a	common,	uniform
interface	to	various	DBMSs.	ODBC	consists	of	four	main	components.	First,	the
ODBC	API	itself	is	the	universal	interface	through	which	client	applications	will
interact	with	a	DBMS.	The	ODBC	API	 is	a	call-level	API	(using	 late	binding,
though	stored	procedure	calls	 are	 supported	as	well),	 and	exposes	 functions	 to
set	up	a	connection	to	a	“data	source”,	preparing	an	SQL	statement,	executing	an
SQL	statement,	calling	a	stored	procedure,	fetching	results	and	status	messages,
performing	 a	 transaction	 commit	 or	 rollback,	 getting	 error	 information,	 and
querying	metadata,	closing	a	connection,	and	so	on.

The	ODBC	driver	manager,	the	second	component	of	ODBC,	is	responsible
for	selecting	 the	correct	database	driver	 (the	 third	component)	 to	communicate
with	a	DBMS.	A	driver	is	a	collection	of	routines	that	contain	the	actual	code	to
communicate	with	a	DBMS	(potentially	through	an	existing,	proprietary	DBMS
API),	and	is	provided	by	the	DBMS	vendor.	The	driver	manager	itself	interacts
with	the	drivers	by	means	of	a	fourth	component,	the	service	provider	interface,
or	SPI,	 a	 separate	 interface	 intended	 to	be	 implemented	by	 the	DBMS	vendor.
Figure	15.7	provides	an	overview	of	the	ODBC	architecture.

Figure	15.7	Overview	of	the	ODBC	architecture.

A	major	benefit	of	ODBC	is	that	it	–	as	a	universal	API	standard	–	allows
applications	 to	 be	 easily	 ported	 between	 DBMSs	 or	 even	 between	 DBMS
vendors,	without	having	to	modify	the	application’s	code	(provided	the	vendors
agree	on	an	SQL	standard).	This	is	very	similar	to	the	role	of	a	printer	driver	in
an	operating	 system:	 the	printer	driver	 translates	generic	“print”	commands	by
the	 respective	 applications	 into	 calls	 toward	 a	 specific	 printer	 type,	 hence
allowing	for	the	printer	to	be	replaced	by	another	printer	brand	without	altering
applications’	 code.	 A	 drawback	 of	 ODBC	 lies	 mainly	 in	 the	 fact	 that	 the
architecture	is	native	to	Microsoft-based	platforms;	an	implementation	for	Linux
exists,	but	vendor	support	is	often	lacking	(as	separate	drivers	must	be	provided),
so	ODBC	remains	mainly	popular	on	Windows.	Another	drawback	of	ODBC	is
its	age:	ODBC	is	based	on	 the	C	programming	 language,	so	 it	does	not	utilize
the	 programmer-friendly	 object-oriented	 paradigm.	 Consequently,	 it	 exposes
some	 complex	 resource	management	 to	 the	 driver	maintainer	 (i.e.,	 the	 vendor
implementing	the	DBMS	driver).	Another	drawback	compared	to	directly	using
a	 proprietary	 API	 is	 that	 the	 ODBC	middleware	 introduces	 an	 extra	 layer	 of
indirection	and	therefore	some	extra	performance	lag,	though	this	is	the	case	for
other	universal	APIs	as	well.

15.3.2	OLE	DB	and	ADO

ODBC	 remains	 an	 immensely	 popular	 offering	 to	 gain	 access	 to	DBMSs	 in	 a
uniform	 manner,	 even	 though	 Microsoft	 has	 also	 developed	 newer	 (and
objectively	better)	APIs	in	recent	times.	OLE	DB	(originally	an	abbreviation	for
Object	Linking	and	Embedding	for	DataBases,	but	now	a	name	in	itself)	was	a
follow-up	 specification	 to	ODBC	 to	 allow	uniform	 access	 to	 a	 variety	 of	 data
sources	 using	 Microsoft’s	 Component	 Object	 Model	 (COM).	 COM	 is	 a
programming	 framework	 for	 specifying	 software	 components,	which	 represent
highly	 modular	 and	 re-usable	 building	 blocks	 to	 applications	 running	 on	 a
Microsoft	 platform.	 Compared	 to	 the	more	monolithic	 approach	 of	ODBC,	 in
which	 all	 the	 functionality	 regarding	 one	 DBMS	 was	 contained	 in	 a	 single
driver,	the	COM	approach	allows	splitting	up	functionality	such	as	querying	and
transaction	management	into	different	components.

Microsoft	originally	developed	OLE	DB	as	a	higher-level	replacement	for
ODBC,	 primarily	 by	 extending	 its	 feature	 set	 to	 also	 support	 non-relational
databases,	 such	 as	 object	 databases,	 spreadsheets,	 and	 other	 data	 sources.
Functionality	 such	 as	 querying	 can	 be	 provided	 by	 the	 data	 provider	 (e.g.,	 an
RDBMS),	but	also	by	other	components	if	the	data	provider	does	not	incorporate
the	functionality	itself	(e.g.,	if	the	data	provider	is	not	a	full-blown	DBMS).	As
such,	OLE	DB	represents	Microsoft’s	attempt	to	move	toward	a	“Universal	Data
Access”	 approach,	 assuming	 that	 not	 all	 data	 can	 be	 stored	 in	 a	 relational
database,	 so	 that	 integrating	 these	 data	 sources	 and	 offering	 unified	 access
capabilities	become	highly	relevant.4

OLE	DB	can	also	be	combined	with	ActiveX	Data	Objects	(ADO),	which
provides	 a	 richer,	more	 “programmer-friendly”	 programming	model	 on	 top	 of
OLE	DB.	 The	 following	 code	 fragment	 shows	 an	 example	 of	 using	OLE	DB

with	ADO	to	access	an	SQL	data	source,	such	as	a	relational	database.	The	first
lines	set	up	a	connection	to	the	database.	Next,	a	query	is	performed,	resulting	in
a	result	set	that	can	be	looped	over:

Dim	conn	As	ADODB.Connection
Dim	recordSet	As	ADODB.Recordset

Set	conn	=	New	ADODB.Connection
conn.Open("my_database")

Set	qry	=	"select	nr,	name	from	suppliers	where	status	<	30"
Set	recordSet	=	conn.Execute(qry)

Do	While	Not	recordSet.EOF
		MsgBox(recordSet.Fields(0).Name	&	"=	"&	
recordSet.Fields(0).Value	&	vbCrLf	&	recordSet.Fields(1).Name	&	
"=	"&	recordSet.Fields(1).Value)
		recordSet.MoveNext
Loop

recordSet.Close
conn.Close

15.3.3	ADO.NET

After	the	introduction	of	Microsoft’s	.NET	framework,	OLE	DB	and	ADO	were
merged	and	reworked	thoroughly	to	form	ADO.NET.	The	.NET	framework	was
developed	by	Microsoft	with	the	objective	to	perform	a	modern	overhaul	of	all
core	 components	 that	make	up	 the	Windows	and	 related	 technologies	 stack.	 It
consists	 mainly	 of	 two	 large	 pieces	 of	 technology:	 the	 Common	 Language
Runtime	(CLR)	and	a	set	of	class	libraries.

The	 CLR	 provides	 an	 execution	 environment	 for	 .NET.	 Source	 code
(written	 in	 a	 programming	 language	 that	 supports	 the	 CLR,	 such	 as	 C#	 or
VB.Net)	 is	 compiled	 to	 an	 intermediate	 language,	 comparable	 to	 Java’s	 byte
code.	 This	 intermediate	 language	 is	 then	 compiled	 “just-in-time”	 to	 native
machine	 code	 when	 an	 application	 is	 executed,	 managed	 by	 the	 CLR	 –
“managed”	here	meaning	that	the	CLR	performs	additional	checks	and	tasks	to
ensure	 security,	 protect	 against	 crashes,	 perform	memory	management,	 and	 so
on.	Clearly,	the	.NET	framework	was	heavily	inspired	by	Java	(together	with	its
Java	 Virtual	Machine).	 The	 .NET	 class	 libraries	 offer	 a	 hierarchy	 of	 libraries
containing	 a	 plethora	 of	 generic,	 re-usable	 components,	 including	 components
for	 I/O	operations,	 threading	and	so	on	 to	GUI	components	 (such	as	Windows
Forms)	or	components	offering	data	source	access,	such	as	those	in	ADO.NET.

Note	that	ADO.NET	is	quite	different	from	OLE	DB	and	ADO.	Like	OLE
DB,	ADO.NET	 breaks	 down	 all	 database-related	 access	 features	 into	 a	 set	 of
components.	To	access	data,	ADO.NET	offers	a	series	of	data	providers,	which
are	 broken	 down	 into	 a	 series	 of	 objects	 handling	 creation	 of	 database
connections,	 sending	 queries,	 and	 reading	 results.	 Figure	 15.8	 provides	 a
summary	of	ADO.NET’s	classes.

Figure	15.8	Overview	of	ADO.NET	classes.

The	 following	 C#	 code	 fragment	 shows	 the	 Connection,	 Command,	 and
DataReader	objects	in	action	using	the	.NET	Framework	Data	Provider	for	SQL
Server	(SqlClient):

String	connectionString	=	"Data	Source=(local);Initial	
Catalog=example;"
SqlConnection	conn	=	new	SqlConnection(connectionString)
conn.Open();

String	query1	=	"select	avg(num_pages)	from	books";
String	query2	=	"select	title,	author	from	books	where	num_pages	>	
30";

SqlCommand	command1	=	conn.CreateCommand();
SqlCommand	command2	=	conn.CreateCommand();

command1.CommandText	=	query1;
command2.CommandText	=	query2;

int	average_pages	=	command1.ExecuteScalar();
Console.Writeln(average_pages);

SqlDataReader	dataReader	=	command2.ExecuteReader();

String	title;
String	author;

while	(dataReader.Read())	{
	title	=	dataReader.GetString(0);

	author	=	dataReader.GetString(1);
	Console.Writeln(title	+	"	by	"	+	author);
}

dataReader.Close();
conn.Close();

In	 this	 example,	 we	 execute	 two	 different	 SQL	 queries	 (using
SqlCommand)	 and	 execute	 them	 using	 the	 ExecuteScalar	 and	 ExecuteReader
methods.	 ExecuteScalar	 is	 typically	 used	when	 a	 query	 returns	 a	 single	 value
(such	as	the	average	number	of	pages	in	the	example	above).	If	a	query	returns
more	than	a	single	value	(or	a	single	row),	then	the	result	is	the	first	column	of
the	first	row.	ExecuteReader	is	used	for	any	result	set	with	multiple	rows	and/or
columns.	 ExecuteNonQuery	 (not	 shown	 in	 the	 example)	 is	 typically	 used	 for
SQL	statements	without	results	(e.g.,	UPDATE,	INSERT	queries).	For	the	query
returning	 multiple	 rows	 and	 columns,	 we	 use	 an	 ADO.NET	 DataReader	 (an
SqlDataReader	object)	to	retrieve	a	read-only,	forward-only	stream	of	data	from
a	database.	Using	this	approach,	results	are	returned	as	the	query	executes,	and
are	 stored	 on	 the	 client	 until	 you	 request	 them	 using	 the	 Read	method	 of	 the
DataReader	(as	shown	in	 the	example).	By	default,	 the	DataReader	stores	only
one	row	at	a	time	in	memory,	reducing	system	overhead.

A	DataAdapter	provides	an	alternative	approach	that	can	be	used	to	retrieve
data	 from	 a	 data	 source	 and	 populate	 tables	 within	 a	 DataSet	 object.	 A
DataAdapter	can	also	persist	changes	made	to	the	DataSet	back	to	the	underlying

data	 source.	 To	 retrieve	 data	 and	 resolve	 changes,	 the	 DataAdapter	 will	 use

various	Command	objects	which	will	 perform	 the	 requested	operations	 toward
the	underlying	data	 source:	SelectCommand	 to	 read	data	 from	 the	 data	 source
into	the	DataSet	and	InsertCommand,	UpdateCommand,	and	DeleteCommand	to
propagate	 updates	 from	 the	DataSet	 back	 into	 the	 data	 source.	A	DataAdapter
hence	positions	itself	between	a	data	source	(which	can	be	a	relational	database
but	 may	 well	 be	 a	 file	 system	 or	 some	 other	 data	 source)	 and	 the	 DataSet
containing	the	data	themselves	in	a	relational,	tabular	format.	The	DataSet	object
in	 ADO.NET	 is	 a	 complex	 structure,	 offering	 a	 hierarchy	 of	 sub-objects
representing	relations,	 tables,	constraints,	 rows,	 fields,	and	more.	An	 important
aspect	to	note	(especially	when	compared	to	an	ADO	Recordset	object)	is	that	a
DataSet	 implements	 a	 so-called	 “disconnected”	 data	 source	 access	 model,
meaning	it	resides	on	the	client	and	will	not	retain	a	persistent	connection	to	the
backing	 data	 source.	 All	 data	manipulations	 on	 a	DataSet	 happen	 in-memory,
with	a	connection	only	being	opened	when	the	data	are	 initially	retrieved	from
the	 data	 source	 and	 updates	must	 be	 saved	 back	 to	 the	 persistent	 data	 source.
Especially	 in	 web-based	 applications,	 this	 offers	 several	 benefits	 regarding
scalability,	as	the	web	application	can	more	easily	serve	a	large	number	of	users
without	maintaining	persistent	database	connections	 for	every	 session.	When	a
DataSet	is	backed	by	a	relational	database,	it	can	serve	as	an	intelligent	cached
data	 structure,	 but	 a	 DataSet	 is	 also	 capable	 to	 work	 with	 non-relational	 data
sources	(by	using	a	different	DataAdapter)	and	can	even	combine	multiple	data
sources	 by	 using	 multiple	 DataAdapters.	 Finally,	 programmers	 can	 also	 use
DataSet	 objects	 without	 any	 backing	 data	 source,	 hence	 constructing	 tables,
relations,	 fields	and	constraints	completely	“by	hand”,	while	 still	 being	 free	 to
persist	 these	 later	 on	by	 then	 coupling	 a	DataAdapter	object.	To	 summarize,	 a
DataSet	can	exist	completely	independently	from	any	data	source	and	is	not	even
aware	 about	which	 data	 sources	might	 exist.	Necessary	 connections	with	 data

sources	 are	 made	 through	 short-lived	 sessions	 set	 up	 by	 one	 or	 more
DataAdapters,	either	to	persist	data	from	a	DataSet	to	a	data	store,	or	to	load	data
from	a	data	store	into	a	DataSet.	The	following	code	fragment	shows	an	example
of	 using	 a	 DataSet	 with	 an	 SqlDataAdapter	 (the	 data	 adapter	 object	 for	 SQL
Server):

//	Create	a	DataAdapter	object,	based	on	a	connection	conn	and	a
//	queryString,	which	will	be	used	to	retrieve	data	from	the	data
//	source	(behind	the	scenes,	a	SelectCommand	will	be	created	based	
on
//	this	query)
string	queryString	=	"select	title,	author	from	books";
SqlDataAdapter	ada	=	new	SqlDataAdapter(queryString,	conn);

//	Create	a	DataSet	object	and	fill	it	with	data	from	the	books	table
//	By	invoking	the	fill	method,	the	aforementioned	SelectCommand
//	containing	the	SELECT	query	will	be	executed	against	the	data	
source
DataSet	booksDataSet	=	new	DataSet();
ada.Fill(booksDataSet,	"myBooks");

//	[Work	with	the	booksDataSet	DataSet]

//	Fetch	the	DataTable	from	the	DataSet	and	loop	over	it
DataTable	tbl	=	booksDataSet.Tables["myBooks"];
foreach	(DataRow	bookRow	in	tbl.Rows)	{
		Console.WriteLine(bookRow["title"]);
}

Finally,	it	is	worth	emphasizing	the	large	degree	of	backward-compatibility
provided	 by	ADO.NET.	Next	 to	 data	 providers	 that	 can	 directly	 connect	with
SQL	databases	from	various	vendors	(e.g.,	as	illustrated	by	the	SqlDataAdapter

object	in	the	example	above,	which	works	with	SQL	Server),	data	providers	are
available	 that	can	call	existing	ODBC	APIs,	as	well	as	data	providers	 that	can
call	legacy	OLE	DB	providers	(which	in	turn	might	even	call	ODBC	APIs).

Connections

The	 impact	 of	 the	 “disconnected”	 approach	 as	 implemented	 in	 an
ADO.NET	DataSet	on	transaction	management	and	concurrency	control
is	discussed	in	more	detail	in	Chapter	16.

15.3.4	Java	DataBase	Connectivity	(JDBC)

Like	ODBC,	Java	DataBase	Connectivity	(JDBC)	offers	a	call-level	database
API.	JDBC	was	heavily	inspired	by	ODBC,	so	many	concepts	are	the	same,	with
an	important	difference	being	that	JDBC	was	developed	to	be	used	in	Java	and
geared	 only	 toward	 this	 programming	 language.	 This	 narrow	 focus,	 however,
also	helps	 to	 introduce	many	benefits,	 such	as	high	portability	 (Java	 runs	on	a
multitude	of	platforms)	and	the	ability	to	program	in	an	object-oriented	manner.
Database	connections,	drivers,	queries,	and	results	are	all	expressed	as	objects,
based	on	uniform	 interfaces	 and	hence	 exposing	 a	uniform	set	 of	methods,	 no
matter	which	DBMS	is	utilized.	Figure	15.9	illustrates	the	JDBC	architecture.

Figure	15.9	Overview	of	the	JDBC	architecture.

JDBC	 exposes	 a	 series	 of	 object	 interfaces	 through	 which	 drivers,
connections,	SQL	statements,	 and	 results	 are	 expressed.	Figure	15.10	 provides
an	overview	of	JDBC’s	classes.

Figure	15.10	Overview	of	JDBC’s	classes.

The	DriverManager	 is	 a	 singleton	 object	 that	 acts	 as	 the	 basic	 service	 to
manage	JDBC	drivers.	To	utilize	a	DBMS	driver,	it	first	must	be	registered	with
the	 DriverManager,	 using	 the	 registerDriver	 method.	 Once	 done,	 database
connections	can	be	created	using	one	of	 the	registered	drivers	by	means	of	 the
getConnection	method.	This	method	takes	a	string	as	a	parameter,	representing	a
connection	 URL	 to	 indicate	 which	 DBMS	 one	 wishes	 to	 connect	 to,	 which
should	 be	 of	 the	 form	 “jdbc:subprotocol:subname”,	 e.g.,
“jdbc:sqlite:my_database”.	 This	 method	 can	 also	 take	 optional	 username	 and
password	parameters.	The	following	Java	code	snippet	shows	how	to	register	a
driver	and	set	up	a	connection	using	the	DriverManager:

DriverManager.registerDriver(new	org.sqlite.JDBC());
String	dbURL	=	"jdbc:sqlite:my_database";
Connection	conn	=	DriverManager.getConnection(dbURL);
if	(conn	!=	null)	{
	System.out.println("Connected	to	the	database");
	DatabaseMetaData	dm	=	conn.getMetaData();
	System.out.println("Driver	name:	"	+	dm.getDriverName);
	conn.close();
}

Note	 that	 many	 drivers	 will	 also	 register	 themselves	 automatically,	 and
version	4	of	the	JDBC	standard	even	does	away	with	the	need	to	register	drivers
completely,	as	drivers	 supporting	 this	version	must	be	 findable	using	a	 service
location	 mechanism.	 Recent	 versions	 of	 JDBC	 also	 contain	 an	 alternative
method	 to	 connect	 to	 a	 JDBC	 data	 source,	 by	 using	 the	DataSource	 interface
class,	which	uses	Java’s	JNDI	(Java	Naming	and	Directory	Interface)	instead	of
a	connection	URL	to	connect	to	a	DBMS,	which	has	the	advantage	that	a	naming

service	can	be	used	to	look	up	the	desired	endpoint	for	a	given	data	source	name.
Most	examples	online	and	in	print	still	prefer	to	use	the	simpler	approach	above,
however.

The	driver	objects	registered	with	the	DriverManager	implement	the	Driver
interface	 and	 enable	 the	 communication	 between	 the	 DriverManager	 and	 the
DBMS.	 To	 implement	 the	 interface,	 database	 vendors	 can	 decide	 between
different	 so-called	 driver	 “types”.	 Type-1	 drivers	 are	 also	 denoted	 as
JDBC–ODBC	bridge	drivers.	They	do	not	communicate	with	a	DBMS	directly,
but	instead	translate	JDBC	calls	to	corresponding	ODBC	calls,	which	will	then
be	 fed	 to	 the	 ODBC	 API,	 which,	 in	 turn,	 will	 use	 its	 ODBC	 drivers.	 The
advantage	of	this	approach	is	clear,	as	it	allows	re-use	of	existing	ODBC	drivers
in	JDBC.	To	do	so,	however,	one	needs	to	make	sure	the	ODBC	stack	is	present
on	the	host	system	next	to	JDBC.	In	addition,	using	ODBC	bridge	drivers	means
that	 client	 applications	 will	 be	 harder	 to	 port	 to	 different	 (non-Microsoft)
platforms,	 and	 that	 the	number	of	 “in-between”	 layers	 also	negatively	 impacts
performance.	Type-2	drivers	(JDBC–native	API	drivers),	on	the	other	hand,	are
completely	written	in	Java,	but	will	communicate	to	a	DBMS	using	its	“native”
database	API.	This	means	 this	driver	 translates	 JDBC	calls	 into	native	calls	 to
the	proprietary	database	API.	As	these	APIs	will	commonly	not	be	implemented
in	Java,	this	again	means	that	native	calls	have	to	be	made	at	some	point,	which
might	 cause	 issues	 when	 portability	 is	 a	 concern.	 Type-3	 drivers	 (JDBC–Net
drivers)	are	completely	written	in	Java.	Here,	the	JDBC	client	will	use	standard
networking	 sockets	 to	 communicate	 with	 an	 application	 server,	 which	 will
convert	the	calls	into	a	native	database	API	call	or	will	utilize	a	different	JDBC
type-1,	 2,	 or	 4	 driver	 on	 its	 end.	 This	 driver	 type	 acts	 as	 a	 proxy,	 where	 a
separate	server	will	perform	calls	on	the	client’s	behalf.	A	type-4	driver,	finally,
is	also	completely	written	in	Java	and	uses	networking	functionality,	though	here
a	direct	connection	is	made	with	the	database	server.	The	driver	communicates

directly	with	 the	DBMS	over	 the	 network,	 and	hence	offers	 both	 performance
and	 portability.	 Table	 15.1	 provides	 a	 summary	 of	 the	 different	 JDBC	 driver
types.

Table	15.1	Summary	of	different	JDBC	driver	types

Driver
type

Driver
description Advantages Disadvantages

Type	1 JDBC–ODBC
bridge	driver

Backward	compatible
with	existing	ODBC
drivers

Harder	to	port	to
different	platforms,	extra
ODBC	layer	impacts
performance

Type	2 JDBC–native
API	driver

Uses	existing	native
DBMS	APIs,	less	of	a
performance	drawback

Portability	remains	an
issue

Type	3 JDBC–Net
driver

Uses	existing	native
DBMS	APIs	over	a
network	socket,	hence
acting	as	a	proxy

Client	portability	is
easier,	though	the	fact
that	the	application
server	still	needs	to	call
underlying	native	APIs
can	lead	to	a
performance	hit

Type	4 Pure	Java
driver

Direct	network
connection	to	DBMS
and	pure	Java
implementation	leads
to	performance	and
portability

Not	always	available,
creating	a	pure	Java
JDBC	driver	may	incur
extra	programming	effort
from	the	vendor

Opening	a	connection	returns	a	Connection	object,	representing	a	session	to
a	specific	database.	SQL	statements	will	be	executed	and	results	returned	within
the	 context	 of	 such	 a	 connection.	 The	 createStatement	method	 can	 be	 used	 to
create	 SQL	 statements,	 with	 which	 an	 SQL	 query	 can	 be	 executed.	 The
prepareStatement	 and	 prepareCall	 methods	 can	 be	 used	 to	 create	 objects
representing	 prepared	 statements	 and	 stored	 procedure	 calls	 respectively.	 The
getMetaData	 method	 can	 be	 used	 to	 obtain	 a	 separate	 object	 representing
metadata	describing	 the	connection,	 such	as	 the	driver	name	and	version	used,
the	vendor	name,	and	so	on.

A	 Statement	 object	 represents	 an	 SQL	 instruction.	 Different	 methods	 are
available	to	execute	statements.	For	a	SELECT	query,	the	executeQuery	method
should	 be	 invoked,	 which	 returns	 a	 ResultSet	 representing	 the	 returned	 data.
This	method	takes	one	parameter,	namely	the	SQL	query	itself,	passed	as	a	string
(a	 textual	 value).	 The	 following	 example	 shows	 the	 Statement	 object	 and
executeQuery	method	in	action:

Statement	selectStatement	=	conn.createStatement("select	title,	
num_pages	from	books")
ResultSet	selectResult	=	selectStatement.executeQuery();

A	ResultSet	 object	 contains	 the	 result	 of	 a	SELECT	query	 executed	 by	 a
Statement	object.	Because	SQL	is	a	set-oriented	language,	the	query	result	(the
ResultSet	object)	will	generally	comprise	multiple	 tuples.	Host	 languages	 such
as	 Java	 are	 essentially	 record-oriented:	 they	 cannot	 handle	 more	 than	 one
record/tuple	at	a	 time.	To	overcome	this	so-called	 impedance	mismatch,	JDBC
(like	ODBC)	exposes	a	cursor	mechanism	in	order	to	loop	through	result	sets.
A	 cursor	 is	 a	 programmatic	 control	 structure	 that	 enables	 traversal	 over	 the
records	 in	 a	 query	 result	 set,	 similar	 to	 a	 textual	 cursor	 as	 seen	 in	 a	 word
processing	 application,	 where	 you	 can	 move	 the	 cursor	 line-by-line,	 with	 the

cursor	then	indicating	the	current	position	in	the	text.	Here,	the	database	cursor
keeps	track	of	where	we	are	in	the	result	set,	so	that	the	tuples	that	result	from	an
SQL	query	can	be	traversed	and	presented	to	the	application	code	one	by	one.5

In	 JDBC,	 the	 rows	 of	 a	 ResultSet	 object	 can	 be	 iterated	 over	 using	 the
“next”	method,	which	moves	the	cursor	to	the	next	row	if	possible	and	returns	a
Boolean	“true”	value	to	indicate	that	the	next	row	could	be	retrieved.	When	the
end	of	the	ResultSet	is	reached,	“next”	will	return	“false”.	For	every	row,	fields
can	be	 retrieved	using	 the	get____-collection	of	 “getter”	methods	 (e.g.,	 getInt,
getFloat,	getString,	and	so	on),	using	either	the	name	of	the	field	as	a	parameter,
or	an	integer	representing	the	index	of	the	field	in	the	result	row.	Note	that	when
the	 wrong	 data	 type	 is	 used	 to	 get	 a	 field,	 an	 error	 is	 raised	 at	 runtime,	 i.e.,
during	 the	 actual	 execution	of	 the	 program.	The	 following	 example	 shows	 the
cursor	mechanism	and	“getters”	in	action:

while	(selectResult.next())	{
	String	bookTitle	=	selectResult.getString("title");	//	or:	.getString(1);
	int	bookPages	=	selectResult.getInt("num_pages");	//	or:	.getInt(2);
	System.out.println(bookTitle	+	"has"	+	bookPages	+	"pages");
}

For	 INSERT,	 UPDATE,	 or	 DELETE	 queries	 (or	 DDL	 queries),	 the
executeUpdate	method	should	be	called.	Here,	the	return	value	is	not	a	ResultSet
object,	but	an	integer	(a	number)	representing	the	number	of	affected	rows	(i.e.,
inserted,	modified,	or	deleted).	When	 the	query	 type	 is	not	known	beforehand,
one	 can	 also	 invoke	 the	 generic	 “execute”	 method,	 which	 returns	 a	 Boolean
value	representing	whether	the	just-executed	query	was	a	SELECT	query,	based
on	which	the	program	can	decide	to	call	 the	getResultSet	method	to	 then	fetch
the	actual	result	set.

String	deleteQuery	=	"delete	from	books	where	num_pages	<=	30";
Statement	deleteStatement	=	conn.createStatement();
int	deletedRows	=	deleteStatement.executeUpdate(deleteQuery);
System.out.println(deletedRows	+	"books	were	deleted");

The	PreparedStatement	 interface	extends	Statement	with	 functionalities	 to
bind	 a	 query	 once	 and	 then	 execute	 it	 multiple	 times	 efficiently.	 Prepared
statements	also	provide	support	to	pass	query	parameters,	which	should	then	be
instantiated	using	so	called	“setter	methods”	such	as	setInt,	setString,	and	so	on.
Note	here	the	usage	of	question	marks	(“?”)	inside	of	the	SQL	query	to	indicate
that	this	represents	a	parameter	value	that	will	be	bound	later:

String	selectQuery	=	"select	*	from	books	where	num_pages	>	?	and	
num_pages	<	?";
Statement	preparedSelectStatement	=	
conn.prepareStatement(selectQuery);
int	min_pages	=	50;
int	max_pages	=	200;
//	Set	the	value	to	the	first	parameter	(1):
preparedSelectStatement.setInt(1,	min_pages);
//	Set	the	value	to	the	second	parameter	(2):
preparedSelectStatement.setInt(2,	max_pages);
ResultSet	resultSet1	=	preparedSelectStatement.executeQuery();
//	Execute	the	same	query	a	second	time	with	different	parameter	
values:
preparedSelectStatement.setInt(1,	10);
preparedSelectStatement.setInt(2,	20);
ResultSet	resultSet2	=	preparedSelectStatement.executeQuery();

CallableStatement	extends	PreparedStatement	and	offers	support	to	execute
stored	procedures.	It	also	provides	facilities	for	passing	“in”,	“out”,	and	“inout”
parameters.	 “In”	 parameters	 are	 comparable	 to	 prepared	 statement	 parameters

and	 are	 also	 set	 using	 set____	 methods;	 they	 can	 be	 used	 for	 passing	 “input

values”	 from	 the	 application	 code	 to	 the	 stored	 procedure.	 By	 default,	 all
parameters	are	“in”	parameters.	If	some	parameters	are	to	be	used	for	“output”
from	the	stored	procedure	to	the	application	code,	they	are	“out”	parameters	and
need	 to	 be	 registered	 explicitly	 using	 registerOutParameter.	 This	 method	 also
takes	an	 integer	 representing	 the	order	of	 the	parameter	 in	 the	query	 (which	 is
necessary	to	refer	to	the	appropriate	parameter	if	multiple	parameters	are	used)
and	 a	 java.sql.Types	 object	 denoting	 the	 Java	 type	 of	 the	 parameter.	 “Inout”
parameters,	 finally,	 can	 be	 used	 as	 both	 input	 and	 output	 parameters.	 The
following	code	fragment	shows	these	statements	in	action:

//	"price_after_discount"	is	the	name	of	the	stored	procedure	we	want	
to	call
Statement	preparedStProcCall	=	conn.prepareCall("{call	
price_after_discount(?,	?)}");

//	The	first	parameter	is	an	"in"-value:
double	discountPercentage	=	0.15;
preparedStProcCall.setDouble(1,	discountPercentage);

//	Indicate	that	the	second	parameter	is	an	"out"-value	of	type	FLOAT	
(a	//	decimal	value):
preparedStProcCall.registerOutParameter(2,	java.sql.Types.FLOAT);

//	Execute	the	stored	procedure
preparedStProcCall.execute();
//	Get	the	value	of	the	second	parameter
float	priceAfterDiscount	=	preparedStProcCall.getFloat(2);

JDBC	also	supports	 the	creation	of	updatable	ResultSets,	where	rows	in	a
ResultSet	can	be	updated	on	the	fly.	In	addition,	ResultSets	may	provide	richer

navigation	 functionality	 than	 just	moving	 to	 the	 next	 row.	The	 following	 code
fragment	shows	this	in	action:

String	query	=	"select	title,	author,	num_pages	from	books	where	
num_pages	>	100";

/*	We	pass	some	additional	parameters	here	to	createStatement	to	
indicate	that	we	want	to	allow	scrolling	backward	and	forward	
through	the	ResultSet,	and	that	we	want	an	updatable	ResultSet:	*/
Statement	stat	=	
conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,	
ResultSet.CONCUR_UPDATABLE);

ResultSet	resultSet	=	stat.executeQuery(query);

//	Move	the	cursor	to	the	first	position	and	get	out	some	information:
resultSet.first();
String	title	=	resultSet.getString(1);
int	numPages	=	resultSet.getInt(3);
String	author	=	resultSet.getString("author");

//	Move	forward	some	rows:
resultSet.next();
resultSet.next();

//	Update	this	row	on	the	fly	and	propagate	the	update	to	the	database:
resultSet.updateInt("num_pages",	85);
resultSet.updateRow();

//	Move	to	row	number	40:
resultSet.absolute(40);

//	Insert	a	new	row	at	this	position:

resultSet.updateString(1,	"New	book");
resultSet.updateString(2,	"D.B.	Rowling");
resultSet.updateInt(3,	100);
resultSet.insertRow();

//	Move	back	one	row:
resultSet.previous();

//	Delete	this	row:
resultSet.deleteRow();

Note	 that	 not	 all	 JDBC	 drivers	 support	 flexible	 cursor	 scrolling	 or
updateable	 ResultSets	 as	 shown	 in	 the	 example	 above.	 Older,	 legacy	 drivers
especially	lack	support	for	this.	Here,	one	needs	to	perform	additional	INSERT,
UPDATE,	or	DELETE	queries	manually	to	execute	the	desired	changes.

More	recent	versions	of	JDBC	also	add	the	RowSet	interface,	which	extends
the	ResultSet	 interface.	RowSet	 objects	 can	 act	 as	 a	wrapper	 around	 a	 normal
ResultSet	object,	adding	support	for	scrollable	and	updateable	cursors	even	if	the
underlying	 DBMS	 driver	 does	 not	 support	 this,	 in	 which	 case	 the	 RowSet
interface	 will	 make	 sure	 that	 the	 necessary	 operations	 are	 executed.	 Another
benefit	of	a	RowSet	is	that	it	allows	other	objects	to	register	themselves	with	a
RowSet	 to	 receive	updates	 they	might	be	 interested	 in.	For	 instance,	 an	object
representing	 a	 table	 in	 a	 program’s	 user	 interface	 can	 register	 itself	 to	 receive
updates	every	time	the	row	set	changes,	so	it	can	immediately	update	itself	and
stay	up-to-date	(without	adding	a	separate	refresh	button,	for	instance).

Another	important	role	of	JDBC’s	Connection	object	is	the	coordination	of
transactions.	To	do	so,	 the	Connection	 interface	also	defines	commit,	 rollback,
setTransactionIsolation,	 setAutoCommit,	 setSavepoint,	 and	 releaseSavepoint
methods.

Connections

See	 Chapter	 14	 for	 more	 information	 on	 transactions	 and	 transaction
management.

The	 JDBC	 API	 provides	 no	 explicit	 method	 to	 start	 a	 transaction.	 The
decision	 to	 initiate	a	new	transaction	 is	made	 implicitly	by	 the	JDBC	driver	or
the	DBMS.	The	way	transactions	are	committed	depends	on	the	“auto-commit”
attribute	 of	 the	Connection	object,	which	 can	be	 set	 using	 the	 setAutoCommit
method.	When	auto-commit	is	enabled,	the	JDBC	driver	will	perform	a	commit
after	 every	 individual	 SQL	 statement	 automatically.	 When	 auto-commit	 is
disabled,	the	program	itself	is	responsible	for	committing	transactions	using	the
commit	 or	 rollback	 methods.	 The	 setSavepoint	 and	 releaseSavepoint	 methods
can	be	used	to	set	a	synchronization	point	in	the	current	transaction	(which	can
then	 be	 rolled	 back	 to)	 and	 release	 (i.e.,	 remove)	 a	 synchronization	 point
respectively.	The	following	code	fragment	shows	these	methods	in	action.

//	Disable	auto-commit
myConnection.setAutoCommit(false);
Statement	myStatement1	=	myConnection.createStatement();
Statement	myStatement2	=	myConnection.createStatement();
Statement	myStatement3	=	myConnection.createStatement();
Statement	myStatement4	=	myConnection.createStatement();
myStatement1.executeUpdate(myQuery1);
myStatement2.executeUpdate(myQuery2);
//	Create	a	save	point
Savepoint	mySavepoint	=	myConnection.setSavepoint();
myStatement3.executeUpdate(myQuery3);
//	Roll	back	to	earlier	savepoint,	myStatement3	will	be	undone

myConnection.rollback(mySavepoint);
//	Now	execute	myStatement4
myStatement4.executeUpdate(myQuery4);
//	Commit	the	transaction
myConnection.commit();

As	 a	 result,	 the	 updates	 as	 induced	 by	 myQuery1,	 myQuery2,	 and
myQuery4	will	be	committed.

15.3.5	Intermezzo:	SQL	Injection	and	Access	Security

Now	that	we	have	seen	a	set	of	examples	of	call-level	APIs	(the	most	common
type	of	database	API),	you	will	have	noted	that	all	SQL	queries	are	represented
using	 standard	 strings,	 e.g.,	 as	 normal	 Java	 strings	 when	 using	 JDBC.	 This
means	 that	 no	 additional	 validation	 or	 syntax	 checking	 can	 be	 performed	 at
compile	 time;	 a	 drawback	 of	 call-level	APIs.	This	 approach	 has,	 however,	 the
benefit	 of	 allowing	 for	 dynamic	 queries	 in	 the	 form	 of	 strings	 that	 can	 be
dynamically	constructed	by	 the	program	at	 runtime.	Consider	a	user	entering	a
search	term	in	a	search	box	to	search	for	books,	which	is	then	used	to	construct	a
dynamic	 SQL	 statement.	 The	 following	 code	 fragment	 shows	what	 this	 could
look	 like	 (using	 Java	 and	 JDBC,	 but	 the	 principle	 is	 the	 same	 for	ODBC	 and
other	call-level	APIs	as	well):

BufferedReader	br	=	new	BufferedReader(new	
InputStreamReader(System.in));
System.out.println("Enter	your	search	term:	");
String	searchInput	=	br.readLine();
String	selectQuery	=	"select	*	from	books	where	upper(title)	like	'%"	
+
																						searchInput.toUpperCase()	+	"%'";
Statement	stat	=	conn.createStatement();
ResultSet	resultSet	=	stat.executeQuery(selectQuery);

When	 the	 user	 enters	 “database	 management”,	 for	 instance,	 the
“selectQuery”	string	in	the	example	above	would	look	as	follows:

select	*	from	books	where	upper(title)	like	'%DATABASE	
MANAGEMENT%'

At	 first	 sight,	 this	 example	 illustrates	 a	 strong	 aspect	 of	 call-level	 APIs,
namely	 the	 possibility	 to	 dynamically	 construct	 SQL	 statements.	Nevertheless,
using	simple	string	manipulation	routines	to	construct	SQL	queries	can	also	lead
to	 potential	 security	 issues,	 especially	 when	 queries	 are	 constructed	 based	 on
user	input.	Imagine	what	would	happen	if	someone	entered	“‘	OR	1=1	--”	as	a
name,	causing	the	query	to	end	up	looking	like	this	(“--”	is	used	to	indicate	that
the	rest	of	the	line	is	to	be	treated	as	a	comment	by	many	DBMSs):

select	*	from	books	where	upper(title)	like	'%'	OR	1=1	--%'

Without	much	effort,	our	user	now	has	 insight	 into	 the	complete	database
table.	This	looks	harmless,	but	one	might	just	as	well	try	the	following:

select	*	from	books	where	upper(title)	like	'%GOTCHA!';	DROP	
TABLE	BOOKS;	--%'

Many	 DBMS	 systems	 can	 send	 multiple	 SQL	 statements	 in	 one	 string,
separated	by	semicolons.	Our	malicious	user	has	now	caused	the	complete	books
table	 to	 be	 dropped.	 This	 type	 of	 attack	 (to	 cause	 damage	 as	 well	 as	 to	 gain
access	to	hidden	information)	is	called	SQL	injection,	as	one	 injects	malicious
fragments	 into	normal-looking	SQL	statements.	Such	attacks	can	cause	a	wide
range	of	harm,	and	many	websites	and	applications	are	vulnerable	to	it.

The	 solution,	 however,	 is	 rather	 simple.	Whenever	 user	 input	 or	 external
input	is	to	be	used	in	SQL	statements,	always	make	use	of	prepared	statements,
as	 discussed	 above.	 Virtually	 all	 call-level	 APIs	 (including	 all	 seen	 in	 this
chapter)	provide	means	to	do	so.	For	instance,	in	JDBC,	we’d	write	our	example
as	follows:

String	searchInput	=	br.readLine();
String	selectQuery	=	"select	*	from	books	where	upper(title)	like	?";

Statement	stat	=	conn.prepareStatement(selectQuery);
stat.setString(1,	"%"	+	searchInput.toUpperCase()	+	"%");
ResultSet	resultSet	=	stat.executeQuery();

Since	 the	 SQL	 statement	 used	 in	 a	 prepared	 statement	 is	 bound	 by	 the
driver,	all	parameters	are	sent	to	the	driver	as	literal	values	and	not	as	executable
portions	 of	 an	 SQL	 statement,	 meaning	 you	might	 end	 up	 searching	 for	 titles
containing	“GOTCHA!”;	DROP	TABLE	BOOKS;	--”,	but	no	harm	can	be	done
(probably	no	such	books	will	be	retrieved).

15.3.6	SQLJ

Today,	JDBC	remains	widely	popular,	with	a	plethora	of	drivers	available	for	the
platform.	 It	offers	one	of	 the	most	portable	ways	 to	access	DBMSs	(especially
when	using	type-4	drivers),	and	provides	fine-grained	control	over	the	execution
of	 SQL	 statements.	 SQLJ,	 Java’s	 embedded,	 static	 SQL	 API,	 was	 developed
after	JDBC,	and	allows	embedding	SQL	statements	directly	into	Java	programs.
The	following	code	example	illustrates	this	lineage,	as	some	JDBC	classes,	such
as	the	DriverManager,	are	still	used	in	SQLJ:

//	Create	a	connection	and	default	SQLJ	context
DriverManager.registerDriver(new	oracle.jdbc.driver.OracleDriver());
Connection	conn	=	DriverManager.getConnection(dbUrl);
DefaultContext.setDefaultContext(new	DefaultContext(conn));

//	Define	an	SQLJ	iterator
#sql	iterator	BookIterator(String,	String,	int);

//	Perform	query	and	fetch	results
BookIterator	mybooks;
int	min_pages	=	100;
#sql	mybooks	=	{select	title,	author,	num_pages	from	books
							where	num_pages	>=	:min_pages	};

String	title;
String	author;
int	num_pages;

#sql	{fetch	:mybooks	into	:title,	:author,	:num_pages};
while	(!mybooks.endFetch())	{
		System.out.println(title	+	'	by	'+	author	+	':	'+	num_pages);

		#sql	{fetch	:mybooks	into	:title,	:author,	:num_pages};
}
conn.close();

Note	 that,	 when	 using	 SQLJ,	 queries	 are	 no	 longer	 expressed	 as	 textual
parameters	 (strings),	 but	 instead	 directly	 embedded	 in	 the	 Java	 source	 code.
Hence,	a	pre-compiler	will	first	convert	these	statements	to	native	Java	code	(by
converting	 them,	 for	 instance,	 to	 JDBC	 instructions),	 but	 will	 also	 perform	 a
series	 of	 additional	 checks,	 such	 as	 checking	whether	 our	 SQL	 statements	 are
correctly	spelled	and	all	 table	fields	are	known.	Arguments	for	embedded	SQL
statements	are	passed	through	host	variables,	which	are	variables	that	are	defined
in	 the	 programming	 language	 “hosting”	 the	 embedded	API	 (Java	 in	 this	 case)
and	 can	 then	be	 referred	 to	 in	SQL	 statements	 by	 prefixing	 their	 name	with	 a
colon,	 “:”	 to	 use	 as	 input	 variables	 (parameters	 for	 the	 query)	 or	 as	 output
variables	 (to	 receive	 results	 from	 a	 query).	 The	 SQLJ	 pre-compiler	 will	 also
perform	 additional	 checks	 based	 on	 the	 host	 variables	 used,	 e.g.,	 to	 verify
whether	they	have	been	defined	in	the	Java	code	and	whether	all	type	definitions
of	 the	 host	 variables	 used	 inside	 #sql{	 …	 }	 statements	 match	 the	 database
schema	 definition.	 For	 example,	 if	 the	 :num_pages	 parameter	 in	 the	 example
above	 were	 defined	 as	 a	 decimal	 field	 in	 the	 DBMS,	 the	 SQLJ	 pre-compiler
would	complain	about	the	fact	that	we’re	using	integer	(non-decimal)	types	for
the	min_pages	 and	 num_pages	 host	 variables	 instead	 of	 decimal	 floats	 as	 the
database	expects.	These	errors	can	 then	be	resolved	before	 the	program	is	 run.
Such	 compile-time	 checking	 cannot	 be	 performed	 when	 using	 late-bound
parameters	such	as	those	shown	in	the	JDBC	example	above.	Errors	will	then	be
thrown	during	the	actual	execution	of	the	program,	potentially	causing	additional
debugging	hassle.

However,	as	stated	earlier,	SQLJ	and	other	embedded	APIs	have	fallen	out
of	 use	 in	 recent	 years,	 and	 especially	 SQLJ	 never	 experienced	 the	 level	 of
adoption	seen	by	JDBC.	One	reason	for	 this	 is	 its	 lack	of	support	 for	dynamic
SQL.	 A	 second	 reason	 lies	 in	 the	 extra	 cognitive	 overhead	 required	 from	 the
programmer,	 as	 SQLJ	 statements	 look	 somewhat	 out	 of	 place	 compared	 to
normal	Java	source	code,	and	hence	this	requires	the	programmer	to	know	how
to	 combine	 Java	 with	 SQLJ.	 Another	 reason	 is	 that,	 at	 the	 time	 of	 SQLJ’s
development,	new,	large	integrated	development	environments	(IDEs)	were	just
making	their	entrance	into	the	Java	ecosystem	(such	as	Eclipse	and	NetBeans),
which	didn’t	play	nicely	with	SQLJ	statements	sprinkled	throughout	Java	code.
A	further	reason	is	that	the	additional	validations	and	compile-time	safety	checks
as	promised	by	the	SQLJ	pre-compiler	didn’t	mature	quickly,	causing	SQLJ	 to
fall	behind	 in	adoption,	especially	 since	more	high-level	APIs	 (such	as	object-
relational	mappers,	which	will	be	discussed	 in	Section	15.4)	were	 right	 on	 the
horizon	 as	 well.	 Nevertheless,	 whereas	 embedded	 database	 APIs	 in	 Java	 and
other	 more	 recent	 languages	 never	 took	 off,	 they	 still	 remain	 the	 prevalent
technology	in	 the	plethora	of	 legacy	database	applications	 that	are	still	around,
written	in	older	host	languages	such	as	COBOL.	As	many	of	these	applications
cannot	be	phased	out	yet	and	still	need	to	be	maintained,	COBOL	programmers
with	embedded	SQL	skills	are	actually	sought-after	profiles	in	some	sectors.

15.3.7	Intermezzo:	Embedded	APIs	versus	Embedded	DBMSs

At	 this	 point	 it	 is	 important	 to	 note	 that	 some	 call-level	APIs	might	 be	 easily
confused	 with	 embedded	 APIs,	 especially	 for	 some	 database	 management
systems	that	denote	themselves	as	embedded	DBMSs.	One	example	is	SQLite.
In	 contrast	 to	many	 other	DBMSs,	 SQLite	 does	 not	 operate	 in	 a	 client–server
environment.	 Instead,	 the	 DBMS	 is	 completely	 contained	 in	 a	 single	 library
(written	 in	 C),	 which	 in	 turn	 is	 embedded	 into	 the	 application	 itself,	 so	 the
DBMS	becomes	an	integral	part	of	the	actual	application.

Invoking	the	SQLite	API	from	a	host	language,	however,	is	performed	in	a
call-level	manner,	not	using	an	embedded	API.	No	pre-compiler	is	present.	The
following	code	fragment	shows	how	SQLite	can	be	used	in	C	–	note	the	absence
of	embedded	statements	as	was	the	case	with	SQLJ;	everything	is	pure	C	code.
The	 SQLite	 C	 library	 has	 been	 ported	 to	 many	 other	 languages	 as	 well,	 and
today	can	be	used	by	virtually	every	programming	language	available.

Drill	Down

Even	where	a	direct	port	of	the	SQLite	library	would	be	hard,	the	library
itself	has	also	been	ported	to	be	compatible	with	the	JDBC	standard,	so
you	can	use	it	in	this	set-up.

//	Import	the	SQLite	and	standard	C	input/output	libraries
#include	<sqlite3.h>
#include	<stdio.h>

int	callback(void	*,	int,	char	**,	char	**);

//	Main	program:
int	main(void)	{
		sqlite3	*db;
		char	*err_msg	=	0;
		//	Set	up	the	connection	to	the	database	(stored	in	one	file)
		int	rc	=	sqlite3_open("my_database.db",	&db);
		if	(rc	!=	SQLITE_OK)	{
				sqlite3_close(db);
				return	1;
		}

				//	Execute	a	query	using	sqlite3_exec,	we	specify	a	function
				//	called	"callback"	to	handle	the	result-rows	if	successful
		char	*sql	=	"SELECT	*	FROM	books	ORDER	BY	title";
		rc	=	sqlite3_exec(db,	sql,	callback,	0,	&err_msg);

		if	(rc	!=	SQLITE_OK)	{
				sqlite3_free(err_msg);
				sqlite3_close(db);
				return	1;
		}

		//	Close	the	connection
		sqlite3_close(db);
		return	0;
}

//	What	should	we	do	for	every	row	in	a	result	set?
int	callback(void	*Ignore,	int	num_cols,	char	**col_values,	char	
**col_names)	{
		//	Iterate	over	the	columns	and	show	the	name	and	value
		for	(int	i	=	0;	i	<	num_cols;	i++)
				printf("%s	=	%s\n",	col_names[i],	col_values[i]	?	col_values[i]	:	"

<NULL>");
		printf("\n");
		return	0;
}

The	 following	 fragment	 shows	 the	 SQLite	 Python	 port	 (available	 in	 the
“sqlite3”	Python	 library).	Note	 the	brevity	of	 this	 implementation	compared	 to
the	C	program	above:	the	“sqlite3”	library	contains	additional	methods	(such	as
“execute”)	which	are	easier	to	use:

import	sqlite3
conn	=	sqlite3.connect('my_database.db')
c	=	conn.cursor()
for	row	in	c.execute('SELECT	*	FROM	books	ORDER	BY	title'):
		print	row
conn.close()

Drill	Down

Other	embedded	DBMSs	than	SQLite	exist,	though	SQLite	remains	one
of	 the	 most	 popular	 ones	 (it	 is	 used	 by	 web	 browsers,	 smartphone
applications,	and	many	other	systems	to	store	and	query	data	in	a	simple
single-file	 set-up).	 Other	 notable	 examples	 include	 Apache	 Derby
(written	 in	 Java),	 LevelDB,	 SQL	 Anywhere,	 and	 H2.	Most	 embedded
databases	offer	ODBC	and/or	JDBC	driver	implementations	as	well.

15.3.8	Language-Integrated	Querying

The	lack	of	compile-time	type	checking	and	validation	can	make	working	with
JDBC	 somewhat	 cumbersome	 at	 times.	 JDBC	 programs	 can	 be	 difficult	 to
debug,	 can	 easily	 grow	 in	 size	 (JDBC	 interfaces	 expose	 a	 lot	 of	methods	 that
need	 to	 be	 called,	 even	 to	 execute	 simple	 queries),	 and	 miss	 syntactic	 and
semantic	SQL	checks,	since	queries	are	expressed	as	simple	Java	strings.

With	 the	 above	 in	 mind,	 it	 is	 worth	 mentioning	 that	 some	 modern
programming	 languages	 have	 started	 to	 incorporate	 language-native	 query
expressions	 into	 their	 syntax	 (either	 directly	 or	 through	 the	 usage	 of	 an
additional	 programming	 library),	which	 can	often	operate	 on	 any	 collection	of
data	 (e.g.,	 a	 database,	 but	 also	 XML	 documents	 or	 collection	 types).	 When
targeting	 a	 DBMS,	 such	 expressions	 will	 typically	 be	 converted	 to	 an	 SQL
statement,	which	can	then,	behind	the	scenes,	be	sent	off	 to	the	target	database
server	using	JDBC	or	another	API.

A	 good	 example	 of	 this	 approach	 can	 be	 found	 in	 the	 third-party	 library
jOOQ.	This	project	 aims	 to	provide	 the	benefits	of	 embedded	SQL	using	pure
Java,	 rather	 than	 resorting	 to	 an	 additional	 pre-compiler.	 To	 do	 so,	 a	 code
generator	is	run	first	that	inspects	the	database	schema	and	reverse-engineers	it
into	 a	 set	 of	 Java	 classes	 representing	 tables,	 records,	 sequences,	 types,	 stored
procedures,	 and	other	 schema	entities.	These	 can	 then	be	queried	 and	 invoked
using	plain	Java	code,	as	illustrated	by	the	following	code	fragment:

String	sql	=	create.select(BOOK.TITLE,	AUTHOR.NAME)
										.from(BOOK)
										.join(AUTHOR)
										.on(BOOK.AUTHOR_ID.equal(AUTHOR.ID))
										.where(BOOK.NUM_PAGES.greaterThan(100))

										.getSQL();

Note	 that	 the	code	generator	has	generated	BOOK	and	AUTHOR	classes.
Since	now	only	pure,	plain	Java	code	is	used	to	express	statements,	IDEs	do	not
need	 to	be	aware	of	a	separate	 language,	no	pre-compiler	 is	necessary,	and	 the
standard	Java	compiler	can	be	used	to	perform	type	safety	checks	and	generate
compilation	errors	when	necessary.	For	instance,	if	we	would	try	to	pass	a	string
value	 to	 the	generated	greaterThan	method	of	 the	BOOK.NUM_PAGES	class,
the	Java	compiler	would	throw	an	error	indicating	that	such	a	method	template
does	not	exist.	jOOQ	can	be	combined	to	work	in	tandem	with	other	APIs	such
as	 JDBC	 (for	 instance	 to	 perform	 the	 actual	 execution	 of	 an	 SQL	 string
generated	by	jOOQ,	as	done	in	the	code	sample	above).

Another	 project	 following	 a	 similar	 approach	 is	 QueryDSL,	 which	 also
aims	 to	add	 integrated	querying	capabilities	 into	 the	 Java	host	 language,	using
pure	 Java	 expressions	 rather	 than	 resorting	 to	 a	 pre-compiler.	 Compared	 to
jOOQ,	QueryDSL	steers	even	further	away	from	raw	SQL,	as	it	aims	to	enable
querying	 operations	 on	 any	 sort	 of	 collection,	 including	 databases,	XML	 files,
and	 other	 data	 sources.	 The	 following	 code	 fragment	 shows	 an	 example	 of
QueryDSL	applied	on	an	SQL	data	source:

//	Set	up	a	new	queryFactory	given	a	certain	configuration
//	and	data	source,	e.g.,	a	relational	database
SQLQueryFactory	queryFactory	=	new	
SQLQueryFactory(configuration,	dataSource);
//	The	QBook	class	will	be	generated	by	QueryDSL
QBook	book	=	new	QBook();
//	Use	the	defined	queryFactory	together	with	the	QBook	object	to	
perform	a	select	query
List<String>	names	=	queryFactory.select(book.name)
																	.from(book)

																	.where(book.num_pages.gt(100))
																	.fetch();

It	 is	 worth	 noting	 that	 this	 approach	 of	 providing	 host	 language	 native
querying	 capabilities	 was	 originally	 made	 popular	 by	 Microsoft’s	 LINQ
(Language	 Integrated	 Query),	 a	 .NET	 framework	 component	 adding	 native
querying	capabilities	to	.NET	programming	languages.	This	includes	a	LINQ	to
SQL	subcomponent	which	converts	LINQ	expressions	 to	SQL	queries,	 like	 the
Java	 projects	 above.	 Just	 as	 with	 jOOQ	 and	 QueryDSL,	 LINQ	 to	 SQL	 also
applies	a	mapping	where	database	tables,	columns,	and	other	schema	entities	are
mapped	 to	 classes	 to	 enable	 compile-time	 type	 checking	 and	 verification.	The
following	code	fragment	shows	a	simple	LINQ	example	(in	C#):

var	hugeBooks	=	from	b	in	books
								where	b.NumberOfPages	>=	1000
								select	b;
foreach	(var	book	in	hugeBooks)	{
		Console.WriteLine(book.title	+	"	is	a	huge	book");
}

Retention	Questions

What	are	some	commonly	used	universal	database	APIs?

Give	an	example	of	a	call-level	universal	API	and	an	embedded	one.
Which	is	more	in	use	these	days?	Why?

Explain	the	general	set-up	of	ODBC;	which	functionality	does	it
expose?

Explain	the	general	set-up	of	JDBC;	which	functionality	does	it
expose?

Is	an	embedded	API	the	same	as	an	embedded	DBMS?	Why/why	not?

What	is	meant	by	language-integrated	querying?

List	some	of	the	main	differences	between	ADO.NET	and	its
predecessors.

15.4	Object	Persistence	and	Object-Relational
Mapping	APIs

So	far,	we	have	discussed	several	universal	API	technologies	that	can	be	used	by
client	applications	to	access	a	variety	of	databases	and	even	other	data	sources.
We	observe	 that	many,	 recent,	API	 technologies	such	as	JDBC	and	ADO.NET
represent	 database-related	 entities,	 such	 as	 fields,	 records,	 tables,	 in	 an	 object-
oriented	 (OO)	 fashion,	 which	 makes	 it	 easy	 to	 integrate	 such	 entities	 in	 host
applications	 already	 following	 an	 OO	 paradigm,	 which	 makes	 up	 a	 large
proportion	of	applications	written	nowadays.

Instead	 of	 representing	 data-source	 related	 entities,	 such	 as	 a	 DataSet	 or
ResultSet	and	so	on,	in	a	series	of	objects,	one	might	also	wonder	if	it	is	possible
to	 approach	 this	 task	 from	 another	 angle.	 That	 is,	we	might	want	 to	 represent
domain	 entities,	 such	 as	 Book,	 Author,	 and	 so	 on,	 as	 plain	 objects	 using	 the
representational	 capabilities	 and	 syntax	 of	 the	 programming	 language	 at	 hand.
These	objects	can	 then	be	persisted	behind	 the	scenes	 to	a	database	or	another
data	 source.	 It	 is	 exactly	 this	 approach	 that	 is	 described	 when	 we	 talk	 about
object	persistence.

Connections

Object	persistence	was	already	 introduced	 in	Chapter	8.	 In	 this	 section
we	further	explore	common	object	persistence	APIs.

Note	 that	 language-integrated	query	 technologies	(see	 jOOQ	and	LINQ	in
the	previous	 section)	apply	similar	 ideas,	namely	 to	use	 the	host	programming

language’s	 validation	 and	 type	 safety	 checks,	 and	 OO	 structures	 to	 express
queries	directly	within	the	host	language	environment,	without	resorting	to	a	pre-
compiler	 or	 SQL	 statements	 expressed	 as	 strings.	 We	 will	 see	 how	 object
persistence	APIs	go	a	step	further,	as	they	also	describe	the	full	business	domain
(i.e.,	the	definition	of	data	entities)	within	the	host	language.

Nevertheless,	 to	allow	for	efficient	querying	and	retrieval	of	objects,	such
entities	are	 frequently	mapped	 to	a	 relational	database	model	using	a	 so-called
object-relational	 mapper	 (ORM),	 which	 we	 will	 also	 discuss	 in	 more	 detail
below.	It	is	not	strictly	necessary	to	utilize	an	ORM	when	utilizing	the	concept	of
object	 persistence	 (one	might	 just	 as	well	 serialize	 objects	 in	 plain	 text,	XML
files,	 or	 an	OODBMS),	 though	most	APIs	 tightly	 couple	 both	 concepts	 as	 the
efficiency	and	speed	of	relational	DBMSs	can	then	still	be	leveraged	to	offer	fast
object	storage,	retrieval,	and	modification,	as	well	as	guaranteeing	transactional
safety	over	such	operations.

15.4.1	Object	Persistence	with	Enterprise	JavaBeans

Given	Java’s	strong	focus	on	OO	programming	and	early	support	for	strong	data
access	 fundamentals	 (e.g.,	 through	 JDBC),	 as	 well	 as	 its	 focus	 on	 enterprise
environments,	 it	 is	 no	 wonder	 that	 Java’s	 ecosystem	 was	 an	 early	 adopter	 of
object	persistence,	built	 on	 top	of	Enterprise	JavaBeans	(EJB).	A	 Java	Bean
(or	Bean	 for	 short)	 is	 Java’s	 term	 to	 refer	 to	 re-usable,	modular,	OO	 software
components.	 Enterprise	 JavaBeans	 are	 “business”	 components	 that	 run	 within
the	 Java	 Enterprise	 Edition	 (Java	 EE)	 platform.	 Java	 EE	 defines	 an	 open
application	model	to	develop	n-tiered	business	applications,	and	is	composed	of
several	 tiers	 or	 layers.	 The	 “client	 tier”	 contains	 client-side	 functionality.	 This
can	be	a	“standalone”	Java	application,	a	web	browser,	or	a	Java	applet,	which	is
a	 piece	 of	 Java	 code	 running	 in	 a	web	 browser.	 The	 “web	 tier”	 defines	 web-
oriented	 functionality,	which	can	act	 as	 a	bridge	between	 the	 client	 tier	 (if	 the
client	tier	consists	of	a	web	browser)	and	the	“business	tier”,	which	contains	the
actual	 business	 logic	 (i.e.,	 the	 Enterprise	 JavaBeans).	 The	 final	 “enterprise
information	 system”	 tier	 contains	 the	 database	 system	 and	 other	 data	 stores.
Figure	15.11	summarizes	Java	EE’s	tiered	architecture.

Figure	15.11	Java	EE	application	model	overview.

One	of	the	main	objectives	of	the	Java	EE	application	model	is	to	establish
a	 clear	 decoupling	 between	 business	 logic	 and	 client	 applications,	 hence
supporting	 re-usability	 and	allowing	EJB	components	 to	be	 accessed	 and	used
by	several	 types	of	client	applications	and	web	services.	Note	that	 the	Java	EE
platform	 also	 defines	 interfaces	 to	 handle	 email,	 XML	 processing,	 security
aspects,	etc.,	which	are	not	discussed	in	full	here.

As	 was	 already	 stated,	 Enterprise	 JavaBeans	 expand	 the	 concept	 of	 Java
Beans,	 which	 encapsulate	 a	 piece	 of	 re-usable,	 modular	 logic.	 Beans	 are
essentially	 nothing	 more	 than	 a	 normal	 Java	 class	 definition,	 following	 some

additional	 rules.	 Beans	 must	 expose	 a	 default	 constructor	 without	 arguments
(this	makes	it	easy	for	outside	frameworks	to	instantiate	Beans	–	see	the	example
below),	their	class	properties	must	be	accessible	using	getter	and	setter	methods
according	 to	 a	 standard	 naming	 convention	 (this	 allows	 easy	 inspection	 and
updating	 of	 such	 properties	 by	 outside	 frameworks),	 and	 the	 class	 should	 be
serializable,	so	outside	frameworks	can	reliably	store	and	restore	a	Bean’s	state.
The	following	code	sample	shows	a	simple	Java	Bean	definition:

public	class	BookBean	implements	java.io.Serializable	{

		private	String	title	=	null;
		private	int	numPages	=	0;
		private	boolean	inStock	=	false;

		/*	Default	constructor	without	arguments	*/

		public	BookBean()	{
		}

		/*	Getters	and	setters	*/

		public	String	getTitle()	{
				return	title;
		}
		public	void	setTitle(String	value)	{
				this.title	=	value;
		}
		public	boolean	isInStock()	{
				return	inStock;
		}
		public	void	setInStock(boolean	value)	{
				this.inStock	=	value;

		}
		public	int	getNumPages()	{
				return	numPages;
		}
		public	void	setNumPages(int	value)	{
				this.numPages	=	value;
		}
}

Once	a	Java	Bean	is	defined,	outside	frameworks	know	how	to	access	and
modify	its	properties.	The	following	JavaServer	Page	code	fragment	shows	how
the	Bean	 above	 can	 be	 accessed	 to	 generate	 an	HTML	page	with	 information
from	the	Bean.

<jsp:useBean	id="book"	class="BookBean"	scope="page"/>
<html>
<body>
	Title:	<jsp:getProperty	name="book"	property="title"/>

	Still	in	stock?	<jsp:getProperty	name="book"	property="inStock"/>

</body>
</html>

Drill	Down

JavaServer	Pages	(JSP)	is	a	Java-based	technology	to	create	dynamically
generated	web	pages.

The	 EJB	 standard	 extends	 the	 concept	 of	 Java	 Beans	 to	 utilize	 these
components	in	a	server	environment.

The	 objective	 behind	 EJB	 is	 to	 define	 enterprise	 Java	 Beans	 that	 can	 be
easily	“plugged	into”	a	server	environment	to	extend	its	functionality.	Enterprise
Beans	 contain	 modular,	 re-usable	 pieces	 of	 business	 logic,	 such	 as	 how	 to
calculate	a	book’s	price	after	applying	a	discount,	to	get	a	list	of	available	books
and	 so	on.	The	 following	 code	 snippet	 shows	 an	 example	of	 a	 simple	 random
number	generator	service	enterprise	Java	Bean:

@Stateless
public	class	RandomNumberGeneratorService	{
	private	Random	rand	=	new	Random();
	public	int	generateRandomNumber(int	min,	int	max)	{
			return	rand.nextInt((max	-	min)	+	1)	+	min;
	}
}

Note	 the	 use	 of	 Java	 annotations	 (such	 as	 @Stateless)	 to	 describe	 the
various	EJB-related	aspects	and	metadata	of	 the	enterprise	Bean.	For	example,
@Stateless	indicates	that	no	“conversation”	should	be	kept	open	with	the	client
application,	i.e.,	that	this	class	is	a	stateless	session	Bean,	as	it	will	be	called	later
in	this	chapter.

Other	components	can	then	utilize	this	Bean	as	follows:

public	class	ServiceTest	{
		@EJB	//	This	annotation	injects	the	service	bean
		private	RandomNumberGeneratorService	randService;

		public	void	testGenerator()	{
			int	randomNumber	=	randService.generateRandomNumber(1,3);
			System.out.println("Random	number"	+	randomNumber);
		}
}

The	 initial	versions	of	EJB	discriminate	between	 three	 types	of	enterprise
Beans:	 session	Beans,	message-driven	Beans,	 and	entity	Beans.	Session	Beans
are	Beans	that	perform	a	task	for	a	client.	They	represent	a	transient	(hence	non-
persistent)	object	that	handles	part	of	the	business	logic	of	an	application.	Every
instance	of	a	session	Bean	is	bound	to	a	specific	client,	and	–	in	most	cases	–	has
a	 short-lived	 timespan.	 Session	 Beans	 can	 be	 stateless	 or	 stateful.	 A	 stateless
session	Bean	does	not	maintain	a	conversational	 state	with	 the	client,	meaning
that	 when	 a	 client	 invokes	 a	 method	 of	 a	 stateless	 Bean,	 the	 Bean’s	 instance
variables	may	contain	a	state	specific	to	that	client,	but	only	for	the	duration	of
the	invocation.	When	the	method	call	is	finished,	the	client-specific	state	is	not
retained.	In	a	stateful	session	Bean,	the	instance	variables	represent	the	state	of	a
unique	client–Bean	conversational	session,	which	is	retained	for	the	full	duration
of	the	client–Bean	interaction.	If	the	client	removes	the	Bean	or	terminates,	the
session	ends,	and	the	state	disappears.	Note	that	the	EJB	container	(i.e.,	the	EJB
server	 managing	 the	 EJB	 components)	 will	 often	 be	 configured	 to	 re-use
stateless	session	Beans	over	multiple	invocations	from	different	clients,	 instead
of	 destroying	 and	 setting	 up	 a	 new	 stateless	 session	Bean	 for	 each	 call.	 Even
although	the	latter	approach	is	possible,	as	stateless	session	Beans	by	definition
do	 not	 assume	 or	 keep	 track	 of	 state	 over	 separate	 calls	 and	 hence	 can	 be
removed	and	re-instantiated	at	will,	keeping	them	around	over	multiple	calls	can
easily	support	many	clients	or	rapid	calls.	In	this	way,	the	overhead	induced	by
new	Bean	instantiations	can	be	avoided.	Stateless	session	Beans	therefore	often
provide	better	scalability	than	their	stateful	counterparts.

A	message-driven	Bean	–	the	second	enterprise	Bean	type	–	allows	Java	EE
applications	 to	 process	 messages	 in	 an	 asynchronous	 manner.	 In	 terms	 of
functionality,	message-driven	Beans	are	comparable	 to	 stateless	 session	Beans,
with	 the	 most	 important	 difference	 being	 that	 clients	 access	 message-driven
Beans	 by	 sending	 an	 asynchronous	 message,	 meaning	 that	 the	 client	 will	 not

block	and	wait	until	a	reply	comes	in.	This	is	in	contrast	to	session	Beans,	which
are	invoked	synchronously	through	(remote)	procedure	calls.

Contrary	 to	 session	 Beans,	 which	 represent	 a	 conversion	 with	 a	 client
invoking	a	certain	piece	of	business	logic	and	are	short-lived,	entity	Beans	(the
third	 type	 of	 enterprise	 Beans6)	 are	 persistent.	 These	 Beans	 represent	 the	 OO
incarnation	 of	 business	 entities,	 such	 as	 a	 Book,	 a	 Customer,	 or	 an	 Order.
Contrary	 to	session	Beans,	entity	Beans	are	not	bound	 to	a	specific	client,	and
their	information	should	be	retained	(i.e.,	persisted)	even	after	the	application	is
stopped.	Two	approaches	exist	to	ensure	such	persistence.	The	first,	called	Bean-
managed	persistence	(BMP),	leaves	the	implementation	of	the	actual	persistence
code	 up	 to	 the	 programmer	 of	 the	 entity	 Bean	 itself,	 meaning	 that	 the	 Bean
implementation	will	contain	code	(using	JDBC,	in	most	cases)	to	persist	its	state
into,	 for	 instance,	a	 relational	database	 in	 the	EIS	 tier.	However,	 implementing
such	 code	 can	 be	 a	 daunting,	 repetitive	 task.	 A	 second	 approach,	 called
container-managed	 persistence	 (CMP),	 delegates	 this	 responsibility	 to	 the	EJB
container	(i.e.,	the	EJB	server),	which	will	generate	all	necessary	database	calls
behind	 the	 scenes	 to	 retrieve	 and	 persist	 objects.	 The	 application	 programmer
can	then	fully	think	in	terms	of	objects	and	does	not	have	to	concern	him/herself
with	writing	SQL.	In	addition,	it	is	possible	to	indicate	which	fields	of	the	object
should	 not	 be	 persisted,	 as	 well	 as	 how	 the	 primary	 key,	 forming	 the	 unique
identifier	 for	 an	 object,	 should	 be	 composed.	 The	 following	 class	 provides	 an
illustration	of	an	(EJB	2)	entity	Bean	definition	using	CMP:

public	abstract	BookBean	implements	javax.ejb.EntityBean	{
			//	instance	fields	(by	default,	these	will	not	be	persisted)
			EntityContext	ejbContext;
			String	thisWillNotBePersisted;

			//	container-managed	persistent	fields	are	defined	as	abstract	getters	

and	setters
			public	abstract	void	setTitle(String	value);
			public	abstract	String	getTitle();
			public	abstract	void	setNumPages(int	value);
			public	abstract	int	getNumPages();

			//	container-managed	relationships
			public	abstract	void	setAuthor(Author	value);
			public	abstract	Author	getAuthor();
}

This	 code	 sample	 also	 illustrates	 another	 aspect	 of	 CMP,	 namely	 the
possibility	 to	 automatically	 manage	 relationships	 between	 entities,	 called
container-managed	relationships	(CMR).	When	using	CMR,	one-to-one,	one-to-
many,	many-to-one,	and	many-to-many	relationships	will	be	maintained	by	the
container.	 For	 instance,	 the	 setAuthor	 method	 in	 the	 example	 above	 will	 be
managed	 so	 the	 container	 updates	 all	 necessary	 foreign	 key	 fields,	 embodying
the	relationship	between	books	and	authors,	in	the	underlying	DBMS.

15.4.2	Object	Persistence	with	the	Java	Persistence	API

We	 have	 discussed	 a	 particular	 version	 of	 the	 EJB	 standard	 (EJB	 2.0).	 As
practitioners	realized	that	many	of	the	original	EJB	value	propositions	felt	over-
engineered,	 and	 simpler	 enterprise	 frameworks	 such	 as	 Spring	 (an	 application
framework)	 and	 Hibernate	 (to	 handle	 object	 persistence	 through	 object-
relational	mapping)	came	along,	the	need	to	update	the	EJB	specification	arose.
Accordingly,	 the	 EJB	 3.0	 specification	 is	 a	 radical	 departure	 from	 its
predecessors.	It	is	heavily	inspired	by	alternative	application	frameworks	such	as
Spring	in	its	use	of	“plain	old	Java	objects”	(POJOs),	rather	than	a	verbose	and
at	 times	 confusing	 combination	 of	 Java	 Beans	 and	 XML-based	 configuration
files.7	 The	 Java	 Persistence	 API	 then	 forms	 the	 replacement	 for	 the	 entity
Beans	 in	 EJB	 3.0,	 which	 were	 removed	 altogether	 from	 this	 version	 of	 the
standard.

Drill	Down

Gavin	King,	creator	of	the	Hibernate	persistence	framework,	participated
in	the	EJB	3.0	process	and	was	one	of	the	driving	factors	behind	the	new
Java	Persistence	API	(JPA).

Instead,	 the	 EJB	 3.0	 specification	 combines	 simple	 POJOs	 with	 an
exhaustive	 set	 of	 annotations,	 replacing	 the	 verbose,	 cumbersome	 XML
configuration	files.8	 JPA	allows	POJOs	 to	be	easily	persisted	without	 requiring
the	 classes	 to	 implement	 any	 interfaces	 or	 methods	 as	 the	 EJB	 2.0	 CMP
specification	 required.	 In	 this	 way,	 the	 strengths	 of	 CMP	 are	 retained

(transparent	object	persistence	through	object-relational	mapping),	but	in	a	much
more	lightweight	fashion.

Note	 that	 JPA	 itself	 is	 just	 a	 specification	defining	a	 set	of	 interfaces	 and
annotations,	 and	 hence	 requires	 an	 implementation	 to	 perform	 any	 actual
persistence.	 Currently,	 most	 of	 the	 persistence	 vendors	 have	 released
implementations	of	JPA,	confirming	its	adoption,	including	Hibernate	(now	part
of	 Red	 Hat),	 TopLink	 (Oracle),	 Kodo	 JDO	 (also	 by	 Oracle),	 Cocobase,	 and
JPOX.

In	 this	section	we	 take	a	closer	 look	at	JPA.	As	said,	JPA	defines	a	set	of
annotations	 that	 adds	 persistence-aware	 functionality	 to	 any	 plain	 Java	 object.
Table	15.2	enumerates	some	common	annotations.

Table	15.2	Common	annotations	defined	in	the	Java	Persistence	API

Annotation Description

@Entity Declares	a	persistent	POJO	class.

@Table Allows	one	to	explicitly	specify	the	name	of	the	relational	table
to	map	the	persistent	POJO	class	to.

@Column Allows	one	to	explicitly	specify	the	name	of	the	relational	table
column.

@Id Maps	a	persistent	POJO	class	field	to	a	primary	key	of	a
relational	table.

@Transient Allows	one	to	define	POJO	class	fields	that	are	transient	and
should	not	be	made	persistent.

We	will	use	these	in	a	simple	code	example	illustrating	an	application	with
two	class	definitions	representing	entities:

import	java.util.List;
import	javax.persistence.*;

@Entity	//	Book	is	an	entity	mapped	to	a	table
@Table
public	class	Book	{
				@Id	//	Use	id	as	the	primary	key
				//	Generate	id	values	automatically:
				@GeneratedValue(strategy	=	GenerationType.AUTO)
				private	int	id;
				private	String	title;
				//	Define	a	many-to-many	relation
				@ManyToMany(cascade	=	{CascadeType.ALL})
				private	List<Author>	authors;
				public	Book(String	title)	{
										setTitle(title);
				}
				public	String	getTitle()	{
										return	title;
				}
				public	void	setTitle(String	title)	{
										this.title	=	title;
				}
				public	List<Author>	getAuthors()	{
										return	authors;
				}
				public	void	setAuthors(List<Author>	authors)	{
										this.authors	=	authors;
				}
				public	String	toString()	{
										String	r	=	"Book	[id="	+	id	+	",	title="	+	title	+	"]";
										for	(Author	a	:	getAuthors())	{
																r	+=	"\nBy	author:	"+a.toString();

										}
										return	r;
				}
}
import	java.util.List;
import	javax.persistence.*;
@Entity
@Table
public	class	Author	{
				@Id
				@GeneratedValue(strategy	=	GenerationType.AUTO)
				private	int	id;
				private	String	name;
				//	Many-to-many	relation	in	the	other	direction
				@ManyToMany(cascade	=	{CascadeType.ALL})
				private	List<Book>	books;
				public	Author(String	name)	{
										setName(name);
				}
				public	String	getName()	{
										return	name;
				}
				public	void	setName(String	name)	{
										this.name	=	name;
				}
				public	List<Book>	getBooks()	{
										return	books;
				}
				public	void	setBooks(List<Book>	books)	{
										this.books	=	books;
				}
				public	String	toString()	{
										return	"Author	[id="	+	id	+	",	name="	+	name	+	"]";

				}
}

The	simplicity	of	JPA	should	become	immediately	apparent	here.	By	using
a	handful	of	annotations,	we	have	specified	two	persistable	entities,	linked	with
each	 other	 through	 a	 many-to-many	 relation.	 Hibernate	 and	 other	 JPA
implementations	will	be	smart	enough	to	handle	the	setting	up	of	an	intermediate
cross-table	for	us.

Next,	 we	 still	 use	 a	 single	 “persistence.xml”	 XML	 file	 to	 specify	 global
configuration	options.	We	have	set	up	this	example	to	use	Hibernate	(one	of	the
popular	implementations	of	the	JPA	standard)	together	with	Derby,	an	embedded
DBMS	written	in	Java	itself,	created	in	memory	for	the	purpose	of	this	example:

<persistence	xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"

version="2.0"	xmlns="http://java.sun.com/xml/ns/persistence">
<persistence-unit	name="app">
	<!--	We	have	the	following	persistable	classes:	-->
	<class>Book</class>
	<class>Author</class>
	<!--	Settings	to	connect	to	the	database	-->
	<properties>
		<property	name="hibernate.archive.autodetection"	value="class"	/>
		<property	name="hibernate.connection.driver_class"
							value="org.apache.derby.jdbc.EmbeddedDriver"	/>
		<property	name="hibernate.connection.url"
							value="jdbc:derby:memory:myDB;create=true"	/>
		<property	name="hibernate.show_sql"	value="true"	/>
		<property	name="hibernate.flushMode"	value="FLUSH_AUTO"	/>
		<property	name="hibernate.hbm2ddl.auto"	value="create"	/>

</properties>
</persistence-unit>
</persistence>

Next,	 a	 simple	 test	 class	 is	 created	 in	which	we	 set	 up	 an	EntityManager
object	and	insert	some	newly	created	objects.	The	EntityManager	is	responsible
to	create	and	remove	persistent	entity	instances	(i.e.,	objects):

import	java.util.ArrayList;
import	javax.persistence.*;
public	class	Test	{
					public	static	void	main(String[]	args)	{
												EntityManagerFactory	emfactory	=
							Persistence.createEntityManagerFactory("app");
												EntityManager	entitymanager	=	
emfactory.createEntityManager();
												entitymanager.getTransaction().begin();
												final	Author	author1	=	new	Author("Seppe	vanden	Broucke");
												final	Author	author2	=	new	Author("Wilfried	Lemahieu");
												final	Author	author3	=	new	Author("Bart	Baesens");
												final	Book	book	=	new	Book("My	first	book");
												book.setAuthors(new	ArrayList<Author>(){{
																			this.add(author1);
																			this.add(author2);
												}});
												//	Persist	the	book	object,	the	first	two	authors	will	be
												//	persisted	as	well	as	they	are	linked	to	the	book
												entitymanager.persist(book);
												entitymanager.getTransaction().commit();
												System.out.println(book);
												//	Now	persist	author3	as	well
												entitymanager.persist(author3);
												entitymanager.close();

												emfactory.close();
					}
}

When	the	above	is	run,	the	following	output	appears:

Hibernate:	create	table	Author	(id	integer	not	null,	name	varchar(255),	
primary	key	(id))
Hibernate:	create	table	Author_Book	(Author_id	integer	not	null,	
books_id	integer	not	null)
Hibernate:	create	table	Book	(id	integer	not	null,	title	varchar(255),	
primary	key	(id))
Hibernate:	create	table	Book_Author	(Book_id	integer	not	null,	
authors_id	integer	not	null)
Hibernate:	alter	table	Author_Book	add	constraint	
FK3wjtcus6sftdj8dfvthui6335	foreign	key	(books_id)	references	Book
Hibernate:	alter	table	Author_Book	add	constraint	
FKo3f90h3ibr9jtq0u93mjgi5qd	foreign	key	(Author_id)	references	
Author
Hibernate:	alter	table	Book_Author	add	constraint	
FKt42qaxhbq87yfijncjfrs5ukc	foreign	key	(authors_id)	references	
Author
Hibernate:	alter	table	Book_Author	add	constraint	
FKsbb54ii8mmfvh6h2lr0vf2r7f	foreign	key	(Book_id)	references	
Book
Hibernate:	values	next	value	for	hibernate_sequence
Hibernate:	values	next	value	for	hibernate_sequence
Hibernate:	insert	into	Book	(title,	id)	values	(?,	?)
Hibernate:	insert	into	Author	(name,	id)	values	(?,	?)
Hibernate:	insert	into	Book_Author	(Book_id,	authors_id)	values	(?,	
?)
Book	[id=1,	title=My	first	book]
By	author:	Author	[id=0,	name=Seppe	vanden	Broucke]

Author	[id=1,	name=Wilfried	Lemahieu]
Hibernate:	values	next	value	for	hibernate_sequence
Author	[id=2,	name=Bart	Baesens]
Hibernate:	insert	into	Author	(name,	id)	values	(?,	?)

Notice	 how	Hibernate	 automatically	 creates	 our	 table	 definitions,	 and	 persists
the	objects.

So	 far,	 we	 have	 seen	 how	 JPA	 supports	 modification	 and	 persistence	 of
objects,	 but	 the	 standard	 naturally	 also	 includes	 functionality	 to	 query	 and
retrieve	stored	entities,	also	through	the	EntityManager.	The	EntityManager.find
method	is	used	to	look	up	entities	in	the	data	store	by	the	entity’s	primary	key:

entitymanager.find(Author.class,	2)

The	EntityManager.createQuery	method	can	be	used	to	query	the	datastore
using	Java	Persistence	query	language	queries:

entitymanager.createQuery(
				"SELECT	c	FROM	Author	c	WHERE	c.name	LIKE	:authName")
																.setParameter("authName",	"%vanden%")
																.setMaxResults(10)
																.getResultList()

The	JPA	query	language	(JPQL)	closely	resembles	SQL,	including	support
for	 SELECT,	 UPDATE,	 and	 DELETE	 statements	 (with	 FROM,	 WHERE,
GROUP	 BY,	 HAVING,	 ORDER	 BY,	 and	 JOIN	 clauses).	 However,	 JPQL	 is
simpler	than	SQL	–	it	does	not,	for	instance,	support	UNION,	INTERSECT,	and
EXCEPT	 clauses.	Why,	 then,	 the	 need	 for	 JPQL?	 The	 reason	 has	 to	 do	 with
portability.	Contrary	to	earlier	approaches	and	universal	APIs,	where	it	was	–	in
theory	–	easy	to	migrate	an	application	to	a	different	DBMS,	differences	in	SQL
support	might	still	cause	a	client	application	to	fail	in	new	DBMS	environments.

JPQL	 tries	 to	 prevent	 this	 by	 inserting	 itself	 as	 a	 more	 pure,	 vendor-agnostic

SQL,	and	will	translate	JPQL	queries	to	appropriate	SQL	statements.	Note	that	it
is	also	still	possible	to	use	raw	SQL	statements	should	you	wish	to	do	so,	using
the	createNativeQuery	method:

entitymanager.createNativeQuery(
		"SELECT	*	FROM	Author",
		Author.class).getResultList();

Like	 call-level	APIs	 discussed	 earlier,	 JPA	does	 not	 support	 compile-time
checking	 and	 validation	 of	 queries.	 In	 other	 words,	 the	 following	 code	 will
compile	fine:

entitymanager.createQuery(
				"SELECT	c	FROM	Author	c	WHERE	c.INVALID	LIKE	
:authName")
																.setParameter("authName",	2)
																.setMaxResults(10)
																.getResultList()

but	will	spawn	a	runtime	error	once	the	application	is	run:

Exception	in	thread	"main"	java.lang.IllegalArgumentException:	
org.hibernate.QueryException:	could	not	resolve	property:	INVALID	
of:	Author	[SELECT	c	FROM	Author	c	WHERE	c.INVALID	LIKE	
:authName]

A	 case	 can	 still	 be	 made	 for	 language-integrated	 query	 technologies	 as
discussed	earlier	 in	 this	chapter.	Note	 that	QueryDSL,	a	Java	project	aiming	to
enrich	 Java	 with	 language-integrated	 querying	 capability	 (see	 above),	 is	 also
able	to	work	together	with	JPA:

JPQLQuery	query	=	new	JPAQuery(entityManager);
QAuthor	author	=	QAuthor.author;
Author	seppe	=	query.from(author)
	.where(author.name.eq("Seppe	vanden	Broucke"))
	.uniqueResult(author);

15.4.3	Object	Persistence	with	Java	Data	Objects

Just	 as	 JPA,	 the	 Java	 Data	 Objects	 (JDO)	 API	 also	 arose	 from	 the	 failed
adoption	of	the	ODMG	standard	and	the	desire	to	“break	out”	object	persistence
capabilities	from	EJB.	Unlike	JPA,	which	is	primarily	targeted	toward	relational
DBMS	data	stores,	JDO	is	agnostic	to	the	technology	of	the	data	store	used.9	To
illustrate	this,	we	will	give	an	example	of	how	JDO	can	be	used	to	work	with	an
OODBMS,10	ObjectDB	in	this	case.

Connections

The	ODMG	standard,	which	evolved	from	a	standard	for	OODBMSs	to
a	specification	for	object	persistence,	was	discussed	in	Chapter	8.

When	using	JDO,	the	first	step	is	to	define	the	properties	to	connect	to	the
underlying	data	store	using	a	Properties	object	as	follows	(note	that	here	too,	an
XML	file	can	be	used	to	initialize	JDO):

Properties	props	=	new	Properties();
props.setProperty("javax.jdo.PersistenceManagerFactoryClass",	"	
				com.objectdb.jdo.PMF");
props.setProperty("javax.jdo.option.ConnectionURL",	
				"objectdb://localhost/employee.odb");
props.setProperty("javax.jdo.option.ConnectionUserName",	"root");
props.setProperty("javax.jdo.option.ConnectionPassword",	
"mypassword123");

Here	you	can	see	we	connect	to	an	underlying	ObjectDB	OODBMS.	In	the
event	 that	 it	 does	 not	 exist	 yet,	 it	 will	 be	 created	 as	 soon	 as	we	 start	making

objects	 persistent.	 A	 JDO	 application	 then	 continues	 by	 creating	 a
PersistenceManager	 object	 using	 the	 PersistenceManagerFactory	 class	 as
follows:

PersistenceManagerFactory	pmf	=
					JDOHelper.getPersistenceManagerFactory(props);
PersistenceManager	pm	=	pmf.getPersistenceManager();

The	 PersistenceManager	 object	 will	 supervise	 the	 persistence,	 update,
deletion,	and	retrieval	of	objects	from	the	underlying	data	store.

Earlier	 versions	 of	 JDO	 used	 XML	 metadata	 files	 stored	 at	 predefined
locations	 to	 specify	 the	 persistence	 options.	 Newer	 versions	 support	 Java
annotations	 whereby	 Java	 classes	 can	 be	 annotated	 to	 further	 fine-tune	 their
persistence	options,	similarly	as	done	by	JPA.	JDO	defines	the	@Persistent	and
@NotPersistent	annotations	 to	 indicate	which	fields	are	persistent,	whereas	 the
@PrimaryKey	annotation	can	be	used	to	indicate	the	primary	key.	Consider	the
following	example	to	illustrate	this:

import	java.util.Date;
import	java.time.*;
import	javax.jdo.annotations.IdGeneratorStrategy;
import	javax.jdo.annotations.PersistenceCapable;
import	javax.jdo.annotations.Persistent;
import	javax.jdo.annotations.PrimaryKey;
@PersistenceCapable
public	class	Employee	{
		@PrimaryKey
		@Persistent(valueStrategy	=	IdGeneratorStrategy.IDENTITY)
		private	long	key;
		@Persistent
		private	String	firstName;

		@Persistent
		private	String	lastName;
		@Persistent
		private	Date	birthDate;
		private	int	age;	//	This	attribute	will	not	be	persisted
		public	Employee(String	firstName,	String	lastName,	Date	birthDate)	
{
				this.firstName	=	firstName;
				this.lastName	=	lastName;
				setBirthDate(birthDate);
		}
		public	Key	getKey()	{
				return	key;
		}
		public	String	getFirstName()	{
				return	firstName;
		}
		public	void	setFirstName(String	firstName)	{
				this.firstName	=	firstName;
		}
		public	String	getLastName()	{
				return	lastName;
		}
		public	void	setLastName(String	lastName)	{
				this.lastName	=	lastName;
		}
		public	Date	getBirthDate()	{
				return	birthDate;
		}
		public	void	setBirthDate(Date	birthDate)	{
				this.birthDate	=	birthDate;
				LocalDate	today	=	LocalDate.now();
				LocalDate	birthday	=	birthDate.toInstant()

																											.atZone(ZoneId.systemDefault()).toLocalDate();
				Period	p	=	Period.between(birthday,	today);
				this.age	=	p.getYears();
		}
		public	int	getAge()	{
				return	age;
		}
}

The	Java	class	definition	starts	by	 importing	all	 the	necessary	classes	and
definitions	 including	 the	 JDO	 classes	 provided	 by	 the	 ObjectDB	 vendor	 and
packaged	 in	 javax.jdo.	 The	 Employee	 class	 has	 four	 variables	 that	 will	 be
persisted:	a	unique	key,	the	firstName,	the	lastName,	and	the	birth	date,	as	well
as	one	variable	that	will	not	(the	age,	which	can	be	calculated	from	the	birth	date
and	 hence	 does	 not	 need	 to	 be	 persisted).	 To	 implement	 the	 concept	 of
encapsulation,	the	Employee	class	also	has	getter	and	setter	methods	for	each	of
these	variables.	Note	that	JDO	will	not	use	these,	but	your	application	obviously
can.	The	property	valueStrategy	=	IdGeneratorStrategy.IDENTITY	specifies	that
the	next	value	of	the	key	will	automatically	be	created	by	the	system,	whereby
uniqueness	is	ensured.

The	 below	 example	 illustrates	 how	 an	 Employee	 object	 can	 be	 made
persistent	in	the	underlying	data	store.	We	first	initiate	a	transaction	by	creating	a
Transaction	 object.	 The	 makePersistent	 method	 can	 then	 be	 called	 on	 the
Employee	 object	 to	 make	 it	 persistent.	 JDO	 implements	 persistence	 by
reachability,	so	if	the	Employee	object	refers	to	other	objects	then	those	will	be
made	 persistent	 as	 well.	 The	 makePersistent	 method	 call	 is	 synchronous,
meaning	that	 the	execution	of	 the	application	will	halt	until	 the	object(s)	 is/are
saved	 and	 any	 accompanying	 data	 store	 indexes	 updated.	 JDO	also	 includes	 a
method	makePersistentAll	to	save	multiple	objects	(e.g.,	from	a	collection).

Transaction	tx	=	pm.currentTransaction();
try	{
		tx.begin();
		Employee	myEmp	=	new	Employee(
									"Bart","Baesens",	new	Date(1975,	2,	27));
		pm.makePersistent(myEmp);
		tx.commit();
}	catch	(Exception	e)	{}
finally	{
		if	(tx.isActive())	{
				tx.rollback();
		}
		pm.close();
}

Once	 created	 and	 stored,	 objects	 can	 be	 queried	 in	 various	ways.	A	 first,
straightforward,	way	is	to	retrieve	the	entire	extent	or,	in	other	words,	all	objects
of	a	class.	This	can	be	done	as	follows:

Extent	e	=	pm.getExtent(Employee.class,	true);
Iterator	iter	=	e.iterator();
while	(iter.hasNext()){
		Employee	myEmp	=	(Employee)	iter.next();
		System.out.println("First	name:"	+	myEmp.getFirstName());
}

The	method	getExtent	is	called	on	the	PersistenceManager	object.	The	first
parameter	 indicates	 the	 class	 for	 which	 we	 would	 like	 to	 retrieve	 the	 objects
(Employee.class	 in	 our	 case).	 The	 second	 parameter	 is	 a	 Boolean,	 indicating
whether	 the	system	should	also	 retrieve	any	objects	of	 the	subclasses.	 In	other
words,	if	we	would	have	a	subclass	Manager	of	Employee,	then	the	method	call
pm.getExtent(Employee.class,	true)	would	also	retrieve	all	Manager	objects.

Like	JPA,	JDO	comes	with	a	query	 language	called	JDOQL	or	 Java	Data
Objects	Query	Language.	It	basically	supports	two	types	of	queries:	declarative
and	single-string	queries.	A	declarative	query	can	be	defined	as	follows:

Query	q	=	pm.newQuery(Employee.class,	"lastName	==	last_name");
q.declareParameters("string	last_name");
List	results	=	(List)	q.execute("Smith");

This	 query	 retrieves	 all	 the	 employee	 objects	 for	 which	 the	 lastName	 is
Smith.	The	results	are	stored	in	a	list	object	that	can	then	be	further	processed	by
the	Java	application.

We	can	also	formulate	this	query	as	a	single-string	query,	as	follows:

Query	q	=	pm.newQuery(
			"SELECT	FROM	Employee	WHERE	lastName	==	last_name"	+
			"	PARAMETERS	string	last_name");
List	results	=	(List)	q.execute("Smith");

15.4.4	Object	Persistence	in	Other	Host	Languages

Java	 is	 not	 the	 only	 programming	 language	 whose	 ecosystem	 offers	 object
persistence	APIs	 through	 the	 concept	 of	ORM.	The	Ruby	 on	Rails	 ecosystem
has	made	heavy	use	of	the	ActiveRecord	library,	and	–	according	to	some	–	was
one	 of	 the	 driving	 factors	 behind	 the	 uptake	 of	 ORM	 libraries.	 The	 .NET
framework	 also	 comes	 with	 the	 Entity	 Framework	 (EF),	 an	 object-relational
mapper	that	enables	.NET	developers	to	work	with	relational	data	using	domain-
specific	 objects,	 i.e.,	 comparable	with	 JPA.	The	 following	 code	 snippet	 shows
the	 EF	 through	 a	 brief	 example,	 using	 the	 so-called	 “Code-First”	 approach
(where	the	program	source	is	the	main	authority	for	the	definition	of	entity	types,
rather	than	an	existing	database):

public	class	Book
{
		public	Book()	{
		}
		public	int	BookId	{	get;	set;	}
		public	string	BookTitle	{	get;	set;	}
		public	Author	Author	{	get;	set;	}
		}
public	class	Author
{
		public	Author()	{
		}
		public	int	AuthorId	{	get;	set;	}
		public	string	AuthorName	{	get;	set;	}
		//	One-to-many	books:
		public	ICollection<Book>	Books	{	get;	set;	}
}

After	 creating	 the	 entities	 (here	 as	plain	 and	 simple	C#	class	 definitions),
EF’s	Code-First	approach	also	requires	the	definition	of	a	“context	class”,	a	class
that	will	 serve	as	 the	coordinator	 for	our	data	model.	The	context	class	 should
extend	DbContext	and	expose	DbSet	properties	for	the	types	that	you	want	to	be
part	of	the	model,	e.g.,	Book	and	Author	in	our	example:

namespace	EF_Example
{
		public	class	ExampleContext:	DbContext
		{
				public	ExampleContext():	base()
				{
				}
				public	DbSet<Book>	Books	{	get;	set;	}
				public	DbSet<Author>	Authors	{	get;	set;	}
		}
}

We	can	now	create	a	simple	program	using	our	entities	as	follows:

class	Program
{
		static	void	Main(string[]	args)
		{
				using	(var	ctx	=	ExampleContext())
				{
						Author	a	=	new	Author()	{	AuthorName	=	"New	Author"	};
						Books	b	=	new	Book()	{	BookTitle	=	"New	Book",	Author	=	a	};
						ctx.Books.Add(b);	//	No	need	to	explicitly	add	the	author
						//	as	it	is	linked	to	the	book,	it	will	be	persisted	as	well
						ctx.SaveChanges();
						//…

				}
		}
}

It	 is	worth	noting	 that	 the	EF	 is	 even	 less	verbose	 than	 the	 JPA	standard.
Behind	the	scenes,	the	EF	will	create	a	database	schema	with	two	tables,	and	set
up	primary	keys,	foreign	keys,	and	fields	with	appropriate	data	types.	This	seems
like	magic	at	first,	were	it	not	that	the	EF	relies	on	several	coding	conventions	to
pull	this	off	(rather	than	a	set	of	annotations	as	in	JPA).	For	instance,	a	primary
key	 should	 be	 defined	 as	 a	 class	 field	 name	 Id	 or	 <class	 name>Id,	 such	 as
“BookId”	and	“AuthorId”	in	the	example	above.

The	following	example	shows	an	equivalent	application	in	Python	using	the
SQLAlchemy	 library,	 showing	 a	 many-to-many	 relation.	 Here,	 the	 many-to-
many	 relation	 requires	 either	 the	 explicit	 definition	 of	 a	 separate	 association
class,	or	a	reference	to	a	table	in	the	DBMS	without	an	associated	class,	as	done
in	the	example	below:

from	sqlalchemy	import	Table,	Column,	String,	Integer,	ForeignKey
from	sqlalchemy.orm	import	relationship,	backref
from	sqlalchemy.ext.declarative	import	declarative_base
from	sqlalchemy	import	create_engine
from	sqlalchemy.orm	import	sessionmaker

Base	=	declarative_base()

book_author_table	=	Table('book_author',	Base.metadata,
		Column('book_id',	Integer,	ForeignKey('books.id')),
		Column('author_id',	Integer,	ForeignKey('authors.id'))
)
class	Book(Base):
		__tablename__	=	'books'

		id	=	Column(Integer,	primary_key=True)
		title	=	Column(String)
		authors	=	relationship("Author",
				secondary=book_author_table,
				back_populates="books")
		def	__repr__(self):
				return	'[Book:	{}	by	{}]'.format(self.title,	self.authors)
class	Author(Base):
		__tablename__	=	'authors'
		id	=	Column(Integer,	primary_key=True)
		name	=	Column(String)
		books	=	relationship("Book",
		secondary=book_author_table,
		back_populates="authors")
def	__repr__(self):
		return	'[Author:	{}]'.format(self.name)

if	__name__	==	'__main__':
		engine	=	create_engine('sqlite://')
		session_maker	=	sessionmaker()
		session_maker.configure(bind=engine)
		session	=	session_maker()
		Base.metadata.create_all(engine)

		book1	=	Book(title='My	First	Book')
		book2	=	Book(title='My	Second	Book')
		author1	=	Author(name='Seppe	vanden	Broucke')
		author2	=	Author(name='Wilfried	Lemahieu')
		author3	=	Author(name='Bart	Baesens')
		book1.authors.append(author1)
		book2.authors.append(author2)
		author3.books.append(book2)

		session.add_all([book1,	book2,	author1,	author2,	author3])
		session.flush()	#	Persist	to	DB

		query	=	session.query(Author).filter(Author.name.like('%vanden%'))
		for	author	in	query:
				print(author)
				print(author.books)

Running	this	example	will	output:

[Author:	Seppe	vanden	Broucke]
[[Book:	My	First	Book	by	[[Author:	Seppe	vanden	Broucke]]]]

Note	 that	 SQLAlchemy	 is	 an	 exhaustive	 library	 containing	 support	 for
complex	 relations,	 the	 possibility	 to	 perform	 a	 rawer	 ORM	 starting	 from	 an
existing	database	schema,	the	possibility	to	allow	for	automatic	DBMS	schema
migrations,11	and	more.	The	library	is	more	comprehensive	than	we	can	possibly
describe	here,	 and	 remains	 a	 best-in-class	 example	 for	 solid	 object	 persistence
and	ORM	support.

Finally,	 the	 following	 code	 fragment	 shows	 the	 same	 set-up	 using	 the
Python	Peewee	library:

from	peewee	import	*
from	playhouse.fields	import	ManyToManyField

db	=	SqliteDatabase('')

class	BaseModel(Model):
		class	Meta:
				database	=	db

class	Book(BaseModel):

		title	=	CharField()

		def	__repr__(self):
				return	'[Book:	{}	by	{}]'.format(self.title,	[a	for	a	in	self.authors])

class	Author(BaseModel):
		name	=	CharField()
		books	=	ManyToManyField(Book,	related_name='authors')

		def	__repr__(self):
				return	'[Author:	{}]'.format(self.name)

BookAuthor	=	Author.books.get_through_model()
if	__name__	==	'__main__':

		db.create_tables([Book,	Author,	BookAuthor])

		book1	=	Book.create(title='My	First	Book')
		book2	=	Book.create(title='My	Second	Book')
		author1	=	Author.create(name='Seppe	vanden	Broucke')
		author2	=	Author.create(name='Wilfried	Lemahieu')
		author3	=	Author.create(name='Bart	Baesens')

		book1.authors.add(author1)
		book2.authors.add(author2)
		author3.books.add(book2)

		authors	=	Author.select().where(Author.name.contains('vanden'))

		for	author	in	authors:
				print(author)
				for	book	in	author.books:
						print(book)

Retention	Questions

What	is	meant	by	object	persistence	and	object-relational	mapping?

Describe	the	Java	Persistence	API	and	its	relationship	with	Enterprise
JavaBeans.

What	is	the	difference	between	the	Java	Persistence	API	and	Java	Data
Objects?

15.5	Database	API	Summary

We	 have	 now	 seen	 how	 client	 applications	 that	 wish	 to	 utilize	 the	 services
provided	by	a	DBMS	can	use	a	wide	range	of	database	APIs	to	access	and	query
a	DBMS.	We	have	discussed	various	types	of	universal	database	APIs,	as	well	as
APIs	 that	 aim	 to	 hide	 underlying	 DBMS	 and	 SQL	 aspects	 by	 representing
domain	 entities	 as	 plain	 objects	 using	 the	 programming	 language
representational	capabilities	and	syntax,	which	can	then	be	persisted	behind	the
scenes	to	a	database	(or	another	data	source).

The	 table	 in	 the	 comparison	 box	 lists	 the	 technologies	 discussed	 in	 a
summarizing	overview	with	their	main	characteristics.

Comparison	Box

Technology

Embedded
or	call-
level

Early	or
late
binding

Objects	in
host
programming
language
represent

Data
sources

ODBC Call-level Late
binding,
though
prepared
SQL
statements
possible	as
well	as
calling

A	resultset
with	rows	of
fields

Mainly
relational
databases,
though
other
structured
tabular
sources
possible

stored
procedures

as	well

JDBC Call-level Late
binding,
though
prepared
SQL
statements
possible	as
well	as
calling
stored
procedures

A	resultset
with	rows	of
fields

Mainly
relational
databases,
though
other
structured
tabular
sources
possible
as	well

SQLJ Embedded Early
binding

A	resultset
with	rows	of
fields

Relational
databases
supporting
SQL

Language-
integrated
Query
Technologies

Use	an
underlying
call-level
API

Use	an
underlying
late-
binding
API

A	resultset
with	rows	of
fields,
sometimes
converted	to	a
plain
collection	of
objects
representing
entities

Relational
databases
supporting
SQL	or
other	data
sources

OLE	DB	and
ADO

Call-level Late
binding,
though
prepared

A	resultset
with	rows	of
fields

Mainly
relational
databases,
though

SQL
statements
possible	as
well	as
calling
stored
procedures

other
structured
tabular
sources
possible
as	well

ADO.NET Call-level Late
binding,
though
prepared
SQL
statements
possible	as
well	as
calling
stored
procedures

A	resultset
with	rows	of
fields
provided	by	a
DataReader,
or	a	DataSet:	a
collection	of
tables,	rows,
and	fields,
retrieved	and
stored	by
DataAdapters

Various
data
sources

Enterprise
JavaBeans
(EJB	2.0)

Uses	an
underlying
call-level
API

Uses	an
underlying
late-
binding
API

Java	entity
Beans	as	the
main
representation

Mainly
relational
databases,
though
other
structured
tabular
sources
possible
as	well

Java
Persistence
API	(JPA	in

Uses	an
underlying
call-level

Uses	an
underlying
late-

Plain	Java
objects	as	the
main

Mainly
relational
databases,

EJB	3.0) API binding
API

representation though
other
structured
tabular
sources
possible
as	well

Java	Data
Objects	(JDO)

Uses	an
underlying
call-level
API

Uses	an
underlying
late-
binding
API

Plain	Java
objects	as	the
main
representation

Various
data
sources

ORM	APIs
(ActiveRecord,
Entity
Framework,
SQL	Alchemy)

Use	an
underlying
call-level
API

Use	an
underlying
late-
binding
API

Plain	objects
defined	in	the
programming
language	as
the	main
representation

Relational
databases

Retention	Questions

Contrast	the	universal	APIs	discussed	in	this	chapter.	Are	they
embedded	or	call-level?	Which	types	of	databases	do	they	target,	do
they	support	early	or	late	binding?	What	do	they	expose	in	the	host
programming	language?

15.6	Database	Access	in	the	World	Wide	Web

Thanks	to	the	internet,	 the	situation	has	arisen	that	the	world’s	information	has
become	 globally	 accessible	 through	 one,	 universal	 client	 application:	 the	 web
browser.	Originally,	web	browsers	 could	only	 retrieve	HTML	documents	 from
web	servers	and	display	those,	but	with	a	growing	demand	for	more	responsive,
richer	web	 applications,	 the	 capabilities	 of	 browsers	 have	grown	 as	well,	with
the	web-first	approach	being	very	engrained	nowadays.

Drill	Down

A	nice	 illustration	of	 the	omnipresence	of	web-based	computing	 is	 that
companies	 such	 as	 Google	 are	 distributing	 an	 operating	 system
(ChromeOS)	which	 directly	 boots	 into	 a	 web	 browser	 as	 a	 computing
environment,	without	any	native	applications.

Naturally,	 the	 growing	 presence	 and	 capabilities	 of	 the	 internet	 have	 an
impact	on	DBMSs.	 In	 the	previous	 sections,	 it	was	already	 seen	how	Java	EE
and	other	n-tiered	system	architectures	make	 the	difference	between	 the	client,
web,	application,	and	DBMS	tier.	In	this	section,	we	take	a	closer	look	at	some
web	technologies	and	how	they	interact	with	DBMS	systems.

15.6.1	Introduction:	the	Original	Web	Server

As	an	 introduction,	 let	us	 first	consider	 the	most	basic	 format	by	which	a	web
browser	can	interact	with	a	web	server.	In	this	most	basic	form,	a	web	browser
will	send	HTTP	(HyperText	Transfer	Protocol)	requests	to	a	web	server,	which
will	reply	with	the	content	corresponding	with	the	URL	(the	Uniform	Resource
Locator)	the	client	requested.	To	allow	for	basic	markup	and	layout	aspects,	this
content	 is	 oftentimes	 formatted	 using	 HTML	 (HyperText	 Markup	 Language),
though	other	content	types	can	be	requested	and	retrieved	as	well,	such	as	XML,
JSON,	YAML,	plain	 text,	 or	 even	multimedia	 formats.	Figure	15.12	 illustrates
this	basic	web	client–server	set-up.

Figure	15.12	A	simple	interaction	between	a	web	browser	and	server.

15.6.2	The	Common	Gateway	Interface:	Toward	Dynamic	Web	Pages

Originally,	the	main	goal	of	the	HTTP	web	browser–server	set-up	was	to	retrieve
and	display	static	documents.	However,	it	rapidly	became	clear	there	was	a	need
to	access	dynamic	documents	and	visualize	them	in	a	web	browser.	For	instance,
when	a	user	accesses	 the	URL	“/books/databases”,	we	might	wish	 for	 the	web
server	 to	 construct	 an	 HTML	 document	 “on-the-fly”,	 performing	 a	 database
query	 to	 get	 a	 list	 of	 currently	 available	 books	 in	 the	 category	 “databases”,
perhaps	ranking	them	by	their	release	date	as	well.	Since	it	would	be	unwieldy	to
manually	edit	HTML	documents	every	time	a	book	gets	added,	is	out	of	stock,
or	a	ranking	changes,	the	need	for	the	dynamic	construction	of	such	documents
becomes	clear.

The	common	gateway	 interface	 (CGI)	was	 proposed	 as	 one	 of	 the	 first
technologies	to	construct	dynamic	pages.	When	a	client	now	requests	a	URL,	a
program	is	started	on	the	web	server	that	receives	the	requested	URL	as	well	as
several	 other	 contextual	 variables	 (e.g.,	 the	 IP	 address	 of	 the	 client),	 and	 is
responsible	for	generating	the	content	(e.g.,	an	HTML	page)	that	will	be	sent	to
the	client.	CGI	also	allows	for	a	first,	basic	form	of	interactivity,	by	means	of	so-
called	 HTML	 Forms.	 These	 are	 created	 as	 part	 of	 the	 HTML	 markup	 and
displayed	to	the	user	in	the	web	browser	(think	of	a	username/password	form	on
various	websites,	for	instance,	or	a	search	field),	which	can	then	be	submitted	to
a	specific	URL.	The	values	filled	in	by	the	user	will	then	be	passed	to	the	CGI
program,	which	can	use	these	values	as	parameters	when	querying	the	database
(e.g.,	 to	 retrieve	 all	 books	 by	 a	 certain	 author).	 The	 CGI	 program	 will	 then
generate	 appropriate	output	 (e.g.,	 an	HTML	page	containing	a	 list	 of	 retrieved
books).

Since	CGI	 programs	 can	 be	written	 in	 virtually	 any	 language,	 interpreted
and	 easy-to-use	 languages	 such	 as	 Perl	 quickly	 became	 popular	 to	 implement
CGI	programs	in.	The	popularity	of	CGI	and	dynamic	web	pages	also	led	to	the
creation	of	PHP	(PHP	Hypertext	Preprocessor12),	which	was	and	still	is	popular
in	the	open-source	community.	PHP	was	meant	to	be	used	as	a	web-focused	CGI
“glue”	 language,	 as	 it	 made	 a	 series	 of	 common	 tasks,	 such	 as	 connecting	 to
databases	 (using	 both	 proprietary	 APIs	 and	 universal	 APIs	 such	 as	 ODBC),
working	with	 received	HTML	 Form	 data,	 and	 formatting	HTML	 output,	 easy
and	 programmer-friendly.	 Figure	 15.13	 illustrates	 the	 basic	 workings	 of	 CGI,
with	a	DBMS	in	the	back-end	(note	this	can	hence	be	considered	as	an	n-tiered
set-up).

Figure	15.13	Illustration	of	CGI.

The	 basic	 idea	 behind	 CGI	 still	 forms	 the	 basis	 for	 interactivity	 and
dynamic	documents	found	on	the	web	today,	 though	the	actual	 implementation
has	 changed	 and	 is	 now	 more	 flexible	 and	 efficient.	 In	 the	 original	 CGI
implementation,	every	request	from	a	client	would	lead	to	a	new	process	being
spawned,	which	negatively	 impacts	scalability,	and	 takes	a	high	 toll	on	system
resources.	 Therefore,	 newer	 CGI-derived	 technologies	 (such	 as	 fastCGI)	 have
been	proposed	over	the	years,	as	well	as	web	servers	that	directly	integrate	the
possibility	 to	 deliver	 dynamic	web	 pages,	without	 having	 to	 resort	 to	 external

programs.	 Since	 the	 web	 server	 is	 a	 continuously	 running,	 threaded	 program
capable	 of	 handling	 multiple	 simultaneous	 connections,	 it	 might	 just	 as	 well
handle	the	creation	of	dynamic	pages,	so	the	reasoning	goes.

This	 line	 of	 thinking	 was	 the	 basis	 behind	 JSP	 (JavaServer	 Pages),	ASP
(Active	 Server	 Pages),	 and	 ASP.NET.	 In	 many	 cases,	 the	 web	 server	 then
actually	becomes	the	“application	server”,	as	 the	web	server	 is	now	the	central
entity	 handling	 business	 logic	 and	 business	 entity	management,	with	HTTP	 as
the	main	language	spoken	between	the	client	and	the	server.	This	client	will	be	a
web	browser	in	most	cases,	though	HTTP	is	also	rapidly	replacing	older	remote
protocols	such	as	RMI,	CORBA,	and	DCOM13	 to	become	the	 lingua	franca	of
the	 net,	 which	 is	 made	 evident	 by	 the	 number	 of	 APIs	 offered	 by	 Google,
Amazon,	Facebook,	 and	many	others	 built	 on	 top	 of	HTTP	 (these	 are	moving
away	 from	 the	decoupled	web	and	application	 tiers	proposed	by,	e.g.,	 the	 Java
EE	application	model).	Figure	15.14	illustrates	this	concept:	a	web	application	is
responsible	for	the	business	logic,	which	interacts	with	business	entities	which	in
turn	are	persisted	in	a	DBMS.

Figure	15.14	Illustration	of	HTTP	as	the	lingua	franca	for	web	browsers	and

other	client	applications.

15.6.3	Client-Side	Scripting:	The	Desire	for	a	Richer	Web

The	HTTP	protocol,	with	HTML	pages,	 is	 limited	regarding	 the	 interfaces	 that
can	 be	 shown	 to	 end-users.	 The	 HTTP	 protocol	 relies	 heavily	 on	 repeated
request–reply	 messages,	 whereas	 HTML	 only	 provides	 limited	 support	 for
designing	 good-looking,	 fluid	 websites	 (HTML	 Form	 elements	 are	 relatively
basic).	This	is	less	of	a	problem	if	the	web	content	consists	of	only	static	pages,
but	 it	 is	 an	 issue	 if	 the	 web	 browser	 is	 the	 client	 in	 an	 interactive	 database
session.	As	such,	the	need	for	more	support	for	dynamic,	interactive	elements	on
the	 side	 of	 the	web	 browser	 also	 quickly	 arose,	with	 various	 vendors	 such	 as
Netscape	and	Microsoft	 rising	 to	 the	occasion	 to	propose	client-side	scripting
languages	such	as	JavaScript,	VBScript,	and	JScript.	These	scripts	are	embedded
inside	HTML	documents	and	interpreted	and	run	by	the	web	browser,	which	can
then	use	these	to	flavor	web	pages	shown	to	the	user.	A	few	simple	examples	can
illustrate	this:	imagine	a	web	page	on	which	a	user	is	asked	to	enter	a	telephone
number	in	an	input	field.	As	HTML	only	supports14	basic	input	fields,	a	round-
trip	 to	 the	 web	 server	 must	 be	 made	 to	 check	 whether	 the	 formatting	 of	 the
phone	number	is	correct.	If	it	is	not,	the	web	server	shows	the	same	page	to	the
user	again,	with	an	error	message,	and	is	hopefully	also	kind	enough	to	retain	the
values	you	might	have	entered	in	other	fields	to	avoid	having	to	fill	in	the	whole
form	again	–	 a	 burden	 on	 both	 the	 programmer	 and	 the	 end-user	 (this	 is	why
some	web	forms	are	so	annoying).	Also,	 the	form	suddenly	“feels”	 like	a	slow
web	 form,	 as	 a	 visible	 “refresh”	 of	 the	 page	 occurs	 once	 the	 user	 pushes	 the
submit	button	and	the	server	takes	some	time	to	process	the	HTTP	request	and
send	a	reply,	which	the	browser	can	then	draw	up	again.	By	incorporating	some
client	 code	 in	 the	web	 page,	 the	 execution	 of	 the	 phone	 form	 field	 validation
check	can	be	performed	by	 the	web	browser	 itself,	which	can	 show	a	 friendly

error	 message	 while	 the	 user	 is	 filling	 in	 the	 form,	 only	 enabling	 the	 submit
button	when	everything	looks	okay.15

The	 adoption	 of	 client-side	 scripting	 languages	was	 –	 initially,	 at	 least	 –
hampered	 by	 the	 different	 languages	 available,	 which	 all	 received	 different
levels	of	 support	 from	different	browser	vendors,	often	even	between	different
versions	of	a	browser	of	the	same	vendor,	making	it	hard	for	developers	to	pick	a
single	 language	 that	 would	 work	 reliably	 in	 all	 browsers.	 At	 the	 same	 time,
client-side	scripting	languages	could	only	go	so	far	to	enhance	the	experience	of
end-users,	 as	 their	 functionality	 was	 still	 inherently	 bound	 to	 the	markup	 and
layout	 capabilities	 of	 HTML.	 Another	 type	 of	 client-side	 program	 started	 to
appear;	these	basically	inject	themselves	into	the	web	browser	and	then	take	over
the	 complete	 functionality.	 Java’s	 Applet	 technology,	 Microsoft’s	 ActiveX
controls,	Windows	Forms,	 and	Adobe’s	 Flash	 are	 all	 examples	 of	 such	 client-
side	plugins	that	were	popular	at	one	point	in	time.

Let	 us	 illustrate	 this	 system	using	Java	applets.	 An	 “applet”	 is	 a	 normal
Java	 program	 that	 runs	 in	 a	 special	 so-called	 sandbox,	 stripping	 away	 many
permissions	a	normal	Java	program	would	have	(such	as	full	access	to	the	local
filesystem,	for	instance).	It	is	started	as	follows:	first,	a	browser	requests	a	URL
from	 a	 web	 server,	 which	 answers	 with	 an	 HTML	 document	 (which	 can	 be
static)	 containing	a	 special	 tag	 referring	 to	 the	 location	of	 the	packaged	applet
(another	URL).	A	third-party	plugin	installed	in	the	web	browser	knows	how	to
interpret	 this	 tag,	and	will	download	 the	applet	package	and	start	 it.	From	 that
moment,	 the	 applet	 handles	 the	 full	 user	 interface,	 with	 (optionally)	 business
logic	and	database	access.	Figure	15.15	illustrates	this.

Figure	15.15	Illustration	of	a	Java	applet	directly	accessing	a	DBMS.

Remember	 that	we	 have	 also	 seen	when	 discussing	 Java’s	 EE	 stack	 how
applets	 can	–	 instead	of	making	 a	 direct	 database	 connection	 as	 shown	here	 –
interact	with	Enterprise	 JavaBeans	 instead.	Other	equivalent	 technologies	have
similar	 set-ups.	 In	 general,	 a	 direct	 connection	 to	 the	 database	 from	 the	 client
application	 is	not	 recommended,	as	malicious	entities	might	be	able	 to	 reverse
engineer	the	client	application	to	try	to	gain	access	to	the	database	and	execute
malicious	queries.

15.6.4	JavaScript	as	a	Platform

In	 recent	 years,	 client-side	 plugins	 such	 as	 applets,	 Flash,	 and	 ActiveX	 have
mostly	 been	 pushed	 aside.	 The	 reasons	 for	 this	 are	 many:	 they	 require	 the
installation	of	a	separate	plugin	that	might	not	be	available	for	every	browser	or
platform,	they	were	confronted	with	several	security	issues	over	the	years	(even
applets,	which	run	in	a	sandboxed	environment),	they	don’t	work	well	on	mobile
platforms	(which	are	used	by	more	and	more	web	users),	and	standards	such	as
HTML	 and	 CSS	 (Cascading	 Style	 Sheets),	 together	 with	 JavaScript,	 have
evolved	 to	 the	 point	 that	 all	 major	 browser	 vendors	 support	 a	 solid,	 common
stack,	 causing	JavaScript	 to	 re-arise	 as	 the	most	 popular	 choice	 for	 enriching
web	pages.	JavaScript	(not	to	be	confused	with	Java)	is	a	programming	language
originally	meant	to	be	embedded	in	web	pages	and	executed	by	the	web	browser
to	enhance	the	user	experience	on	a	particular	web	page.	As	a	simple	example,
think	of	filling	out	a	web	form	where	some	validation	(e.g.,	to	check	if	all	fields
have	been	 filled	 in)	can	be	performed	by	 the	web	browser	 (running	a	piece	of
JavaScript	 code)	 before	 having	 to	 send	 the	 form	 to	 the	 web	 server	 and	 incur
additional	waiting	time	for	the	next	page	to	come	in,	as	explained	before.

JavaScript	has	seen	a	sudden	increase	in	popularity	in	recent	years.	It	can	be
argued	 that	 the	 main	 reason	 for	 the	 re-adoption	 of	 JavaScript	 was	 the	 rising
usage	 of	 AJAX-based	 development	 techniques.	 AJAX	 (Asynchronous
JavaScript	 and	 XML)	 was	 born	 as	 an	 ActiveX	 component,	 developed	 by
Microsoft,	 but	 was	 rapidly	 implemented	 by	 other	 browser	 vendors	 as	 the
“XMLHttpRequest”	 JavaScript	 object,	 originally	 created	 to	 perform
asynchronous	calls	 to	URLs	 in	 the	background	with	 the	expectation	 to	 receive
back	XML-formatted	data.	The	utility	of	performing	background	HTTP	requests
remained	 largely	 unused	 until	 it	 started	 appearing	 in	 several	 web	 apps,	 most

notable	Gmail	in	2004	and	Google	Maps	in	2005,	using	it	to	dynamically	fetch
updates	 from	 a	 web	 server	 to	 update	 parts	 of	 a	 web	 page	 without	 having	 to
perform	 a	 complete	 new	 request,	 transmitting	 and	 redrawing	 the	 whole	 page.
The	 technique	was	made	 popular	 thanks	 to	 JavaScript	 libraries,	 which	 aim	 to
offer	 a	 set	 of	 functionalities	 that	 would	 work	 on	 all	 browsers,	 including	 the
ability	to	perform	asynchronous,	background	HTTP	requests.

This,	with	the	increasing	feature	set	of	HTML	and	CSS,	has	allowed	for	the
development	of	true	web	applications	that	work	as	well	as,	and	look	and	feel	just
as	good	as,	native	applications,	and	has	become	the	development	stack	of	choice
for	 all	 modern	 web	 projects,	 even	 going	 so	 far	 as	 projects	 such	 as	 Node.JS,
which	 enables	 JavaScript	 to	 be	 used	 as	 a	 server-side	 language	 as	well.	 Figure
15.16	shows	this	set-up	in	action.

Figure	15.16	Illustration	of	a	rich	JavaScript-based	web	application.

15.6.5	DBMSs	Adapt:	REST,	Other	Web	Services,	and	a	Look	Ahead

The	 rising	 popularity	 of	 JavaScript	 and	 web-based	 APIs	 and	 protocols	 has
caused	 many	 database	 vendors	 to	 incorporate	 standard	 web	 service	 related
technologies,	 such	 as	 REST	 (REpresentational	 State	 Transfer)	 and	 SOAP
(Simple	 Object	 Access	 Protocol)	 to	 offer	 querying	 APIs	 to	 outside	 clients.
REST	 has	 become	 especially	 popular	 in	 recent	 NoSQL	 databases	 (see	 also
Chapter	11),	as	it	offers	a	simple	querying	interface	on	top	of	the	standard	HTTP
protocol,	making	it	easy	for	rich	web	applications	to	query	and	retrieve	records
directly	 from	 within	 the	 web	 browser	 (which	 then	 acts	 as	 the	 client	 directly
connecting	to	the	database	server).	This	is	represented	in	Figure	15.17.	SOAP,	on
the	 other	 hand,	 is	 based	 on	 similar	 principles,	 but	 is	 more	 heavy-weight	 and
relies	on	XML.

Figure	15.17	Illustration	of	direct	interaction	between	JavaScript	and	a
DBMS.

As	an	example	of	using	REST	 for	database	access,	 a	 JavaScript	 fragment
embedded	inside	a	web	application	can	perform	a	synchronous	HTTP	call	to	the

following	endpoint	(e.g.,	using	Oracle’s	NoSQL	data	services):

http://database_server:8080/book_database/books/

The	following	answer	is	returned	by	the	server,	formatted	as	JSON,	as	a	standard
HTTP	reply:

HTTP/1.1	200	OK
Content-Type:	application/json
Transfer-Encoding:	chunked

{
	"items":[
	{"id":7369,"title":"Book	One"},
	{"id":7499,"title":"My	Second	Book"},
	{"id":7521,"title":"Third	Book"}
],
	"hasMore":true,
	"limit":3,
	"offset":0,
	"count":3,
	"links":[
	{"rel":"self",
"href":"	http://database_server:8080/book_database/books/"},
	{"rel":"describedby",
"href":"http://database_server:8080/	metadata-
catalog/book_database/books/"},
	{"rel":"first",
"href":"http://database_server:8080/book_database/books/"},
	{"rel":"next",
"href":"http://database_server:8080/book_database/books/?offset=3"}
]
}

Connections

See	Chapter	11	 for	 a	 discussion	 on	 interacting	with	NoSQL	 databases,
and	 Chapter	 10	 for	 further	 information	 on	 REST,	 JSON,	 XML,	 and
SOAP.

Next	to	actual	records,	note	that	the	reply	also	contains	additional	metadata
describing	 the	 result	 set,	 including	 whether	more	 records	 can	 be	 fetched,	 and
which	 URL	 endpoints	 can	 be	 used	 to	 fetch	 the	 next	 bunch	 of	 rows.	 This
“pagination”	 approach	 is	 comparable	 to	 the	 “cursor”	 approaches	 as	 seen	 in
JDBC,	though	the	client	application	developer	should	be	aware	of	the	structure
of	the	returned	replies	and	how	additional	records	should	be	requested.

Note	 that	REST	web	 services	 also	often	only	 expose	very	basic	 querying
capabilities	 –	 in	 some	 cases	 also	 supporting	 filtering	 e.g.,	 by	 specifying
additional	URL	parameters:

http://database_server:8080/book_database/books/?filter={'id':
{'gt':7400}}

Some	DBMS	systems	also	support	defining	SQL	queries	on	the	server	side,
which	can	then	be	called	using	a	REST	call,	similar	to	stored	procedures,	e.g.,	a
call	to

http://database_server:8080/book_database/query/my_stored_query?
param1=100

can	 then	 correspond	 to	 a	 complex	 query	 named	 “my_stored_query”	 which
expects	one	parameter	named	“param1”.	Allowing	 a	 client	 to	 send	 a	 complete

query	string	would	be	unwise,	as	here	too	requests	can	be	spoofed	by	malicious
entities	so	that	a	“raw	SQL”	request	might	end	up	looking	as	such:

http://database_server:8080/book_database/raw_query?sql=DROP	
TABLE	books

Although	 REST	 and	 other	 web	 service-based	 technologies	 have	 become
popular	 in	 recent	 years	 as	 web	 developers	 have	 wanted	 to	 access	 databases
directly	 from	 a	 web	 browser,	 it	 is	 notable	 how	many	 functionalities	 provided
were	already	implemented	years	before	in	other	universal	APIs	such	as	JDBC	or
ADO.NET.	The	key	selling	point	of	REST	is	its	relative	simplicity	(as	it	is	built
on	the	HTTP	protocol),	which	allows	it	to	be	called	directly	from	a	web	browser
(e.g.,	 using	 JavaScript	 as	 a	 client-side	 scripting	 language).	 Nevertheless,	 the
rising	popularity	of	web-based	applications,	together	with	the	interest	in	highly
scalable	NoSQL	databases,	 is	 causing	DBMS	vendors	 to	 adapt	 their	 products:
outdated	protocols	and	APIs	are	replaced	by	web-based	ones,	and	database	users
are	 putting	more	 emphasis	 on	 scalability,	 speed,	 and	 schema	 flexibility,	 rather
than	schema	enforcement,	transaction	support,	etc.	Similar	trends	are	appearing
in	the	world	of	Big	Data	and	analytics	and	the	Internet	of	things:	there	are	many
factors	 to	keep	in	mind	when	choosing	a	database	for	such	applications,	which
do	not	always	align	with	the	needs	of	other	more	traditional	enterprise	databases.
Some	of	the	most	important	considerations	here	are	scalability,	ability	to	ingest
data	 at	 sufficient	 rates,	 schema	 flexibility,	 integration	with	 analytics	 tools,	 and
costs.

These	aspects	are	causing	DBMS	vendors	to	adapt,	though	–	as	we	already
remarked	in	the	chapter	on	NoSQL	–	the	downsides	of	these	approaches	should
be	 kept	 in	mind.	Many	 early	 adopters	 of	 NoSQL	were	 confronted	 with	 some
sour	 lessons,	 and	 we	 already	 see	 vendors	 focusing	 again	 on	 robustness	 and
durability,	 combined	 with	 some	 of	 the	 more	 appealing	 aspects	 of	 NoSQL.

Nevertheless,	we	can	expect	to	see	DBMS	systems	continue	to	evolve	toward	a
wider	adaption	of	web-based	APIs.

Retention	Questions

What	is	the	common	gateway	interface?	Why	is	it	important	in
dynamic	web	pages?

What	is	meant	by	client-side	scripting?

How	are	DBMSs	adopting	new	paradigms	such	as	REST	and	other
web	service	technologies?

Summary

In	 this	 chapter,	 we	 have	 discussed	 the	 many	 ways	 in	 which	 DBMSs	 can	 be
accessed	 from	 the	 outside	 world.	 Most	 database	 vendors	 these	 days	 provide
several	 interfaces	 based	 on	 a	 universal	 API	 standard	 to	 do	 so.	 Through	 these
APIs	 clients,	 third-party	 applications,	 and	 end-user	 applications	 can	 access,
query,	and	manage	the	DBMS.	There	exists	a	long	lineage	of	various	APIs	that
can	be	implemented	by	DBMS	vendors,	all	the	way	from	Microsoft’s	ODBC	to
newer	 language-integrated	 query	 facilities	 and	REST-based	web	 services.	This
wide	 variety	 of	 offerings	 can	 make	 it	 somewhat	 confusing	 for	 a	 beginning
programmer	 to	 decide	 which	 API	 one	 should	 use	 to	 access	 a	 DBMS,	 though
remember	that	many	of	the	universal	APIs	are	built	with	backward	compatibility
in	 mind.	 In	 the	 Java	 ecosystem,	 JDBC	 and	 the	 Java	 Persistence	 API	 remain
popular	choices,	while	Microsoft’s	ecosystem	gears	heavily	toward	ADO.NET.

It	 is	 important	 to	 understand	 how	 database	 APIs	 form	 a	 necessary
component	to	make	databases	accessible	from	the	outside	world.	This	should	be
done	 in	 a	 way	 that	 is	 portable	 and	 vendor-agnostic	 in	 the	 sense	 that	 one	 can
easily	switch	vendors	without	having	to	change	running	applications.	The	latter
is	not	always	that	straightforward,	as	an	application	might	send	vendor-specific
SQL	 statements	 over	 an	 API	 which	 would	 cease	 to	 work	 when	 changing	 the
DBMS	on	the	other	end.	In	addition,	it	is	important	to	remark	that	database	APIs
form	 the	 cornerstone	 in	 an	 organization’s	 integration	 exercises	 and	 projects	 as
well.	 Firms	 often	 utilize	 a	 variety	 of	 database	 systems	 and	 vendors	 (e.g.,	 a
database	 for	 the	 customer	 relationship	management	 system	 and	 a	 separate	 one
for	 the	 order	 and	 sales	 system).	 It	 is	 only	 natural	 that	 for	 many	 use	 cases,
systems	 will	 need	 to	 utilize	 data	 that	 might	 be	 spread	 out	 across	 different

DBMSs.	 Think	 for	 instance	 about	 providing	 an	 overview	 of	 the	 number	 of
orders	a	customer	made	 from	 the	sales	database	and	showing	 this	 in	 the	CRM
system,	 or	 about	 a	 reporting	 application	 that	 has	 to	 combine	 and	 aggregate
information	from	multiple	data	sources.	Also	in	this	setting,	database	APIs	play
an	important	role	as	they	will	form	the	“entry	points”	through	which	data	can	be
accessed.	 Different	 strategies	 exist	 to	 tackle	 this	 integration	 problem	 –	 for
instance	 by	 using	 a	 database	 API	 to	 fetch	 data	 from	 a	 different	 source	 when
required,	or	by	setting	up	a	 system	 in	which	 information	 from	one	source	gets
copied	over	and	loaded	into	a	second	database.	These	issues	are	heavily	related
to	 ETL	 (extracting,	 transforming	 and	 loading	 data)	 and	 EAI	 (enterprise
application	integration),	something	that	will	be	discussed	in	depth	in	Chapter	18.

Connections

Data	integration,	data	quality,	and	governance	are	discussed	in	detail	 in
Chapter	18.

Scenario	Conclusion

After	 learning	 about	 the	 various	 universal	 database	API	 standards	 that
can	be	used	to	access	databases,	Sober	decides	to	take	a	look	at	what	its
DBMS	 vendor	 is	 offering	 in	 terms	 of	 support.	 The	 vendor	 provides
support	for	both	the	ODBC	and	JDBC	API,	opening	up	a	broad	range	of
possible	ways	for	Sober	to	access	its	database.	Since	Sober	is	a	relatively
small	company,	the	decision	is	made	to	go	forward	with	JDBC.	Sober’s
plan	 is	 to	 write	 the	 internal	 desktop	 applications	 for	 its	 employees	 in
Java,	 where	 JDBC	 can	 be	 directly	 used	 to	 access	 the	 database	 and

perform	queries.	For	its	website,	Sober	plans	to	adopt	a	Java-based	web
server,	which	can	then	also	simply	use	JDBC	to	connect	 to	 the	DBMS.
For	the	mobile	app,	several	options	present	themselves.	The	first	is	to	use
a	native	application	for	both	Android	and	iOS.	Since	Android	apps	use
Java	as	well,	setting	up	a	JDBC	connection	from	within	an	Android	app
is	 easy.	 iOS,	 however,	 not	 being	 based	 on	 Java,	 has	 a	 harder	 time
supporting	 JDBC	 in	 its	 apps.	 To	 work	 around	 this	 issue,	 Sober	 is
considering	 setting	 up	 a	 REST-based	 web	 service	 on	 its	 web	 server
which	would	perform	queries	on	its	end	using	JDBC,	but	send	the	results
to	 the	mobile	app	as	JSON	or	XML	over	HTTP.	Both	 the	Android	and
iOS	 apps	 could	 then	 use	 this	 REST	 web	 service.	 However,	 since	 the
development	of	this	web	service	would	take	up	extra	development	time,
and	since	Sober	does	not	have	much	experience	with	developing	native
Android	or	 iOS	apps	in	the	first	place,	 the	decision	is	made	to	go	for	a
responsive	website,	meaning	 that	 the	website	 that	 customers	 open	 in	 a
web	 browser	 on	 their	 computer	 can	 easily	 “scale	 down”	 on	 a	 smaller
smartphone	 screen	 while	 remaining	 pleasant	 to	 use.	 By	 using	 this
approach,	Sober	only	needs	to	maintain	one	customer-facing	web	portal
which	can	then	serve	both	PC	and	mobile	users,	and	where	the	DBMS	is
accessed	by	the	same	Java-based	web	server.

Key	Terms	List

ActiveX	Data	Objects	(ADO)

ADO.NET

application	programming	interface	(API)

Asynchronous	JavaScript	and	XML	(AJAX)

call-level	APIs

centralized	DBMS	architecture

client–server	architecture

client-side	scripting

common	gateway	interface	(CGI)

cursor	mechanism

early	binding

embedded	API

embedded	DBMSs

Enterprise	JavaBeans	(EJB)

Hibernate

Java	applets

Java	DataBase	Connectivity	(JDBC)

Java	Data	Objects	(JDO)

Java	Persistence	API

JavaScript

language-native	query	expressions

late	binding

n-tier	architecture

object	persistence

OLE	DB

Open	Database	Connectivity	(ODBC)

proprietary	API

Representational	State	Transfer	(REST)

Simple	Object	Access	Protocol	(SOAP)

SQL	injection

SQLJ

three-tier	architecture

tiered	system	architecture

two-tier	architecture

universal	API

Review	Questions

15.1.	Which	of	the	following	statements	is	not	correct?

a.	Embedded	database	APIs	can	use	early	binding.

b.	Embedded	database	APIs	can	use	late	binding.

c.	Call-level	database	APIs	can	use	early	binding.

d.	Call-level	database	APIs	can	use	late	binding.

15.2.	Which	of	the	following	statements	is	not	correct?

a.	One	drawback	of	ODBC	is	that	the	architecture	is	mostly	native	to
Microsoft-based	platforms.

b.	One	drawback	of	ODBC	is	that	application	code	needs	to	be
modified	every	time	a	different	driver	needs	to	be	used.

c.	One	drawback	of	ODBC	is	it	is	not	using	an	object-oriented
paradigm.

d.	One	drawback	of	ODBC	is	that	performance	can	be	worse
compared	to	proprietary	DBMS	APIs.

15.3.	Which	of	the	following	statements	is	correct?

a.	JDBC	drivers	come	in	different	types,	which	come	with	different
tradeoffs	in	terms	of	portability	and	performance.

b.	JDBC	was	originally	developed	to	be	used	in	the	C++	programming
language.

c.	JDBC	can	only	be	used	on	Linux-	and	Unix-based	systems.

d.	Just	like	ODBC,	JDBC	does	not	expose	programmer-friendly	object
classes	to	work	with.

15.4.	Which	of	the	following	statements	is	not	correct?

a.	Enterprise	JavaBeans	are	components	that	establish	a	clear
decoupling	between	business	logic	and	client	applications.

b.	Enterprise	JavaBeans	extend	the	concept	of	Java	Beans.

c.	Three	types	of	Enterprise	JavaBeans	exist,	although	one	type	is
outdated	now.

d.	Session	Beans	represent	an	object-oriented	representation	of
business	entities	and	can	be	made	persistent.

15.5.	Which	of	the	following	statements	is	not	correct?

a.	The	Java	Persistence	API	arose	as	part	of	the	specification	of
version	3.0	of	the	EJB	standard.

b.	The	Java	Persistence	API	is	in	itself	just	a	specification	defining	a
set	of	interfaces	and	annotations.

c.	Java	Data	Objects	are	part	of	the	Java	Persistence	API	standard.

d.	Java	Data	Objects	are	agnostic	to	the	technology	of	the	data	store
used.

15.6.	Which	of	the	following	statements	is	correct?

a.	The	JPA	query	language	(JPQL)	supports	more	complex	queries
than	SQL.

b.	JPQL	queries	can	differ	depending	on	the	underlying	DBMS	used.

c.	One	big	advantage	of	JPQL	is	its	portability.

d.	One	big	advantage	of	JPQL	is	the	fact	that	it	supports	compile-time
checking	and	validation	of	queries.

15.7.	Which	of	the	following	statements	is	not	correct?

a.	CGI	was	one	of	the	first	technologies	that	allowed	for	the
construction	of	dynamic	web	pages.

b.	CGI	programs	can	be	written	in	almost	any	programming	language.

c.	An	important	drawback	of	CGI	was	the	fact	that	it	could	not	handle
database	querying.

d.	An	advantage	of	CGI	was	that	it	could	deal	with	user-supplied
input,	such	as	provided	through	HTML	Forms.

15.8.	Which	of	the	following	is	not	a	client-side	scripting	language?

a.	JavaScript.

b.	VBScript.

c.	JScript.

d.	PHP.

15.9.	Which	JDBC	driver	type	is	implemented	completely	in	Java	and
communicates	directly	with	the	vendor’s	DBMS	through	a	network
socket	connection?

a.	Type	1.

b.	Type	2.

c.	Type	3.

d.	Type	4.

15.10.	Which	of	the	following	statements	is	not	correct?

a.	SQLJ	uses	a	pre-compiler	to	translate	embedded	SQL	statements
before	invoking	the	Java	compiler.

b.	SQL	syntax	can	be	checked	before	runtime	when	using	SQLJ.

c.	JDBC	uses	SQLJ	as	an	underlying	technology.

d.	Many	IDEs	do	not	have	SQLJ	support.

15.11.	Which	database	access	technique	does	the	following	C#	statement
illustrate?

public	void	Example()	{
		DataClassesContext	dc	=	new	DataClassesContext();
		var	q	=
				from	a	in	dc.GetTable<Order>()
				where	a.CustomerName.StartsWith("Seppe")
				select	a;
		dataGrid.DataSource	=	q;
}

a.	JDBC.

b.	ODBC.

c.	Language-integrated	queries.

d.	None	of	the	above.

15.12.	Which	of	the	following	statements	regarding	JPA	is	not	correct?

a.	The	JPA	was	meant	as	a	replacement	for	entity	Beans	in	EJB	2.0.

b.	JPA	relies	heavily	on	annotations	and	convention-over-
configuration.

c.	JPA	uses	its	own	internal	query	language,	but	supports	SQL	as	well.

d.	All	the	statements	above	are	correct.

Problems	and	Exercises

15.1E	Explain	the	differences	between	a	centralized	system	and	tiered	system
architecture.

15.2E	What	is	meant	by	a	“fat”	client	versus	a	“thin”	one?	Are	web	browsers	fat
or	thin	clients?

15.3E	Explain	the	differences	between	“static”	and	“dynamic”	SQL	and	how	this
relates	to	early	and	late	binding.

15.4E	DBMSs	such	as	Microsoft	Access,	SQLite,	and	Apache	Derby	are	often
described	as	embedded	databases.	Does	this	mean	they	are	accessed	using
embedded	APIs?	Explain	why/why	not.

15.5E	OLE	DB	is	often	described	as	following	a	universal	data	access	approach,
rather	than	a	universal	data	storage	approach.	What	is	meant	by	this?

15.6E	One	complaint	against	using	JavaScript-heavy	web	applications	that
directly	interface	with	a	DBMS	through	REST	or	a	similar	technique	is	that	they
are,	by	default,	less	secure	than	using	a	traditional	client–server–database	set-up.
Why	do	you	think	that	is?

15.7E	What	are	the	different	ways	client-side	applications	can	be	enriched	and
made	more	interactive?	Which	technology	stack	is	common	today?

1	Following	this	line	of	reasoning,	a	centralized	mainframe-based	architecture
with	terminals	connecting	to	it	is	sometimes	denoted	as	a	“dumb”	client
architecture,	as	it	resembles	a	client–server	architecture	where	all	roles	have
been	stripped	away	from	the	clients.

2	Compilation	means	translating	a	program’s	source	code	into	machine
language	so	that	it	can	be	executed.	A	“compiler”	is	the	program	that	performs
this	action.

3	One	notable	exception	is	when	stored	procedures	are	used,	which	can
combine	early	binding	with	call-level	APIs,	as	we’ll	discuss	a	bit	further	on.

4	This	is	in	contrast	to	the	“Universal	Data	Storage”	approach	we	observed	in
extended	relational	DBMSs	in	Chapter	9,	which	aimed	at	extending	database
functionality	to	support	storing	any	kind	of	(non-relational)	data	in	an
RDBMS	as	well.

5	The	naive	approach	of	passing	the	complete	result	set	to	the	client
application	is	certainly	undesirable	as	this	might	entail	sending	huge	amounts
of	data	(a	SELECT	in	a	huge	table,	for	instance)	to	the	client	at	once,	leading
to	a	congested	computer	network	or	out-of-memory	errors.

6	We	discuss	entity	Beans	for	the	historical	perspective	and	because	they	make
it	easier	to	understand	the	present-day	approaches.	However,	in	recent
versions	of	EJB	(from	EJB	3.0	onwards),	entity	Beans	were	superseded	by	the
Java	Persistence	API	(JPA),	which	serves	a	similar	purpose,	but	as	a	separate
specification	and	not	necessarily	within	an	EJB	context.	JPA	is	discussed	in
the	next	section.

7	Many	of	EJB	2.0’s	components,	including	entity	Beans,	depend	on	such
configuration	files,	for	instance	to	determine	how	entity	Beans	are	related	to
one	another,	though	we	have	left	out	the	details	as	we	wish	to	focus	on	the
newer	EJB	3.0	(and	beyond)	standard.

8	JPA	still	allows	use	of	XML	files	to	specify	how	Java	classes	map	to	a
relational	database,	though	using	annotations	is	a	much	more	fluid	and
programmer-friendly	way	to	do	so.

9	This	being	said,	several	vendors	exist	that	provide	JPA	support	to	access
non-relational	DBMSs	as	well,	such	as	ObjectDB	(which	implements	an
OODBMS	on	top	of	both	the	JPA	and	JDO	APIs).

10	See	http://db.apache.org/jdo/index.html	for	more	details	about	the	JDO
specification.

11	Schema	migration	in	the	context	of	object	persistence	and	ORM	becomes
important	once	programmers	start	changing	entity	class	definitions	(e.g.,
adding	or	removing	fields)	and	want	the	ORM	library	to	automatically	adjust
the	DBMS	schema	to	reflect	these	changes,	without	–	obviously	–	starting
from	scratch	and	completely	emptying	the	existing	database.	This	is	a
complex	task,	even	more	so	since	different	DBMS	vendors	require	different
approaches.	Most	ORM	libraries	have	trouble	with	this,	including	the
Hibernate	framework,	which	does	try	to	appeal	to	more	complex	enterprise
environments	where	schema-changes	are	not	uncommon.

12	PHP	is	indeed	the	abbreviation	of	“PHP:	Hypertext	Preprocessor”	and	is
therefore	a	recursive	abbreviation.	It	does	not	get	any	nerdier	than	that.

13	These	are	all	protocols	to	“remotely”	invoke	functionality,	among	other
things,	for	a	client	to	call	on	the	functionality	of	an	application	server.

14	Though	support	for	richer	HTML	forms	is	being	proposed	by	standard
bodies	and	being	adopted	by	web	browser	vendors.

15	This	also	means	that	we	actually	trust	the	client	to	perform	this	validation,
which	is	a	dangerous	assumption	to	make	as	web	browsers	might	have	client-
side	scripting	disabled	or	a	malicious	entity	might	try	to	send	form	details

http://db.apache.org/jdo/index.html

while	forcefully	ignoring	client-side	checks.	Hence,	client-side	scripting	is
fine	to	enhance	user	experience,	but	does	not	resolve	the	programmer	of	the
burden	to	perform	an	additional	check	on	the	server	once	data	are	received.

16

Data	Distribution	and	Distributed
Transaction	Management

◈

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

Opening	Scenario

grasp	the	basics	of	distributed	systems	and	distributed	databases;

discern	key	architectural	implications	of	distributed	databases;

understand	the	impact	of	fragmentation,	allocation,	and	replication;

identify	different	types	of	transparency;

understand	the	steps	in	distributed	query	processing;

understand	distributed	transaction	management	and	concurrency
control;

grasp	the	impact	of	eventual	consistency	and	BASE	transactions.

As	Sober	envisions	growing	as	part	of	its	long-term	strategy,	it	wants	to
have	 a	 careful	 understanding	 of	 the	 data	 implications	 involved.	 More
specifically,	 the	 company	 wants	 to	 know	 if	 it	 would	 make	 sense	 to
distribute	its	data	across	a	network	of	offices	and	work	with	a	distributed
database.	Sober	wants	to	know	the	impact	of	data	distribution	on	query
processing	 and	optimization,	 transaction	management,	 and	 concurrency
control.

In	this	chapter,	we	focus	on	the	specifics	of	distributed	databases	(i.e.,	systems	in
which	 the	data	and	DBMS	functionality	are	distributed	over	different	nodes	or
locations	 on	 a	 network).	 First,	we	discuss	 the	 general	 properties	 of	 distributed
systems	 and	 offer	 an	 overview	 of	 some	 architectural	 variants	 of	 distributed
database	 systems.	Then,	we	 tackle	 the	 different	ways	 of	 distributing	 data	 over
nodes	 in	a	network,	 including	 the	possibility	of	data	replication.	We	also	focus
on	 the	 degree	 to	 which	 the	 data	 distribution	 can	 be	 made	 transparent	 to
applications	and	users.	Then,	we	discuss	the	complexity	of	query	processing	and
query	 optimization	 in	 a	 distributed	 setting.	 A	 next	 section	 is	 dedicated	 to
distributed	 transaction	management	 and	 concurrency	 control,	 focusing	on	both
tightly	 coupled	 and	 loosely	 coupled	 settings.	 The	 last	 section	 overviews	 the
particularities	 of	 transaction	 management	 in	 Big	 Data	 and	 NoSQL	 databases,
which	are	often	distributed	in	a	cluster	set-up,	presenting	BASE	transactions	as
an	alternative	to	the	traditional	ACID	transaction	paradigms.

16.1	Distributed	Systems	and	Distributed
Databases

Ever	 since	 the	 early	 days	 of	 computing,	which	were	 dominated	 by	monolithic
mainframes,	 distributed	 systems	 have	 had	 their	 place	 in	 the	 ICT	 landscape.	A
distributed	computing	system	consists	of	several	processing	units	or	nodes	with
a	certain	 level	of	autonomy,	which	are	 interconnected	by	a	network	and	which
cooperatively	perform	complex	tasks.	These	complex	tasks	can	be	divided	into
subtasks	as	performed	by	the	individual	nodes.

The	 rationale	 behind	 distributed	 architectures	 and	 systems	 is	 grounded	 in
the	 principle	 that	 the	 overhead	 of	 a	 monolithic	 system	 increases	 more	 than
proportionally	 to	 the	number	of	 tasks	and	users.	By	dividing	and	distributing	a
complex	 problem	 into	 smaller,	more	manageable	 units	 of	work,	 performed	 by
semi-independent	 nodes,	 the	 complexity	 becomes,	 at	 least	 in	 theory,	 more
manageable.	This	makes	the	system	also	more	scalable;	a	monolithic	system	can
only	be	extended	within	a	 limited	capacity	 range,	whereas	 (again,	 in	 theory)	 a
distributed	system’s	capacity	can	be	increased	indefinitely	by	just	adding	nodes
to	 the	 system.	Distribution	of	 data	 and	 functionality	often	guarantees	 a	 certain
measure	 of	 local	 autonomy	 and	 availability.	 For	 example,	 a	 sportswear	 chain
organizing	inventory	information	in	a	distributed	system,	with	data	pertaining	to
each	local	outlet	being	stored	and	maintained	locally,	allows	for	every	outlet	to
remain	operational	if	unavailability	of	the	central	system	due	to	network	failure
occurs.	 This	 is	 especially	 pertinent	 where	 the	 distributed	 system	 is	 shared	 by
several,	partially	independent	parties	(e.g.,	in	a	web	services	context).

The	 architectural	 complexity	 of	 distributed	 systems	 is	 typically	 much
higher,	 compared	 to	 standalone	 systems.	 The	 latter	 also	 holds	 for	distributed

database	 systems,	 where	 data	 and	 data	 retrieval	 functionality	 are	 distributed
over	multiple	data	sources	and/or	locations.	Part	of	the	additional	complexity	is
because	most	distributed	database	systems	are	designed	to	provide	an	integrated
view	 of	 the	 distributed	 data;	 they	 attempt	 to	 offer	 a	 certain	 measure	 of
transparency	to	users	and	application	programs.	This	transparency	refers	to	the
often	desirable	property	that	the	user	is	insulated	from	one	or	more	aspects	of	the
distribution.	 In	 other	 words,	 the	 user	 perceives	 the	 database	 as	 a	 standalone
system	 to	 a	 certain	 extent,	 although	 the	 data	 are	 distributed	 over	 different
locations	 and	 query	 processing,	 transaction	management,	 concurrency	 control,
etc.	might	consider	different	locations.	For	example,	performing	analytics	across
all	 outlets	 on	 the	 sportswear	 chain’s	 inventory	movements	 requires	much	 less
coordination	 if	 all	 inventory	 data	 are	 stored	 in	 a	 single	 centralized	 database,
instead	of	it	being	spread	geographically	over	several	locations.

A	 distributed	 database	 environment	may	 exist	 for	 different	 reasons	 in	 an
organization.	 It	 could	 be	 a	 deliberate	 choice	 (e.g.,	 for	 scalability	 or	 local
autonomy	 of	 individual	 departments	 or	 business	 units),	 as	 mentioned	 above.
However,	 more	 often	 than	 not,	 distributed	 architectures	 are	 merely	 a
consequence	 of	 other	 factors	 (e.g.,	 a	 merger	 or	 acquisition),	 or	 simply	 of
consecutive	 investments	 in	 different	 database	 technologies,	 for	 technological
and/or	 financial	 reasons.	 If	 data	 distribution	 is	 a	 deliberate	 choice,	 one	 of	 the
main	concerns	will	be	to	decide	on	optimal	distribution	criteria.	Example	criteria
are	 performance	 (e.g.,	 maximizing	 parallelism	 and/or	 minimizing	 network
traffic)	 or	 local	 autonomy	 and	 availability	 (i.e.,	 the	 ability	 to	 retain	 access	 to
relevant	local	data,	even	if	failures	occur	in	the	global	system).	The	performance
criterion	is	particularly	relevant	to	the	current	wave	of	NoSQL	database	systems,
where	 cluster	 computing	 is	 used	 to	 attain	 a	 near	 linear	 relationship	 between
performance	 and	 the	 number	 of	 nodes.	 If	 the	 distribution	 aspect	 is	 the
consequence	of	other	factors,	such	as	a	merger,	an	additional	concern	will	often

be	to	deal	with	the	heterogeneity	of	database	management	software,	data	models,
and	formats.

Connections

Refer	to	Chapter	11	for	an	overview	on	NoSQL	databases.

Regardless	 of	 the	 reason	 for	 the	 distribution,	 other	 important	 elements
should	 be	 considered.	 Examples	 are	 the	 degree	 of	 transparency	 that	 is	 to	 be
offered	 with	 respect	 to	 the	 distribution,	 how	 to	 deal	 with	 distributed	 query
processing,	the	complexity	of	distributed	transaction	management	(and,	possibly,
the	 added	 complexity	 of	 keeping	 replicated	 data	 consistent),	 and	 distributed
concurrency	control	and	 recovery.	 In	what	 follows,	we	deal	with	each	of	 these
concerns,	 but	 first	 we	 discuss	 the	 most	 important	 architectural	 variants	 of
distributed	databases.

Retention	Questions

What	is	the	rationale	behind	distributed	architectures	and	systems?

What	is	meant	by	transparency	in	a	distributed	system?

Where	do	distributed	database	environments	emanate	from?

16.2	Architectural	Implications	of	Distributed
Databases

In	Chapter	 15	 we	 presented	 different	 database	 system	 architectures,	 including
tiered	 architectures	where	presentation	 logic,	 application	 logic,	 and	DBMS	are
spread	over	 three	or	more	 tiers.	However,	particular	 to	distributed	databases	 is
that	 the	 data	 and	 DBMS	 are	 distributed	 over	 multiple	 interconnected	 nodes.
Within	 this	 realm	of	 systems,	 there	 are	 still	 different	 possible	 architectures,	 as
illustrated	in	Figure	16.1.

Figure	16.1	Different	distributed	database	architectures.

In	a	shared-memory	architecture,	multiple	interconnected	processors	that
run	 the	DBMS	software	 share	 the	 same	central	 storage	and	 secondary	 storage.
As	 more	 processors	 are	 added,	 this	 shared	 central	 storage	 may	 become	 the
bottleneck.

With	 a	 shared-disk	 architecture,	 each	 processor	 has	 its	 own	 central
storage	but	shares	secondary	storage	with	the	other	processors.	The	disk	sharing
can	 be	 realized	 by,	 for	 example,	 a	 storage	 area	 network	 or	 network	 attached
storage.	Shared-disk	architectures	are	 typically	more	fault	 tolerant	 than	shared-
memory	 architectures.	 However,	 a	 possible	 bottleneck	 is	 the	 network	 that
interconnects	the	disks	with	the	processors.

Connections

Storage	 area	 networks	 and	 network	 attached	 storage	were	 discussed	 in
Chapter	13.

The	 most	 prevalent	 approach	 for	 distributed	 databases	 is	 the	 shared-
nothing	architecture.	In	this	set-up,	each	processor	has	its	own	central	storage
and	hard	disk	units.	Data	sharing	occurs	through	the	processors	communicating
with	one	another	over	the	network,	not	by	the	processors	directly	accessing	one
another’s	central	storage	or	secondary	storage.

In	most	cases,	the	respective	processors	each	run	their	own	DBMS	instance.
However,	 there	 also	 exists	 DBMS	 software	 explicitly	 equipped	 to	 exploit	 the
parallelism	 of	 multiple	 processors,	 with	 the	 single	 DBMS	 instance	 being
distributed	over	multiple	processor	nodes.

Scalability	can	be	achieved	 in	 two	ways	 in	a	distributed	database	 system:
vertical	 scalability	 or	 horizontal	 scalability.	 In	 vertical	 scalability	 the	 capacity
(CPU	 power,	 disk	 capacity)	 of	 individual	 nodes	 can	 be	 increased.	 There	 are
certain	hardware	limitations	to	this.	Horizontal	scalability	is	achieved	by	adding
nodes	 to	 the	 system.	Here,	 the	 challenge	 is	 to	 keep	 the	 coordination	 overhead
over	the	respective	nodes	as	low	as	possible.	It	was	discussed	in	Chapter	11	how
NoSQL	 databases	 can	 achieve	 near	 linear	 horizontal	 scalability,	 for	 example,
whereas	 traditional	 standalone	 databases	 are	 restricted	 to	 vertical	 scaling.
Horizontal	scaling	of	distributed	RDBMSs	may	be	problematic	beyond	a	certain
number	 of	 nodes	 because	 of	 the	 increased	 coordination	 cost	 (ensuring
transaction	atomicity,	keeping	different	replicas	of	the	same	data	item	consistent,
etc.).	 However,	 as	 we	 will	 see	 in	 Section	 16.7	 in	 this	 chapter,	 reducing

coordination	overhead	 to	 improve	horizontal	 scalability	may	 also	 come	with	 a
cost,	in	terms	of	less	consistent	data.

Some	 authors	 distinguish	 between	 distributed	 databases	 and	 parallel
databases.	With	parallel	databases,	they	refer	to	data	distribution	with	only	one
purpose:	performance.	The	performance	gain	is	achieved	through	parallel	access
to	the	distributed	data.	As	explained	in	Chapter	13,	we	can	distinguish	between
intra-query	parallelism	(different	subsets	of	the	data	are	searched	in	parallel	in
the	 context	 of	 a	 single,	 complex	 query)	 and	 inter-query	 parallelism	 (many
simple	 queries	 are	 executed	 in	 parallel).	 Parallel	 databases	 can	 have	 a	 shared-
memory,	 shared-disk,	 or	 shared-nothing	 architecture.	 The	 nodes	 are	 relatively
close	to	one	another	and	are	connected	through	a	local	area	network	(LAN).	One
then	 refers	 to	 distributed	 databases	 as	 database	 systems	with	 a	 shared-nothing
architecture,	 possibly	with	much	 larger	 distances	 between	 the	 nodes	 and	wide
area	 network	 (WAN)	 connectivity.	 The	 reason	 for	 the	 distribution	 can	 be
performance,	 but	 also	 local	 autonomy,	 or	 a	 data	 integration	 project	 (e.g.,	 in	 a
merger	or	acquisition).

In	what	follows,	we	will	use	the	broader	term	distributed	database	for	both
types	of	architectures	and	will	not	use	the	term	parallel	database.	Furthermore,	it
is	worth	noting	that	if	the	respective	nodes	in	a	shared-nothing	architecture	each
run	an	independent	DBMS	instance,	and	if	the	data	are	fragmented	horizontally
over	these	instances	(see	the	next	section),	the	term	federated	database	is	often
used.	The	respective	nodes	in	a	federated	database	set-up	may	each	run	the	same
DBMS	software,	but	it	is	also	possible	that	the	respective	nodes	contain	different
DBMS	types.	This	is	often	the	case	if	the	federated	database	resulted	from	a	data
integration	 effort.	 One	 of	 the	 complexities	 will	 then	 be	 to	 have	 the	 different
database	APIs,	data	models,	and	database	software	interact	seamlessly	to	provide
a	unified	view	of	the	distributed	data.

Retention	Questions

Explain	the	following	concepts:	shared-memory	architecture,	shared-
disk	architecture,	shared-nothing	architecture.

How	can	scalability	be	achieved	in	a	distributed	system?

What	is	the	difference	between	intra-query	parallelism	and	inter-query
parallelism?

16.3	Fragmentation,	Allocation,	and	Replication

If	data	distribution	is	a	deliberate	choice,	and	not	a	consequence	of	an	event	like
a	merger	or	acquisition,	one	of	the	main	concerns	of	a	distributed	database	will
be	 the	 criteria	 according	 to	 which	 to	 partition	 the	 data	 into	 subsets,	 called
fragments,	 as	 well	 as	 the	 criteria	 to	 allocate	 these	 fragments	 to	 nodes	 or
locations.	Different	 concerns	may	 come	 into	play	here.	Some	are	 performance
related,	 such	 as	 maximizing	 query	 parallelism	 or	 minimizing	 network	 traffic.
Others	 pertain	 to	 local	 autonomy	 (i.e.,	 the	 ability	 of	 nodes	 to	 operate
independently	and	to	retain	access	to	relevant	local	data,	even	if	failures	occur	in
the	 global	 system).	 A	 related	 concern	 is	 the	 decision	 on	 whether	 to	 replicate
some	or	 all	 of	 the	 data	 over	multiple	 nodes,	 again	 for	 reasons	 of	 performance
and/or	availability.	Obviously,	the	cost	element	will	play	a	role	as	well	–	among
others,	 network	 costs,	 server	 capacity,	 additional	 storage	 cost	 if	 data	 are
replicated,	etc.	If	data	distribution	was	not	a	deliberate	choice	but	was	induced
by	external	 factors,	 there	are	often	no	or	only	very	 limited	degrees	of	 freedom
regarding	how	to	partition,	allocate,	and	replicate	the	data.

The	 act	 of	 partitioning	 the	 global	 dataset	 into	 fragments	 is	 called
fragmentation.	We	 can	 distinguish	 between	 vertical	 fragmentation,	 horizontal
fragmentation,	 and	mixed	 fragmentation.	 To	 illustrate	 these	 concepts,	 we	 will
use	the	global	dataset	with	customer	data,	as	illustrated	in	Figure	16.2.

Figure	16.2	Global	dataset	as	a	basis	for	fragmentation	examples.

16.3.1	Vertical	Fragmentation

With	vertical	fragmentation,	every	fragment	consists	of	a	subset	of	the	columns
of	the	global	dataset.1	Vertical	fragmentation	is	especially	useful	if	only	some	of
a	 tuple’s	 attributes	 are	 relevant	 to	 a	 certain	 node.	 For	 example,	 a	 node
responsible	 for	 order	 processing	 only	 needs	 the	 CustomerIDs	 and	 customer
names,	whereas	a	node	performing	data	analytics	on	the	customer	data	is	mainly
interested	in	demographic	data	such	as	country,	year	of	birth,	and	gender.	Both
fragments	 contain	 the	 necessary	 columns	 (most	 often	 the	 primary	 key)	 to
combine	the	respective	vertical	fragments	with	a	JOIN	construct	if	a	view	of	the
global	dataset	is	required	(see	Figure	16.3).

Figure	16.3	Illustration	of	vertical	fragmentation.

16.3.2	Horizontal	Fragmentation	(Sharding)

According	 to	 horizontal	 fragmentation,	 each	 fragment	 consists	 of	 rows	 that
satisfy	 a	 certain	 query	 predicate.2	 For	 example,	 in	 Figure	 16.4	 the	 rows	 are
attributed	to	worldwide	nodes	according	to	the	country	of	the	customer	(Country
=	“Belgium”	or	“France”;	Country	=	“UK”;	Country	=	“USA”	etc.),	so	customer
data	 for	 each	 country	 can	 be	 stored	 in	 the	 local	 branch.	 In	 this	way,	 network
traffic	 for	 queries	 on	 local	 customers	 is	 reduced	 and	 local	 availability	 is
improved	 if	 network	 failure	 occurs.	 Note	 that	 all	 data	 pertaining	 to	 the	 same
customer	are	now	stored	at	 the	same	node.	A	global	view	can	be	reconstructed
with	a	UNION	query	over	all	the	horizontal	fragments.

Figure	16.4	Illustration	of	horizontal	fragmentation.

Horizontal	 fragmentation	 is	 also	 applied	 in	 many	 NoSQL	 databases
organized	in	a	cluster	set-up,	where	the	horizontal	fragments	(called	shards)	are
attributed	to	different	nodes	in	the	cluster.	Typically,	a	measure	of	redundancy	is
introduced	for	performance	and	availability,	so	the	shards	on	different	nodes	are

not	 disjoint.	 In	 this	 context,	 the	 fragmentation	 criterion	 is	 mostly	 purely
technical	and	has	no	business	meaning.	The	sole	purpose	is	to	distribute	the	data
as	evenly	as	possible	over	the	respective	nodes	for	load	balancing.	This	is	often
achieved	by	a	form	of	randomization	called	consistent	hashing.

Connections

Consistent	hashing	was	discussed	in	Chapter	11.

16.3.3	Mixed	Fragmentation

Mixed	fragmentation	 combines	horizontal	with	vertical	 fragmentation.	Figure
16.5	 illustrates	 a	 situation	 in	 which	 rows	 containing	 CustomerID,	 FirstName,
and	LastName	are	fragmented	horizontally	according	to	the	customers’	Country
(note	 Country	 itself	 is	 not	 included	 as	 a	 column	 in	 the	 fragments).	 However,
there	is	also	vertical	fragmentation,	since	all	demographic	data	are	allocated	to	a
separate	node	(this	 time	without	horizontal	 fragmentation)	 to	perform	analytics
on	worldwide	customer	demographics.	Each	fragment	also	contains	the	primary
key	CustomerID,	to	be	able	to	reconstruct	a	global	view	with	a	query	containing
JOIN	and	UNION	operations.

Figure	16.5	Illustration	of	mixed	fragmentation.

Sometimes	 derived	 fragmentation	 is	 applied,	 which	 means	 that	 the
fragmentation	 criteria	 belong	 to	 another	 table.	 For	 example,	 the	 customer	 data
can	be	fragmented	according	 to	 the	sales	 total	 for	 that	customer,	as	stored	 in	a
separate	SALES	table.	In	this	way,	separate	fragments	with,	for	example,	high-
volume,	medium-volume,	and	low-volume	customers	can	be	created.

Decisions	 regarding	 data	 distribution	must	 be	made	 for	 all	 tables	 or,	 in	 a
non-relational	setting,	datasets.	It	may	be	possible	that	fragments	from	multiple
tables	 are	 attributed	 to	 the	 same	node,	 e.g.,	with	 the	CUSTOMER	 table	 being
fragmented	horizontally	according	to	Country,	and	the	rows	from	the	INVOICES
table	 being	 attributed	 to	 the	 same	 node	 as	 the	 corresponding	 customer	 to
improve	local	autonomy.

The	 optimization	 of	 the	 data	 fragmentation	 and	 allocation	 to	 appropriate
nodes	 according	 to	 one	or	more	 chosen	 criteria	 (performance,	 local	 autonomy,
etc.)	is	typically	very	complex.	There	may	not	be	a	single	optimal	solution,	or	it
may	 be	 impossible	 to	 compute	 this	 solution,	 but	 at	 least	 some	 heuristics,
practical	 experience,	 and	 rules	 of	 thumb	 can	 underpin	 the	 choices	 made.
Fortunately,	 if	 the	 distributed	 database	 environment	 offers	 sufficient	 levels	 of
transparency	 (see	 below),	 some	 distribution	 properties	 can	 be	 tuned	 over	 time
without	affecting	the	overall	functioning	of	the	applications	that	make	use	of	the
database.

16.3.4	Replication

Data	 distribution	 entails	 the	 partitioning	 of	 the	 global	 dataset	 into	 smaller
subsets,	 called	 fragments,	 which	 are	 then	 allocated	 to	 individual	 nodes.	 The
subsets	may	or	may	not	be	disjoint.	If	the	subsets	overlap,	or	if	there	are	multiple
identical	 subsets	 allocated	 to	 different	 nodes,	 we	 have	 data	 replication.	 There
may	be	different	reasons	for	data	replication:

Local	autonomy:	the	same	data	are	required	to	be	stored	locally	by	different
nodes	to	be	able	to	function	independently.

Performance	and	scalability:	using	replication,	different	queries	that	involve
the	same	data	can	be	executed	in	parallel	on	different	nodes.

Reliability	and	availability:	if	a	node	fails,	other	nodes	containing	the	same
data	can	take	over	the	workload	without	interrupting	normal	operation.

Depending	on	the	actual	system,	each	of	these	concerns,	or	a	combination,
may	 be	 a	 valid	 reason	 for	 replication.	 For	 example,	 to	 the	 sportswear	 chain
discussed	 earlier,	 local	 autonomy	may	 be	 the	 main	 driver.	 In	 many	 Big	 Data
settings,	local	autonomy	is	not	an	issue	since	the	cluster	of	nodes	always	acts	as
one	global	 system,	but	performance	and	availability	are	 significant	 reasons	 for
replication.

Connections

Chapter	 13	 already	 discussed	 how	 reliability	 and	 availability	 by	 itself
may	be	a	sufficient	reason	for	different	forms	of	data	replication.

Replication	 also	 induces	 additional	 overhead	 and	 complexity,	 to	 keep	 the
different	 replicas	 consistent	 and	 propagate	 updates	 to	 a	 data	 item	 to	 all	 its
replicas.	This	propagation	may	be	performed	instantly	(synchronous	replication)
or	with	some	delay	(asynchronous	replication).	As	discussed	in	Section	16.7,	the
degree	of	coupling	 between	 the	 respective	 nodes	 (tight	 coupling	 versus	 looser
coupling)	often	determines	a	tradeoff	between	keeping	the	replicas	consistent	at
all	 times	 (inducing	 more	 overhead)	 and	 more	 asynchronous	 approaches	 to
replication	 (requiring	 less	 overhead),	 resulting	 in	 a	 certain	 measure	 of	 data
inconsistency.

16.3.5	Distribution	and	Replication	of	Metadata

Similar	decisions	to	the	ones	on	the	distribution	and	replication	of	the	actual	data
need	to	be	made	with	respect	to	the	metadata:	will	all	metadata	be	centralized	in
a	 single	 catalog	 or	will	 the	metadata	 be	 fragmented	 and	 allocated	 to,	 e.g.,	 the
nodes	that	contain	the	data	described	by	the	metadata?	Also,	there	is	the	question
of	whether	 some	metadata	must	be	 replicated	 (e.g.,	 in	a	 set-up	with	both	 local
catalogs	and	a	global	catalog).	Replication	is	often	desirable,	since	only	a	single
global	 metadata	 catalog	 has	 a	 negative	 impact	 on	 the	 local	 autonomy	 of	 the
database	 nodes,	 whereas	 only-local	 catalogs	 make	 it	 hard	 to	 perform	 global
queries	and	interpret	their	results	in	a	consistent	manner.	Of	course,	if	global	and
local	metadata	catalogs	exist,	their	consistency	needs	to	be	assured	over	time	as
well.

Drill	Down

One	“distributed	system”	 that	 is	 getting	 a	 lot	 of	 attention	 these	days	 is
“blockchains”,	 as	 seen	 in,	 e.g.,	 crypto	 currencies	 such	 as	 Bitcoin	 or
digital	ledgers.	In	essence,	a	blockchain	is	simply	a	distributed	database
that	maintains	a	continuously	growing	list	of	records,	called	blocks.	Each
block	contains	a	reference	to	a	previous	block,	and	the	whole	“chain”	of
blocks	is	managed	by	a	peer-to-peer	network	which	collectively	agree	to
a	 system	 for	 validating	 new	 blocks.	 Because	 of	 this,	 blockchains	 are
resistant	to	modification	of	data	stored	in	the	blocks.	Once	recorded,	the
data	in	any	given	block	cannot	be	modified	without	the	alteration	of	all
subsequent	blocks	and	the	collusion	of	the	network.	Hence,	a	blockchain
can	serve	as	a	distributed	ledger	that	can	record	transactions	between	two

parties	 in	 a	 verifiable,	 permanent,	 and	 efficient	manner,	 and	 hence	 has
caught	the	attention	of	many	financial	institutions.

Retention	Questions

What	is	meant	by	fragmentation,	allocation,	and	replication	in	a
distributed	environment?

Discuss	the	different	types	of	fragmentation.

What	could	be	reasons	for	data	replication	in	a	distributed
environment?

16.4	Transparency

Transparency	refers	to	the	fact	that,	although	the	data	and	database	functionality
are	physically	distributed,	 the	application	and	users	are	confronted	with	only	a
single	 logical	 database	 and	 are	 insulated	 (at	 least	 to	 a	 certain	 extent)	 from	 the
complexities	 of	 the	 distribution.	 In	 this	 way,	 this	 transparency	 can	 be	 looked
upon	as	an	extension	to	the	logical	and	physical	data	independence.

Connections

Logical	and	physical	data	independence	were	discussed	in	Chapter	1.

Several	 types	 of	 transparency	 can	 be	 identified	 and	 may	 or	 may	 not	 be
supported	 by	 a	 distributed	 database	 system.	An	 important	 property	 is	 location
transparency,	which	means	that	database	users	do	not	need	to	know	on	which
node	 the	required	data	 resides.	Fragmentation	transparency	 refers	 to	 the	fact
that	users	can	execute	global	queries	without	being	concerned	with	the	fact	that
distributed	fragments	will	be	involved,	and	need	to	be	combined,	to	perform	the
query.	Replication	transparency	means	that	different	replicas	of	the	same	data
item	will	be	automatically	kept	consistent	by	the	database	system	and	updates	to
one	 replica	 will	 be	 propagated	 transparently	 (be	 it	 synchronously	 or
asynchronously)	to	the	other	copies	of	the	same	data	item.

One	 particular	 type	 of	 transparency,	 which	 is	 especially	 relevant	 in	 a
federated	 database	 setting	 with	 different	 DBMS	 types	 or	 components	 from
different	 vendors,	 is	 access	 transparency.	 This	 refers	 to	 the	 fact	 that	 the
distributed	 database	 can	 be	 accessed	 and	 queried	 uniformly,	 regardless	 of	 the

different	database	systems	and	APIs	that	may	be	involved.	Access	transparency
is	 particularly	 an	 issue	 if	 the	 distributed	 database	 is	 the	 consequence	 of	 a
database	 integration	 effort	 (e.g.,	 in	 a	merger),	where	 one	 is	 confronted	with	 a
heterogeneous	as-is	situation.	A	key	technique	to	realize	access	transparency	is
the	 use	 of	 universal	 database	 APIs	 as	 discussed	 in	 the	 previous	 chapter.
However,	in	many	cases,	a	universal	API	will	be	complemented	by	an	additional
layer	 of	 wrappers	 which	 form	 a	 shell	 around	 the	 respective	 data	 sources,
insulating	the	users	and	applications	from	their	heterogeneity	and	providing,	e.g.,
a	virtual	unified	database	model	over	the	distributed	data	sources.

Connections

Chapter	 15	 discussed	 different	 universal	 database	 APIs.	 Chapter	 18
discusses	aspects	of	federation	as	a	data	integration	technique.

A	last	crucial	type	of	transparency	is	transaction	transparency.	Here,	 the
DBMS	transparently	performs	distributed	transactions	involving	multiple	nodes
as	 if	 they	 were	 transactions	 in	 a	 standalone	 system.	 Transparent	 handling	 of
transaction	execution	requires	extra	coordination	in	a	distributed	setting.	A	first
issue	 is	concurrency	control.	The	 locking	mechanisms	discussed	 in	Chapter	14
need	 to	 be	 extended	 to	 cater	 for	 locking	 and	 transaction	 consistency	 across
multiple	 nodes	 or	 locations.	 In	 addition,	 care	 should	 be	 taken	 to	 avoid
transactions	 that	 require	 locks	 across	multiple	 locations	 ending	 up	 in	 a	 global
deadlock.	Different	extensions	 to	 the	Two-Phase	Locking	Protocol	exist	 in	 this
context.	A	second	issue	is	recovery,	where	recovery	mechanisms	in	a	distributed
setting	 need	 to	 be	 able	 to	 deal	 with	 additional	 types	 of	 problems,	 such	 as
unavailability	of	a	single	node,	messages	not	received,	or	failure	of	one	or	more

communication	 links.	Guaranteeing	 transaction	 atomicity	 requires	 coordination
across	multiple	nodes	that	together	execute	a	distributed	transaction.

In	 the	 next	 section	 we	 deal	 with	 querying	 data	 in	 distributed	 databases,
whereas	 the	 last	 two	 sections	 of	 this	 chapter	 focus	 on	 distributed	 transaction
management.	 First,	 different	 optimistic	 and	 pessimistic	 concurrency	 protocols
are	 discussed,	 along	 with	 approaches	 to	 deal	 with	 atomicity	 of	 distributed
transactions.	 The	 last	 section	 focuses	 explicitly	 on	 the	 particularities	 of
transaction	 management	 in	 a	 Big	 Data	 setting,	 with	 high	 levels	 of	 data
replication,	as	supported	by	NoSQL	databases.

Retention	Questions

Connections

The	 basics	 of	 transaction	management	were	 introduced	 in	 Chapter	 14.
NoSQL	databases	were	discussed	in	Chapter	11.

What	is	meant	by	transparency	in	a	distributed	environment?

Discuss	the	different	types	of	transparency.

16.5	Distributed	Query	Processing

Query	optimization	becomes	even	more	complex	if	queries	are	to	be	executed	on
data	 distributed	 over	 multiple	 nodes	 or	 locations.	 Ideally,	 location	 and
fragmentation	 transparency	 are	 guaranteed	 by	 the	 DBMS,	 but	 even	 then	 the
optimizer	 should	 consider	 not	 only	 the	 elements	 of	 a	 standalone	 setting
(availability	 of	 indexes,	 sizes	 of	 the	 tables,	 statistics	 on	 data	 usage,	 and	 query
execution	as	discussed	 in	Chapter	13),	but	also	 the	properties	of	 the	respective
fragments,	 communication	 costs,	 and	 the	 location	 of	 the	 data	 in	 the	 network.
Also,	the	necessary	metadata	may	be	distributed.	Based	on	these	characteristics,
both	global	(across	all	nodes)	and	local	(within	a	single	node)	query	optimization
are	 needed.	 In	 this	 chapter,	 we	 focus	 on	 distributed	 query	 processing	 in	 a
relational	setting.

Connections

Chapter	13	discusses	query	processing	 in	a	standalone	database	setting.
Some	typical	approaches	for	query	processing	in	NoSQL	databases,	and
other	retrieval	techniques	such	as	MapReduce,	were	presented	in	Chapter
11.

Usually,	 distributed	 query	 processing	 involves	 four	 steps:	 query
decomposition,	 data	 localization,	 global	 query	 optimization,	 and	 local	 query
optimization	(Figure	16.6).	The	 first	 and	 fourth	 step	 also	 exist	 in	 a	 standalone
environment;	the	second	and	third	step	are	particular	to	a	distributed	setting.

Figure	16.6	Steps	in	distributed	query	processing.

In	 the	 query	 decomposition	 step,	 the	 query	 is	 first	 analyzed	 for
correctness:	syntax	and	data	types	are	verified,	and	column	and	table	names	are
validated	against	 the	metadata	 in	 the	 catalog.	The	query	 is	 then	 represented	 in
relational	 algebra	 and	 transformed	 into	 a	 canonical	 form,3	 which	 is	 most
appropriate	for	further	processing.

The	data	 localization	 step	 entails	 the	 transformation	 of	 the	 query	 into	 a
fragment	query.	The	database	fragments	subjected	 to	 the	query	are	 identified,
as	well	as	their	locations.	Several	reduction	techniques	are	applied	in	such	a	way
that	 fragments	 that	 are	 guaranteed	 to	 contain	 no	 data	 that	 satisfy	 the	 query
predicate	 are	 omitted	 from	 the	 fragment	 query.	 In	 this	 way,	 unnecessary
processing	is	avoided	where	possible.

During	 the	 global	 query	 optimization	 step,	 a	 cost	 model,	 based	 on
statistical	 evidence,	 is	 used	 to	 evaluate	 different	 global	 strategies	 for	 query
execution.	The	strategy	with	the	lowest	predicted	cost	is	selected.

The	 results	 of	 the	 previous	 step	 determine	 which	 operations	 should	 be
performed	on	which	location.	For	each	of	these	local	operations,	a	local	query
optimization	step	determines	the	optimal	strategy	for	local	execution.

We	 illustrate	 the	 complexity	 of	 distributed	 query	 processing	 using	 the
example	 in	 Figure	 16.7.	 The	 most	 crucial	 element	 here	 is	 the	 global	 query
optimization	 step.	 The	 example	 represents	 a	 situation	 in	 which	 we	 want	 to
retrieve	 all	 purchase	 order	 numbers	 and	 the	 names	 of	 the	 suppliers	 associated
with	 the	 purchase	 orders.	 The	 database	 is	 distributed	 over	 three	 locations:	 all
supplier	 data	 are	 in	 location	 1,	 the	 purchase	 order	 and	 product	 data	 are
maintained	 in	 location	2,	and	all	other	data	are	stored	 in	 location	3.	The	query
originates	 from	 location	 3,	 which	 is	 also	 where	 the	 query	 result	 should	 be
delivered.	We	assume	a	shared-nothing	architecture.

Figure	16.7	Illustration	of	distributed	query	optimization.

Figure	 16.7	 contains	 some	 quantitative	 and	 statistical	 data	 that	 further
describe	 the	 situation.	 The	 optimal	 strategy	 will	 depend	 on	 the	 actual
optimization	criteria;	one	could	minimize	response	time	or	network	traffic,	aim
at	 equally	 balanced	 workloads	 over	 the	 respective	 servers,	 etc.	 Suppose	 the
optimization	criterion	is	minimal	network	traffic	and,	for	simplicity,	let’s	assume

that	each	fragment	corresponds	to	an	individual	table.	We	evaluate	four	possible
strategies:

Strategy	1:	all	tables	are	copied	to	location	3,	which	is	also	the	location
where	all	querying	is	performed.	The	total	data	transport	amounts	to
(1000	×	84)	+	(3000	×	16)	bytes	=	132,000	bytes.

Strategy	2:	the	SUPPLIER	table	is	copied	to	location	2,	where	it	is	joined
with	the	PURCHASEORDER	table.	The	query	result	is	then	sent	to
location	3.	The	data	transport	amounts	to	(1000	×	84)	+	(3000	×	(6	+	30))
bytes	=	192,000	bytes.

Strategy	3:	the	PURCHASEORDER	table	is	copied	to	location	1,	where	it
is	joined	with	the	SUPPLIER	table.	The	query	result	is	sent	to	location	3.
The	data	transport	amounts	to	(3000	×	16)	bytes	+	(3000	×	(6	+	30))
bytes	=	156,000	bytes.

Strategy	4:	this	strategy	illustrates	the	semi-join	technique.	Here,
projections4	are	used	to	reduce	tables	before	sending	them	over	the	network
and	joining	them	with	other	tables.	In	location	2,	a	projection	operation	is
executed	to	yield	all	numbers	of	suppliers	associated	with	a	purchase	order.
We	estimate	this	operation	will	yield	200	supplier	numbers.	These	numbers
are	copied	to	location	1,	where	a	JOIN	operation	is	executed	to	combine	the
supplier	numbers	with	the	corresponding	supplier	names.	This	intermediate
result	is	copied	to	location	2,	to	process	the	query	further.	The	final	result	is
then	sent	to	location	3.	Here,	the	data	transport	amounts	to	only
(200	×	4)	+	(200	×	(4	+	30))	+	(3000	×	(6	+	30))	bytes	=	115,600	bytes.

If	we	 only	 consider	 the	 four	 strategies	mentioned	 above,	 and	 the	 optimization
criterion	is	network	traffic,	the	fourth	strategy	will	be	chosen.	However,	whereas
the	 semi-join	 reduces	 the	 network	 traffic,	 a	 higher	 processing	 cost	 is	 incurred.

Therefore,	 other	 strategies	may	be	preferable	 if	 an	optimization	 criterion	other
than	network	traffic	is	applied.

Retention	Questions

Discuss	the	different	steps	of	distributed	query	processing.	Illustrate
with	an	example.

16.6	Distributed	Transaction	Management	and
Concurrency	Control

There	 exists	 a	 large	 gamut	 of	 techniques	 to	 coordinate	 transactions	 in	 a
distributed	setting.	Such	transactions	entail	distinct	subtransactions	at	individual
nodes	or	 locations,	with	 a	 certain	measure	of	 autonomy.	We	 speak	of	 a	global
transaction	coordinator	and	local	participants	in	the	distributed	transaction.

Before	 discussing	 individual	 approaches,	 it	 is	 important	 to	 note	 that
interdependence	between,	and	 the	 level	of	central	control	over,	 the	participants
in	 a	 distributed	 transaction	 may	 vary	 greatly	 from	 case	 to	 case.	 In	 a	 tightly
coupled	 setting,	 this	 interdependence	 and	 central	 control	 are	 substantial.	 The
distributed	transaction	is	required	to	have	roughly	the	same	ACID	properties	as
the	transactions	in	a	standalone	setting	as	we	discussed	in	Chapter	14.	Such	tight
coupling	 is	 typically	 paired	 with	 synchronous	 communication	 between	 the
transaction	 participants.	 Database	 connections	 remain	 open	 for	 the	 entire
interaction.	However,	mobile	 devices,	web	 services,	 and	 programming	models
geared	toward	loose	coupling,	such	as	.NET,	also	brought	about	the	need	for	less
tightly	coupled	distributed	transaction	paradigms.	The	interactions	are	based	on
asynchronous	messaging	 and	 locally	 replicated	 data.	Cached	 local	 updates	 are
only	synchronized	periodically	with	the	global	system.	Database	connections	are
opened	just	long	enough	to	synchronize	data	or	to	execute	a	query	and	retrieve
the	results,	but	are	closed	immediately	afterward.	The	data	can	then	be	examined
and,	 possibly,	 updated	 in	 a	 disconnected	 entity	 such	 as	 an	ADO.NET	DataSet
(see	 Chapter	 15).	 The	 database	 connection	 is	 briefly	 re-established	 if	 these
updates	are	 to	be	propagated	 to	 the	database.	Also,	 loosely	coupled	paradigms
often	 apply	 some	 form	 of	 optimistic	 concurrency,	 rather	 than	 a	 pessimistic

protocol.	 The	 latter	 approaches	 increase	 the	 local	 autonomy	 of	 transaction
participants,	 and	 in	many	 cases	 they	 also	 have	 a	 positive	 effect	 on	 transaction
throughput	 and	 scalability.	 The	 consistency	 of	 the	 data,	 and	 especially
consistency	between	different	replicas	of	the	same	data	item,	may	suffer	to	some
extent.

In	 the	 next	 sections,	 we	 start	 with	 the	 more	 traditional	 approaches	 of
distributed	transaction	management	and	concurrency	control	in	a	tightly	coupled
setting	 and	 then	 gradually	 move	 on	 to	 more	 loosely	 coupled	 paradigms.	 We
conclude	this	chapter	with	transaction	handling	in	NoSQL	databases.

16.6.1	Primary	Site	and	Primary	Copy	2PL

In	 a	 distributed	 but	 tightly	 coupled	 setting,	 many	 (variations	 of)	 concurrency
control	techniques	from	a	standalone	database	system	are	still	applicable.	Most
of	 these	 techniques	rely	on	 locking.	Three	well-known	approaches	are	primary
site	2PL,	primary	copy	2PL,	and	distributed	2PL.	We	discuss	the	former	two	in
this	section	and	dedicate	the	next	section	to	distributed	2PL.

Primary	 site	 2PL	 comes	 down	 to	 applying	 the	 centralized	 Two-Phase
Locking	Protocol	discussed	 in	Chapter	14	 in	a	distributed	environment.	 In	 this
approach,	a	single	 lock	manager	 is	 responsible	 for	 lock	management	across	all
locations.	Requests	for	acquiring	and	releasing	locks	for	all	participants	should
be	directed	by	the	transaction	coordinator	to	this	central	lock	manager.	The	latter
applies	 the	 rules	 of	 2PL,	 so	 serializability	 is	 guaranteed.	 The	 lock	 manager
informs	the	coordinator	when	the	required	locks	can	be	granted.	Based	on	that,
the	 coordinator	 will	 instruct	 the	 transaction	 participants	 to	 execute	 their
subtransactions.	 A	 participant	 that	 has	 completed	 processing	 all	 its
subtransaction’s	 operations	 will	 notify	 the	 coordinator,	 who	 then	 instructs	 the
central	lock	manager	to	release	the	corresponding	locks.

The	 biggest	 advantage	 of	 primary	 site	 2PL	 is	 its	 relative	 simplicity.	 In
contrast	to	other	solutions	such	as	distributed	2PL	(see	Section	16.6.2),	no	global
deadlocks	can	occur.	An	obvious	disadvantage	 is	 that	 the	central	 lock	manager
may	 become	 a	 bottleneck.	 There	 is	 no	 location	 autonomy:	 individual	 nodes
cannot	 perform	 any	 local	 transactions	 without	 support	 from	 the	 central	 lock
manager.	Concentrating	all	locking	activities	with	one	node	may	also	undermine
reliability	and	availability.	This	shortcoming	can	be	alleviated	to	some	extent	by
including	 a	 backup	 location	 for	 registering	 locking	 data.	 If	 the	 primary	 site	 is
down,	 the	 backup	 location	 takes	 over,	 and	 another	 location	 is	 dedicated	 to

become	the	new	backup	site.	However,	the	increased	availability	and	reliability
will	 come	 with	 a	 cost	 of	 decreased	 performance	 because	 of	 the	 additional
overhead.

An	 extension	 of	 primary	 site	 2PL	 is	 primary	 copy	 2PL,	 which	 aims	 at
further	 reducing	 the	 aforementioned	 disadvantages.	 Here,	 lock	 managers	 are
implemented	at	different	 locations	and	maintain	 locking	 information	pertaining
to	a	predefined	subset	of	the	data.	All	requests	for	granting	and	releasing	locks
are	 directed	 to	 the	 lock	 manager	 responsible	 for	 that	 subset.	 In	 this	 way,	 the
impact	of	a	particular	location	going	down	will	be	less	severe	than	with	primary
site	2PL,	since	only	a	subset	of	the	data	and	transactions	will	be	affected.

16.6.2	Distributed	2PL

With	distributed	2PL,	every	site	has	its	own	lock	manager,	which	manages	all
locking	 data	 pertaining	 to	 the	 fragments	 stored	 on	 that	 site.	 For	 global
transactions	 that	 involve	 updates	 at	 n	 different	 sites,	 there	 will	 be	 n	 locking
requests;	 n	 confirmations	 about	 whether	 the	 locks	 are	 granted	 or	 not;	 n
notifications	of	local	operations	having	completed;	and	n	requests	to	release	the
locks.	 In	 this	way,	 location	 autonomy	 is	 respected,	 but	 there	 is	 a	 considerable
increase	in	message	exchanges,	particularly	so	if	the	global	transaction	involves
many	participants.	Also,	global	deadlocks	 and	other	undesirable	 circumstances
may	occur,	which	requires	precautions	to	be	included	as	additional	rules	 to	 the
basic	2PL.

More	 concretely,	 as	 long	 as	 the	 database	 has	 no	 replicated	 data,	 applying
the	basic	2PL	Protocol	guarantees	serializability.	Since	 the	 local	schedules	will
be	serializable,	the	global	schedule,	which	is	nothing	more	than	the	union	of	the
local	schedules,	will	be	serializable	as	well.	The	latter	no	longer	holds	if	certain
data	 are	 replicated	 over	 different	 locations.	 There,	 the	 2PL	 Protocol	 must	 be
extended,	as	illustrated	in	Figure	16.8.	The	example	represents	a	schedule	with
two	global	 transactions	 (T1	 and	T2).	Both	 transactions	 update	 the	 value	 of	 the
same	account	x.	This	value	is	replicated,	as	it	is	stored	on	both	the	locations	L1
and	L2.	T1	subtracts	50	from	the	amount	on	account	x,	using	the	subtransactions
T1.1	 (in	 L1)	 and	 T1.2	 (in	 L2).	 T2,	 on	 the	 other	 hand,	 doubles	 the	 amount	 on
account	x,	using	subtransactions	T2.1	(in	L1)	and	T2.2	(in	L2).	The	order	in	which
the	operations	 are	 executed	 is	 important.	The	global	 schedule	 as	 shown	 in	 the
example	results	in	inconsistent	data:	if	the	initial	value	of	amountx	is,	say,	100,
then	 the	final	value	of	amountx	 in	L1	 is	150,	whereas	 it	 is	100	 in	L2.	Still,	 the
local	 schedules	 by	 themselves	 are	 serializable.	 The	 problem	 is	 that	 both

schedules	 serialize	 T1	 and	 T2	 in	 a	 different	 order.	 This	 illustrates	 that	 to
guarantee	 global	 consistency,	 an	 additional	 requirement	 needs	 to	 be	 imposed
apart	from	the	serializability	of	the	local	schedules.	This	requirement	stipulates
that	 conflicting	 operations	 should	 be	 executed	 in	 the	 same	 order	 across	 all
schedules.

Figure	16.8	Illustration	of	problems	with	2PL	in	the	event	of	replicated	data.

A	 second	 issue	 pertaining	 to	 2PL	 is	 that	 it	 can	 give	 rise	 to	 global
deadlocks.	A	global	 deadlock	 spans	 several	 locations.	Consequently,	 it	 cannot
be	detected	by	individual	local	lock	managers.	We	illustrate	this	in	Figure	16.9.
Two	 transactions	 (T1	 and	 T2)	 process	 a	money	 transfer	 between	 accountx	 and
accounty.	 The	 account	 data	 are	 stored	 in	 location	 L1	 and	 L2	 respectively.
Transaction	T1	transfers	50	from	accountx	to	accounty	using	subtransactions	T1.1
and	T1.2,	whereas	 transaction	T2	 transfers	 30	 from	 accounty	 to	 accountx	 using
subtransactions	T2.1	and	T2.2.	Although	the	schedule	complies	with	2PL,	a	global
deadlock	will	occur.	Whereas	there	are	no	cycles	in	the	respective	local	wait-for
graphs,	the	global	wait-for	graph,	which	combines	the	local	ones,	does	contain	a
cycle,	denoting	a	global	deadlock.	Therefore,	deadlock	detection	 in	distributed
2PL	requires	the	construction	of	a	global	wait-for	graph,	besides	the	local	graph.
A	schedule	is	only	deadlock	free	if	not	only	the	local	graphs,	but	also	the	global
graph	contains	no	cycles.

Figure	16.9	Illustration	of	a	global	deadlock	with	distributed	2PL.

In	 practice,	 there	 are	 different	 approaches	 to	 detect	 global	 deadlocks.	 For
example,	 one	 location	 can	be	 chosen	 as	 the	 central	 site	 to	maintain	 the	 global
wait-for	graph.	All	local	lock	managers	will	periodically	inform	this	central	site
of	changes	in	their	local	wait-for	graphs,	to	update	the	global	wait-for	graph.	If
one	 or	 more	 cycles	 are	 detected,	 the	 local	 lock	 managers	 will	 be	 informed
accordingly	and	victim	selection	will	determine	which	transaction(s)	to	abort	and
rollback	to	resolve	the	global	deadlock.

16.6.3	The	Two-Phase	Commit	Protocol	(2PC)

Besides	 concurrency	 control,	 another	 concern	 with	 distributed	 transaction
management	is	guaranteeing	global	transaction	atomicity	as	part	of	the	recovery
strategy.	 Therefore,	 the	 mechanism	 for	 transaction	 commit	 and	 abort	 should
guarantee	that	the	global	transaction	can	only	attain	a	“committed”	or	“aborted”
state	if	all	its	subtransactions	have	attained	this	same	state.	Also,	care	should	be
taken	that	individual	locations	that	participate	in	a	global	transaction	cannot	get
blocked	 because	 of	 a	 communication	 infrastructure	 malfunction	 or	 other
calamity.

The	 Two-Phase	 Commit	 Protocol	 (2PC	 Protocol)	 was	 developed
specifically	 to	 support	 transaction	 recovery	 in	 a	 distributed	 environment.	 The
protocol	 derives	 its	 name	 from	 the	 fact	 that	 global	 transaction	 completion
involves	two	phases:	a	voting	phase	in	which	all	transaction	participants	“vote”
about	 transaction	 outcome	 and	 a	 decision	 phase	 in	 which	 the	 transaction
coordinator	 makes	 the	 final	 decision	 about	 the	 outcome.	 The	 protocol	 is
illustrated	in	Figure	16.10.

Figure	16.10	Illustration	of	the	Two-Phase	Commit	protocol.

In	 phase	 1,	 the	 coordinator	 of	 the	 global	 transaction	 sends	 a	 prepare
message	 to	 all	 transaction	 participants.	 The	 coordinator	 then	 waits	 until	 all
participants	 have	 responded,	 or	 until	 a	 timeout	 period	 has	 passed.	 Upon
receiving	 a	 prepare	message,	 each	participant	 assesses	whether	 it	 can	 (locally)
commit	the	transaction.	If	it	can,	then	a	commit	vote	is	sent	to	the	coordinator.	In
the	 opposite	 case,	 the	 participant	 sends	 an	abort	 vote	 to	 the	 coordinator,	 after
which	it	immediately	aborts	the	local	transaction.

In	phase	2,	the	votes	are	counted	by	the	coordinator	and	a	final	decision	is
made	 about	 transaction	 outcome.	 If	 all	 participants	 voted	 “commit”,	 the
coordinator	 decides	 to	 execute	 a	 global	 commit.	 It	 sends	 a	 “global	 commit”
message	 to	 all	 participants,	 and	 enters	 the	 “committed”	 state.	 If	 at	 least	 one
participant	 voted	 “abort”,	 the	 coordinator	 decides	 to	 abort	 the	 transaction
globally.	 It	 sends	 a	 “global	 abort”	 message	 to	 all	 participants,	 and	 enters	 the
“aborted”	 state.	 Each	 participant	 then	 locally	 executes	 the	 global	 decision

(commit	in	the	first	case	and	abort	in	the	second)	and	returns	a	confirmation	to
the	coordinator.	Finally,	the	coordinator	completes	the	transaction	using	an	“end
transaction”	mark	on	the	logfile.

The	 2PC	 Protocol	 is	 supplemented	 by	 two	 additional	 protocols:	 a
termination	protocol	and	a	recovery	protocol.	Given	the	distributed	setting,	care
should	be	taken	that	neither	the	coordinator	nor	the	participants	can	end	up	in	an
endless	 state,	 waiting	 for	 a	 message	 that	 will	 never	 come	 because	 of	 a
communication	malfunction	or	because	 the	party	 that	 should	send	 the	message
had	faulted.	Therefore,	a	site	will	wait	no	longer	for	incoming	messages	than	for
a	fixed	timeout	period.	If	a	timeout	occurs,	it	will	invoke	a	termination	protocol
(aka	 timeout	 protocol),	 which	 describes	 how	 to	 react	 to	 the	 timeout.	 If	 the
timeout	 was	 caused	 by	 a	 calamity	 at	 one	 of	 the	 other	 locations,	 a	 recovery
protocol	describes	how	the	faulty	site	should	correctly	resume	operation	after	its
malfunction.

16.6.4	Optimistic	Concurrency	and	Loosely	Coupled	Systems

It	was	explained	in	Chapter	14	how	optimistic	concurrency	protocols	provide	an
alternative	 to	 pessimistic	 protocols	 such	 as	 2PL	 if	 the	 chance	 of	 interference
between	 concurrent	 transactions	 is	 limited.	 Therefore,	 optimistic	 protocols	 do
not	 attempt	 to	 prevent	 such	 conflicts	 by	 postponing	 certain	 operations	 until
conflict-free	 execution	 can	 be	 guaranteed	 because	 this	 inevitably	 affects
throughput.	Rather,	they	resolve	the	conflict	before	transaction	commit,	typically
with	 an	 abort	 and	 rollback	 of	 the	 conflicting	 transaction(s).	 Optimistic
concurrency	can	be	appropriate	in	standalone	systems	where	transactions	do	not
often	 interfere,	 e.g.,	 because	 update	 operations	 are	 scarce	 or	 because	 different
transactions	mostly	 pertain	 to	 disjoint	 subsets	 of	 the	 data.	 However,	 it	 is	 also
advantageous	in	many	distributed	settings,	where	the	loose	coupling	between	the
respective	 participants	 in	 a	 distributed	 transaction	would	 render	 the	 previously
mentioned	approaches	inappropriate.

Tightly	coupled	distributed	systems	often	apply	a	pessimistic	concurrency
protocol,	 enforcing	 global	 transaction	 serializability	 by,	 across	 all	 participants,
placing	locks	on	the	database	objects	that	participate	in	the	global	transaction,	as
discussed	 in	previous	 sections.	Conflicting	operations	of	 other	 transactions	 are
postponed	until	the	locks	are	released.	Obviously,	the	longer	these	locks	are	held,
the	 higher	 the	 negative	 impact	 on	 transaction	 throughput.	 In	 a	 tightly	 coupled
environment,	transactions	are	typically	sufficiently	short-lived	so	as	not	to	hold
any	locks	for	longer	periods.	A	transaction	either	commits	in	a	short	time	span,
or	 the	 transaction	coordinator,	 and	 the	other	participants,	 are	notified	promptly
that	a	participant	is	not	available	or	will	not	be	able	to	commit	its	subtransaction,
so	 the	 global	 transaction	 can	 be	 aborted	 and	 locks	 can	 be	 released	 across	 all
participants.	 However,	 the	 situation	 is	 different	 in	 a	 loosely	 coupled	 setting,

characterized	by	asynchronous	communication	and	unpredictable	response	times
of	 the	 transaction	participants.	This	 is	even	more	pertinent	 if	 these	participants
are	 independent	 organizations	 or	 business	 units,	who	 are	 not	 prepared	 to	 have
their	throughput	and	performance	suffer	from	locks	held	by	another	participant,
without	 knowing	 whether	 the	 latter	 is	 disconnected	 or	 otherwise	 unavailable.
Therefore,	pessimistic	concurrency	is	mostly	inappropriate	and	at	least	not	very
scalable	in	such	a	context.

A	 typical	 application	 of	 loose	 coupling	 and	 optimistic	 concurrency	 is	 the
disconnected	 database	 paradigm	 as	 applied	 in,	 among	 others,	 ADO.NET
DataSets.	 In	 this	 context,	 locks	 are	 only	 held	 during	 the	 brief	 period	 when	 a
database	 connection	 is	 open,	 to	 exchange	 data	 between	 the	 database	 and	 the
DataSet	 –	 for	 example,	 consider	 mobile	 sales	 teams,	 with	 partial	 replicas	 of
product	and	sales	data	for	their	region	on	their	mobile	devices	when	they	are	on
the	road.	Thanks	to	the	replication,	they	can	operate	autonomously	and	register
sales	 locally	 without	 a	 permanent	 database	 connection.	 Their	 local	 copies	 are
periodically	 synchronized	 when	 they	 connect	 to	 the	 global	 database.	 Possible
conflicts	with	other	transactions	are	not	prevented	but	are	detected	and	handled
upon	 transaction	 completion,	 possibly	 resulting	 in	 one	 or	 more	 transactions
being	rolled	back.

However,	 whereas	 optimistic	 concurrency	 may	 considerably	 increase
transaction	throughput	and	overall	data	availability	in	a	loosely	coupled	setting,
because	of	the	absence	of	locks,	there	is	also	a	downside.	For	example,	suppose
application	A1	 reads	 data	 from	 a	 database	 into	 a	 DataSet	 and	 then	 closes	 the
database	 connection.	 After	 that,	 the	 data	 in	 the	 disconnected	 dataset	 can	 be
processed	and,	possibly,	updated	locally.	If	these	updates	are	to	be	propagated	to
the	database	afterward,	a	new	connection	is	opened,	again	only	for	the	brief	time
of	the	data	exchange.	However,	there	is	no	guarantee	that	the	original	data	in	the
database	was	not	altered	by	another	application	A2	 in	the	meantime.	There,	the

updates	 by	 A1	 will	 be	 rejected,	 because	 they	 would	 overwrite	 A2’s	 updates,
which	are	unknown	to	A1,	resulting	in	a	lost	update.	It	would	not	be	a	solution	to
lock	the	original	data	in	the	database	either	since,	in	a	disconnected	setting,	the
DBMS	would	not	know	when	(if	ever)	application	A1	will	reconnect	to	release
the	 locks,	 which	 is	 obviously	 unacceptable	 from	 a	 data	 availability	 and
throughput	perspective.

There	 exist	 different	 techniques	 to	 detect	 conflicting	 updates	 in	 an
optimistic	concurrency	setting.	A	first	possibility	is	the	use	of	timestamps.	In	this
approach,	 a	 “timestamp”	 column	 is	 added	 to	 any	 table	 that	 is	 open	 to
disconnected	access.	The	timestamps	indicate	the	time	of	the	most	recent	update
of	 a	 row.	 If	 application	 A1	 retrieves	 rows	 from	 the	 database	 and	 then
disconnects,	 the	 timestamp	 column	 is	 copied.	 At	 the	 moment	 when	 the
application	 attempts	 to	 propagate	 its	 updates	 to	 the	 database,	 the	 timestamp
associated	 with	 an	 updated	 row	 is	 compared	 to	 the	 timestamp	 of	 the
corresponding	row	in	the	database.	If	both	timestamps	don’t	match,	it	means	that
the	row	in	the	database	was	updated	by	another	application	A2	in	the	meantime,
so	the	update	by	A1	will	be	 refused.	 If	 the	 timestamps	match,	 the	updated	row
can	be	propagated	safely	to	the	database,	and	a	new	timestamp	value	is	stored	in
the	database	for	the	corresponding	row.

A	 second	 possibility,	 which	 is	 the	 default	 technique	 in	 an	 ADO.NET
DataSet,	 is	 to	 store	 two	 versions	 of	 each	 row	 in	 the	 disconnected	 entity:	 a
“current”	version	and	an	“original”	version.	The	“original”	version	contains	the
values	as	they	were	read	from	the	database.	The	“current”	version	contains	 the
values	 as	 they	were	 (possibly)	 affected	by	 local	updates	 in	 the	DataSet,	which
are	not	yet	propagated	to	the	database.	Once	the	DataSet	attempts	to	propagate
updates	 to	 the	database,	 for	each	locally	updated	row,	 the	“original”	values	are
compared	 to	 the	values	of	 the	corresponding	row	in	 the	database.	 If	 the	values
are	identical,	the	row	in	the	database	will	be	updated	with	the	“current”	values	of

the	corresponding	row	in	the	DataSet.	If	they	are	not	identical,	it	means	that	the
row	in	the	database	was	updated	by	another	application	in	the	meantime	and	the
update	by	the	DataSet	is	rejected.

The	second	approach	is	illustrated	in	Figure	16.11.	Suppose	an	ADO.NET
DataSet	 was	 generated	 based	 on	 the	 rows	 in	 a	 database	 table	 MYTABLE
consisting	of	column1,	column2,	and	column3.	An	update	to	the	database	table
will	 only	 be	 accepted	 if	 the	 column1,	 column2,	 and	 column3	 values	 in	 the
database	are	equal	to	the	@originalValue	values	in	the	DataSet.	In	that	case,	the
database	 row	will	 be	updated	with	 the	 corresponding	@currentValue	values	of
the	 DataSet.	 If	 the	 values	 are	 not	 equal,	 which	 means	 that	 the	 rows	 in	 the
database	were	 already	 updated	 by	 another	 party,	 the	WHERE	 condition	 is	 not
satisfied,	and	no	data	will	be	updated.	Note	that	in	most	cases	one	of	the	selected
columns	should	be	the	primary	key	to	uniquely	identify	the	rows	to	be	updated.
This	kind	of	code	can	be	crafted	manually,	but	is	also	generated	automatically	as
part	of	a	DataAdapter’s	UpdateCommand,	which	is	a	specific	Command	object
that	 is	 used	 by	 the	DataAdapter	 to	 propagate	 updates	 from	 the	DataSet	 to	 the
database.	 A	 similar	 approach	 is	 followed	 in	 JDBC’s	 disconnected	 database
construct,	the	CachedRowSet.

Figure	16.11	Illustration	of	optimistic	concurrency	in	an	ADO.NET	DataSet.

Connections

The	 overall	 functioning	 of	 the	ADO.NET	DataSet	 and	DataAdapter	 is
illustrated	in	Chapter	15.

16.6.5	Compensation-Based	Transaction	Models

A	 loosely	 coupled	 environment	 not	 only	 impacts	 the	 concurrency	 aspects	 of
transaction	management	but	also	affects	recovery	and	how	transaction	atomicity
is	 to	be	guaranteed.	Although	optimistic	concurrency	assumes	 that	 transactions
interfere	only	rarely,	conflicts	cannot	be	ruled	out	altogether.	If	upon	transaction
completion	a	concurrency	problem	is	detected,	the	conflicting	transaction	should
be	rolled	back.	This	 is	also	 the	case	if	 the	 transaction	cannot	be	committed	for
any	other	reason,	such	as	a	timeout	of	a	participant	or	another	kind	of	calamity.
Atomicity	of	a	distributed	 transaction	 is	 relatively	easy	 to	 realize	using	2PC	 if
the	 transactions	 are	 simple	 and	 short-lived.	 However,	 many	 loosely	 coupled
settings,	such	as	web	service	environments,	are	characterized	by	 long-running
transactions	 (aka	 long-lived	 transactions).	 The	 duration	 of	 such	 transactions
depends	 on	 the	 asynchronous	 interactions	 between	 participants	 in	 a	 business
process	 (e.g.,	 a	 WS-BPEL	 process,	 as	 described	 in	 Chapter	 10)	 and	 can	 be
extensive,	as	the	name	suggests.

Connections

Chapter	 10	 provides	 an	 introduction	 to	 web	 services	 and	 related
standards	 such	 as	 SOAP	 and	 WS-BPEL.	 The	 realization	 of	 business
processes	through	web	services	orchestration	is	also	discussed	further	in
Chapter	18.

Let’s	consider	the	example	of	a	travel	agent	web	service,	where	customers
can	 book	 trips	 that	 consist	 of	 flight	 tickets	 and	 a	 hotel	 booking	 (see	 Figure
16.12).	The	“travel	agent”	service	in	its	turn	calls	upon	respectively	an	“airline”

service	and	a	 “hotel”	 service	 to	 perform	 its	 task;	 in	 this	 context,	 it	 acts	 as	 the
coordinator	 of	 a	 global	 transaction,	 in	 which	 the	 airline	 service	 and	 the	 hotel
service	 are	 participants.	 Suppose	 the	 transaction	 is	 initiated	 by	 choosing	 a
destination.	 It	 is	 possible	 that	 the	 customer	 then	 takes	 time	 to	 decide	 on	 an
airline.	 Maybe	 the	 hotel	 service	 is	 temporarily	 unavailable.	 The	 global
transaction	will	 only	 be	 completed	 if	 all	 participants	 have	 done	 their	 part,	 but
because	of	 the	 loosely	 coupled,	 asynchronous	 character	 of	 the	 interaction,	 this
may	take	from	minutes	to	hours	or	even	days.	Enforcing	actual	ACID	properties
in	such	a	context	would	be	next	to	impossible.	Also,	it	would	be	unadvisable	to
use	a	pessimistic	concurrency	protocol,	because	locks	might	be	held	for	as	long
as	 the	 long-running	 transaction	 is	 active,	 with	 a	 dramatic	 impact	 on	 data
availability	and	throughput.	To	make	things	worse,	it	could	be	that	hotel	data	are
locked	 within	 the	 hotel	 service,	 whereas	 it	 is	 actually	 the	 airline	 service,
belonging	 to	 another	 organization,	 that	 causes	 the	 delay	 in	 transaction
completion.	 On	 the	 other	 hand,	 pure	 optimistic	 concurrency	 may	 be
inappropriate	in	this	situation,	because	a	coordinated	rollback	across	participants
representing	independent	organizations	would	be	hard	to	realize	if	a	concurrency
issue	is	detected	after	a	long-running	transaction	has	been	active	for	an	extensive
amount	of	time.

Figure	16.12	Illustration	of	enforcing	ACID	properties	on	long-running
transactions.

In	 the	 case	 of	 long-running	 transactions,	 a	 compensation-based
transaction	model	is	often	more	appropriate.	It	allows	for	undoing	local	effects
of	a	transaction	if	the	global	long-running	transaction	is	unsuccessful.	The	latter
could	be	for	reasons	of	transaction	failure	(e.g.,	a	participant	timed	out),	but	just
as	well	because	of	issues	at	the	business-process	level	(e.g.,	a	hotel	was	already
booked,	 but	 there	 are	 no	more	 flights	 available).	 An	ACID	 transaction	would
require	 the	 entire	 transaction	 to	 be	 rolled	 back,	 including	 the	 successful	 hotel
booking.	However,	 a	compensation-based	 transaction	mechanism	abandons	 the
“atomicity”	 property	 of	 the	 long-running	 transaction.	 Local	 subtransactions
within	a	single	participant	remain	atomic	and	are	committed	as	soon	as	possible,
without	waiting	 for	 a	global	 commit	notification.	 In	 this	way,	 all	 locks	held	at
that	 individual	participant’s	premises	can	be	 released,	with	a	positive	effect	on
local	transaction	throughput	and,	even	more	important,	it	makes	the	participants
less	dependent	on	one	another	with	respect	to	locking	and	data	availability.

Let’s	 examine	 the	 example	 in	 Figure	 16.13.	 The	 global	 “book	 trip”
transaction,	 which	 is	 coordinated	 by	 the	 travel	 agent	 service,	 is	 long	 running.
Therefore,	it	may	take	some	time	to	complete,	and	therefore	it	is	undesirable	to
enforce	atomicity.	The	transaction	consists	of	two	subtransactions,	“book	hotel”
and	 “book	 flight”,	 which	 reside	 entirely	 with	 an	 individual	 participant.	 Each
participant	 will	 attempt	 to	 locally	 commit	 its	 subtransaction,	 without	 awaiting
the	 outcome	 of	 the	 global	 transaction.	 Let’s	 assume	 that	 the	 hotel	 service
completes	 its	 subtransaction.	 The	 “book	 hotel”	 transaction	 is	 committed,	 all
locks	pertaining	to	the	subtransaction	are	released,	and	the	hotel	service	notifies
the	 transaction	 coordinator	 of	 its	 successful	 completion	 of	 the	 subtransaction.
However,	 suppose	 the	 airline	 service	 cannot	 commit	 the	 transaction	 (e.g.,
because	there	are	no	more	flights	available).	It	will	abort	and	rollback	the	local
transaction	 and	 notifies	 the	 transaction	 coordinator	 accordingly.	 However,	 a
global	 rollback	 is	 no	 longer	 possible,	 since	 one	 of	 the	 local	 transactions	 was

already	 committed.	 Instead,	 a	 compensation-based	 transaction	mechanism	will
require	each	transaction	participant	to	define	its	transaction-sensitive	operations
in	 pairs,	 with	 the	 second	 operation	 specifying	 a	 new	 local	 transaction	 that
cancels	 out	 the	 effects	 of	 the	 first	 one:	 it	 literally	 “compensates	 for”	 the	 first
transaction.

Figure	16.13	Illustration	of	compensating	transactions.

In	this	example,	the	hotel	service	will	specify	a	bookHotel()	operation	along
with	a	compensateBookHotel()	operation,	whereas	the	airline	service	specifies	a
bookFlight()	and	a	compensateBookFlight()	operation.	If	the	local	“book	hotel”
transaction	 was	 committed,	 but	 the	 global	 transaction	 fails,	 then	 the
compensating	 operation	 compensateBookHotel()	 will	 be	 invoked	 by	 the
transaction	coordinator.	This	compensating	operation	will	not	rollback	the	local
transaction	as	such	(this	would	not	be	possible	since	it	was	already	committed)
but	 will	 instead	 induce	 a	 new	 transaction	 that	 somehow	 makes	 up	 for	 the
changes	 made	 by	 the	 first	 transaction.	 However,	 the	 logic	 about	 how	 to
compensate	the	first	transaction	is	not	part	of	the	actual	transaction	management
system	 or	 even	 the	 DBMS:	 the	 compensating	 operation	 just	 specifies	 an
interface	that	can	be	invoked	by	the	transaction	coordinator,	but	should	have	an
implementation	 at	 application	 or	 business-process	 level.	 In	 this	 example,	 the
compensation	logic	could	consist	of	just	inducing	a	new	transaction	that	deletes

the	tuple	that	represents	the	hotel	booking	from	the	database	but	could	also	entail
a	business	logic	element,	such	as	a	cancelation	fee.

A	 compensation-based	 transaction	 model	 will	 require	 that	 for	 each
transaction-sensitive	operation	Oi	offered	by	a	service,	a	compensating	operation
Ci	 is	 specified.	 If	 a	 global	 transaction	 that	 invoked	 Oi	 is	 aborted,	 Ci	 will	 be
invoked	 by	 the	 transaction	 coordinator.	 The	 implementation	 of	 Ci	 should	 be
“hand	 coded”	 by	 the	 developer.	 It	 is	 not	 an	 automated	 feature	 offered	 by	 the
DBMS,	 using	 logfile	 registrations,	 as	 with	 traditional	 transaction	 recovery
mechanisms.	 In	 this	 way,	 the	 global,	 long-running	 transaction	 is	 no	 longer
atomic	(i.e.,	some	subtransactions	can	be	locally	committed	whereas	the	global
transaction	 fails).	 Note,	 however,	 that	 traditional	 ACID	 properties	 can	 still	 be
enforced	 on	 the	 short-lived	 local	 subtransactions,	 as	 induced	 by	 Oi	 and	 Ci.
Compensation	 is	 the	default	 transaction	mechanism	of	 languages	 such	 as	WS-
BPEL,	which	define	long-running	processes	as	orchestrations	of	individual	web
services.

As	 mentioned	 above,	 the	 implementation	 of	 the	 Ci	 is	 provided	 by	 the
developer	and	shouldn’t	be	restricted	to	mechanically	undoing	previously	made
changes.	Canceling	a	hotel	booking	could	entail	a	cancelation	fee,	which	could
even	 be	 made	 dependent	 on	 the	 reason	 for	 the	 cancelation.	 Alternatively,	 the
compensation	could	be	taken	care	of	at	 the	level	of	the	global	transaction,	e.g.,
by	booking	an	alternative	means	of	transportation,	such	as	a	rental	car,	to	reach
the	 destination.	 In	 this	 way,	 the	 global	 transaction	 can	 still	 be	 completed
successfully,	despite	one	or	more	failed	subtransactions.	The	latter	illustrates	that
the	 boundary	 between	 transaction	management	 and	 business	 process	modeling
becomes	 considerably	 more	 vague	 than	 in	 tightly	 coupled	 systems	 with	 only
short-lived	transactions.

Finally,	 it	 is	 important	 to	 mention	 that	 a	 compensation-based	 transaction
model	 does	 not	 guarantee	 transaction	 isolation	 (i.e.,	 the	 “I”	 in	 “ACID”).	 For

example,	 if	 a	 bookHotel()	 operation	 is	 followed	 by	 a	 compensateBookHotel()
operation	in	a	long-running	transaction	T1,	it	is	far	from	impossible	that	another
transaction	 T2	 has	 read	 information	 about	 room	 availability	 between	 both
operations.	 The	 availability	 information	 as	 read	 by	 T2	 may	 be	 inaccurate
afterward,	if	one	or	more	room	bookings	are	undone	by	compensateBookHotel().
This	 availability	 of	 intermediate	 results	 is	 similar	 to	 the	 “uncommitted
dependency”	problem.

Connections

The	“uncommitted	dependency”	problem	was	explained	in	Chapter	14.

In	 some	 loosely	 coupled	 settings,	 compensating	 transactions	 are	 the	 only
technically	feasible	alternative,	whereas,	in	others,	the	tradeoff	can	be	considered
between	enforcing	ACID	properties	and	higher	performance.	An	approach	with
pessimistic	 concurrency	 is	 preferable	 where	 many	 concurrent	 updates	 to	 the
same	 data	 subsets	 are	 expected,	 especially	 if	 data	 consistency	 is	 important.	 In
other	 situations,	 one	 will	 be	 prepared	 to	 sacrifice	 a	 certain	 measure	 of
consistency,	if	this	improves	throughput,	data	availability,	and	scalability.	There,
optimistic	concurrency	and/or	compensation	can	be	considered,	especially	if	the
concurrent	 access	 to	 the	 same	 data	 subsets	 is	 rather	 limited	 or	 if	 the	 read
operations	 largely	 outnumber	 the	 write	 operations.	 For	 example,	 in	 the	 hotel
service,	 it	 is	 probably	 not	 too	 problematic	 if	 the	 reported	 number	 of	 available
rooms	is	slightly	off	due	to	the	“uncommitted	dependency”	problem.

The	tradeoff	between	consistency	and	performance	is	also	very	pertinent	to
the	 divide	 between	 traditional	 relational	 databases	 and	 NoSQL	 databases.	 In
particular,	NoSQL	databases	often	propose	an	alternative	 transaction	paradigm,
“BASE”	 transactions,	 in	 contrast	 to	 the	 “ACID”	 paradigm	 known	 from	 a

relational	database	setting.	This	paradigm	shift	is	dealt	with	in	more	detail	in	the
next	section.

Drill	Down

This	is	also	a	good	point	to	mention	that	concurrent	systems,	in	general,
are	quite	challenging	to	deal	with,	not	only	in	the	realm	of	databases,	but
also	 in	 the	construction	of	programs	 themselves.	Most	computers	 these
days	come	with	multiple	CPUs,	which	makes	parallel	execution	possible,
though	 not	 always	 easy	 due	 to	 similar	 reasons	 to	 the	 ones	 discussed
above:	writing	programs	that	are	both	concurrent	and	consistent	is	hard.
A	well-known	recent	example	of	a	concurrency-versus-consistency	issue
is	that	of	a	security	researcher	who	was	able	to	game	the	Starbucks	gift
cards	system	to	generate	unlimited	amounts	of	money	on	them.	The	issue
was	a	“race	condition”	problem	in	Starbucks’	website	in	the	section	that
was	 responsible	 for	 checking	 balances	 and	 transferring	 money	 to	 gift
cards.	 Issues	 like	 this	 have	 spurred	 companies	 like	 Google	 to	 develop
new	programming	languages	(such	as	the	Go	language)	that	are	designed
to	include	robust	concurrency	mechanisms.

Retention	Questions

Discuss	and	contrast	primary	site	2PL,	primary	copy	2PL,	and
distributed	2PL.

Discuss	and	illustrate	the	Two-Phase	Commit	Protocol	(2PC	Protocol).

Discuss	the	use	of	optimistic	concurrency	protocols	in	a	distributed
setting.

Discuss	compensation-based	transaction	models.	Illustrate	with	an
example.

16.7	Eventual	Consistency	and	BASE
Transactions

As	explained	in	Chapter	11,	a	new	wave	of	database	management	systems,	under
the	common	denominator	of	NoSQL	databases,	aims	 to	overcome	 the	capacity
limitations	 of	 RDBMSs	 and	 cater	 for	 the	 storage	 of	 Big	 Data.	 Although	 it	 is
already	clear	 that	 they	are	very	diverse	 in	nature	and	approach,	 there	are	some
principles	 regarding	 data	 distribution	 and	 distributed	 transaction	 management
that	are	prevalent	in	many	of	them.	We	discuss	these	principles	below.

16.7.1	Horizontal	Fragmentation	and	Consistent	Hashing

Many	NoSQL	databases	apply	some	form	of	horizontal	fragmentation,	referred
to	as	sharding	in	a	NoSQL	setting.	The	horizontal	fragments	(called	shards)	are
allocated	 to	 different	 nodes	 in	 a	 database	 cluster	 with	 a	 hashing	 mechanism
applied	to	the	data	items’	key.	These	consistent	hashing	schemes	are	conceived
in	such	a	way	that	there	is	no	need	to	remap	each	key	to	a	new	node	when	nodes
are	 added	 or	 removed.	 The	 data	 manipulation	 facilities	 are	 typically	 less	 rich
compared	to	RDBMSs,	with,	for	example,	key–value	stores	only	providing	basic
APIs	 to	 “put”	 and	 “get”	 a	 data	 item	 according	 to	 its	 key,	 the	 key	 value	 being
mapped	to	a	node	using	consistent	hashing.

The	sharding,	which	usually	also	entails	a	level	of	data	replication,	allows
for	parallel	data	access	across	the	respective	nodes,	supporting	massive	amounts
of	 data	 and	 very	 high	 volumes	 of	 read	 and	write	 operations.	 Therefore,	many
NoSQL	 DBMSs	 approach	 linear	 horizontal	 scalability,	 which	 means	 that	 the
performance	increases	nearly	linearly	with	the	number	of	nodes	in	the	cluster.	In
addition	 to	 the	 performance,	 the	 combination	 of	 sharding	 and	 replication	 also
yields	 high	 availability,	 with	 the	 workload	 being	 redistributed	 over	 the	 other
nodes	 in	 case	 of	 failure	 of	 a	 node	 or	 network	 connection.	 The	 same	 levels	 of
horizontal	 scalability	 and	 availability	would	never	be	 achievable	by	 traditional
DBMSs	 executing	 ACID	 transactions	 over	 a	 cluster	 of	 nodes.	 The	 overhead
induced	 by	 enforcing	 transactional	 consistency	 over	 the	 distributed	 and
replicated	 data	 would	 undo	 much	 of	 the	 performance	 gain	 from	 including
additional	 nodes.	 NoSQL	 databases	 therefore	 often	 resort	 to	 non-ACID
transaction	paradigms,	as	discussed	in	the	following	subsections.

16.7.2	The	CAP	Theorem

The	CAP	 theorem	was	 originally	 formulated	 by	Eric	Brewer	 and	 states	 that	 a
distributed	system	can	exhibit	at	most	two	of	these	three	desirable	properties:

As	to	standalone	DBMSs,	the	choice	of	which	property	to	abandon	is	trivial,	as
there	 is	 no	 network	 involved	 (or	 at	 least	 no	 network	 connecting	 different
database	nodes).	Therefore,	no	partitions	can	occur,	 and	 the	 standalone	system
can	provide	both	data	consistency	and	availability	with	ACID	transactions.

Traditional	tightly	coupled	distributed	DBMSs	(e.g.,	an	RDBMS	distributed
over	 multiple	 nodes),	 will	 often	 sacrifice	 availability	 for	 consistency	 and
partition	 tolerance.	The	distributed	DBMS	 still	 enforces	ACID	properties	 over
the	 participants	 in	 a	 distributed	 transaction,	 bringing	 all	 the	 data	 involved
(including	 possible	 replicas)	 from	 one	 consistent	 state	 into	 another	 upon
transaction	 execution.	 If	 individual	 nodes	 or	 network	 connections	 are
unavailable,	the	DBMS	would	rather	not	perform	the	transaction	(or	not	provide
a	 query	 result	 to	 a	 read-only	 transaction)	 than	 yield	 an	 inconsistent	 result	 or
bring	the	database	into	a	temporary	inconsistent	state.

Many	 NoSQL	 database	 systems	 will	 give	 up	 on	 consistency	 instead,	 the
reason	being	twofold.	First,	in	many	Big	Data	settings,	unavailability	is	costlier

Consistency:	all	nodes	see	the	same	data,	and	the	same	versions	of	these
data,	at	the	same	time.

Availability:	every	request	receives	a	response	indicating	a	success	or
failure	result.

Partition	tolerance:	the	system	continues	to	work	even	if	nodes	go	down
or	are	added.	The	distributed	system	can	cope	with	it	being	divided	into
two	or	more	disjoint	network	partitions	due	to	node	or	network	failure.

than	 (temporary)	 data	 inconsistency.	 For	 example,	 it	 is	 far	 preferable	 that
multiple	users	get	to	see	partially	inconsistent	versions	of	the	same	social	media
profile	 (e.g.,	 with	 or	without	 the	 latest	 status	 update),	 than	 having	 the	 system
unavailable	until	all	versions	are	synced,	and	all	inconsistencies	are	resolved.	In
the	event	of	node	or	network	failure,	the	transaction	will	be	executed,	even	if	one
or	 more	 nodes	 cannot	 participate,	 yielding	 a	 possibly	 inconsistent	 result	 or
database	state.	Second,	even	if	no	failure	occurs	when	executing	the	transaction,
the	overhead	of	locking	all	the	necessary	data,	including	replicas,	and	overseeing
that	consistency	is	guaranteed	over	all	nodes	involved	in	a	distributed	transaction
has	a	severe	impact	on	performance	and	transaction	throughput.

Connections

NoSQL	databases	are	discussed	in	Chapter	11,	where	 the	CAP	theorem
was	also	introduced.

Although	 the	 CAP	 theorem	 is	 widely	 referred	 to	 when	 explaining
transaction	paradigms	for	NoSQL	databases,	it	can	also	be	criticized.	As	became
apparent	 from	 the	 previous	 discussion,	 it	 is	 not	 only	 the	 actual	 occurrence	 of
network	 partitions	 that	 will	 result	 in	 the	 choice	 to	 abandon	 consistency.	 The
performance	degradation	 induced	by	 the	 overhead	of	mechanisms	 that	 enforce
transactional	consistency	under	normal	system	operation,	even	in	the	absence	of
network	partitions	is	often	the	true	reason	to	abandon	perpetual	consistency.	This
overhead	 is	 further	 increased	 by	 the	 data	 replication	 that	 is	 necessary	 to
guarantee	availability	and	to	be	prepared	for	failures.	This	overhead	exists	even
when	 no	 such	 failures	 occur.	 Also,	 one	 could	 argue	 that	 availability	 and
performance	 are	 essentially	 the	 same	 concepts,	 with	 unavailability	 being	 an
extreme	 case	 of	 high	 latency	 and	 low	 performance.	 Therefore,	 in	many	 high-

volume	 settings,	 the	 real	 tradeoff	 is	 between	 consistency	 and	 performance.
Obviously,	the	result	of	this	tradeoff	will	be	different,	depending	on	the	setting:	a
bank	will	never	allow	its	customers	to	receive	an	inconsistent	overview	of	their
savings	accounts	status	just	for	the	sake	of	performance.

16.7.3	BASE	Transactions

Although	many	NoSQL	databases	make	a	different	tradeoff	between	consistency
and	availability/performance	than	more	traditional	DBMSs,	they	do	not	give	up
on	consistency	altogether.	There	would	be	no	point	in	maintaining	a	database	if
the	quality	and	consistency	of	its	content	cannot	be	guaranteed	in	the	long	run.
Rather,	 they	position	 themselves	on	a	continuum	between	high	availability	and
permanent	consistency,	where	the	exact	position	on	this	continuum	can	often	be
configured	by	the	administrator.	This	paradigm	is	called	eventual	consistency:
the	results	of	a	database	transaction	will	eventually	be	propagated	to	all	replicas
and	 if	 no	 further	 transactions	 are	 executed	 then	 the	 system	 will	 eventually
become	consistent,	but	it	is	not	consistent	at	all	times,	as	is	the	case	with	ACID
transactions.

To	 contrast	 this	 approach	 to	 ACID	 transactions	 (and	 staying	 within	 the
chemical	 jargon),	 this	 transaction	 paradigm	was	 coined	 as	BASE	 transactions.
BASE	stands	for	Basically	Available,	Soft	state,	Eventually	consistent:

Drill	Down

Basically	Available:	measures	are	in	place	to	guarantee	availability	under
all	circumstances,	if	necessary	at	the	cost	of	consistency.

Soft	state:	the	state	of	the	database	may	evolve,	even	without	external
input,	due	to	the	asynchronous	propagation	of	updates	throughout	the
system.

Eventually	consistent:	the	database	will	become	consistent	over	time,	but
may	not	be	consistent	at	any	moment	and	especially	not	at	transaction
commit.

ACID	and	BASE	both	 refer	 to	 concepts	 from	 chemistry.	 In	 that	 sense,
it’s	 not	 surprising	 that	 BASE	 was	 chosen	 as	 an	 acronym	 to	 contrast
ACID.

Write	operations	are	performed	on	one	or	at	most	a	few	of	the	replicas	of	a
data	item.	Once	these	are	updated,	the	write	operation	is	considered	as	finished.
Updates	to	the	other	replicas	are	propagated	asynchronously	in	the	background
(possibly	 waiting	 for	 unavailable	 nodes	 or	 connections	 to	 become	 available
again),	 so	 eventually	 all	 replicas	 receive	 the	 update.	 Read	 operations	 are
performed	 on	 one	 or	 only	 a	 few	 of	 the	 replicas.	 If	 only	 a	 single	 replica	 is
retrieved,	there	is	no	guarantee	that	this	is	the	most	recent	one,	but	the	eventual
consistency	guarantees	 it	will	not	be	 too	out	of	date	either.	 If	 a	 read	operation
involves	 multiple	 replicas,	 these	 may	 not	 necessarily	 be	 consistent	 with	 one
another.	There	are	different	options	to	resolve	such	inconsistencies:

The	DBMS	contains	rules	to	resolve	conflicts	before	returning	the
retrieved	data	to	the	application.	This	often	involves	the	use	of
timestamps	(e.g.,	“last	write	wins”),	which	means	that	the	most	recently
written	version	is	returned.	This	approach	can	be	used	to	retrieve	the
current	session	state,	for	example,	if	data	pertaining	to	customer	sessions
of	a	web	store	are	persisted	in	a	NoSQL	database.

The	burden	of	conflict	resolution	is	shifted	from	the	DBMS	to	the
application.	Here,	the	business	logic	can	determine	how	conflicting
replicas	of	the	same	data	item	can	be	reconciled.	For	example,	the
application	may	contain	logic	to	combine	the	contents	of	two	conflicting
versions	of	the	same	customer’s	shopping	cart	into	a	single	unified
version.

16.7.4	Multi-Version	Concurrency	Control	and	Vector	Clocks

The	previous	discussion	illustrated	that	the	moment	of	enforcing	consistency	on
the	database	content,	and	especially	on	different	versions	of	the	same	data	item,
is	 different	 for	ACID	 versus	BASE	 transactions.	With	ACID	 transactions,	 the
database	cannot	be	updated	(i.e.,	some	data	cannot	be	written)	if	 this	may	be	a
cause	for	conflicts.	Therefore,	the	DBMS	will	lock	certain	data	to	postpone	read
or	 write	 operations	 until	 consistency	 can	 be	 guaranteed.	 With	 BASE
transactions,	 conflict	 resolution	 does	 not	 necessarily	 happen	 at	 the	moment	 of
writing	 the	 data	 but	 may	 be	 postponed	 until	 the	 data	 are	 actually	 read.	 This
approach	 is	 inspired	by	 the	 concern	of	 availability	 and	 transaction	 throughput:
the	 database	 may	 need	 to	 be	 “always	 writable”,	 and	 updates	 should	 not	 be
prevented	 by	 locks	 or	 the	 risk	 of	 conflicts.	 For	 example,	 it	 would	 be
unacceptable	 for	a	web	store	 that	 the	 inability	 to	write	 to	 the	database	 induces
missed	 sales	 transactions.	Rather	 than	 postponing	 the	write	 operation	 until	 the
risk	of	conflicts	is	mitigated,	a	new	version	of	the	data	item	is	created	with	the
updated	value.	Meanwhile,	another	user	or	application	may	be	inducing	another
write,	resulting	in	yet	another	replica	of	the	same	data	item.	As	a	consequence,
the	DBMS	may	contain	multiple	inconsistent	versions	of	this	data	item;	conflict
resolution	 between	 these	 versions	 is	 postponed	 until	 the	 data	 are	 actually
retrieved.

The	 concurrency	 protocols	 that	 sustain	 this	 approach	 are	 called	 MVCC
(Multi-Version	 Concurrency	 Control).	 Such	 protocols	 are	 typically	 based	 on
these	principles:

A	read	operation	returns	one	or	more	versions	of	a	data	item;	there	may
be	conflicts	between	these	versions,	which	are	resolved	by	the	DBMS	or
the	client	application.

A	 vector	 clock	 consists	 of	 a	 list	 of	 [node,	 counter]	 pairs,	 with	 the	 node
referring	 to	 the	 node	 that	 handled	 the	 write	 of	 that	 version	 and	 the	 counter
denoting	the	version	number	of	writes	by	that	node.	In	this	way,	the	entirety	of
vector	 clocks	 associated	 with	 versions	 of	 a	 data	 item	 represents	 the	 lines	 of
descendance	of	the	respective	versions.

A	read	operation	 retrieves	all	conflicting	versions	of	a	data	 item,	with	 the
versions’	vector	clocks.	A	write	operation	creates	a	new	version	of	a	data	 item
with	a	corresponding	vector	clock.	If	all	counters	in	a	version’s	vector	clock	are
less-than-or-equal-to	 all	 counters	 in	 another	 version’s	 clock,	 then	 the	 first
version	 is	 an	 ancestor	 of	 the	 second	 one	 and	 can	 safely	 be	 garbage	 collected.
Otherwise,	both	versions	represent	conflicting	versions	and	should	be	retained.
They	may	be	reconciled	afterward.

An	example	is	provided	in	Figure	16.14.	Suppose	a	client	stores	a	new	data
item	D	into	the	database.	The	write	is	handled	by	node	N1,	which	creates	a	first
version	D1	of	the	data	item.	This	results	in	the	vector	clock	([N1,	1]).	Then,	the
client	updates	 the	data	 item,	and	 the	write	 is	handled	by	 the	same	node	N1.	A
new	version	D2	of	the	data	item	is	created,	and	the	vector	clock	becomes	([N1,
2])	 since	 the	 same	 node	 N1	 has	 created	 a	 second	 version.	 According	 to	 the
vector	 clock,	 D2	 is	 a	 descendant	 of	 D1,	 and	 therefore	 D1	 can	 be	 garbage
collected.

A	write	operation	results	in	the	creation	of	a	new	version	of	a	data	item.

A	more	elaborate	kind	of	timestamp,	called	a	vector	clock,	is	used	to
discriminate	between	data	item	versions	and	to	trace	their	origin.	Each
version	of	a	data	item	is	associated	with	such	a	vector	clock.

Versions	of	a	data	item	that	are	obsolete	according	to	their	vector	clock
are	garbage	collected.5	In	some	implementations,	obsolete	versions	are
archived	for	version	management.

Figure	16.14	Illustration	of	MVCC	with	vector	clocks.

Then,	 once	 more,	 the	 client	 updates	 the	 data	 item,	 but	 now	 the	 write	 is
handled	 by	 a	 different	 node	N2.	This	 results	 in	 a	 third	 version	D3	 of	 the	 data
item,	which	descends	from	D2	and	which	is	the	first	version	written	by	N2.	The
vector	clock	therefore	becomes	([N1,	2],	[N2,	1]).	Now	suppose	in	the	meantime
another	client	reads	D	and	receives	version	D2.	The	client	updates	the	data	item,
and	 the	write	 is	handled	by	yet	another	node	N3.	This	 results	 in	a	version	D4,
which	is	a	descendant	of	D2.	The	vector	clock	becomes	([N1,	2],	[N3,	1]).

Note	that	D2	can	be	garbage	collected	because	it	is	superseded	by	both	D3

and	D4,	as	is	also	represented	in	the	respective	vector	clocks.	Yet,	both	D3	and
D4	need	to	be	retained.	Although	they	have	a	common	ancestor	 in	D2,	 they	do
not	descend	from	one	another,	and	both	D3	and	D4	contain	updates	that	are	not
reflected	in	the	other.	This	is	also	represented	in	their	vector	clocks.	However,	at
some	 point,	 both	 versions	 will	 be	 read	 and	 reconciled	 by	 a	 client	 or	 by	 the
DBMS.	The	new	version	D5	will	be	a	descendant	of	both	D3	and	D4.	Suppose
the	write	is	handled	by	N1	again.	The	vector	clock	then	becomes	([N1,	3],	[N2,
1],	[N3,	1]).	D3	and	D4	can	now	be	garbage	collected.

16.7.5	Quorum-Based	Consistency

As	mentioned,	many	NoSQL	 database	 systems	 provide	 the	 administrator	with
the	means	to	position	the	system	on	a	continuum	between	high	availability	and
permanent	 consistency.	 This	 position	 can	 be	 configured	 by	 manipulating	 the
parameters	 in	 a	 quorum-based	 protocol.	 Quorum-based	 protocols	 essentially
enforce	 consistency	 between	 replicas	 of	 the	 same	 data	 item	 using	 three
configurable	parameters	N,	R,	and	W,	with	R	≤	N	and	W	≤	N:

N	represents	the	number	of	nodes	to	which	a	data	item	is	replicated	(e.g.,
in	a	consistent	hashing	ring).	The	higher	N,	the	higher	the	redundancy
and	hence	the	smaller	the	risk	of	unavailability	or	data	loss.	A	higher	N
also	allows	for	more	parallelism	but	increases	the	overhead	if	one	needs
to	keep	all	N	replicas	permanently	consistent.

R	refers	to	the	minimum	number	of	nodes	that	should	respond	before	a
read	operation	for	a	data	item	can	be	considered	as	completed.	The
higher	R	is,	the	slower	the	read	performance	since	the	response	time	is
determined	by	the	slowest	of	these	R	nodes.	A	higher	R	increases	the
chance	that	the	set	of	replicas	returned	by	these	R	nodes	contains	an	up-
to-date	version	of	the	data	item.

W	refers	to	the	minimum	number	of	nodes	that	should	receive	the
updated	value	before	a	write	operation	for	a	data	item	can	be	considered
as	completed.	The	higher	W	is,	the	slower	the	write	performance	since
the	response	time	is	determined	by	the	slowest	of	these	W	nodes.	A
higher	W	increases	the	number	of	nodes	that	contain	an	up-to-date
version	of	the	data	item,	and	therefore	increases	consistency	of	the
database.

By	manipulating	 R	 and	W,	 the	 database	 administrator	 can	 decide	 on	 the
tradeoff	between	performance	and	consistency,	but	also	on	the	tradeoff	between
read	 performance	 and	 write	 performance.	 Some	 typical	 configurations	 are
depicted	in	Figure	16.15.	Four	configurations	are	presented	with	each	time	N	=	3
and	with	varying	R	and	W.	The	circles	represent	replicas	of	a	single	data	item,
stored	on	node	1,	node	2,	and	node	3,	with	a	dark	circle	denoting	an	up-to-date
replica	and	a	light	circle	denoting	an	outdated	replica.	For	the	sake	of	simplicity,
let’s	assume	that	a	first	node	always	responds	after	100	milliseconds,	a	second
node	after	200	milliseconds,	and	a	third	node	after	300	milliseconds.	Let’s	also
assume	 these	 figures	 hold	 for	 both	 read	 and	 write	 operations.	 In	 real-life
situations,	these	values	will	fluctuate	depending	on	the	actual	workload	of	every
node.

Figure	16.15	Illustration	of	quorum-based	consistency.

Configuration	(a)	represents	a	situation	in	which	both	R	=	1	and	W	=	1.	A
write	operation	 is	 completed	 after	 a	 first	 node	has	 received	 the	updated	value.
This	 takes	100	ms.	A	 read	operation	 is	 completed	once	 the	 response	 from	one

node	is	received;	this	takes	100	ms	as	well.	However,	the	first	responding	node
may	not	be	the	one	with	the	most	up-to-date	replica	of	the	data	item,	so	the	result
may	 be	 (slightly)	 outdated.	However,	 this	may	 not	 be	 a	 problem	 in	many	Big
Data	contexts.

Configuration	(b)	represents	a	situation	in	which	R	=	1	and	W	=	N.	Now,	a
write	 operation	 is	 only	 completed	 after	 all	 three	 nodes	 received	 the	 updated
value.	For	the	slowest	responding	node,	 this	 is	after	300	ms,	so	the	write	 takes
much	 longer	 than	 in	 configuration	 (a).	 A	 read	 operation	 is	 still	 considered	 as
completed	once	the	response	from	one	node	is	received,	so	the	read	time	remains
at	 100	 ms.	 Since	 all	 nodes	 participated	 in	 the	 write	 and	 hence	 received	 the
updated	value,	the	response	of	even	a	single	node	is	guaranteed	to	provide	an	up-
to-date	 version	 of	 the	 data	 item.	 This	 configuration	 may	 be	 appropriate	 in
settings	with	not	too	many	writes	but	the	need	for	many	fast	reads	–	for	example,
if	the	database	contains	fairly	stable	product	catalog	data.

Configuration	(c)	represents	a	situation	in	which	R	=	N	and	W	=	1.	A	write
operation	is	completed	after	a	first	node	has	received	the	updated	value,	so	the
write	time	is	back	to	100	ms.	Now	a	read	operation	is	only	completed	once	the
response	from	all	three	nodes	is	received,	so	the	read	time	increases	to	300	ms.
Since	 all	 replicas	 of	 the	 data	 item	 are	 retrieved	with	 the	 read,	 the	 result	 set	 is
guaranteed	 to	 contain	 the	 most	 up-to-date	 version,	 next	 to	 more	 outdated
versions.	 Upon	 every	 read,	 the	 conflicting	 versions	 can	 be	 reconciled	 by	 the
DBMS	 or	 by	 the	 application.	 Write	 performance	 will	 be	 better	 than	 read
performance,	so	this	configuration	may	be	appropriate	if	the	DBMS	needs	to	be
“always	writable”,	e.g.,	in	order	not	to	miss	any	sales	transactions	because	of	too
slow	response	times.

Configuration	(d)	represents	a	situation	in	which	both	R	=	2	and	W	=	2.	A
write	operation	is	completed	after	two	nodes	have	received	the	updated	value,	so
the	write	time	is	200	ms.	Now	a	read	operation	is	completed	once	the	response

from	two	nodes	is	received,	so	the	read	time	amounts	to	200	ms	as	well.	Since
two	out	of	the	three	replicas	are	retrieved	with	each	read	operation,	and	two	out
of	 the	 three	 nodes	 receive	 an	 up-to-date	 value	 with	 each	 write	 operation,	 the
result	 set	 of	 each	 read	 is	 guaranteed	 to	 contain	 the	 most	 up-to-date	 version,
possibly	next	to	a	more	outdated	version	(although	both	versions	in	the	result	set
could	be	up-to-date	as	well).	The	conflicting	versions	can	be	reconciled	by	 the
DBMS	or	by	the	application.

Note	that	any	of	the	four	configurations	can	be	most	appropriate,	depending
on	the	context	and	 the	need	for	retrieving	up-to-date	versions	of	 the	data	at	all
times,	 and	 depending	 on	 the	 tradeoff	 between	 read	 and	 write	 performance.
However,	 configuration	 (d),	 with	 W	 =	 2	 and	 R	 =	 2,	 strikes	 a	 good	 balance
between	all	concerns.	A	configuration	with	R	+	W>N	is	guaranteed	to	provide	at
least	 one	 up-to-date	 replica	 with	 each	 read	 operation.	 This	 is	 the	 case	 in
configurations	(b),	(c),	and	(d).	Configurations	with	R	+	W	≤	N	will	have	better
read	and/or	write	performance,	but	it	cannot	be	guaranteed	that	the	result	set	of
each	 read	 operation	 will	 contain	 an	 up-to-date	 replica.	 This	 situation	 was
illustrated	in	configuration	(a),	which	had	the	best	overall	performance.

To	 conclude	 this	 chapter,	 it	 is	 important	 to	 stress	 that	 not	 all	 NoSQL
DBMSs	 use	 some	 form	 of	 BASE	 transactions	 and	 tolerate	 temporary
inconsistent	 data.	Many,	 and	 this	 is	 a	 growing	 tendency,	 do	 value	 consistency
and	 hold	 on	 to	 an	 ACID	 transaction	 paradigm	 (e.g.,	 using	 optimistic
concurrency).

Retention	Questions

Discuss	the	key	principles	regarding	data	distribution	and	distributed
transaction	management	in	a	NoSQL	database	setting.

Explain	the	CAP	theorem.

Contrast	BASE	versus	ACID	transactions.

What	are	the	key	principles	of	multi-version	concurrency	control?

How	do	quorum-based	protocols	enforce	consistency	between	replicas
of	the	same	data	item?	Illustrate	with	some	examples.

Summary

In	 this	chapter,	we	dealt	with	distributed	databases	and	specifically	 focused	on
distributed	 transaction	 management.	 We	 started	 with	 the	 rationale	 behind
distributed	 systems	 and	 data	 distribution	 and	 discussed	 different	 architectural
set-ups.	 Then,	 we	 discriminated	 between	 horizontal,	 vertical,	 and	 mixed
fragmentation,	and	discussed	data	replication	and	different	kinds	of	transparency.
We	 overviewed	 the	 complexities	 of	 distributed	 query	 processing	 and	 query
optimization.	 Finally,	 we	 introduced	 transaction	 paradigms	 for	 tightly	 coupled
and	more	loosely	coupled	distributed	settings,	with	examples	of	both	pessimistic
and	 optimistic	 concurrency.	We	 focused	 on	 the	 extra	 coordination	 required	 to
guarantee	 data	 consistency	 and	 transaction	 atomicity.	 Also,	 some	 paradigms
sacrificed	 atomicity	 and/or	 consistency	 to	 a	 certain	 extent	 to	 reduce	 overhead
and	 improve	 transaction	 throughput.	 An	 example	 here	 is	 compensation-based
protocols.	We	concluded	with	 a	discussion	of	 the	BASE	 transaction	paradigm,
which	is	often	applied	in	a	NoSQL	setting,	and	which	can	be	complemented	by
multi-version	concurrency	control	and	quorum-based	consistency.

Scenario	Conclusion

Sober	 has	 now	 learned	 about	 the	 impact	 of	 data	 distribution	 and
distributed	databases	on	query	processing	 and	optimization,	 transaction
management,	 and	 concurrency	 control.	 The	 company	 now	 also	 knows
the	 basic	 principles	 regarding	 data	 distribution	 and	 distributed
transaction	management	 in	 a	NoSQL	database	 setting.	 It	will	 take	 into
account	all	lessons	learned	as	part	of	its	strategic	expansion	plan.

Key	Terms

access	transparency

canonical	form

compensation-based	transaction	model

data	localization

decision	phase

derived	fragmentation

distributed	2PL

distributed	database	systems

eventual	consistency

federated	database

fragment	query

fragmentation

fragmentation	transparency

fragments

global	deadlock

global	query	optimization

horizontal	fragmentation

inter-query	parallelism

intra-query	parallelism

local	query	optimization

location	transparency

long	running	transactions

loosely	coupled

mixed	fragmentation

parallel	databases

participants

primary	copy	2PL

primary	site	2PL

query	decomposition

replication	transparency

shared-disk	architecture

shared-memory	architecture

shared-nothing	architecture

tightly	coupled

transaction	coordinator

transaction	transparency

transparency

Two-Phase	Commit	Protocol	(2PC	Protocol)

vertical	fragmentation

voting	phase

wrappers

Review	Questions

16.1.	Which	statement	is	correct?

a.	In	a	shared-memory	architecture,	multiple	interconnected
processors	that	run	the	DBMS	software	share	the	same	central	storage
and	secondary	storage.

b.	With	a	shared-disk	architecture,	each	processor	has	its	own	central
storage	but	shares	secondary	storage	with	the	other	processors.

c.	In	a	shared-nothing	architecture,	each	processor	has	its	own	central
storage	and	hard	disk	units.

d.	All	statements	are	correct.

16.2.	With	horizontal	fragmentation…

a.	each	fragment	consists	of	a	subset	of	the	columns	of	the	global
dataset.

b.	each	fragment	consists	of	rows	that	satisfy	a	certain	query	predicate.

16.3.	Which	statement	is	not	correct?

a.	Location	transparency	means	that	database	users	do	not	need	to
know	on	which	node	the	required	data	reside.

b.	Fragmentation	transparency	refers	to	the	fact	that	users	can	execute
global	queries,	without	being	concerned	with	the	fact	that	distributed

fragments	will	be	involved,	and	need	to	be	combined,	to	perform	the
query.

c.	Transaction	transparency	refers	to	the	fact	that	the	distributed
database	can	be	accessed	and	queried	in	a	uniform	fashion,	regardless
of	the	different	database	systems	and	APIs	that	may	be	involved.

d.	Replication	transparency	means	that	different	replicas	of	the	same
data	item	will	be	automatically	kept	consistent	by	the	database	system
and	updates	to	one	replica	will	be	propagated	transparently	(be	it
synchronously	or	asynchronously)	to	the	other	copies	of	the	same	data
item.

16.4.	Which	statement	is	not	correct?

a.	Primary	site	2PL	comes	down	to	applying	the	centralized	Two-
Phase	Locking	Protocol	in	a	distributed	environment.

b.	A	disadvantage	of	primary	site	2PL	is	that	the	central	lock	manager
may	become	a	bottleneck.

c.	With	distributed	2PL,	every	site	has	its	own	lock	manager,	which	is
responsible	for	managing	all	locking	data	pertaining	to	the	fragments
stored	on	that	site.

d.	Even	if	the	database	contains	replicated	data,	applying	the	basic
2PL	protocol	still	suffices	to	guarantee	serializability.

16.5.	A	schedule	in	2PL	is	deadlock	free	if…

a.	both	the	local	and	global	wait-for	graphs	contain	no	cycles.

b.	the	local	wait-for	graphs	contain	no	cycles.

c.	the	global	wait-for	graph	contains	only	a	limited	number	of	cycles.

d.	the	local	wait-for	graph	contains	only	a	limited	number	of	cycles.

16.6.	Optimistic	concurrency	may	considerably	increase	transaction
throughput	and	overall	data	availability	in	a…

a.	tightly	coupled	setting.

b.	loosely	coupled	setting.

16.7.	Many	NoSQL	databases	apply	some	form	of…

a.	vertical	fragmentation.

b.	horizontal	fragmentation.

16.8.	Eventual	consistency	in	a	NoSQL	environment	implies	that…

a.	the	results	of	a	database	transaction	will	eventually	be	propagated	to
all	replicas	and	if	no	further	transactions	are	executed	then	the	system
will	eventually	become	consistent.

b.	the	results	of	a	database	transaction	will	immediately	be	propagated
to	all	replicas.

c.	the	database	is	consistent	at	all	times.

d.	the	database	is	inconsistent	at	all	times.

16.9.	With	BASE	transactions,	conflict	resolution…

a.	always	happens	at	the	moment	of	writing	the	data.

b.	may	be	postponed	until	the	data	are	actually	read.

16.10.	Quorum-based	protocols	essentially	enforce	consistency	between
replicas	of	the	same	data	item	by	means	of	three	configurable	parameters
N	(the	number	of	nodes	to	which	a	data	item	is	replicated),	R	(the
minimum	number	of	nodes	that	should	respond	before	a	read	operation
for	a	data	item	can	be	considered	as	completed),	and	W	(the	minimum
number	of	nodes	that	should	receive	the	updated	value	before	a	write
operation	for	a	data	item	can	be	considered	as	completed),	with	R	≤	N
and	W	≤	N.	Which	statement	is	not	correct?

a.	A	higher	N	allows	for	more	parallelism,	but	at	the	same	time
increases	the	overhead	if	one	needs	to	keep	all	N	replicas	permanently
consistent.

b.	A	higher	R	increases	the	chance	that	the	set	of	replicas	that	is
returned	by	these	R	nodes	contains	an	up-to-date	version	of	the	data
item.

c.	The	higher	W	is,	the	faster	the	write	performance,	since	the
response	time	is	determined	by	the	fastest	of	these	W	nodes.

d.	By	manipulating	R	and	W,	the	database	administrator	can	decide	on
the	tradeoff	between	performance	and	consistency,	but	also	on	the
tradeoff	between	read	performance	and	write	performance.

Problems	and	Exercises

16.1E	Discuss	the	most	important	architectural	variants	of	distributed	databases.

16.2E	Illustrate	vertical,	horizontal,	mixed,	and	derived	fragmentation	with	an
example.

16.3E	Discuss	the	different	types	of	transparency	in	a	distributed	database
environment.

16.4E	Work	out	an	example	of	distributed	query	processing.

16.5E	Discuss	and	contrast	the	following	locking	approaches:	primary	site	2PL,
primary	copy	2PL,	and	distributed	2PL.

16.6E	Discuss	different	techniques	to	detect	conflicting	updates	in	an	optimistic
concurrency	setting.

16.7E	Discuss	and	illustrate	a	compensation-based	transaction	model.

16.8E	What	is	meant	by	eventual	consistency	and	BASE	transactions?

16.9E	What	is	meant	by	multi-version	concurrency	control?

16.10E	What	is	quorum-based	consistency?	Illustrate	with	an	example.

1	We	use	a	table	representation	and	terms	such	as	rows	and	columns,	but	the
different	types	of	fragmentation	also	apply	to	non-relational	DBMSs	such	as
NoSQL	databases.

2	See	also	Chapter	13.

3	The	canonical	form	is	a	mathematical	expression	of	the	query,	according	to
the	relational	algebra	that	provides	the	mathematical	underpinning	of	the
relational	model.	For	more	information	about	relational	algebra,	see	our	online
appendix	at	www.pdbmbook.com.

4	A	projection	is	an	operation	in	relational	algebra	that	reduces	the	number	of
attributes	in	a	tuple	(i.e.,	it	discards	or	excludes	some	of	the	attributes).	For
more	information	about	relational	algebra,	see	our	online	appendix	at
www.pdbmbook.com.

5	Garbage	collection	refers	to	the	cleaning	up	of	obsolete	or	unnecessary
objects	or	versions	of	objects.	The	term	may	apply	to	objects	in	internal
memory	(e.g.,	as	part	of	the	memory	management	of	a	programming
language)	or	to	objects	in	persistent	storage	(e.g.,	as	part	of	a	database).

http://www.pdbmbook.com
http://www.pdbmbook.com

Part	IV
◈

Data	Warehousing,	Data	Governance,
and	(Big)	Data	Analytics

17 Data	Warehousing	and	Business	Intelligence

18 Data	Integration,	Data	Quality,	and	Data	Governance

19 Big	Data

20 Analytics

17

Data	Warehousing	and	Business
Intelligence

◈

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

understand	the	differences	between	operational	and	tactical/strategic
decision-making;

define	a	data	warehouse	in	terms	of	its	key	characteristics;

discern	different	types	of	data	warehouse	schemas;

understand	the	key	steps	of	the	extraction,	transformation,	and	loading
process;

define	a	data	mart	in	terms	of	its	key	characteristics;

understand	the	advantages	and	disadvantages	of	virtual	data
warehouses	and	virtual	data	marts;

define	an	operational	data	store;

discern	the	differences	between	data	warehouses	and	data	lakes;

Opening	Scenario

In	addition	 to	using	 its	data	 for	day-to-day	operational	activities,	Sober
wants	 to	 leverage	 it	 for	 both	 tactical	 and	 strategical	 decision-making.
More	 specifically,	 the	 company	 wants	 to	 get	 a	 thorough	 insight	 in	 its
sales	 numbers	 and	 how	 these	 vary	 on	 a	 quarterly	 basis,	 per	 type	 of
service	(ride-hailing	versus	ride-sharing)	and	per	 type	of	car	(Sober	car
or	not).	By	doing	so,	Sober	wants	to	better	understand	where	it	can	grow
and	 identify	 interesting	opportunities.	The	company	does	not	believe	 it
can	use	its	existing	relational	data	model	for	this	since	turning	the	above
questions	 into	 SQL	 queries	 might	 be	 too	 cumbersome.	 The	 principals
think	a	new	 type	of	data	structure	 is	needed	 to	more	efficiently	answer
the	 above	business	questions.	Considering	 the	 limitations	of	 its	 current
model,	what	would	you	recommend	Sober	to	do?

Until	 this	 point,	 we	 have	 largely	 focused	 on	 storing	 data	 in	 the	most	 optimal
way,	ensuring	 their	 integrity,	 as	much	as	possible,	 at	 all	 times.	A	next	obvious
question	is	what	can	we	do	with	these	data	from	a	business	perspective?	In	this
chapter,	we	discuss	how	to	take	data	and	extract	valuable	new	business	insights
from	 it.	 We	 start	 by	 zooming	 into	 the	 various	 levels	 of	 corporate	 decision-
making	 and	how	 this	 relates	 to	data	 requirements	 that	 support	 these	decisions.
This	will	 bring	us	 to	 the	 concept	 of	 a	 data	warehouse,	 a	massive	 consolidated
data	 store	 that	 we	 formally	 define	 and	 extensively	 discuss	 in	 terms	 of	 data
model,	 design,	 and	 development.	 We	 contrast	 data	 warehousing	 with	 some

understand	the	applications	of	business	intelligence	by	means	of	query
and	reporting,	pivot	tables,	and	on-line	analytical	processing.

newer	 developments,	 such	 as	 virtualization,	 data	 lakes,	 and	 indicate	 synergies.
We	 then	 zoom	 into	 business	 intelligence	 (BI),	 discussing	 query	 and	 reporting,
pivot	 tables,	 and	 on-line	 analytical	 processing	 (OLAP)	 as	 key	 techniques	 to
better	understand	and	unravel	hidden	patterns	in	your	corporate	data.

17.1	Operational	versus	Tactical/Strategic
Decision-Making

Each	company	has	different	levels	of	decision-making,	which	have	an	important
impact	 on	 the	 underlying	 supporting	 data	 infrastructure.	 The	 first	 is	 the
operational	level,	where	day-to-day	business	decisions	are	made	–	 typically	 in
real-time,	 or	 within	 a	 short	 time	 frame.	 Traditional	 databases	 were	 primarily
developed	for	 these	operational	decisions	and	have	a	strong	transactional	focus
in	which	many	transactions	need	to	be	processed	in	small	units	of	time.	Think	of
a	 point-of-sale	 (POS)	 application	 storing	 information	 about	 who	 buys	 what
products	 in	what	 store	 at	what	 time,	or	 a	banking	 application	processing	daily
money	 transfers.	Operational	 database	 applications	 typically	work	with	 highly
normalized	 data	 to	 avoid	 duplication	 or	 inconsistencies	 during	 transaction
processing.	 They	 should	 incorporate	 advanced	 transaction	 and	 recovery
management	 facilities	 at	 all	 times,	 guaranteeing	 the	 consistency	 and	 integrity
during	 the	simultaneous	and	distributed	access	of	data.	Given	this	strong	focus
on	managing	transactions,	these	systems	are	also	commonly	described	as	on-line
transaction	 processing	 (OLTP)	 systems.	 Many	 firms	 adopt	 a	 mix	 of	 OLTP
systems	 that	 have	been	designed	with	 a	 strong	application	 focus	 and	 are	often
based	 on	 a	 mixture	 of	 underlying	 data	 storage	 formats,	 such	 as	 relational
databases,	legacy	databases	such	as	CODASYL,	or	even	flat	files.

The	next	level	of	decision-making	is	the	tactical	level,	where	decisions	are
made	 by	 middle	 management	 with	 a	 medium-term	 focus	 (e.g.,	 a	 month,	 a
quarter,	a	year).	As	an	example,	think	of	a	store	manager	who	wants	to	know	the
monthly	 sales	 for	 all	 products	 to	decide	upon	 replenishment	orders.	Finally,	 at
the	 strategic	 level,	 decisions	 are	made	 by	 senior	management	with	 long-term

implications	(e.g.,	1,	2,	5	years,	or	more).	As	an	example,	think	about	the	chief
executive	officer	who	wants	 to	 inspect	 the	geographical	distribution	of	sales	 in
order	 to	 make	 an	 investment	 decision	 about	 building	 a	 new	 store.	 The
information	 systems	 needed	 at	 both	 the	 tactical	 and	 strategic	 level	 are	 often
referred	 to	 as	 decision	 support	 systems	 (DSS)	 since	 their	 primary	 aim	 is	 to
provide	 information	 to	 support	 decisions	 in	 either	 the	 medium	 or	 long	 term.
Those	DSSs	require	other	types	of	data	manipulation	than	traditional	operational
systems.	More	specifically,	DSSs	focus	on	data	retrieval	by	answering	complex
ad-hoc	 queries	 (SELECT	 statements)	 in	 a	 user-friendly	 way.	 They	 should
include	 facilities	 to	 represent	 data	 in	 a	multidimensional	way,	 support	 various
levels	of	data	aggregation	or	summarization,	and	provide	interactive	facilities	for
advanced	data	analysis.	A	DSS	should	also	provide	support	for	trend	analysis	by
detecting	 patterns	 in	 a	 time	 series	 of	 data.	 These	 requirements	 are	 in	 strong
contrast	 to	 operational	 systems	 which	 focus	 on	 simple	 INSERT,	 UPDATE,
DELETE,	and/or	SELECT	statements	and	where	 transaction	 throughput	 is	one
of	the	most	important	KPIs.	Hence,	given	these	different	requirements	in	terms
of	 data	 storage	 and	 manipulation,	 a	 new	 type	 of	 comprehensive	 data	 storage
facility	 is	 needed	 to	 implement	 a	 DSS.	 A	 data	 warehouse	 provides	 this
centralized,	consolidated	data	platform	by	integrating	data	from	different	sources
and	 in	 different	 formats.	 As	 such,	 it	 provides	 a	 separate	 and	 dedicated
environment	 for	 both	 tactical	 and	 strategic	 decision-making.	 By	 doing	 so,	 we
can	avoid	overloading	the	operational	databases	with	complex	queries	and	allow
them	to	focus	on	their	core	activity:	transaction	processing.	The	data	warehouse
can	then	focus	on	providing	the	master	data	for	doing	advanced	analyses	such	as
OLAP	and	analytics,	as	we	discuss	in	what	follows.

Retention	Questions

What	are	the	differences	between	operational,	tactical,	and	strategic
decision-making?	Illustrate	with	examples.

17.2	Data	Warehouse	Definition

A	data	warehouse	was	first	formally	defined	by	Bill	Inmon	in	1996	as	follows:1

A	data	warehouse	is	a	subject-oriented,	integrated,	time-variant,	and
nonvolatile	collection	of	data	in	support	of	management’s	decision-making
process.

Let’s	discuss	each	of	these	properties	in	some	more	detail.
Subject-oriented	 implies	that	 the	data	are	organized	around	subjects	such

as	customers,	products,	sales,	etc.	By	focusing	on	the	subjects	rather	than	on	the
applications	 or	 transactions,	 the	 data	 warehouse	 is	 optimized	 to	 facilitate	 the
analysis	of	the	decision-makers	by	leaving	out	any	data	that	are	not	relevant	to
the	decision-making	process.

The	data	warehouse	is	integrated	in	the	sense	that	it	integrates	data	from	a
variety	of	operational	sources	and	a	variety	of	formats	such	as	RDBMSs,	legacy
DBMSs,	 flat	 files,	 HTML	 files,	 XML	 files,	 etc.	 To	 successfully	 merge	 and
consolidate	all	of	these	data,	the	data	warehouse	needs	to	ensure	that	all	data	are
named,	transformed,	and	represented	in	a	similar	way.	For	example,	consider	the
cases	 in	 which	 gender	 is	 encoded	 as	 male/female,	 0/1,	 m/f;	 birth	 date	 is
represented	as	dd/mm/yyyy,	mm/dd/yyyy,	dd/mm/yy;	or	sales	are	represented	in
dollars	and	euros	in	the	underlying	transaction	data	stores.	The	data	warehouse
harmonizes	all	these	differences	and	adopts	one	integrated	representation	format.
In	other	words,	 it	establishes	a	common	set	of	data	definitions.	These	are	 then
typically	used	during	an	extraction,	transformation,	and	loading	(ETL)	process	to
populate	the	data	warehouse	with	the	harmonized	data	(Figure	17.1).

Figure	17.1	Populating	a	data	warehouse.

Non-volatile	implies	that	the	data	are	primarily	read-only,	and	will	thus	not
be	frequently	updated	or	deleted	over	time.	Hence,	the	two	most	important	types
of	data	manipulation	operations	for	a	data	warehouse	are	data	loading	and	data
retrieval.	 This	 has	 some	 implications	 for	 designing	 the	 data	 warehouse.	 For
example,	 in	 a	 transactional	 system,	 integrity	 rules	 (e.g.,	 ON	 UPDATE
CASCADE,	ON	DELETE	CASCADE)	need	to	be	carefully	defined	to	guarantee
data	integrity	upon	update	or	removal	of	data.	This	is	less	of	an	issue	in	a	data
warehouse	 environment	 since	 data	 are	 only	 rarely	 updated	 or	 removed.
Furthermore,	 to	 avoid	 duplication	 and	 inconsistencies,	 transactional	 systems
always	assume	 that	 the	data	are	normalized	 (e.g.,	 totals	and	other	derived	data
elements	 will	 never	 be	 stored).	 This	 is	 in	 contrast	 to	 data	 warehouses,	 which
often	 store	 aggregated/non-normalized	 data	 to	 speed	 up	 the	 analyses	 (see	 also
Section	17.3).	 Finally,	 transaction	management,	 concurrency	 control,	 deadlock
detection,	and	recovery	management	are	 less	of	a	concern	for	data	warehouses
since	data	are	mostly	retrieved.

Connections

Normalization	 of	 relational	 data	 is	 discussed	 in	Chapter	6.	 Transaction
management	is	discussed	in	Chapters	14	and	16.

Time	variant	refers	to	the	fact	that	the	data	warehouse	essentially	stores	a
time	 series	 of	 periodic	 snapshots.	 Operational	 data	 are	 always	 up-to-date	 and
represent	the	most	recent	state	of	the	data	elements,	whereas	a	data	warehouse	is
not	necessarily	up-to-date	but	represents	the	state	at	some	specific	moment(s)	in
time.	Data	are	not	updated	or	deleted	as	the	business	state	changes,	but	new	data
are	 added,	 reflecting	 this	 new	 state.	 In	 this	way,	 a	 data	warehouse	 also	 stores
state	information	about	the	past,	called	historical	data.	Therefore,	every	piece	of
data	stored	in	the	data	warehouse	is	accompanied	by	a	time	identifier.	The	latter
can	then	be	used	to	do	historical	trend	analysis.

Drill	Down

According	to	the	Guinness	World	of	Records,	the	largest	data	warehouse
contains	 12.1	 petabytes	 (12,100	 terabytes)	 of	 raw	 data,	 achieved	 by	 a
collaboration	between	SAP,	BMMsoft,	HP,	Intel,	NetApp,	and	Red	Hat	at
the	SAP	Co-location	Lab,	Santa	Clara,	California,	USA,	on	17	February
2014.

Table	 17.1	 summarizes	 the	 key	 differences	 between	 a	 transaction	 system
and	a	data	warehouse.

Table	17.1	Difference	between	transactional	system	and	data	warehouse

Transactional	system Data	warehouse

Usage Day-to-day	business Decision	support	at

operations tactical/strategic	level

Data	latency Real-time	data Periodic	snapshots,
including	historical	data

Design Application	oriented Subject	oriented

Normalization Normalized	data (Sometimes	also)
denormalized	data

Data	manipulation Insert/Update/Delete/Select Insert/Select

Transaction
management

Important Less	of	a	concern

Type	of	queries Many,	simple	queries Fewer,	but	complex	and
ad-hoc	queries

Retention	Questions

What	are	the	key	characteristics	of	a	data	warehouse?

Contrast	a	data	warehouse	to	a	transactional	system.

17.3	Data	Warehouse	Schemas

Various	 conceptual	 data	 models	 or	 schemas	 can	 be	 adopted	 to	 design	 a	 data
warehouse,	which	all	involve	the	modeling	of	facts,	as	well	as	dimensions	with
which	 to	 analyze	 these	 facts.	 In	 what	 follows,	 we	 discuss	 the	 most	 common
schemas:	a	star	schema,	a	snowflake	schema,	and	a	fact	constellation	schema.

17.3.1	Star	Schema

As	 the	 name	 suggests,	 a	 star	 schema	 has	 one	 large	 central	 fact	 table	 that	 is
connected	to	various	smaller	dimension	tables.	As	illustrated	in	Figure	17.2,	the
fact	 table	 has	multiple	 foreign	 keys	 referring	 to	 each	 of	 the	 dimension	 tables,
implementing	a	1:N	relationship	type.	The	primary	key	of	the	fact	table	consists
of	the	composition	of	all	 these	foreign	keys.	The	fact	table	typically	contains	a
tuple	per	 transaction	or	event	 (i.e.,	 a	 fact)	 and	also	contains	measurement	data
(e.g.,	Sales	in	Units	and	Sales	in	Euros	in	our	example).	A	dimension	table	stores
further	 information	 about	 each	of	 the	 facts	 in	 the	 fact	 table	 (e.g.,	Time,	Store,
Customer,	Product).	Additive	measures	can	be	summarized	along	all	dimensions,
using	addition	operators	such	as	sum,	average,	etc.	These	are	the	most	common
type	of	measures	encountered.	In	our	example,	Sales	in	Units	and	Sales	in	Euros
can	 be	 meaningfully	 added	 across	 the	 Time,	 Store,	 Product,	 and	 Customer
dimensions	 (e.g.,	 sales	 per	month,	 average	 sales	 per	 customer).	 Semi-additive
measures	can	only	be	summarized	using	addition	along	some	of	the	dimensions.
For	 example,	 the	 measure	 inventory_quantity	 cannot	 be	 added	 across	 two
different	 time	 periods	 since	 the	 quantities	 may	 be	 overlapping.	 Non-additive
measures	cannot	be	added	along	any	of	 the	dimensions.	Examples	are	product
price	or	cost.

Figure	17.2	Star	schema.

The	dimension	tables	contain	the	criteria	for	aggregating	the	measurement
data	and	will	thus	be	used	as	constraints	to	answer	queries	such	as:	What	are	the
maximum	 sales	 during	 a	 particular	 quarter	 across	 all	 products,	 stores,	 and
customers?	 What	 are	 the	 average	 sales	 per	 customer	 across	 all	 time	 periods,
stores,	and	products?	What	is	the	minimum	number	of	units	sold	in	store	XYZ
during	Quarter	2	across	all	products?	To	speed	up	 report	generation	and	avoid
time-consuming	joins,	the	dimension	tables	often	contain	denormalized	data.	In
other	words,	 the	 dimensional	 hierarchies	 (e.g.,	 day,	month,	 quarter,	 year),	 and
therefore	 transitive	dependencies,	 are	 less	 clear	 from	 the	design	 since	 they	 are
collapsed	 into	 one	 table	 and	 hidden	 in	 the	 columns.	 Since	 these	 dimensional
tables	are	only	seldom	updated,	we	don’t	have	to	worry	too	much	about	the	risk
of	 inconsistent	 data.	 Hence,	 the	 only	 disadvantage	 of	 not	 normalizing	 the
dimension	tables	is	the	duplicate	storage	of	information,	which	is	not	that	much
of	an	issue	given	today’s	cheap	(in	terms	of	variable	cost	per	gigabyte)	storage
solutions	combined	with	the	fact	that	most	dimension	tables	take	up	less	than	5%
of	the	overall	storage	needed.

Figure	17.3	 illustrates	 some	 example	 tuples	 for	 the	 star	 schema	of	Figure
17.2.	 It	 can	 be	 seen	 that	 for	 his	 birthday	 (on	 February	 27),	 Bart	 (with
CustomerKey	=	20006008	and	CustomerNr	=	20)	bought	12	bottles	of	Jacques
Selosse,	Brut	Initial,	2012	(with	ProductKey	=	30	and	ProdNr	=	0199)	in	Vinos
del	Mundo	(with	StoreKey	=	150	and	StoreNr	=	69).

Figure	17.3	Example	tuples	for	the	star	schema	of	Figure	17.2.

17.3.2	Snowflake	Schema

A	snowflake	schema	normalizes	the	dimension	tables,	as	you	can	see	illustrated
in	Figure	17.4.	By	doing	so,	it	essentially	decomposes	the	hierarchical	structure
of	 each	 dimension.	 This	 creates	 more	 tables	 and	 primary–foreign	 key
relationships,	which	may	have	a	negative	impact	on	report	generation	due	to	the
many	 joins	 that	 need	 to	 be	 evaluated.	 This	 approach	 might,	 however,	 be
considered	if	the	dimension	tables	grow	too	large	and	a	more	efficient	usage	of
storage	 capacity	 is	 required.	 It	may	 also	 be	 beneficial	 if	 it	 turns	 out	 that	most
queries	 don’t	 make	 use	 of	 the	 outer-level	 dimension	 tables	 (e.g.,	 Category
dimension,	 Segment	 dimension)	 and	 only	 need	 access	 to	 the	 dimension	 tables
directly	 connected	 to	 the	 fact	 table	 (e.g.,	 Product	 dimension,	 Customer
dimension).	Since	 the	 latter	dimension	 tables	are	now	smaller	compared	 to	 the
corresponding	 (unnormalized)	 star	 schema,	 they	 can	 be	 more	 easily	 stored	 in
internal	memory.

Figure	17.4	Snowflake	schema.

17.3.3	Fact	Constellation

A	 fact	 constellation	 schema	 has	 more	 than	 one	 fact	 table,	 as	 you	 can	 see
illustrated	in	Figure	17.5.	The	two	fact	tables	Sales	Fact	Table	and	Shipping	Fact
Table	share	the	tables	Time	dimension,	Product	dimension,	and	Store	dimension.
This	schema	is	sometimes	also	referred	to	as	a	collection	of	star	schemas,	or	a
galaxy	schema.

Figure	17.5	Fact	constellation.

The	above	three	schemas	are	simply	reference	schemas	and	an	organization
may	choose	to	adopt	a	mixture	of	these	approaches	by,	for	example,	normalizing
some	dimensions	and	keeping	the	others	denormalized	(e.g.,	a	starflake	schema
is	 a	 combination	 of	 a	 denormalized	 star	 schema	with	 a	 normalized	 snowflake
schema).

17.3.4	Specific	Schema	Issues

In	this	section,	we	elaborate	on	some	specific	schema	issues.	We	discuss	the	use
of	surrogate	keys	and	the	granularity	of	the	fact	table.	We	introduce	factless	fact
tables	 and	 give	 recommendations	 to	 optimize	 the	 dimension	 tables.	We	 define
junk	dimensions	 and	outrigger	 tables.	We	conclude	with	guidelines	on	dealing
with	slowly	and	rapidly	changing	dimensions.

17.3.4.1	Surrogate	Keys

As	 you	may	 have	 seen	 in	 our	 examples	 above,	many	 of	 the	 dimension	 tables
introduce	 new	 keys,	 called	 surrogate	 keys,	 such	 as	 StoreKey,	 ProductKey,
ShipperKey,	 etc.	 These	 are	 typically	meaningless	 integers	 used	 to	 connect	 the
fact	 to	the	dimension	tables.	An	obvious	question	is	why	we	cannot	simply	re-
use	 our	 existing	 natural	 or	 business	 keys	 such	 as	 StoreNr,	 ProdNr,	 ShipNr
instead?	There	are	various	 reasons	 for	 this.	First,	business	keys	usually	have	a
business	 meaning	 in	 OLTP	 systems,	 such	 as	 social	 security	 number	 for
Employee	and	VAT	number	 for	Company.	Hence,	 they	are	 tied	 to	 the	business
setting	 and	 requirements,	 and	 if	 these	were	 changed	 (e.g.,	 due	 to	 a	merger	 or
acquisition,	or	new	legislation)	then	all	tables	using	those	keys	would	need	to	be
updated,	 which	 may	 be	 a	 resource-intensive	 operation	 in	 a	 data	 warehouse
environment,	because	not	only	the	current	state	is	stored,	but	also	historical	data.
Surrogate	 keys	 essentially	 buffer	 the	 data	 warehouse	 from	 the	 operational
environment	by	making	it	immune	to	any	operational	changes.	They	are	used	to
relate	the	facts	in	the	fact	table	to	the	appropriate	rows	in	the	dimension	tables,
with	the	business	keys	only	occurring	in	the	(much	smaller)	dimension	tables	to
keep	the	link	with	the	identifiers	in	the	operational	systems.

Furthermore,	when	compared	 to	surrogate	keys,	business	keys	are	usually
larger,	 which	 will	 result	 in	 big	 indexes	 and	 slow	 down	 index	 traversal	 and,
consequently,	query	execution	time.

Connections

Indexes	are	part	of	the	internal	data	model	and	are	discussed	in	Chapters
12	and	13.

Therefore,	using	surrogate	keys	will	save	space	and	improve	performance.
This	 is	 especially	 true	 for	 the	 fact	 table,	 since	 most	 of	 its	 attribute	 types	 are
foreign	 keys.	 For	 example,	 if	 the	 data	 warehouse	 contains	 data	 about	 20,000
customers,	who	on	average	made	15	purchases,	 then	the	fact	 table	will	contain
about	 300,000	 (small)	 surrogate	 key	 values,	 whereas	 the	 dimension	 table	will
contain	 20,000	 (large)	 business	 key	 values	 in	 addition	 to	 the	 same	 number	 of
surrogate	 key	 values.	 Without	 surrogate	 keys,	 the	 fact	 table	 would	 contain
300,000	business	key	values.

Next,	business	keys	are	also	often	re-used	over	longer	periods	of	time.	For
example,	prodnr	“123abc”	may	be	a	different	product	now	than	five	years	ago.
Hence,	they	cannot	be	used	as	primary	keys	in	a	data	warehouse	storing	multiple
snapshots	of	the	data	across	longer	time	periods.	Finally,	surrogate	keys	can	also
be	 successfully	 used	 to	 deal	 with	 slowly	 changing	 dimensions,	 as	 we	 discuss
below.

17.3.4.2	Granularity	of	the	Fact	Table

Since	the	fact	table	contains	the	bulk	of	the	data,	it	is	important	to	design	it	at	the
appropriate	 level	 of	 granularity	 or	 grain.	 In	 other	 words,	 you	 should	 think

carefully	about	the	semantics	in	terms	of	the	level	of	detail	of	one	row	of	the	fact
table.	Higher	granularity	implies	more	rows	in	the	table,	while	lower	granularity
implies	 fewer	 rows.	When	 determining	 the	 granularity,	 a	 tradeoff	 between	 the
level	 of	 detailed	 analysis	 supported	 and	 the	 storage	 requirements	 (and	 hence
query	performance)	needed	should	be	evaluated.	Note	that	it	is	always	possible
to	obtain	lower	granularity	from	data	stored	with	higher	granularity	(e.g.,	going
from	 days	 to	 months)	 by	 using	 aggregation.	 If	 the	 data	 are	 stored	 at	 lower
granularity	(e.g.,	monthly),	it	is	not	possible	to	obtain	more	detailed	information
(e.g.,	daily).	Examples	of	grain	definitions	could	be:

A	 first	 step	when	 deciding	 upon	 the	 optimal	 grain	 entails	 identifying	 the
dimensions.	These	are	usually	easy	 to	determine	since	 they	directly	 stem	from
the	 business	 processes	 generating	 the	 data	 (e.g.,	 common	 dimensions	 are
customer,	product,	and	time).	A	more	challenging	question	concerns	the	grain	at
which	 these	 dimensions	 should	 be	measured.	 For	 example,	 consider	 the	 Time
dimension.	Will	we	 look	 at	 hourly,	 daily,	weekly,	 or	monthly	 sales?	 This	 is	 a
decision	 that	 should	 be	made	 in	 close	 collaboration	with	 the	 end-users	 of	 the
data	warehouse.	Hence,	it	is	useful	to	know	the	type	of	reports	and	analyses	that
are	 needed	 for	 both	 tactical	 and	 strategic	 decision-making.	 Since	 a	 data
warehouse	 is	 a	 long-term	 investment,	 it	 is	 important	 to	 anticipate	 future
information	needs	when	deciding	upon	 the	grain.	A	higher	grain	may	mitigate
the	risk	of	not	being	able	to	provide	the	information	at	the	right	level	of	detail.	If

one	tuple	of	the	fact	table	corresponds	to	one	line	on	a	purchase	order;

one	tuple	of	the	fact	table	corresponds	to	one	purchase	order;

one	tuple	of	the	fact	table	corresponds	to	all	purchase	orders	made	by	a
customer.

possible,	 it	 is	 highly	 recommended	 to	 define	 the	 grain	 at	 the	 atomic	 level,
meaning	at	the	highest	granularity	possible.

17.3.4.3	Factless	Fact	Tables

A	 factless	 fact	 table	 is	 a	 fact	 table	 that	 contains	 only	 foreign	 keys	 and	 no
measurement	data.	Although	 it	 is	 less	common,	 it	 can	be	used	 to	 track	events.
Figure	17.6	shows	an	example	of	this	for	a	course	administration.	The	fact	table
only	 contains	 foreign	 keys	 to	 the	 Time,	 Professor,	 Student,	 and	 Course
dimension	tables.	The	fact	table	records	the	attendance	of	a	student	for	a	course
taught	by	a	professor	at	a	specific	moment	in	time.	This	data	warehouse	design
allows	you	to	answer	questions	such	as:

Figure	17.6	Factless	fact	table.

Another	 use	 of	 a	 factless	 fact	 table	 is	 for	 analyzing	 coverage	 or	 negative
reporting.	Suppose	we	 leave	out	all	measurement	data	 (i.e.,	Sales	 in	Units	and

Which	professor	teaches	the	highest	number	of	courses?

What	is	the	average	number	of	students	that	attend	a	course?

Which	course	has	the	maximum	number	of	students?

Sales	in	Euros)	in	Figure	17.2.	The	resulting	factless	fact	table	can	then	be	used
to	answer	questions	such	as:

17.3.4.4	Optimizing	the	Dimension	Tables

A	dimension	 table	usually	has	 a	 smaller	 number	of	 rows	 compared	 to	 the	 fact
table.	The	number	of	columns	can	get	quite	large,	with	many	of	them	containing
descriptive	text.	To	improve	query	execution	time,	 the	dimension	tables	should
be	 heavily	 indexed	 because	 they	 contain	 the	 information	 that	 will	 be	 used	 as
selection	 criteria.	On	average,	 the	number	of	 dimension	 tables	 is	 between	 five
and	 ten.	A	popular	dimension	 table	 is	Time,	which	 is	 included	 in	almost	every
data	warehouse	or	data	mart	(see	Section	17.6).	This	is	actually	an	example	of	a
dimension	that	can	be	easily	built	upfront	since,	for	example,	 ten	years	of	data
require	 only	 about2	 3650	 tuples	 to	 be	 stored	 if	 the	most-fine	 grained	 level	 of
Time	 is	 a	 single	 day.	 Figure	 17.7	 shows	 an	 example	 of	 the	 Time	 dimension
definition.	As	you	can	see,	it	contains	a	lot	of	date	attributes,	such	as	information
about	 fiscal	 periods,	 seasons,	 holidays,	 weekends,	 etc.	 which	 are	 not	 directly
supported	by	the	SQL	Date	function.

What	is	the	average	number	of	products	sold	by	a	store?

Which	customers	did	not	purchase	any	products?

Which	stores	did	not	sell	any	products	during	a	particular	period?

Figure	17.7	Example	Time	dimension.

A	 large	number	of	dimensions,	 say	more	 than	25,	 is	usually	an	 indication
that	 some	of	 them	can	be	aggregated	 into	a	 single	dimension	because	 they	are
either	overlapping	or	representing	different	levels	in	a	hierarchy.

17.3.4.5	Defining	Junk	Dimensions

An	interesting	question	is	how	to	deal	with	low-cardinality	attribute	types	such
as	flags	or	indicators.	Consider	the	attribute	types	Online	Purchase	(Yes	or	No),
Payment	(cash	or	credit	card),	and	Discount	(Yes	or	No).	We	can	either	add	these
attribute	 types	 directly	 to	 the	 fact	 table	 or	 model	 them	 as	 three	 separate

dimensions.	 Another	 interesting	 alternative	 might	 be	 to	 combine	 them	 into	 a
junk	 dimension,	 which	 is	 a	 dimension	 that	 simply	 enumerates	 all	 feasible
combinations	of	values	of	the	low-cardinality	attribute	types	as	shown	in	Figure
17.8.	Note	that	although	2³	=	8	combinations	are	theoretically	possible,	we	left
out	 the	 two	impossible	ones	with	Online	Purchase	=	Yes	and	Payment	=	Cash,
leaving	 us	with	 six	 feasible	 combinations.	We	 also	 introduce	 a	 new	 surrogate
key,	Junkkey1,	to	link	this	junk	dimension	table	to	the	fact	table.

Figure	17.8	Defining	a	junk	dimension.

The	definition	of	junk	dimensions	greatly	contributes	to	the	maintainability
and	query	performance	of	the	data	warehouse	environment.

17.3.4.6	Defining	Outrigger	Tables

An	outrigger	table	can	be	defined	to	store	a	set	of	attribute	types	of	a	dimension
table	which	are	highly	correlated,	low	in	cardinality,	and	updated	simultaneously.
As	an	example,	suppose	we	have	a	Customer	dimension	table	that	also	includes
demographic	 data	 obtained	 from	 an	 external	 data	 provider.	 More	 specifically,
attribute	types	are	provided	on	a	monthly	basis,	such	as	average	income,	average
household	 size,	 unemployment	 rate,	 percentage	 female	 population,	 percentage
population	 under	 20/30/40/50/60,	 percentage	 homeownership,	 etc.	 in	 the
geographical	region	(e.g.,	state,	county)	where	the	customer	lives.	If	we	were	to
keep	this	 information	in	 the	Customer	dimension	table,	 it	would	imply	a	 lot	of
duplication	 of	 information	 and,	 consequently,	 heavy	 data	 manipulation	 in	 the

event	of	updates.	A	more	attractive	alternative	is	to	put	this	information	in	a	new
table,	 an	 outrigger	 table,	 and	 link	 it	 through	 a	 foreign	 key	with	 the	Customer
table	(Figure	17.9).	It	is	important	to	note	that	this	outrigger	table	is	not	directly
connected	to	the	fact	table.	An	advantage	of	this	approach	is	that	the	Customer
dimension	 table	 now	 has	 fewer	 attribute	 types	 and	 the	 outrigger	 table	 has	 a
relatively	small	amount	of	rows	since	the	demographic	data	are	now	only	stored
once	per	region	instead	of	once	per	customer.	A	drawback	is	that	an	extra	join	is
needed	to	combine	both	tables.	Although	a	view	can	be	defined	to	facilitate	this,
it	is	recommended	to	be	careful	and	not	define	too	many	outrigger	tables	in	your
data	warehouse	design.

Figure	17.9	Defining	an	outrigger	table.

17.3.4.7	Slowly	Changing	Dimensions

As	the	term	suggests,	a	slowly	changing	dimension	is	a	dimension	that	changes
slowly	 and	 irregularly	 over	 a	 period	 of	 time.	 As	 an	 example,	 consider	 a
dimension	 table	Customer	 that	has	an	attribute	 type	customer	 segment	 ranging
from	AAA,	AA,	A,	BBB,	…	to	C,	determined	on	a	yearly	basis.	Assume	now
that	we	wish	to	upgrade	a	customer	from	AA	to	AAA.	There	are	various	ways	to
accommodate	 this	 slow	 (i.e.,	 yearly)	 change	 in	a	data	warehouse	environment,
based	 upon	 whether	 you	 want	 to	 store	 no	 historical,	 full	 historical,	 or	 partial

historical	 information.	A	 first	 approach	 is	 to	 simply	overwrite	 the	old	 segment
value	 with	 the	 new	 one	 (Figure	 17.10).	 Obviously,	 this	 implies	 a	 loss	 of
information	since	no	history	of	changes	is	kept.	This	approach	can,	however,	be
used	 to	 correct	 data	 errors	 (e.g.,	 changing	 the	 incorrect	 value	Baessens	 to	 the
correct	value	Baesens)	or	when	 the	original	value	 is	no	 longer	 relevant	 (e.g.,	a
change	in	telephone	number).

Figure	17.10	Approach	1	to	deal	with	slowly	changing	dimensions.

A	 second	 approach	 stores	 the	 historical	 information	 by	 duplicating	 the
record	 and	 adding	 Start_Date,	 End_Date,	 and	 Current_Flag	 attribute	 types
(Figure	17.11).	A	 new	 surrogate	 key	 value	 is	 introduced	 (123457	 in	 our	 case)
and	both	tuples	share	the	same	value	for	the	business	key	(ABC123	in	our	case).
This	 clearly	 illustrates	 the	benefit	 of	 using	 surrogate	keys,	 since	we	now	have
two	tuples	referring	to	the	same	customer	as	indicated	by	the	same	business	key
(CustomerNr),	 but	 that	 can	 still	 be	 distinguished	 by	 the	 surrogate	 key.	 The
Start_Date	 and	 End_Date	 attribute	 types	 are	 assigned	 default	 values	 of
31–12–9999	but	can	be	updated	as	needed.	Both	 indicate	 the	so-called	validity
range,	i.e.,	the	time	frame	during	which	the	other	attribute	values	of	the	tuple	are
valid.	The	most	recent	tuple	has	its	Current_Flag	indicator	set	to	Y.	This	allows
for	 quick	 retrieval	 of	 the	most	 recent	 information	 of	 a	 customer.	 This	method
works	well	if	the	dimension	table	is	relatively	small	and	the	changes	are	not	that

frequent.	The	fact	table	refers	to	the	dimension	table	by	means	of	the	surrogate
key,	so	each	fact	will	always	be	related	to	the	correct	“version”	of	the	customer
(i.e.,	with	 the	Segment	value	as	 it	was	at	 the	moment	of	 the	fact).	 In	 this	way,
full	historical	information	is	retained.	This	is	not	the	case	if	the	Segment	value	is
just	 overwritten	 as	 in	 the	 first	 approach.	 In	 that	 case,	 facts	 from	 before
28–02–2015	 are	 erroneously	 attributed	 to	 the	 “AAA”	 version	 of	 the	 customer,
whereas	in	fact	it	was	an	“AA”	customer.	Analysis	of	the	data	would	then	result
in	the	wrong	conclusions.	It	would	also	become	impossible	to	analyze	the	impact
of	certain	changes	in	the	customer’s	condition	on	the	facts	that	occur	over	time
(e.g.,	whether	 a	 change	of	 segment	 impacts	purchase	behavior).	Therefore,	 the
first	 approach	 is	 not	 suitable	 for	 data	whose	 historical	 value	 is	 relevant	 to	 the
analysis.

Figure	17.11	Approach	2	to	deal	with	slowly	changing	dimensions.

A	third	approach	is	to	add	a	new	attribute	type	to	the	table	(Figure	17.12).
In	this	approach,	only	partial	historical	information	is	stored	since	it	only	keeps
the	most	recent	and	previous	value.	The	approach	can	be	easily	extended	by	also
adding	a	Date	attribute	type	indicating	when	the	most	recent	change	(i.e.,	update
to	 AAA)	 took	 place.	 Also,	 caution	 is	 required	 not	 to	 draw	 any	 erroneous
conclusions	during	analyses	due	to	the	loss	of	full	historical	information.

Figure	17.12	Approach	3	to	deal	with	slowly	changing	dimensions.

A	 fourth	 approach	 is	 to	 create	 two	 dimension	 tables:	 Customer	 and
Customer_History.	Both	are	 linked	 to	 the	 fact	 table	using	 their	 surrogate	keys,
but	 the	 former	has	 the	most	 recent	 information,	whereas	 the	 latter	contains	 the
full	history	of	updates.	This	 is	 illustrated	 in	Figure	17.13.	Depending	upon	 the
type	of	information	needed	(most	recent	or	historical),	the	right	dimension	table
is	selected.

Figure	17.13	Approach	4	to	deal	with	slowly	changing	dimensions.

Note	that	the	above	four	approaches	can	also	be	combined.

17.3.4.8	Rapidly	Changing	Dimensions

A	 rapidly	 changing	 dimension	 is	 a	 dimension	 that	 changes	 rapidly	 and
regularly	 over	 a	 period	 of	 time.	 Let’s	 now	 say	 that	 a	 customer’s	 status	 gets
updated	 on	 a	 weekly	 rather	 than	 yearly	 basis,	 based	 upon	 how	 much	 he/she
purchased.	 Suppose	we	would	 like	 to	 keep	 the	 entire	 history	 of	 changes,	 then
both	approaches	2	and	4	discussed	in	the	previous	section	will	result	in	a	lot	of
rows	being	added	to	the	dimension	table	(either	Customer	or	Customer_History),

which	may	seriously	hamper	 the	performance.	A	better	alternative	might	be	 to
first	 split	 all	 customer	 information	 into	 stable	 (e.g.,	 gender,	marital	 status,	…)
and	rapidly	changing	information	(e.g.,	segment).	The	latter	can	then	be	put	into
a	 separate	 so-called	 mini-dimension	 table	 (CustomerSegment)	 with	 a	 new
surrogate	 key	 (SegmentKey).	 If	 the	 volatile	 information	 is	 continuous	 (e.g.,
income,	credit	score),	you	may	opt	 to	categorize	it	and	store	categories	 instead
(e.g.,	 income	<1000,	1000–3000,	3000–5000,	>5000)	so	as	 to	keep	 the	 size	of
the	 mini-dimension	 table	 manageable.	 To	 connect	 the	 Customer	 and
CustomerSegment	table,	you	cannot	simply	include	the	SegmentKey	as	a	foreign
key	 in	Customer,	 since	 any	 change	 in	 the	 segment	 value	 of	 a	 customer	would
then	 necessitate	 the	 creation	 of	 a	 new	 record	 in	 the	 Customer	 table,	 which	 is
obviously	not	what	we	want.	To	successfully	make	the	connection	between	both
tables,	 we	 can	 pursue	 two	 options.	 The	 first	 is	 by	 using	 the	 fact	 table	 as	 a
connector.	More	specifically,	we	put	an	additional	 foreign	key	 in	 the	 fact	 table
referring	 to	 this	 mini-dimension	 (see	 Figure	 17.14).	 As	 such,	 the	 fact	 table
implicitly	stores	the	historical	information	about	the	volatile	customer	data.	Note
that	the	customer	segment	can	then	only	be	updated	when	a	new	row	is	added	to
the	 fact	 table	 or,	 for	 example,	when	 a	 new	purchase	 is	made.	Additionally,	 as
illustrated	 in	 Figure	 17.15,	 it	 is	 also	 possible	 to	 include	 a	 foreign	 key	 in	 the
Customer	 dimension	 referring	 to	 the	 current	 segment	 in	 the	CustomerSegment
mini-dimension.	 This	 is	 in	 contrast	 to	 the	 foreign	 key	 in	 the	 fact	 table,	which
refers	to	the	CustomerSegment	at	the	moment	of	the	fact.

Figure	17.14	Approach	1	to	deal	with	rapidly	changing	dimensions.

Figure	17.15	Example	tuples	for	the	approach	suggested	in	Figure	17.14.

This	is	illustrated	with	some	example	tuples	in	Figure	17.15.	Here	you	can
see	that	the	current	segment	of	customer	Bart	(with	CustomerKey	=	1000)	is	B
(with	SegmentKey	=	2),	whereas	the	segment	at	the	time	of	the	most	recent	fact
was	C	 (with	SegmentKey	=	3).	Also,	 for	Seppe	 there	 is	 a	 difference:	A	 is	 the
most	current	segment,	whereas	 it	was	D	for	his	most	 recent	 fact.	For	Wilfried,
the	current	segment	is	A,	which	is	similar	to	the	segment	for	his	most	recent	fact.

Another	 alternative	 to	 connect	 both	 tables	 is	 by	 introducing	 an	 additional
table	 Customer_CustomerSegment	 that	 includes	 both	 surrogate	 keys,	 together
with	 the	 Start_Date	 and	 End_date	 attribute	 types	 (Figure	 17.16).	Whenever	 a
customer’s	 segment	 needs	 to	 be	 updated,	 a	 new	 row	 can	 be	 added	 to	 the
Customer_CustomerSegment	dimension	table,	essentially	leaving	all	other	tables

unaffected.	This	allows	us	to	keep	full	track	of	the	rapidly	changing	dimension
values	 while	 at	 the	 same	 time	 minimizing	 the	 storage	 requirements	 and
safeguarding	the	performance.	Note	 that	 the	Customer_CustomerSegment	 table
in	this	way	embodies	a	many-to-many	relationship	type	between	Customer	and
CustomerSegment.

Figure	17.16	Approach	2	to	deal	with	rapidly	changing	dimensions.

Drill	Down

Among	 the	 most	 popular	 commercial	 data	 warehousing	 vendors	 are
Oracle,	Teradata,	Microsoft,	IBM,	and	SAP.

Retention	Questions

Discuss	and	contrast	the	following	data	warehouse	schemas:	star
schema,	snowflake	schema,	and	fact	constellation.

What	are	the	benefits	of	using	surrogate	keys	in	a	data	warehouse?

How	can	we	decide	upon	the	granularity	of	the	fact	table	and	what	is
the	impact	thereof?

What	are	factless	fact	tables	and	what	can	they	be	used	for?

Give	recommendations	to	optimize	the	dimension	tables.

What	are	junk	dimensions	and	what	can	they	be	used	for?

What	are	outrigger	tables	and	what	can	they	be	used	for?

Discuss	how	slowly	changing	dimensions	can	be	accommodated	in	a
data	warehouse.	Illustrate	with	an	example.

Discuss	how	rapidly	changing	dimensions	can	be	accommodated	in	a
data	warehouse.	Illustrate	with	an	example.

17.4	The	Extraction,	Transformation,	and
Loading	(ETL)	Process

Once	the	data	warehouse	schema	has	been	designed,	we	can	start	populating	it
with	data	from	the	operational	sources.	During	 this	step,	data	will	be	extracted
(E)	from	the	source	systems,	transformed	(T)	to	fit	the	data	warehouse	schema,
and	then	loaded	(L)	into	the	data	warehouse.	Hence,	this	is	commonly	referred	to
as	the	ETL	step.	This	is	not	an	easy	step,	since	many	of	the	operational	sources
may	 be	 legacy	 applications	 or	 unstructured	 data	 that	 have	 been	 rather	 poorly
documented.	Some	estimates	state	that	the	ETL	step	can	consume	up	to	80%	of
all	efforts	needed	to	set	up	a	data	warehouse.	It	is	also	an	iterative	process	that
should	 be	 executed	 at	 regular	 points	 in	 time	 (e.g.,	 daily,	 weekly,	 monthly)
depending	upon	the	tolerable	data	latency	and/or	desired	refreshing	frequency,	in
terms	of	 the	 impact	on	source	system	performance.	To	decrease	 the	burden	on
both	the	operational	systems	and	the	data	warehouse	itself,	it	is	recommended	to
start	the	ETL	process	by	dumping	the	data	in	a	so-called	staging	area	where	all
the	ETL	activities	can	be	executed	(see	Figure	17.17).	Note	that	this	staging	area
cannot	be	used	 for	any	end-user	queries	or	 reporting;	 it	 is	 just	 an	 intermediate
storage	 environment	 for	 the	 sake	 of	 transformation.	 In	 addition,	 some	DBMS
vendors	 propose	 a	 somewhat	 different	 approach,	 with	 the	 target	 DBMS
providing	facilities	to	perform	part	or	all	of	the	transformations	within	the	data
warehouse,	after	 loading	the	data.	In	that	case,	we	speak	of	ELT	(extract,	 load,
transform),	which	we	don’t	discuss	further.

Figure	17.17	The	extraction,	transformation,	and	loading	(ETL)	step.

The	extraction	strategy	can	be	either	full	or	incremental.	In	the	latter	case,
only	 the	 changes	 since	 the	 previous	 extraction	 are	 considered,	 which	 is	 also
called	 “changed	 data	 capture”	 or	 CDC.	 Although	 this	 is	 a	 more	 efficient
approach,	it	assumes	the	data	in	the	source	systems	can	be	flagged	for	updates,
which	 is	often	not	possible	since	many	of	 these	operational	systems	have	been
carefully	 optimized	 and	 operate	 in	 a	 closed-box	 environment,	 thereby	 not
allowing	 any	 intrusion.	 During	 extraction,	 it	 is	 important	 to	 properly
accommodate	 the	 different	 types	 of	 data	 sources,	 operating	 systems,	 and
hardware	environments	from	where	the	data	are	sourced.

The	transformation	usually	entails	the	following	activities:

formatting

cleansing

aggregation	and	merging

enrichment.

Formatting	 rules	 specify	 how	 data	 should	 be	 consistently	 and	 uniformly
encoded	in	the	data	warehouse.	In	the	operational	systems,	gender	can	be	coded
as	male/female,	m/f,	0/1,	etc.	As	another	example	consider	the	use	of	a	different
measurement	basis	(e.g.,	amount	in	dollars,	GBP,	or	euros)	or	decimal	separator
(e.g.,	 1,000.50	 versus	 1.000,50).	 In	 the	 data	 warehouse,	 all	 these	 different
formats	should	then	be	mapped	to	a	single	one.

Cleansing	will	get	rid	of	some	of	the	inconsistencies	or	irregularities	in	the
data.	Examples	 are	 dealing	with	missing	 values	 or	 handling	 impossible	 values
such	as	birth	date	is	01/01/1000.	During	this	cleansing	step,	it	is	very	important
to	 report	 any	 irregularities	 to	 the	business	 user	 to	 fully	 understand	where	 they
come	 from	 and	 how	 they	 should	 be	 properly	 treated.	 For	 example,	 a	missing
value	 for	 income	might	 correspond	 to	 an	 unemployed	 customer,	 or	 a	 value	 of
01/01/1000	for	birth	date	might	correspond	to	the	default	setting	of	the	attribute
type.	 Ideally,	any	 irregularities	 should	be	 traced	back	 to	 the	operational	 source
systems	and	data	entry	processes	where	appropriate	actions	can	be	taken	to	avoid
similarly	bad	data	from	entering	in	the	future.	The	ultimate	aim	is	to	provide	the
data	 warehouse	 with	 high-quality	 data	 in	 terms	 of	 accuracy,	 completeness,
consistency,	uniqueness,	and	timeliness.

Connections

Chapter	 4	 discusses	 various	 data	 quality	 dimensions	 such	 as	 accuracy,
completeness,	consistency,	uniqueness	and	timeliness.

It	is	not	uncommon	to	find	multiple	records	referring	to	the	same	entity	in
the	operational	data	sources.	This	could	be	due	to	the	usage	of	different	attribute
names	 (e.g.,	 CustomerID,	 CustID,	 ClientID,	 ID),	 or	 data	 entry	mistakes	 (e.g.,
Bart	Baesens	versus	Bart	Baessens).	These	should	 then	be	properly	aggregated

and	merged	before	entering	the	data	in	the	data	warehouse.	This	feature	is	called
deduplication.	A	somewhat	 similar	problem	 is	 the	 situation	 in	which	different
operational	 sources	use	different	business	keys	 to	 identify	 the	 same	 real-world
entity	 (e.g.,	 SSN	 versus	 CustomerID).	 Also	 in	 that	 case,	 the	 transformation
should	 identify	 records	 referring	 to	 the	 same	 real-world	 entities,	 merge	 them
correctly,	and	provide	them	with	an	appropriate	and	consistent	unique	identifier.

Finally,	 the	data	 can	also	be	enriched	by	adding	derived	data	 elements	or
external	 data.	 A	 straightforward	 example	 is	 calculating	 the	 age	 of	 a	 customer
based	upon	the	date	of	birth.	Another	example	 is	enriching	customer	data	with
demographic	information	obtained	from	an	external	data	provider.	It	is	important
that	 all	 these	 data	 transformation	 activities	 are	 executed	 with	 care,	 since	 this
directly	affects	the	quality	and	usability	of	the	data	stored	in	the	data	warehouse.

During	the	loading	step,	the	data	warehouse	is	populated	by	filling	the	fact
and	dimension	tables,	and	thereby	also	generating	the	necessary	surrogate	keys
to	link	it	all	up.	Dimension	rows	should	be	inserted/updated	before	the	fact	rows
can	refer	to	them.	Ideally,	this	should	be	done	in	a	parallelized	way	to	speed	up
the	 performance.	Once	 this	 is	 completed,	 it	 should	 be	 closely	 followed	 up	 by
adjusting	 all	 the	 indexes	 and	 corresponding	 table	 statistics.	 It	 might	 even	 be
considered	to	drop	all	indexes	first	and	then	freshly	rebuild	them	once	loading	of
the	new	data	has	finished,	to	guarantee	optimal	performance.

Connections

Chapters	12	and	13	discuss	the	design	of	the	internal	data	model	and	the
definition	of	indexes.

Obviously,	all	decisions	made	during	the	ETL	process	should	be	carefully
automated	and	documented	to	facilitate	both	maintenance	and	understanding	of

the	 data.	 An	 important	 aspect	 of	 this	 documentation	 is	 the	 generation	 of
metadata	 about	 the	 data’s	 structure	 (structural	 metadata)	 and,	 possibly,
meaning	(semantic	metadata).	This	information	can	be	persisted	in	a	metadata
repository,	 also	 called	 a	 catalog.	 Given	 the	 complexity	 of	 the	 entire	 process,
commercial	ETL	tools	might	be	considered	instead	of	writing	extensive	routines
in-house.	Most	of	these	tools	allow	you	to	visualize	the	entire	ETL	process	as	a
flow	of	activities	that	can	be	easily	adjusted	or	fine-tuned.

Retention	Questions

Connections

Chapter	18	further	discusses	ETL	as	a	data	integration	technique,	along
with	other	techniques	such	as	federation	and	propagation.

Summarize	the	key	activities	to	be	performed	during	the	ETL	process.
Why	is	this	process	considered	so	important?

17.5	Data	Marts

A	data	mart	is	a	scaled-down	version	of	a	data	warehouse	aimed	at	meeting	the
information	 needs	 of	 a	 homogeneous	 small	 group	 of	 end-users	 such	 as	 a
department	 or	 business	 unit	 (e.g.,	 marketing,	 finance,	 logistics,	 HR,	 etc.).	 It
typically	 contains	 some	 form	 of	 aggregated	 data	 and	 is	 used	 as	 the	 primary
source	 for	 report	 generation	 and	 analysis	 by	 this	 end-user	 group.	 There	 are
various	 reasons	 for	 setting	 up	 data	 marts.	 First	 of	 all,	 they	 provide	 focused
content	such	as	finance,	sales,	or	accounting	information	in	a	format	tailored	to
the	 user	 group	 at	 hand.	 They	 also	 improve	 query	 performance	 by	 offloading
complex	queries,	 and	 therefore	workload,	 from	other	data	 sources	 (e.g.,	 a	data
warehouse).	 Data	 marts	 can	 be	 located	 closer	 to	 the	 end-users,	 thereby
alleviating	heavy	network	traffic	and	giving	them	more	control.	Finally,	certain
reporting	tools	assume	predefined	data	structures	(e.g.,	a	star	schema)	which	can
be	provided	by	 a	 customized	data	mart.	 In	 order	 to	 denote	 the	 contrast	with	 a
data	 mart,	 a	 full-blown	 data	 warehouse	 is	 often	 called	 an	 enterprise	 data
warehouse,	or	EDW	for	short,	to	emphasize	the	organization-wide	aspect.

A	 data	 mart	 can	 be	 physically	 implemented	 as	 an	 RDBMS,	 Cube	 (see
Section	17.9.3.5),	 or	 a	 flat	 file	 (e.g.,	 Excel	 file).	 Similar	 to	 a	 data	warehouse,
once	the	data	mart	schema	has	been	defined,	it	can	be	fed	data	by	using	an	ETL
process.	 Depending	 upon	 the	 source	 of	 the	 data,	 a	 distinction	 can	 be	 made
between	 dependent	 and	 independent	 data	 marts.	Dependent	 data	 marts	 pull
their	data	 from	a	central	data	warehouse	 (Figure	17.18),	whereas	 independent
data	 marts	 are	 standalone	 systems	 drawing	 data	 directly	 from	 operational
systems,	external	sources,	or	a	combination	of	both	(Figure	17.19).

Figure	17.18	Dependent	data	marts.

Figure	17.19	Independent	data	marts.

Independent	data	marts	are	sometimes	considered	by	firms	who	do	not	wish
to	make	 the	substantial	 investment	of	a	data	warehouse.	Dependent	data	marts
have	a	more	complex	set-up,	but	provide	the	advantage	that	they	all	draw	their
data	 from	 the	 same	 formatted,	 cleansed,	 etc.	 data	 warehouse,	 thus	 avoiding
inconsistencies	 across	 business	 units	 that	 share	 the	 same	 data.	 A	 well-known
concept	 in	 this	 context	 is	what	we	 call	 conformed	 dimensions.	 It	 refers	 to	 a
dimension	 that	has	 exactly	 the	 same	meaning	and	content	 across	different	 fact
tables	and/or	data	marts.	Two	dimension	tables	can	be	considered	as	conformed
if	they	are	either	identical	or	if	one	is	a	subset	of	the	other.	A	typical	candidate
for	 conforming	 dimensions	 is	 the	 Time	 dimension,	with	 a	week	 running	 from
Monday	to	Sunday	in	one	data	mart	and	from	Saturday	to	Friday	in	another.

Although	 the	 benefits	 may	 seem	 attractive	 at	 first	 sight,	 setting	 up	 data
marts	is	a	decision	that	should	be	made	by	carefully	considering	the	total	cost	of

ownership	(TCO)	 involved.	More	 specifically,	 this	 entails	 development	 costs,
operating	 costs,	 change	 management	 costs,	 and	 data	 governance	 and	 quality
costs.

Drill	Down

Bill	 Inmon	and	Ralph	Kimball	 are	considered	 the	 two	pioneers	of	data
warehousing.	William	H.	(Bill)	Inmon	is	an	American	computer	scientist
known	 as	 the	 father	 of	 data	 warehousing.	 He	 was	 the	 first	 to	 write	 a
column	on	 it,	 publish	 a	book	on	 it,	 and	hold	a	 conference	on	 it.	Ralph
Kimball	 is	 the	 principal	 author	 of	 various	 best-selling	 books	 on	 data
warehousing,	such	as	The	Data	Warehouse	Toolkit,	The	Data	Warehouse
Lifecycle	Toolkit,	and	The	Data	Warehouse	ETL	Toolkit,	all	published	by
Wiley	 and	 Sons.	 Both	 disagree	 on	 the	 best	 way	 to	 design	 a	 data
warehouse.	 Inmon’s	 approach	 to	 data	 warehouse	 design	 is	 top-down,
whereby	 the	data	warehouse	 is	designed	 first,	 followed	by	various	data
marts.	Kimball	 prefers	 a	 bottom-up	 design,	 starting	 from	 a	 set	 of	 data
marts	first	and	then	aggregating	them	in	a	data	warehouse.

Retention	Questions

What	are	data	marts	and	how	do	they	compare	against	a	data
warehouse?

What	is	the	difference	between	dependent	and	independent	data
marts?

Contrast	the	bottom-up	with	the	top-down	approach	for	data
warehouse	design.

17.6	Virtual	Data	Warehouses	and	Virtual	Data
Marts

A	disadvantage	of	a	physical	data	warehouse	or	data	mart	is	that	both	consume
physical	storage	and	must	be	updated	periodically.	Hence,	they	never	contain	the
most	 recent	 version	 of	 the	 data.	 One	 approach	 to	 deal	 with	 this	 is	 by	 using
virtualization.	The	idea	here	is	 to	use	middleware	to	create	a	logical	or	virtual
data	warehouse	 (sometimes	 also	 called	 a	 federated	 database)	 or	virtual	 data
mart,	which	has	no	physical	data	but	provides	a	uniform	and	consolidated	single
point	of	 access	 to	 a	 set	of	underlying	physical	data	 stores.	 In	other	words,	 the
data	 are	 left	 in	 their	 original	 source	 and	 are	 only	 accessed	 (“pulled”)	 at	 query
time.	Because	no	data	are	stored	or	replicated	physically,	the	risk	of	inconsistent
or	outdated	data	is	not	an	issue	when	working	with	a	virtual	data	warehouse	or
virtual	data	marts.

A	virtual	data	warehouse	can	be	built	as	a	set	of	SQL	views	either	directly
on	the	underlying	operational	data	sources	(Figure	17.20),	or	as	an	extra	layer	on
top	of	a	collection	of	physical	independent	data	marts	(Figure	17.21).	 It	 should
provide	 a	 uniform	 and	 consistent	 metadata	 model	 and	 data	 manipulation
language	 (e.g.,	 SQL).	 The	 metadata	 model	 contains	 the	 schema	 mappings
between	the	schemas	of	the	underlying	data	stores	and	the	schema	of	the	virtual
data	 warehouse.	 Queries	 are	 then	 reformulated	 and	 decomposed	 using	 these
schema	 mappings	 on	 the	 fly,	 whereby	 the	 underlying	 data	 are	 fetched	 and
consolidated	on	demand.	This	provides	the	queries	with	a	real-time	perspective
on	the	underlying	evolving	data.	Figure	17.20	shows	an	example	of	a	virtual	data
warehouse	 architecture.	 The	wrappers	 are	 dedicated	 software	 components	 that
receive	queries	from	the	upper	level,	execute	them	on	the	underlying	data	store,

and	convert	the	result	to	a	format	(e.g.,	relational	tuples)	that	can	be	understood
by	 the	query	processor.	The	complexity	of	 the	wrapper	depends	upon	 the	data
source.	In	the	case	of	an	RDBMS,	the	wrapper	can	make	use	of	a	database	API
such	as	JDBC.	In	the	case	of	semi-structured	data	such	as	an	HTML	webpage,
the	wrapper	needs	to	parse	the	HTML	code	into	a	set	of	tuples.

Figure	17.20	Virtual	data	warehouse	on	top	of	operational	data	sources.

Figure	17.21	Virtual	data	warehouse	on	top	of	data	marts.

Connections

Database	APIs	 such	 as	 JDBC	 are	 discussed	 in	 Chapter	 15.	 Federation
and	virtualization	as	data	integration	techniques	are	discussed	further	in
Chapter	18.

A	virtual	data	mart	is	usually	defined	as	a	single	SQL	view.	The	view	can
be	directly	defined	on	physical	operational	source	data	(virtual	independent	data
mart),	or	on	a	physical	or	virtual	data	warehouse	(virtual	dependent	data	mart).
Since	 multiple	 virtual	 data	 marts	 may	 share	 data,	 it	 is	 important	 to	 carefully
think	 about	 how	 the	 views	 are	 defined,	 in	 order	 to	 facilitate	 the	 overall
maintenance.

A	disadvantage	of	virtualization	is	that	it	requires	extra	processing	capacity
from	 the	 underlying	 (operational)	 data	 sources.	 Hence,	 it	 should	 only	 be
considered	in	the	case	that	the	number	of	reports	or	queries	is	rather	limited.	The
performance	 of	 the	 latter	 may	 then	 be	 optimized	 by	 using	 intelligent	 caching
mechanisms	and	cache	indexes,	combined	with	materializing	some	of	the	views
to	speed	up	data	access.	Furthermore,	it	is	not	possible	to	keep	track	of	historical
data	 since	 old	 data	 are	 typically	 replaced	 by	 new	 data	 in	 the	 underlying	 data
sources.

Connections

Chapter	7	introduced	the	concept	of	views	and	view	materialization.

Retention	Questions

What	is	a	virtual	data	warehouse	and	how	can	it	be	built?

What	is	a	virtual	data	mart	and	how	can	it	be	built?

What	is	the	key	benefit	of	virtualization?

17.7	Operational	Data	Store

An	operational	data	store,	or	ODS	for	short,	is	another	way	of	dealing	with	the
disadvantage	of	data	warehouses	not	containing	up-to-date	data.	To	put	it	simply,
an	 ODS	 can	 be	 considered	 as	 a	 staging	 area	 that	 provides	 query	 facilities.	 A
normal	 staging	 area	 is	 only	meant	 for	 receiving	 the	 operational	 data	 from	 the
OLTP	sources	for	the	sake	of	transforming	the	data	and	loading	it	into	the	data
warehouse.	 An	 ODS	 also	 offers	 this	 functionality,	 but	 in	 addition	 it	 can	 be
queried	directly.	In	this	way,	analysis	tools	that	need	data	that	are	closer	to	real-
time	 can	 query	 the	 ODS	 data	 as	 it	 is	 received	 from	 the	 respective	 source
systems,	 before	 time-consuming	 transformation	 and	 loading	 operations.	 The
ODS	then	only	provides	access	to	the	current,	fine-grained	and	non-aggregated
data,	which	can	be	queried	in	an	integrated	manner	without	burdening	the	OLTP
systems.	 However,	 more	 complex	 analyses	 requiring	 high-volume	 historical
and/or	aggregated	data	are	still	conducted	on	the	actual	data	warehouse.	In	some
configurations,	 the	 ODS	 and	 data	 warehouse	 together	 are	 overlaid	 with	 a
virtualization	 layer,	 providing	 a	 single	 access	 point	 for	 queries	 on	 combined
(near)	 real-time	 and	historical	 data.	Note	 that	 the	ODS	 is	 still	 part	 of	 the	 data
warehouse	 set-up	 and	 is	 not	 to	 be	 confused	with	 the	 actual	 operational	 source
systems.

Retention	Questions

What	is	an	operational	data	source	and	what	can	it	be	used	for?

17.8	Data	Warehouses	versus	Data	Lakes

Much	more	recent	than	data	warehouses,	the	data	lake	concept	became	known
as	 part	 of	 the	 Big	 Data	 and	 Analytics	 trend,	 as	 discussed	 in	 more	 detail	 in
Chapters	 19	 and	 20.	 Although	 both	 data	 warehouses	 and	 data	 lakes	 are
essentially	data	 repositories,	 there	are	 some	clear	differences	as	 listed	 in	Table
17.2.	A	key	distinguishing	property	of	a	data	lake	is	that	it	stores	raw	data	in	its
native	format,	which	could	be	structured,	unstructured,	or	semi-structured.	This
makes	data	lakes	fit	for	more	exotic	and	“bulk”	data	types	that	we	generally	do
not	 find	 in	 data	 warehouses,	 such	 as	 social	 media	 feeds,	 clickstreams,	 server
logs,	 sensor	 data,	 etc.	 A	 data	 lake	 collects	 data	 emanating	 from	 operational
sources	“as	is”,	often	without	knowing	upfront	which	analyses	will	be	performed
on	it,	or	even	whether	the	data	will	ever	be	involved	in	analysis	at	all.	For	this
reason,	 either	 no	 or	 only	 very	 limited	 transformations	 (formatting,	 cleansing,
etc.)	 are	 performed	 on	 the	 data	 before	 they	 enter	 the	 data	 lake.	Consequently,
when	 the	 data	 are	 tapped	 from	 the	 data	 lake	 to	 be	 analyzed,	 quite	 a	 bit	 of
processing	will	typically	be	required	before	it	is	fit	for	analysis.	The	data	schema
definitions	are	only	determined	when	the	data	are	read	(schema-on-read)	instead
of	 when	 the	 data	 are	 loaded	 (schema-on-write)	 as	 is	 the	 case	 for	 a	 data
warehouse.	Storage	costs	for	data	lakes	are	also	relatively	low	because	most	of
the	 implementations	 are	 open-source	 solutions	 that	 can	 be	 easily	 installed	 on
low-cost	 commodity	 hardware.	 Since	 a	 data	 warehouse	 assumes	 a	 predefined
structure,	it	 is	less	agile	compared	to	a	data	lake,	which	has	no	structure.	Also,
data	 warehouses	 have	 been	 around	 for	 quite	 some	 time	 already,	 which
automatically	 implies	 that	 their	 security	 facilities	 are	more	mature.	 Finally,	 in
terms	of	users,	a	data	warehouse	is	targeted	toward	decision-makers	at	middle-

and	top-management	level,	whereas	a	data	lake	requires	a	data	scientist,	which	is
a	more	specialized	profile	in	terms	of	data	handling	and	analysis.

Table	17.2	Difference	between	data	warehouse	and	data	lake

Data	warehouse Data	lake

Data Structured Often
unstructured

Processing Schema-on-write Schema-on-
read

Storage Expensive Low	cost

Transformation Before	entering	the	data	warehouse Before
analysis

Agility Low High

Security Mature Maturing

Users Decision-makers Data
scientists

Connections

Chapter	20	discusses	the	data	scientist	job	profile	into	more	detail.

To	summarize,	a	data	warehouse	is	not	the	same	as	a	data	lake.	Both	clearly
serve	different	purposes	and	user	profiles	and	it	is	important	to	be	aware	of	their
differences	in	order	to	make	the	right	investment	decisions.

Drill	Down

Data	warehousing	solutions	can	also	be	offered	in	the	cloud.	A	popular
example	of	 this	 is	Amazon	Redshift,	which	is	part	of	 the	Amazon	Web
Services	 computing	 platform.	 It	 is	 based	 on	 Postgres,	 a	 well-known
ORDBMS.	 Nasdaq	 migrated	 its	 legacy	 data	 warehouse	 in	 2014	 to
Redshift.	 They	 load	 an	 average	 of	 450	 gigabytes	 per	 day	 (after
compression)	 into	 Redshift.	 This	 includes	 data	 about	 orders,	 trades,
quotes,	markets,	securities,	and	memberships.	The	Redshift	costs	turned
out	to	be	around	43%	of	the	legacy	budget	for	the	same	dataset	(around
1100	 tables).	 Also	 the	 query	 performance	 was	 substantially	 increased.
This	 clearly	 illustrates	 the	 impact	 of	 cloud	versus	on-premise	 solutions
for	data	warehousing.

Retention	Questions

Contrast	a	data	warehouse	against	a	data	lake.

17.9	Business	Intelligence

The	ultimate	goal	of	setting	up	a	data	warehouse	is	to	provide	new	insights	for
both	tactical	and	strategic	decision-making.	The	term	business	intelligence	(BI)
is	 often	 referred	 to	 as	 the	 set	 of	 activities,	 techniques,	 and	 tools	 aimed	 at
understanding	patterns	in	past	data	and	predicting	the	future.	In	other	words,	BI
applications	 are	 an	 essential	 component	 for	 making	 better	 business	 decisions
through	data-driven	insights.	These	applications	can	be	both	mission	critical	or
occasionally	used	to	answer	a	specific	business	question.

Since	data	are	the	key	ingredient	to	any	BI	application,	it	is	important	that
they	are	appropriately	stored	and	managed,	and	are	of	good	quality.	This	is	often
referred	 to	as	 the	garbage	 in,	garbage	out	 (GIGO)	principle,	 stating	 that	bad
data	 gives	 bad	 insights,	 which	 in	 turn	 leads	 to	 bad	 decisions.	 That’s	 why	 we
started	 this	 chapter	 by	 extensively	 discussing	 the	 data	warehouse	 architecture.
Note	 that	 although	 this	 is	 not	 a	 strict	 requirement,	 most	 BI	 systems	 are	 built
upon	an	underlying	relational	data	warehouse.

Various	 BI	 techniques	 can	 be	 used	 to	 extract	 patterns	 and	 provide	 new
insights	in	data.	Each	of	them	differs	in	terms	of	sophistication,	complexity,	and
computing	 resources	needed.	 In	what	 follows,	we	discuss	query	and	 reporting,
pivot	tables,	and	OLAP.

17.9.1	Query	and	Reporting

Query	and	reporting	 tools	are	an	essential	component	of	a	comprehensive	BI
solution.	They	typically	provide	a	user-friendly	graphical	user	interface	(GUI)	in
which	 the	business	user	 can	graphically	 and	 interactively	design	 a	 report.	 It	 is
important	to	stress	that	it	is	not	an	IT	expert	doing	the	query	and	reporting,	but	a
business	 user.	 Therefore,	 this	 approach	 is	 sometimes	 also	 referred	 to	 as	 self-
service	BI.	Hence,	 the	building	blocks	of	 the	reports	should	preferably	refer	 to
business	 terms	rather	 than	 technical	 IT	artifacts	such	as	database	 tables,	views,
indexes,	 etc.	 Some	 tools	 provide	 an	 intermediate	 query	 by	 example	 (QBE)
facility	that	sits	between	the	database	and	the	business	concepts.	The	idea	is	that
a	 query	 is	 composed	 in	 a	 user-friendly	 way	 by	 visualizing	 database	 tables
whereby	 the	 business	 user	 can	 enter	 conditions	 for	 each	 field	 that	 needs	 to	 be
included	in	the	query.	This	can	then	be	translated	to	a	formal	data	manipulation
language	such	as	SQL.

Once	the	report	has	been	designed	in	terms	of	format	and	content,	it	can	be
refreshed	at	any	time	with	up-to-date	information	from	the	underlying	data	store.
If	 the	 latter	 is	 a	 data	warehouse	 implemented	 using	 an	RDBMS,	 the	 designed
report	will	be	 translated	 to	a	 set	of	SQL	calls	 to	 retrieve	 the	desired	data.	The
reports	can	be	either	fixed	or	ad-hoc	to	answer	a	one-off	business	question,	such
as	 finding	 the	 root	 cause	of	 a	problem,	or	 testing	a	 specific	hypothesis.	Query
and	 reporting	 tools	 implement	 innovative	 visualization	 techniques	 aimed	 at
making	interesting	data	patterns	stand	out	more	prominently.	Although	they	are	a
useful	 first	 step	 to	 start	 exploring	your	data,	other	more	advanced	BI	 facilities
are	needed	to	unravel	more	complex	patterns	in	the	data.

17.9.2	Pivot	Tables

A	pivot	or	cross-table	is	a	popular	data	summarization	tool.	It	essentially	cross-
tabulates	 a	 set	of	dimensions	 in	 such	a	way	 that	multidimensional	data	 can	be
represented	 in	 a	 two-dimensional	 tabular	 format.	 An	 example	 is	 illustrated	 in
Figure	17.22,	where	the	dimensions	region	and	quarter	are	summarized	in	terms
of	 aggregated	 sales.	 A	 pivot	 table	 also	 contains	 row	 and	 column	 totals	 as
depicted.	The	measurement	data	can	be	aggregated	in	various	ways,	such	as	 in
terms	 of	 count,	 sum,	 average,	maximum,	minimum,	 etc.	BI	 tools	 also	 provide
various	user-friendly	graphical	facilities	to	customize	the	pivot	table	by	dragging
and	 dropping	 dimensions	 of	 interest.	A	 first	 straightforward	 action	 is	 pivoting
(hence	 the	 name),	 whereby	 rows	 and	 columns	 are	 rotated	 according	 to	 the
business	 user’s	 preference.	 Also	 drill-down	 facilities	 are	 provided	 whereby
either	 a	 dimension	 is	 further	 de-aggregated	 into	more	 detail	 (e.g.,	 splitting	 up
America	 into	 North	 America	 and	 South	 America	 in	 our	 example)	 or	 new
dimensions	are	added	(e.g.,	adding	a	product	in	our	example).	The	idea	here	is	to
navigate	from	coarse	to	fine	granularity	to	better	see	where	interesting	patterns
may	 originate.	 Removing	 dimensions,	 or	 roll-up,	 is	 also	 supported.	 In	 our
example,	we	may	want	 to	 roll-up	 the	 region	dimension	 in	order	 to	get	 the	 full
picture	of	sales	across	all	quarters.

Figure	17.22	Pivot	table.

17.9.3	On-Line	Analytical	Processing	(OLAP)

On-line	 analytical	 processing	 (OLAP)	 provides	 a	 more	 advanced	 set	 of
techniques	 to	 analyze	 your	 data.	 More	 specifically,	 OLAP	 allows	 you	 to
interactively	 analyze	 the	 data,	 summarize	 it,	 and	 visualize	 it	 in	 various	 ways.
The	 term	 on-line	 refers	 to	 the	 fact	 that	 the	 reports	 can	 be	 updated	 with	 data
almost	 immediately	 after	 they	 have	 been	 designed	 (or	 with	 negligible	 delay).
The	goal	of	OLAP	is	to	provide	the	business	user	with	a	powerful	tool	for	ad-hoc
querying.

The	key	fundament	of	OLAP	is	a	multidimensional	data	model	that	can	be
implemented	 in	 various	 ways.	 In	 what	 follows,	 we	 discuss	 MOLAP
(multidimensional	 OLAP),	 ROLAP	 (relational	 OLAP),	 and	 HOLAP	 (hybrid
OLAP).

17.9.3.1	MOLAP

Multidimensional	OLAP	 (MOLAP)	 stores	 the	multidimensional	 data	 using	 a
multidimensional	 DBMS	 (MDBMS),	 whereby	 the	 data	 are	 stored	 in	 a
multidimensional	array-based	data	structure	optimized	 for	efficient	 storage	and
quick	access.	The	dimensions	represent	the	index	keys	of	the	array,	whereas	the
array	cells	contain	the	actual	fact	data	(e.g.,	sales).	Aggregates	are	precomputed
and	also	physically	materialized.	This	is	illustrated	in	Figure	17.23,	where	a	two-
dimensional	 array	 or	 matrix	 represents	 the	 sales	 for	 different	 products	 across
different	 quarters.	The	 element	 at	 row	2,	 column	3	 of	 the	 array	 represents	 the
sales	 of	 product	 B	 during	 quarter	 Q3.	 Note	 also	 that	 totals	 have	 been
precomputed	and	stored	in	the	array.	The	element	at	row	4,	column	5	represents
the	 total	 sales	 of	 product	D	 across	 all	 quarters,	whereas	 the	 element	 at	 row	5,
column	 5	 represents	 the	 overall	 sales	 of	 all	 products	 across	 all	 quarters.	 A

potential	problem	with	this	storage	approach	is	that	the	array	may	become	sparse
with	many	zeros	if	only	a	limited	number	of	combinations	of	dimension	values
occur.	 Ideally,	 an	MDBMS	 should	 provide	 facilities	 for	 handling	 these	 sparse
datasets	efficiently.

Figure	17.23	Example	MOLAP	array.

Although	 MOLAP	 can	 be	 fast	 in	 terms	 of	 data	 retrieval,	 it	 needs	 more
storage	 to	 accomplish	 this.	 Moreover,	 it	 scales	 poorly	 when	 the	 number	 of
dimensions	increases.

MDBMSs	make	 use	 of	 proprietary	 data	 structures	 and	 data	manipulation
languages	 (DML),	 so	 no	 universal	 SQL-like	 standard	 is	 provided	 for	 data
handling,	which	impedes	their	adoption.	Furthermore,	they	are	not	optimized	for
transaction	 processing.	 Updating,	 inserting,	 or	 deleting	 data	 is	 usually	 quite
inefficient.	 Finally,	 they	 are	 typically	 not	 very	 portable	 because	 of	 their	 tight
integration	with	particular	BI	tools.

17.9.3.2	ROLAP

Relational	 OLAP	 (ROLAP)	 stores	 the	 data	 in	 a	 relational	 data	 warehouse,
which	can	be	implemented	using	a	star,	snowflake,	or	fact	constellation	schema.
The	advantage	of	this	is	that	RDBMSs	have	been	much	better	standardized	and
provide	SQL	as	a	universal	data	manipulation	language.	If	it	is	feasible	in	terms
of	workload	and	performance,	the	same	RDBMS	can	be	used	for	both	OLTP	and

OLAP	applications.	Furthermore,	ROLAP	scales	better	to	more	dimensions	than
MOLAP.	The	query	performance	may,	however,	 be	 inferior	 to	MOLAP	unless
some	of	the	queries	are	materialized	or	high-performance	indexes	are	defined.

17.9.3.3	HOLAP

Hybrid	 OLAP	 (HOLAP)	 tries	 to	 combine	 the	 best	 of	 both	 MOLAP	 and
ROLAP.	An	RDBMS	can	then	be	used	to	store	the	detailed	data	in	a	relational
data	 warehouse,	 whereas	 the	 pre-computed	 aggregated	 data	 can	 be	 kept	 as	 a
multidimensional	array	managed	by	an	MDBMS.	The	OLAP	analysis	can	 first
start	 from	the	multidimensional	database.	 If	more	detail	 is	needed	(e.g.,	during
drill-down),	the	analysis	can	shift	to	the	relational	database.	This	allows	you	to
combine	the	performance	of	MOLAP	with	the	scalability	of	ROLAP.

17.9.3.4	OLAP	Operators

Various	OLAP	operators	can	be	used	to	interactively	analyze	the	data	and	look
for	 interesting	 patterns.	 In	 what	 follows,	 we	 illustrate	 them	 using	 the	 cube
displayed	 in	 Figure	 17.24.	 This	 cube	 has	 three	 dimensions:3	 Product,	 Region,
and	 Quarter.	 The	 data	 in	 the	 cells	 represent	 the	 sales	 corresponding	 to	 each
combination	of	dimension	values.

Figure	17.24	OLAP	Cube.

Roll-up	 (or	 drill-up)	 refers	 to	 aggregating	 the	 current	 set	 of	 fact	 values
within	or	across	one	or	more	dimensions.	A	distinction	can	be	made	between	a
hierarchical	and	a	dimensional	roll-up.	The	former	aggregates	within	a	particular
dimension	by	climbing	up	the	attribute	hierarchy	(e.g.,	going	from	day	to	week
to	 month	 to	 quarter	 to	 year),	 whereas	 the	 latter	 aggregates	 across	 an	 entire
dimension	and	then	drops	it.	Figure	17.25	shows	the	result	of	a	dimensional	roll-
up	of	 the	 time	dimension	which	can	then	be	further	rolled	up	across	region,	as
illustrated	 in	Figure	17.26.	The	 reverse	process	 is	 referred	 to	 as	roll-down	 (or
drill-down).	 The	 idea	 is	 to	 de-aggregate	 by	 navigating	 from	 a	 lower	 level	 of
detail	 to	 a	 higher	 level	 of	 detail.	 Again,	 a	 distinction	 can	 be	 made	 between
hierarchical	roll-down	(e.g.,	going	from	year	to	quarter	to	month	to	week	to	day)
and	dimensional	roll-down,	in	which	a	new	dimension	is	added	to	the	analysis.

Figure	17.25	Rolling	up	the	time	dimension.

Figure	17.26	Rolling	up	the	time	and	region	dimension.

Drill-across	is	another	OLAP	operation	whereby	information	from	two	or
more	connected	fact	tables	is	accessed.	Consider	the	fact-constellation	schema	in
Figure	 17.5.	Adding	 shipping	 fact	 data	 to	 an	 analysis	 on	 sales	 fact	 data	 is	 an
example	of	a	drill-across	operation.

Slicing	 represents	 an	operation	whereby	one	of	 the	dimensions	 is	 set	 at	 a
particular	 value.	 This	 is	 illustrated	 in	 Figure	 17.27,	 where	 a	 slice	 is	 taken
representing	 the	 sales	 in	 the	 second	 quarter	 for	 all	 products	 and	 regions.	Both
horizontal	and	vertical	slicing	are	possible.

Figure	17.27	Slicing.

Dicing	 corresponds	 to	 a	 range	 selection	 on	 one	 or	 more	 dimensions.	 In
Figure	17.28,	a	dice	is	selected	corresponding	to	the	sales	of	products	B	and	C,
in	quarters	2	and	3	in	Europe.

Figure	17.28	Dicing.

17.9.3.5	OLAP	Queries	in	SQL

To	 facilitate	 the	 execution	 of	 OLAP	 queries	 and	 data	 aggregation,	 SQL-99
introduced	three	extensions	to	the	GROUP	BY	statement:	the	CUBE,	ROLLUP,
and	GROUPING	SETS	operators.

The	CUBE	operator	computes	a	union	of	GROUP	BYs	on	every	subset	of
the	 specified	 attribute	 types.	 Its	 result	 set	 represents	 a	 multidimensional	 cube
based	upon	the	source	table.	Consider	the	following	SALESTABLE	depicted	in
Figure	17.29.

Figure	17.29	Examples	SALESTABLE.

We	can	now	formulate	the	following	SQL	query:

SELECT	QUARTER,	REGION,	SUM(SALES)
FROM	SALESTABLE
GROUP	BY	CUBE	(QUARTER,	REGION)

Basically,	 this	 query	 computes	 the	 union	 of	 2²	 =	 4	 groupings	 of	 the
SALESTABLE,	 being:	 {(quarter,region),	 (quarter),	 (region),	 ()},	 where	 ()
denotes	 an	 empty	 group	 list	 representing	 the	 total	 aggregate	 across	 the	 entire
SALESTABLE.	 In	 other	words,	 since	Quarter	 has	 four	 values	 and	Region	has
two	values,	the	resulting	multiset	will	have	4	×	2	+	4	×	1	+	1	×	2	+	1	=	15	tuples,
as	 illustrated	 in	Figure	17.30.	NULL	values	have	been	added	 in	 the	dimension
columns	Quarter	 and	Region	 to	 indicate	 the	 aggregation	 that	 took	place.	They
can	 be	 easily	 replaced	 by	 the	 more	 meaningful	 “ALL”	 if	 desired.	 More
specifically,	we	can	add	two	CASE	clauses	as	follows

SELECT	CASE	WHEN	grouping(QUARTER)	=	1	THEN	'All'	

ELSE	QUARTER	END	AS	QUARTER,	CASE	WHEN	
grouping(REGION)	=	1	THEN	'All'	ELSE	REGION	END	AS	
REGION,	SUM(SALES)
FROM	SALESTABLE
GROUP	BY	CUBE	(QUARTER,	REGION)

The	 grouping()	 function	 returns	 1	 in	 the	 case	 that	 a	NULL	value	 is	 generated
during	the	aggregation	and	0	otherwise.	This	distinguishes	the	generated	NULLs
and	the	possible	real	NULLs	stemming	from	the	data.	We	will	not	add	this	to	the
subsequent	OLAP	queries	so	as	to	not	unnecessarily	complicate	them.

Figure	17.30	Result	from	SQL	query	with	the	CUBE	operator.

Also,	observe	the	NULL	value	for	Sales	in	the	fifth	row.	This	represents	an
attribute	 combination	 that	 is	 not	 present	 in	 the	 original	 SALESTABLE	 since
apparently	no	products	were	sold	 in	Q3	in	Europe.	Besides	SUM(),	other	SQL
aggregator	functions	such	as	MIN(),	MAX(),	COUNT(),	and	AVG()	can	be	used
in	the	SELECT	statement.

The	ROLLUP	 operator	 computes	 the	union	on	every	prefix	of	 the	 list	 of
specified	 attribute	 types,	 from	 the	 most	 detailed	 up	 to	 the	 grand	 total.	 It	 is
especially	 useful	 to	 generate	 reports	 containing	 both	 subtotals	 and	 totals.	 The
key	 difference	 between	 the	 ROLLUP	 and	 CUBE	 operators	 is	 that	 the	 former
generates	 a	 result	 set	 showing	 the	 aggregates	 for	 a	 hierarchy	 of	 values	 of	 the
specified	 attribute	 types,	 whereas	 the	 latter	 generates	 a	 result	 set	 showing	 the
aggregates	for	all	combinations	of	values	of	the	selected	attribute	types.	Hence,
the	 order	 in	 which	 the	 attribute	 types	 are	 mentioned	 is	 important	 for	 the
ROLLUP	but	not	for	the	CUBE	operator.	Consider	the	following	query:

SELECT	QUARTER,	REGION,	SUM(SALES)
FROM	SALESTABLE
GROUP	BY	ROLLUP	(QUARTER,	REGION)

This	 query	 generates	 the	 union	 of	 three	 groupings	 {(quarter,region),
(quarter),	 ()},	 where	 ()	 again	 represents	 the	 full	 aggregation.	 The	 resulting
multiset	will	thus	have	4	×	2	+	4	+	1	=	13	rows	and	is	displayed	in	Figure	17.31.
You	can	see	that	the	Region	dimension	is	first	rolled	up	followed	by	the	Quarter
dimension.	 Note	 the	 two	 rows	 that	 have	 been	 left	 out	 when	 compared	 to	 the
result	of	the	CUBE	operator	in	Figure	17.30.

Figure	17.31	Result	from	SQL	query	with	ROLLUP	operator.

Whereas	the	previous	example	applied	the	GROUP	BY	ROLLUP	construct
to	 two	 completely	 independent	 dimensions,	 it	 can	 also	 be	 applied	 to	 attribute
types	 that	 represent	 different	 aggregation	 levels	 (and	 hence	 different	 levels	 of
detail)	 along	 the	 same	 dimension.	 For	 example,	 suppose	 the	 SALESTABLE
tuples	 represented	more	detailed	sales	data	at	 the	 individual	city	 level	and	 that
the	 table	 contained	 three	 location-related	 columns:	City,	 Country,	 and	Region.
We	 could	 then	 formulate	 the	 following	 ROLLUP	 query,	 yielding	 sales	 totals
respectively	per	city,	per	country,	per	region,	and	the	grand	total:

SELECT	REGION,	COUNTRY,	CITY,	SUM(SALES)
FROM	SALESTABLE
GROUP	BY	ROLLUP	(REGION,	COUNTRY,	CITY)

In	 this	 case	 the	 SALESTABLE	 would	 include	 the	 attribute	 types	 City,
Country,	 and	Region	 in	a	 single	 table.	Since	 the	 three	attribute	 types	 represent
different	levels	of	detail	in	the	same	dimension,	they	are	transitively	dependent
on	 one	 another,	 illustrating	 the	 fact	 that	 these	 data	warehouse	 data	 are	 indeed
denormalized.

Connections

Chapter	 6	 discusses	 transitive	 dependencies	 in	 the	 context	 of	 the	 third
normal	form	(3	NF).

The	GROUPING	SETS	 operator	generates	 a	 result	 set	 equivalent	 to	 that
generated	by	a	UNION	ALL	of	multiple	simple	GROUP	BY	clauses.	Consider
the	following	example:

SELECT	QUARTER,	REGION,	SUM(SALES)
FROM	SALESTABLE
GROUP	BY	GROUPING	SETS	((QUARTER),	(REGION))

This	query	is	equivalent	to:

SELECT	QUARTER,	NULL,	SUM(SALES)
FROM	SALESTABLE
GROUP	BY	QUARTER
UNION	ALL
SELECT	NULL,	REGION,	SUM(SALES)
FROM	SALESTABLE
GROUP	BY	REGION

The	result	is	given	in	Figure	17.32.

Figure	17.32	Result	from	an	SQL	query	with	the	GROUPING	SETS	operator.

Multiple	CUBE,	ROLLUP,	and	GROUPING	SETS	statements	can	be	used
in	 a	 single	 SQL	 query.	 Different	 combinations	 of	 CUBE,	 ROLLUP,	 and
GROUPING	SETS	can	generate	 equivalent	 result	 sets.	Consider	 the	 following
query:

SELECT	QUARTER,	REGION,	SUM(SALES)
FROM	SALESTABLE
GROUP	BY	CUBE	(QUARTER,	REGION)

This	query	is	equivalent	to:

SELECT	QUARTER,	REGION,	SUM(SALES)
FROM	SALESTABLE
GROUP	BY	GROUPING	SETS	((QUARTER,	REGION),	
(QUARTER),	(REGION),	())

Likewise,	the	following	query

SELECT	QUARTER,	REGION,	SUM(SALES)
FROM	SALESTABLE
GROUP	BY	ROLLUP	(QUARTER,	REGION)

is	identical	to:

SELECT	QUARTER,	REGION,	SUM(SALES)
FROM	SALESTABLE
GROUP	BY	GROUPING	SETS	((QUARTER,	REGION),	
(QUARTER),())

SQL2003	 introduced	 additional	 analytical	 support	 for	 two	 types	 of
frequently	 encountered	 OLAP	 activities:	 ranking	 and	 windowing.	 Ranking
should	always	be	done	in	combination	with	an	SQL	ORDER	BY	clause.	Assume
we	have	the	following	table	depicted	in	Figure	17.33.

Figure	17.33	Example	table	for	ranking.

Various	 ranking	 measures	 can	 now	 be	 calculated	 by	 using	 the	 following
SQL	query:

SELECT	PRODUCT,	SALES,
RANK()	OVER	(ORDER	BY	SALES	ASC)	as	RANK_SALES,
DENSE_RANK()	OVER	(ORDER	BY	SALES	ASC)	as	

DENSE_RANK_SALES,	PERCENT_RANK()	OVER	(ORDER	
BY	SALES	ASC)	as	PERC_RANK_SALES,
CUM_DIST()	OVER	(ORDER	BY	SALES	ASC)	as	
CUM_DIST_SALES,
FROM	SALES
ORDER	BY	RANK_SALES	ASC

The	result	of	this	query	is	depicted	in	Figure	17.34.	The	RANK()	function
assigns	a	rank	based	upon	the	ordered	sales	value,	whereby	similar	sales	values
are	 assigned	 the	 same	 rank.	 Contrary	 to	 the	 RANK()	 function,	 the
DENSE_RANK()	 function	 does	 not	 leave	 gaps	 between	 the	 ranks.	 The
PERCENT_RANK()	 function	 calculates	 the	 percentage	of	 values	 less	 than	 the
current	 value,	 excluding	 the	 highest	 value.	 It	 is	 calculated	 as
(RANK()–1)/(Number	 of	 Rows–1).	 The	 CUM_DIST()	 function	 calculates	 the
cumulative	 distribution	 or	 the	 percentage	 of	 values	 less	 than	 or	 equal	 to	 the
current	value.

Figure	17.34	Result	from	the	ranking	SQL	query.

All	 of	 these	measures	 can	 also	be	 computed	 for	 selected	partitions	of	 the
data.	 The	 measures	 depicted	 in	 Figure	 17.34	 can	 also	 be	 computed	 for	 each
region	 separately.	 Assuming	 the	 source	 table	 SALES	 now	 also	 includes	 a
REGION	attribute	type,	the	query	would	then	become:

SELECT	REGION,	PRODUCT,	SALES,
RANK()	OVER	(PARTITION	BY	REGION	ORDER	BY	SALES	

ASC)	as	RANK_SALES,
DENSE_RANK()	OVER	(PARTITION	BY	REGION	ORDER	BY	
SALES	ASC)	as	DENSE_RANK_SALES,
PERCENT_RANK()	OVER	(PARTITION	BY	REGION	ORDER	
BY	SALES	ASC)	as	PERC_RANK_SALES,
CUM_DIST()	OVER	(PARTITION	BY	REGION	ORDER	BY	
SALES	ASC)	as	CUM_DIST_SALES,
FROM	SALES
ORDER	BY	RANK_SALES	ASC

Windowing	allows	calculating	cumulative	totals	or	running	averages	based
on	 a	 specified	 window	 of	 values.	 In	 other	 words,	 windowing	 allows	 getting
access	to	more	than	one	row	of	a	table	without	requiring	a	self-join.	Consider	the
table	depicted	in	Figure	17.35.

Figure	17.35	Example	table	for	windowing.

The	 following	 query	 calculates	 the	 average	 sales	 for	 each	 region	 and
quarter	on	the	basis	of	the	current,	previous,	and	next	quarter.

SELECT	QUARTER,	REGION,	SALES,
AVG(SALES)	OVER	(PARTITION	BY	REGION	ORDER	BY	
QUARTER	ROWS	BETWEEN	1	PRECEDING	AND	1	
FOLLOWING)	AS	SALES_AVG

FROM	SALES
ORDER	BY	REGION,	QUARTER,	SALES_AVG

The	result	is	displayed	in	Figure	17.36.

Figure	17.36	Result	of	windowing.

The	 PARTITION	 BY	 REGION	 statement	 subdivides	 the	 rows	 into
partitions,	 similar	 to	a	GROUP	BY	clause	 (see	Chapter	7).	 It	 enforces	 that	 the
windows	 do	 not	 reach	 across	 partition	 boundaries.	 In	 other	 words,	 the
SALES_AVG	values	will	always	be	computed	within	a	particular	region.	As	an
example,	the	SALES_AVG	value	for	quarter	2	in	America	will	be	calculated	as
(10	+	20	+	10)/3	=	13.33,	whereas	for	quarter	4	in	America	it	 is	calculated	as:
(10	+	30)/2	=	20.

These	are	just	a	few	examples	of	ranking	and	windowing	facilities	available
in	SQL.	It	 is	highly	recommended	to	check	the	manual	of	 the	RDBMS	vendor
for	more	 information.	 Furthermore,	 note	 that	 not	 all	RDBMS	vendors	 support
these	 extensions.	 The	 ones	 that	 do	 support	 them	 usually	 also	 provide	 a	 user-
friendly	and	graphical	environment	to	construct	OLAP	reports	using	point-and-
click,	which	are	then	automatically	translated	by	the	tool	into	the	corresponding
SQL	statements.

Given	 the	 amount	 of	 data	 to	 be	 aggregated	 and	 retrieved,	 OLAP	 SQL
queries	may	become	very	time-consuming.	One	way	to	speed	up	performance	is

by	turning	some	of	these	OLAP	queries	into	materialized	views.	For	example,	an

SQL	query	with	a	CUBE	operator	can	be	used	to	pre-compute	aggregations	on	a
selection	of	dimensions	of	which	the	results	can	then	be	stored	as	a	materialized
view.	A	disadvantage	of	view	materialization	is	 that	extra	efforts	are	needed	to
regularly	refresh	these	materialized	views,	although	it	can	be	noted	that	usually
companies	 are	 fine	 with	 a	 close	 to	 current	 version	 of	 the	 data	 such	 that	 the
synchronization	can	be	done	overnight	or	at	fixed	time	intervals.

Retention	Questions

Define	business	intelligence	and	illustrate	with	an	example.

What	are	query	and	reporting?

Give	an	example	of	a	pivot	table	and	illustrate	how	it	can	be	used	for
business	intelligence.

What	is	OLAP?

Contrast	MOLAP	against	ROLAP	and	HOLAP.	Illustrate	with	an
example.

Discuss	the	various	OLAP	operators	and	illustrate	with	an	example.

Illustrate	how	the	OLAP	operators	can	be	implemented	in	SQL.

Summary

In	 this	 chapter,	we	 introduced	 data	warehousing	 as	 an	 essential	 component	 to
build	 enterprise	 wide	 business	 intelligence	 (BI)	 solutions.	 We	 extensively
zoomed	 into	various	 types	of	data	warehouse	schemas	and	modeling	specifics,
and	also	reviewed	various	issues	related	to	their	development.	We	discussed	data
marts,	the	important	topic	of	virtualization,	and	contrasted	data	warehouses	with
data	lakes,	clearly	stating	that	both	technologies	are	complementary	rather	than
substitutes.

The	 second	 part	 of	 this	 chapter	 zoomed	 into	 BI.	 More	 specifically,	 we
covered	 query	 and	 reporting,	 pivot	 tables,	 and	 on-line	 analytical	 processing
(OLAP).	 It	 is	 important	 to	note	 that	 these	BI	 techniques	 are	verification-based
since	 they	 heavily	 depend	 upon	 input	 provided	 by	 the	 business	 user	 to	 find
interesting	 patterns	 or	 test	 hypotheses.	 In	 Chapter	 20,	 we	 take	 BI	 to	 the	 next
level	by	discussing	discovery-based	analysis	techniques,	also	called	data	mining
or	 analytics,	 where	 the	 generation	 of	 insights	 or	 new	 hypotheses	 can	 be
automated	without	explicit	user	intervention.

Scenario	Conclusion

Now	 that	 Sober	 has	 learned	 about	 data	 warehousing	 and	 business
intelligence,	it	is	keen	to	pursue	both	technologies	to	support	its	tactical
and	 strategic	decision-making.	More	 specifically,	 it	 has	decided	 to	 first
develop	a	data	warehouse	as	depicted	in	Figure	17.37.

Figure	17.37 	Data	warehouse	for	Sober.

The	 star	 schema	 has	 one	 central	 fact	 table	 and	 four	 dimension
tables.	The	Ride-Type	attribute	type	indicates	whether	the	ride	concerns
a	 ride-hailing	 or	 ride-sharing	 service.	 The	 Car-Type	 attribute	 indicates
whether	 the	car	 is	 a	Sober	or	other	 car.	Note	 the	use	of	 surrogate	keys
such	as	RideKey,	CarKey,	 and	CustomerKey.	 In	 the	 case	of	 a	 ride-hail
service,	 the	 sales	 in	 euros	 represents	 the	 total	 fee	 paid	 in	 euros.	 In	 the
case	of	a	 ride-sharing	service,	 it	 represents	 the	 fee	per	customer.	Sober
populates	its	data	warehouse	using	a	well-designed	ETL	process	aimed	at
taking	 monthly	 snapshots	 from	 the	 operational	 systems.	 Given	 its
relatively	small	size,	the	company	decides	not	to	develop	any	data	marts
yet.	However,	this	may	change	as	the	company	grows.

Once	 the	 data	warehouse	 is	 up	 and	 running,	 Sober	wants	 to	 start
analyzing	 it	 using	 business	 intelligence	 applications.	 It	 will	 start	 with
some	basic	query	and	reporting.	The	company	also	wants	to	use	OLAP
to	 interactively	analyze	 the	data	and	 look	for	 interesting	patterns.	More

specifically,	 it	 was	 thinking	 about	 building	 the	 OLAP	 structure
represented	in	Figure	17.38.

Figure	17.38 	OLAP	structure	for	Sober.

It	can	then	perform	the	following	types	of	OLAP	operations:

These	analyses	will	 allow	Sober	 to	get	a	 thorough	 insight	 into	 its	 sales
numbers	and	to	identify	interesting	opportunities.

Key	Terms	List

look	at	the	total	sales	during	Q2	of	both	types	of	rides	and	cars
(slicing);

look	at	the	sales	during	Q2	and	Q3	of	both	types	of	rides	and	cars
(dicing);

look	at	the	aggregated	sales	across	all	quarters	of	both	types	of	rides
and	cars	(roll-up);

look	at	the	monthly	sales	during	Q4	of	both	types	of	cars	and	rides
(drill-down).

business	intelligence	(BI)

cleansing

conformed	dimensions

CUBE

data	lake

data	mart

data	warehouse

decision	support	systems	(DSS)

deduplication

dependent	data	marts

dicing

ETL	(extract,	transform,	load)

extraction	strategy

fact	constellation

factless	fact	table

formatting	rules

garbage	in,	garbage	out	(GIGO)

granularity

GROUPING	SETS

hybrid	OLAP	(HOLAP)

independent	data	marts

junk	dimension

mini-dimension	table

multidimensional	DBMS	(MDBMS)

multidimensional	OLAP	(MOLAP)

non-volatile

on-line	analytical	processing	(OLAP)

on-line	transaction	processing	(OLTP)

operational	data	store	(ODS)

operational	level

outrigger	table

PARTITION	BY

pivot	or	cross-table

point-of-sale	(POS)

query	and	reporting

query	by	example	(QBE)

ranking

rapidly	changing	dimension

relational	OLAP	(ROLAP)

roll-down

ROLLUP

roll-up

self-service	BI

semantic	metadata

slicing

slowly	changing	dimension

snowflake	schema

star	schema

strategic	level

structural	metadata

subject-oriented

surrogate	keys

tactical	level

time	variant

total	cost	of	ownership	(TCO)

virtual	data	mart

virtual	data	warehouse

windowing

Review	Questions

17.1.	Which	of	the	following	statements	is	not	correct?

a.	At	the	operational	level,	day-to-day	business	decisions	are	made,
typically	in	real-time	or	with	a	short	time	frame.

b.	At	the	tactical	level,	decisions	are	made	by	middle	management
with	a	medium-term	(e.g.,	a	month,	a	quarter,	a	year)	focus.

c.	At	the	strategic	level,	decisions	are	made	by	senior	management
with	long-term	implications	(e.g.,	1,	2,	5	years,	or	more)

d.	A	data	warehouse	provides	a	centralized,	consolidated	data	platform
by	integrating	data	from	different	sources	and	in	different	formats.	As
such,	it	provides	a	separate	and	dedicated	environment	for	operational
decision-making.

17.2.	Which	of	the	following	is	not	a	characteristic	of	a	data	warehouse?

a.	Subject-oriented.

b.	Integrated.

c.	Time-variant.

d.	Volatile.

17.3.	In	terms	of	data	manipulation,	a	data	warehouse	focuses	on…

a.	Insert/Update/Delete/Select	statements.

b.	Insert/Select	statements.

c.	Select/Update	statements.

d.	Delete	statements.

17.4.	Which	statement	is	correct?

a.	A	star	schema	has	one	large	central	dimension	table	which	is
connected	to	various	smaller	fact	tables.

b.	The	dimension	tables	of	a	star	schema	contain	the	criteria	for
aggregating	the	measurement	data	and	will	typically	be	used	as
constraints	to	answer	queries.

c.	To	speed	up	report	generation	and	avoid	time-consuming	joins	in	a
star	schema,	the	dimension	tables	need	to	be	normalized.

d.	The	dimension	tables	in	a	star	schema	are	frequently	updated.

17.5.	Which	statement	is	not	correct?

a.	A	snowflake	schema	normalizes	the	fact	table	of	a	star	schema.

b.	A	fact	constellation	schema	has	more	than	one	fact	table	which	can
share	dimension	tables.

c.	Surrogate	keys	essentially	buffer	the	data	warehouse	from	the
operational	environment	by	making	it	immune	to	any	operational
changes.

d.	A	factless	fact	table	is	a	fact	table	that	only	contains	foreign	keys
and	no	measurement	data.

17.6.	Which	statement	is	not	correct?

a.	Junk	dimensions	can	be	defined	to	efficiently	accommodate	low-
cardinality	attribute	types	such	as	flags	or	indicators.

b.	An	outrigger	table	can	be	defined	to	store	a	set	of	attribute	types	of
a	dimension	table	which	are	uncorrelated,	high	in	cardinality,	and

updated	simultaneously.

c.	For	slowly	changing	dimensions,	surrogate	keys	can	be	handy	to
store	the	historical	information	by	duplicating	a	record	and	adding,
e.g.,	Start_Date,	End_Date,	and	Current_Flag	attribute	types.

d.	One	way	to	deal	with	rapidly	changing	dimensions	is	by	splitting
the	information	into	stable	and	rapidly	changing	information.	The
latter	can	then	be	put	into	a	separate	mini-dimension	table	with	a	new
surrogate	key.	The	connection	can	then	be	made	by	using	the	fact	table
or	by	introducing	a	new	table	connecting	both.

17.7.	Which	statement	about	ETL	is	not	correct?

a.	Some	estimates	state	that	the	ETL	step	can	consume	up	to	80%	of
all	efforts	needed	to	set	up	a	data	warehouse.

b.	To	decrease	the	burden	on	both	the	operational	systems	and	the	data
warehouse	itself,	it	is	recommended	to	start	the	ETL	process	by
dumping	the	data	in	a	staging	area	where	all	the	ETL	activities	can	be
executed.

c.	During	the	loading	step,	the	data	warehouse	is	populated	by	filling
the	fact	and	dimension	tables,	thereby	also	generating	the	necessary
surrogate	keys	to	link	it	all	up.	Fact	rows	should	be	inserted/updated
before	the	dimension	rows.

d.	The	extraction	strategy	can	be	either	full	or	incremental.	In	the
latter	case,	only	the	changes	since	the	previous	extraction	are
considered.

17.8.	Which	statement	is	not	correct?

a.	A	data	mart	is	a	scaled-down	version	of	a	data	warehouse	aimed	at
meeting	the	information	needs	of	a	homogeneous	small	group	of	end-
users	such	as	a	department	or	business	unit	(e.g.,	marketing,	finance,
logistics,	HR,	etc.).

b.	Dependent	data	marts	pull	their	data	from	a	central	data	warehouse,
whereas	independent	data	marts	are	standalone	systems	drawing	data
directly	from	the	operational	systems,	external	sources,	or	a
combination	of	both.

c.	A	virtual	data	warehouse	(sometimes	also	called	a	federated
database)	or	virtual	data	mart	contains	no	physical	data	but	provides	a
uniform	and	consolidated	single	point	of	access	to	a	set	of	underlying
physical	data	stores.

d.	A	key	advantage	of	virtualization	is	that	it	requires	no	extra
processing	capacity	from	the	underlying	(operational)	data	stores.

17.9.	Which	statement	is	correct?

a.	A	key	distinguishing	property	of	a	data	lake	is	that	it	stores	raw	data
in	its	native	format,	which	could	be	structured,	unstructured,	or	semi-
structured.

b.	A	data	lake	is	targeted	toward	decision-makers	at	middle-	and	top-
management	level,	whereas	a	data	warehouse	requires	a	data	scientist,
which	is	a	more	specialized	profile	in	terms	of	data	handling	and
analysis.

c.	In	case	of	a	data	warehouse,	the	data	schema	definitions	are	only
determined	when	the	data	are	read	(schema-on-read),	whereas	for	data
lakes	they	are	fixed	when	the	data	are	loaded	(schema-on-write).

d.	A	data	lake	is	less	agile	compared	to	a	data	warehouse,	which	has
no	structure.

17.10.	Which	statement	is	not	correct?

a.	Query	and	reporting	tools	are	an	essential	component	of	a
comprehensive	business	intelligence	solution.

b.	A	pivot	or	cross-table	is	a	popular	data	summarization	tool.	It
essentially	cross-tabulates	a	set	of	dimensions.

c.	A	key	disadvantage	of	OLAP	is	that	it	does	not	allow	you	to
interactively	analyze	your	data,	summarize	it,	and	visualize	it	in
various	ways.

d.	The	key	fundament	of	OLAP	is	a	multidimensional	data	model
which	can	be	implemented	in	various	ways.

17.11.	Which	statement	is	not	correct?

a.	Multidimensional	OLAP	(MOLAP)	stores	the	multidimensional
data	using	a	multidimensional	DBMS	(MDBMS)	whereby	the	data	are
stored	in	a	multidimensional	array-based	data	structure	optimized	for
efficient	storage	and	quick	access.

b.	Relational	OLAP	(ROLAP)	stores	the	data	in	a	relational	data
warehouse,	which	can	be	implemented	using	a	star,	snowflake,	or	fact
constellation	schema.

c.	Hybrid	OLAP	(HOLAP)	tries	to	combine	the	best	of	both	MOLAP
and	ROLAP.	An	RDBMS	can	then	be	used	to	store	the	detailed	data	in
a	relational	data	warehouse,	whereas	the	pre-computed	aggregated
data	can	be	kept	as	a	multidimensional	array	managed	by	an	MDBMS.

d.	MOLAP	scales	better	to	more	dimensions	than	ROLAP.	The	query
performance	may,	however,	be	inferior	to	ROLAP	unless	some	of	the
queries	are	materialized	or	high-performance	indexes	are	defined.

17.12.	Which	statement	is	correct?

a.	Roll-up	(or	drill-up)	refers	to	aggregating	the	current	set	of	fact
values	within	or	across	one	or	more	dimensions.

b.	Roll-down	(or	drill-down)	de-aggregates	the	data	by	navigating
from	a	lower	level	of	detail	to	a	higher	level	of	detail.

c.	Slicing	represents	the	operation	whereby	one	of	the	dimensions	is
set	at	a	particular	value.

d.	Dicing	corresponds	to	a	range	selection	on	one	or	more	dimensions.

e.	All	of	the	above	are	correct.

Problems	and	Exercises

17.1E	Contrast	operational	versus	tactical	versus	strategic	decision-making.
Illustrate	with	examples	in

17.2E	How	is	a	data	warehouse	defined	according	to	Bill	Inmon?	Elaborate	on
each	of	the	characteristics	and	illustrate	with	examples.

17.3E	Discuss	and	contrast	each	of	the	following	data	warehouse	schemas:

17.4E	What	are	surrogate	keys?	Why	would	you	use	them	in	a	data	warehouse
instead	of	using	the	business	keys	from	the	operational	systems?

17.5E	Discuss	four	approaches	to	deal	with	slowly	changing	dimensions	in	a
data	warehouse.	Can	any	of	these	approaches	be	used	to	deal	with	rapidly
changing	dimensions?

an	online	retail	setting	(e.g.,	Amazon,	Netflix,	eBay);

a	bank	setting;

a	university	setting.

star	schema;

snowflake	schema;

fact	constellation.

17.6E	Explain	and	illustrate	the	following	concepts:

17.7E	Consider	the	following	OLAP	Cube:

Give	an	example	of	a…

17.8E	Given	the	following	table:

independent	data	mart;

virtual	data	warehouse;

operational	data	store;

data	lake.

roll-up	operation;

drill-down	operation;

slicing	operation;

dicing	operation.

Consider	the	following	queries:

SELECT	PRODUCT,	REGION,	SUM(SALES)
FROM	SALESTABLE
GROUP	BY	CUBE	(PRODUCT,	REGION)

SELECT	PRODUCT,	REGION,	SUM(SALES)
FROM	SALESTABLE
GROUP	BY	ROLLUP	(PRODUCT,	REGION)

SELECT	PRODUCT,	REGION,	SUM(SALES)
FROM	SALESTABLE
GROUP	BY	GROUPING	SETS	((PRODUCT),	(REGION))

What	is	the	output	of	the	above	queries?
Can	you	reformulate	each	query	using	other	SQL	OLAP	constructs?

17.8E	What	is	windowing?	Illustrate	a	query	with	windowing	using	the	above
table.

1	W.H.	Inmon,	Building	the	Data	Warehouse,	2nd	edition,	Wiley,	1996.

2	Because	of	leap	years.

3	The	three-dimensional	cube	is	very	suitable	as	an	example,	as	it	can	be
represented	as	a	real	physical	cube,	but	in	practice	an	n-dimensional
hypercube	with	more	than	three	dimensions	is	very	likely.

18

Data	Integration,	Data	Quality,	and
Data	Governance

◈

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

Opening	Scenario

identify	the	key	challenges	and	approaches	for	data	and	process
integration;

understand	the	basic	mechanisms	of	searching	unstructured	data
within	an	organization	and	across	the	World	Wide	Web;

define	data	quality	as	a	multidimensional	concept	and	understand	how
master	data	management	(MDM)	can	contribute	to	it;

understand	different	frameworks	and	standards	for	data	governance;

highlight	more	recent	approaches	in	data	warehousing,	data
integration,	and	governance.

Things	 are	 going	 well	 at	 Sober.	 The	 company	 has	 set	 up	 a	 solid	 data
environment	 based	 on	 a	 solid	 relational	 database	 management	 system
used	 to	 support	 the	 bulk	 of	 its	 operations.	 Sober’s	 mobile	 app
development	 team	 has	 been	 using	 MongoDB	 as	 a	 scalable	 NoSQL
DBMS	to	handle	the	increased	workload	coming	from	mobile	app	users
and	 to	 provide	 back-end	 support	 for	 experimental	 features	 the	 team
wants	to	test	 in	new	versions	of	 their	mobile	app.	Sober’s	development
and	database	team	is	already	paying	attention	to	various	data	quality	and
governance	aspects:	 the	RDBMS	is	 the	central	source	of	 truth,	strongly
focusing	 on	 solid	 schema	 design	 and	 regular	 quality	 checks	 being
performed	 on	 the	 data.	 The	 NoSQL	 database	 is	 an	 additional	 support
system	to	handle	large	query	volumes	from	mobile	users	in	real-time	in	a
scalable	manner,	but	where	all	data	changes	are	still	being	propagated	to
the	central	RDBMS.	This	is	done	in	a	manual	manner,	which	sometimes
leads	 to	 the	 two	 data	 sources	 not	 being	 in	 agreement	with	 each	 other.
Sober’s	team	therefore	wants	to	consider	better	data	quality	approaches
to	 implement	 more	 robust	 quality	 checks	 on	 data	 and	 make	 sure	 that
changes	to	the	NoSQL	database	are	propagated	to	the	RDBMS	system	in
a	 timely	and	correct	manner.	Sober	also	wants	 to	understand	how	 their
data	flows	can	be	better	integrated	with	their	business	processes.

In	 this	 chapter	we	will	 look	 at	 some	managerial	 and	 technical	 aspects	 of	 data
integration.	We	will	 zoom	 in	 on	 data	 integration	 techniques,	 data	 quality,	 and
data	governance.	As	companies	often	end	up	with	many	information	systems	and
databases	 over	 time,	 the	 concept	 of	 data	 integration	 becomes	 increasingly
important	 to	 consolidate	 a	 company’s	 data	 to	 provide	 one,	 unified	 view	 to
applications	 and	 users.	 Hence,	 constructing	 a	 data	 warehouse	 is	 one	 area	 in

which	data	integration	will	be	an	important	concern,	but	data	integration	is	also
important	for	many	other	use	cases	–	consider	two	companies	that	wish	to	utilize
each	 other’s	 systems	 and	 data	 resources.	 In	 what	 follows,	 we	 will	 discuss
different	 patterns	 for	 data	 integration.	 We	 will	 also	 focus	 on	 techniques	 to
efficiently	 search	 unstructured	 data,	 both	 within	 an	 intra-enterprise	 data
integration	setting	and	across	the	World	Wide	Web.

Data	 integration	 is	 also	 closely	 related	 to	 data	 quality,	 so	we	will	 discuss
this	managerial	concern,	and	master	data	management.	Finally,	we	look	at	data
governance	 standards	 that	 help	 companies	 to	 set	 up	 initiatives	 to	 measure,
monitor,	and	improve	data	integration	and	quality	practices.

18.1	Data	and	Process	Integration

Data	 integration	aims	 at	 providing	 a	 unified	 view	 and/or	 unified	 access	 over
heterogeneous,	 and	 possibly	 distributed,	 data	 sources.	 In	 what	 follows,	 we
discuss	different	approaches	and	patterns	to	realize	this,	with	a	different	tradeoff
between	concerns	such	as	data	quality,	performance,	the	ability	to	transform	the
data,	etc.	 In	addition,	we	 introduce	 the	concept	of	process	 integration.	Process
integration	 deals	 with	 the	 sequencing	 of	 tasks	 in	 a	 business	 process	 but	 also
governs	the	data	flows	in	these	processes.	In	this	way,	the	data	flows	in	process
integration	 are	 complementary	 to	 data	 integration	 because	 they	 aim	 at	making
the	 right	data	available	 to	applications	and	human	actors	 in	order	 that	 they	are
able	 to	 perform	 their	 tasks	with	 the	 appropriate	 input	 data.	 Therefore,	 ideally,
both	 data	 and	 processes	 are	 considered	 in	 a	 data	 integration	 effort.	 We	 start,
however,	with	the	rationale	behind	the	data	integration	needs	in	a	contemporary
data-processing	context.

18.1.1	Convergence	of	Analytical	and	Operational	Data	Needs

Traditionally,	 applications	 and	 databases	 were	 organized	 around	 functional
domains	 such	 as	 accounting,	 human	 resources,	 logistics,	 CRM,	 etc.	 (Figure
18.1).	Every	department	or	business	unit	worked	with	its	own	data	silo	 (e.g.,	a
file	 or	 database)	 with	 no	 cross-department	 integration.	 Operational	 processes
used	these	data	silos	to	answer	simple	queries	or	perform	updates	in	(near)	real-
time	on	the	detailed	underlying	data.	A	classical	point-of-sale	(POS)	application
storing	product	purchases	or	a	trading	system	storing	stock	prices	are	examples
of	this.

Figure	18.1	Traditional	“data	silos”,	organized	around	functional	domains.

Whereas	the	silos	mainly	aimed	at	operational	support,	a	next	phase	saw	the
emergence	of	business	intelligence	(BI)	and	analytics	applications,	fueled	by	the
need	 for	data-driven	 tactical	 and	 strategical	decision-making,	with	a	company-
wide	 impact.	 To	 sustain	 this	 company-wide	 view,	 data	 from	 the	 silos	 were
transformed,	integrated,	and	consolidated	into	a	company-wide	data	warehouse.
ETL	 (extract,	 transform,	 load)	 processes	 supported	 the	 asynchronous	 data
extraction	and	transfer	from	the	source	systems	(the	operational	data	silos)	to	the
target	data	warehouse.

Connections

Data	warehousing	 and	 ETL	were	 discussed	 in	 Chapter	 17.	 Chapter	 20
discusses	analytics.

Because	of	this	evolution,	we	were	confronted	for	nearly	two	decades	with
a	 dual	 data	 storage	 and	 processing	 landscape,	 supported	 by	 two	 very	 distinct
scenes	of	 tool	vendors	and	products.	On	the	one	hand,	operational	applications
performed	 simple	 queries	 on	 operational	 data	 silos,	 containing	 an	 up-to-date
“snapshot”	 of	 the	 business	 state	 in	 the	 domain	 at	 hand	 (HR,	 logistics,	 CRM,
etc.).	 Business	 intelligence	 and	 analytics	 applications	 supported	 tactical	 and
strategic	decision-making	by	analyzing	company-wide	data	in	a	data	warehouse
(Figure	18.2).	The	data	warehouse	contained	not	only	detailed	operational	data
but	also	historical,	enriched,	and	aggregated	data.	However,	the	ETL	process	of
extracting	 data	 from	 the	 source	 systems,	 transforming	 it	 into	 the	 appropriate
format	for	analysis,	and	loading	it	into	the	data	warehouse	was	time-consuming.
Therefore,	 there	was	 a	 certain	 latency	 between	 the	 up-to-date	 operational	 data
stores	and	the	slightly	outdated	data	warehouse.	This	latency	was	tolerable:	real-
time	business	intelligence	was	not	the	goal	in	traditional	data	warehousing.	The
goal	 was	 to	 support	 business	 executives	 in	 their	 decision-making	 at	 ad-hoc
moments	in	time	(e.g.,	daily	or	monthly).

Figure	18.2	Traditional	data	warehouse	set-up.

Nowadays,	 we	 see	 a	 complete	 convergence	 of	 the	 operational	 and
tactical/strategic	data	needs	of	 the	 corresponding	data	 integration	 tooling.	This
trend	was	initiated	by	new	marketing	practices	centered	on	proactive	(instead	of
reactive)	 actions	 requiring	 a	 complete	 understanding	 of	 the	 customer,	 and
quickly	 spread	 toward	 other	 functional	 domains.	 It	 culminates	 in	 the	 term
operational	 BI,	 with	 a	 twofold	meaning.	 First,	 analytics	 techniques	 are	more
and	more	used	at	the	operational	level	as	well	by	front-line	employees.	Second,
analytics	 for	 tactical/strategic	 decision-making	 increasingly	 uses	 real-time
operational	data	combined	with	the	aggregated	and	historical	data	found	in	more
traditional	data	warehouses.

In	 both	 cases,	 this	 operational	 usage	 of	BI	 aims	 for	 a	 low	 (or	 even	 zero)
latency	 so	 unexpected,	 business-altering	 events	 or	 trends	 in	 the	 data	 can	 be
immediately	detected	and	addressed	with	the	appropriate	response.	The	idea	is	to
move	 more	 and	 more	 from	 batch	 processing	 to	 (near)	 real-time	 BI,	 where
historical	data	are	combined	with,	and	often	compared	 to,	 real-time	 trends	and
insights,	 and	 analyzed	 24/7.	 To	 provide	 some	 examples,	 think	 of	 executive
dashboards	that	monitor	KPIs	(Key	Performance	Indicators,	such	as	production
throughput,	stock	prices,	oil	price,	etc.)	in	real	time.	Another	example	is	business
process	 monitoring	 and	 business	 activity	 monitoring	 (BAM)	 for	 the	 timely
detection	of	anomalies	or	opportunities	 in	business	processes.	Companies	 such
as	 Netflix	 and	 Amazon	 detect	 cross-selling	 opportunities	 in	 real-time	 by	 a
recommender	 system,	 and	 credit	 card	 processors	 detect	 credit	 card	 fraud	 soon
after	the	transaction	is	initiated.

This	evolution	poses	interesting	challenges	to	the	landscape	of	data	storage
and	 data	 integration	 solutions.	 This	 is	 especially	 true	 in	 Big	 Data	 analytics,
where	 new	 insights	 are	 acquired	 by	 combining	 and	 enriching	more	 traditional

data	 types	 with	 “new”	 kinds	 of	 internal	 and	 external	 data,	 often	 with	 a	 very
volatile	 structure	 and	 very	 extensive	 in	 size.	Different	 data	 are	 drawn	 into	 the
analysis,	such	as	click	stream	data,	server	logs,	sensor	data,	social	media	feeds,
etc.	 Chapter	 11	 (NoSQL	 databases)	 and	 Chapter	 19	 (Big	 Data)	 discuss	 the
solutions	 to	 cope	with	 these	 evolving	data	 storage	needs.	However,	 an	 equally
big	 challenge	 is	 the	 integration	 of	 these	 diverse	 data	 types	 in	 such	 a	way	 that
they	can	be	processed	 and	analyzed	efficiently,	 often	with	pressing	 constraints
regarding	the	real-time	character	of	the	data	or	even	the	need	to	open	so-called
streaming	data	 for	 analysis	 “on	 the	 fly”.	The	 result	 is	 typically	 a	hybrid	data
integration	infrastructure,	combining	different	integration	techniques	catering	for
different	 quality	 of	 service	 (QoS)	 characteristics	 and	 data	 quality	 concerns.
Many	data	 integration	vendors	satisfy	 this	need	with	extensive	data	 integration
suites,	 combining	 different	 tools	 and	 techniques.	 However,	 to	 make	 informed
implementation	choices,	it	is	key	to	discern	the	generic	data	integration	patterns
that	 underlie	 these	 suites,	 and	 assess	 their	 inherent	 tradeoffs	 in	 QoS
characteristics,	such	as	real-time	capabilities,	performance,	abilities	to	enrich	and
cleanse	the	data,	the	ability	to	retain	historical	data	in	addition	to	real-time	data,
etc.	This	is	the	focus	of	the	next	sections	of	this	chapter.

18.1.2	Data	Integration	and	Data	Integration	Patterns

Data	integration	aims	at	providing	a	unified	and	consistent	view	of	all	enterprise-
wide	 data.	 The	 data	 themselves	may	 be	 heterogeneous	 and	 reside	 in	 different
resources	 (XML	 files,	 legacy	 systems,	 relational	 databases,	 etc.).	 The	 desired
extent	 of	 data	 integration	 will	 highly	 depend	 upon	 the	 required	 QoS
characteristics.	 Data	 will	 never	 be	 of	 perfect	 quality,	 so	 a	 certain	 level	 of
inaccurate,	 incomplete,	 or	 inconsistent	 data	 may	 have	 to	 be	 tolerated	 for
operational	BI	to	succeed.

Connections

The	dimensions	of	data	quality	have	been	discussed	in	Chapter	4.

Figure	18.3	 illustrates	 the	 concept	 of	 data	 integration	 at	 a	 high	 level:	 the
goal	is	to	logically	(and	sometimes	also	physically)	unify	different	data	sources
or	data	silos,	as	we	called	them	above,	to	provide	a	single	unified	view	which	is
as	 correct,	 complete,	 and	 consistent	 as	 possible.	 Different	 data	 integration
patterns	exist	to	provide	this	unified	view.	First,	we	discuss	the	following	basic
data	 integration	 patterns:	 data	 consolidation,	 data	 federation,	 and	 data
propagation.	 Then,	 we	 deal	 with	 more	 advanced	 techniques	 and	 the	 interplay
between	data	integration	and	process	integration.

Figure	18.3	The	goal	of	data	integration	is	to	provide	a	unified	and	consistent
view	over	different	data	sources.

18.1.2.1	Data	Consolidation:	Extract,	Transform,	Load	(ETL)

The	essence	of	data	consolidation	as	a	data	 integration	pattern	 is	 to	capture
the	 data	 from	 multiple,	 heterogeneous	 source	 systems	 and	 integrate	 it	 into	 a
single	 persistent	 store	 (e.g.,	 a	 data	 warehouse	 or	 data	 mart).	 This	 is	 typically
accomplished	 using	 extract,	 transform,	 and	 load	 (ETL)	 routines	 (see	 Figure
18.4).

Figure	18.4	An	extract,	transform,	load	(ETL)	engine	as	a	data	consolidation
solution.

Connections

ETL	was	already	discussed	in	the	context	of	data	warehousing	in	Chapter
17.

As	discussed	in	Chapter	17,	ETL	is	a	technology	supporting	the	following
activities:

This	 approach	 with	 an	 ETL	 process	 feeding	 a	 store	 with	 consolidated	 data	 is
very	suitable	for	dealing	with	massive	amounts	of	data	and	preparing	 them	for
analysis.	 There	 is	 room	 for	 extensive	 transformation,	 involving	 data
restructuring,	 reconciliation,	 cleansing,	 aggregation,	 and	 enrichment	 steps.
Therefore,	 this	 pattern	 has	 a	 positive	 impact	 on	many	 data	 quality	 dimensions
such	 as	 completeness,	 consistency,	 and	 interpretability.	 Another	 important
advantage	 of	 the	 consolidation	 approach	 is	 that	 it	 caters	 for	 not	 only	 present
information,	 but	 also	 historical	 data,	 since	 a	 changed	 business	 state	 does	 not
result	in	updates	to	the	data,	but	in	additions	of	new	data.

On	 the	downside,	 the	ETL	process	 typically	 induces	 a	 certain	measure	of
latency,	so	the	timeliness	dimension	may	suffer,	with	the	data	being	slightly	out
of	date.	However,	as	we	will	discuss	in	Section	18.1.2.5,	 there	exist	 techniques
to	at	least	contain	this	latency.	The	latency	can	be	measured	as	the	delay	between
the	updates	in	the	source	systems	and	the	updates	in	the	target	data	store.	It	can
be	 a	 few	 seconds,	 hours,	 or	 a	 couple	 of	 days	 depending	 upon	 the	 refreshment
strategy.	 Consolidation	 also	 requires	 a	 physical	 target,	 so	 additional	 storage
capacity	is	consumed.	This	allows	for	analytics	workloads	to	be	removed	from
the	original	data	sources.	That,	with	the	fact	that	the	data	are	already	formatted
and	 structured	 upfront	 to	 suit	 the	 analytical	 needs,	 guarantees	 acceptable
performance	levels.

Extract	data	from	heterogeneous	data	sources	(including	legacy	and
external	sources);

Transform	the	data	to	satisfy	business	needs;

Load	the	transformed	data	into	a	target	system	(e.g.,	a	data	warehouse).

There	exist	different	variations	on	the	ETL	process,	e.g.,	either	a	full	update
or	 an	 incremental	 refreshment	 strategy	of	 the	 target	data	 store	 can	be	adopted.
Note	 that	 some	 vendors	 such	 as	Oracle	 propose	 another	 variant,	ELT	 (extract,
load,	 transform),	 with	 the	 transformation	 being	 performed	 directly	 in	 the
physical	target	system.	Figure	18.4	illustrates	the	ETL	process.

Besides	the	traditional	set-up	with	ETL	and	a	data	warehouse,	data	lakes	as
discussed	 in	 Chapter	 17	 can	 also	 be	 an	 implementation	 of	 the	 consolidation
pattern.	 However,	 in	 contrast	 to	 a	 data	 warehouse,	 the	 data	 are	 mostly
consolidated	 in	 the	 native	 format	 they	 had	 in	 the	 source	 systems,	 with	 little
transformation	or	cleansing.	Therefore,	the	positive	impact	on	the	respective	data
quality	 dimensions	 will	 be	 limited	 compared	 to	 a	 data	 warehouse,	 but	 this	 is
often	less	of	an	issue	for	the	Big	Data	types	typically	stored	in	data	lakes,	where
the	formal	structure	is	much	more	volatile	or	even	completely	absent.	Analyzing
the	 data	may	 still	 require	 some	 preprocessing	 and	 restructuring,	 which	 would
already	have	been	performed	upfront	with	a	data	warehouse.

18.1.2.2	Data	Federation:	Enterprise	Information	Integration	(EII)

Data	federation	 also	 aims	 at	 providing	 a	 unified	 view	over	 one	 or	more	 data
sources.	Instead	of	capturing	and	integrating	the	data	in	one	consolidated	store,	it
typically	 follows	 a	 pull	 approach	 through	 which	 data	 are	 pulled	 from	 the
underlying	 source	 systems	 on	 an	 on-demand	 basis.	 Enterprise	 information
integration	(EII)	 is	 an	example	of	a	data	 federation	 technology	 (Figure	18.5).
EII	 can	 be	 implemented	 by	 realizing	 a	 virtual	 business	 view	 on	 the	 dispersed
underlying	data	 sources.	The	view	serves	as	a	universal	data	access	 layer.	The
data	sources’	internals	are	isolated	from	the	outside	world	with	wrappers.	In	this
way,	 the	 virtual	 view	 shields	 the	 applications	 and	 processes	 from	 the
complexities	of	retrieving	the	needed	data	from	multiple	locations,	with	different

semantics,	formats,	and	interfaces.	No	movement	or	replication	of	data	is	needed
(except	perhaps	some	caching	for	performance)	since	all	data	stay	in	the	source
systems.	Hence,	 a	 federation	 strategy	 enables	 real-time	 access	 to	 current	 data,
which	was	not	the	case	for	a	data	consolidation	strategy.

Figure	18.5	Enterprise	information	integration	(EII)	as	a	data	federation
solution.

Queries	performed	on	 the	business	view	will	be	 translated	 into	queries	on
the	underlying	data	sources	that	can	then	be	further	optimized	using	global	and
local	query	optimization	 techniques,	also	exploiting	query	parallelism	(see	also
Chapter	16).	The	returned	results	will	typically	be	rather	small	because	the	real-
time	 characteristic	 is	 prohibitive	 to	 larger	 datasets.	 For	 the	 same	 reason,	 only
limited	 transformation	 and	 cleansing	 capabilities	 are	 possible.	 Many	 EII
technologies	 are	 read-only,	 but	 some	 also	 support	 update	 operations	 on	 the
business	view,	which	are	then	applied	to	the	underlying	data	stores.	However,	as
already	 discussed	 in	Chapter	7,	 it	 is	 not	 always	 possible	 to	map	 updates	 on	 a
virtual	view	unambiguously	 to	back-end	 relational	 tables,	 even	 in	a	 standalone
database.	This	is	even	more	true	in	a	distributed	setting.	EII	is	also	less	suitable
for	 complex	 queries	 including,	 e.g.,	 joins	 between	 structured	 and	 unstructured
data.	Therefore,	EII	is	often	adopted	by	firms	as	a	temporary	measure	following
a	merger	or	acquisition.

Connections

Chapter	 7	 discussed	 the	 requirements	 for	 relational	 views	 to	 be
updatable.	Chapter	16	deals	with	query	parallelism.

Data	 federation	 and	 EII	 can	 be	 beneficial	 as	 it	 leaves	 data	 in	 place	 that
otherwise	 might	 dramatically	 increase	 overall	 storage	 requirements	 if	 a
consolidated	 approach	 were	 to	 be	 followed.	 One	 important	 disadvantage	 to
remember	is	 the	overall	worse	performance	of	EII.	Since	queries	performed	on
the	business	view	must	be	translated	to	underlying	data	sources,	a	performance
hit	is	unavoidable.	Parallelization	and	caching	solutions	(meaning	that	results	of
frequently	executed	queries	are	kept	around	for	a	while	on	the	view)	can	help	to
overcome	this,	though	when	performance	is	a	key	issue	a	consolidated	approach
might	be	advisable	instead.	Another	related	issue	is	whether	the	source	systems
will	 continue	 to	 receive	 direct	 queries,	 i.e.,	 queries	 that	 do	 not	 go	 through	 the
federation	layer.	There,	you	must	remember	that	the	existing	operational	source
systems	will	 incur	 an	 increased	utilization	 rate,	 as	 they	now	must	 handle	 both
direct	incoming	queries	and	those	coming	from	the	federation	layer,	leading	to	a
potential	 performance	 hit.	 Finally,	 note	 that	 EII	 solutions	 are	 limited	 in	 the
number	of	transformation	and	cleansing	steps	they	can	perform	on	query	result
sets.	 In	 the	 event	 that	 data	 from	 multiple	 sources	 have	 to	 be	 transformed,
aggregated,	 or	 cleansed	before	 they	 can	be	 ready	 for	 use,	 a	 data	 consolidation
approach	might	be	a	better	solution.

18.1.2.3	Data	Propagation:	Enterprise	Application	Integration	(EAI)

The	data	propagation	pattern	corresponds	to	the	synchronous	or	asynchronous
propagation	of	updates	or,	more	generally,	events	in	a	source	system	to	a	target
system.	 Regardless	 of	 the	 synchronous	 or	 asynchronous	 character,	 most
implementations	provide	some	measure	of	guaranteed	delivery	of	the	update	or

event	 notification	 to	 the	 target	 system.	 The	 data	 propagation	 pattern	 can	 be
applied	at	two	levels	in	a	system	architecture.	It	can	be	applied	in	the	interaction
between	two	applications	or	in	the	synchronization	between	two	data	stores.	In
an	application	interaction	context,	we	speak	of	enterprise	application	integration
(EAI),	which	is	discussed	below.	In	a	data	store	context,	we	speak	of	enterprise
data	replication	(EDR),	as	discussed	in	the	next	section.

The	 idea	of	enterprise	application	 integration	 (EAI)	 is	 that	 an	 event	 in
the	source	application	requires	some	processing	within	the	target	application.	For
example,	 if	 an	 order	 is	 received	 in	 an	 order-handling	 application,	 this	 may
trigger	 the	creation	of	an	invoice	in	 the	 invoicing	application.	The	event	 in	 the
source	 system	 (an	 order	 is	 received)	 is	 notified	 to	 the	 target	 system	 to	 trigger
some	 processing	 there	 (the	 creation	 of	 an	 invoice).	 There	 exist	 many	 distinct
EAI	technologies	to	realize	this	triggering,	ranging	from	web	services,	.NET	or
Java	 interfaces,	 messaging	 middleware,	 event	 notification	 buses,	 remote
procedure	 call	 technology,	 legacy	 application	 interfaces	 and	 adapters,	 etc.
Different	 topologies	 may	 be	 adopted,	 such	 as	 point-to-point,	 hub,	 bus,	 etc.
However,	besides	the	triggering	of	some	processing	within	the	target	application,
such	exchange	nearly	always	 involves	small	amounts	of	data	being	propagated
from	 the	 source	 to	 the	 target	 application	 as	 well	 (Figure	 18.6).	 These	 data
provide	input	to	the	processing	at	the	target	application.	Depending	on	the	EAI
technology	 used,	 these	 data	 will	 be	 part	 of	 the	 messages	 being	 exchanged;
attributes	 to	 the	 event	 notifications;	 or	 parameters	 to	 the	 remote	 procedures
being	invoked.	It	would	lead	us	too	far	to	discuss	all	EAI	technologies	in	detail,
but	 they	 invariably	 entail	 some	 triggering	 of	 functionality	 at	 the	 target	 system
because	of	an	event	at	 the	source	system,	and	some	data	propagation	that	goes
along	with	this	triggering.	In	our	example,	the	invoicing	application	would	need
at	 least	 the	 ID	of	 the	customer,	 the	 total	 amount	of	 the	order,	 etc.	 to	 create	 an
invoice.

Figure	18.6	Enterprise	application	integration	(EAI).

The	data	propagation	 in	EAI	may	occur	synchronously,	 so	 the	message	 is
sent,	along	with	the	data,	at	the	moment	the	event	occurs	in	the	source	system.
The	 target	 system	 may	 respond	 immediately,	 but	 the	 message	 (or	 event
notification	 or	 other	 format)	 may	 also	 be	 queued	 before	 being	 processed,
resulting	 in	 asynchronous	 interaction.	 The	 advantage	 of	 an	 asynchronous
approach	 is	 less	 interdependence	 between	 the	 respective	 systems,	 but	 the
downside	is	a	certain	latency	in	responding	to	an	event	and	processing	the	data
that	goes	along	with	it.

Data	 propagation	 with	 EAI	 is	 usually	 employed	 for	 operational	 business
transaction	 processing	 across	 multiple	 systems	 that	 act	 upon	 one	 another’s
events	 and	 therefore	 require	 (partially)	 the	 same	 data.	 Many	 EAI
implementations	provide	 facilities	 for	message	 transformation,	monitoring,	and
routing.	A	synchronous	set-up	allows	for	responding	in	real-time,	whereas	a	two-
way	exchange	of	data	is	possible,	which	isn’t	 the	case	with,	e.g.,	consolidation
and	ETL.	However,	for	most	EAI	technologies,	 the	size	of	the	data	that	can	be
exchanged	is	rather	small,	as	the	main	focus	is	on	the	triggering	of	processing.

18.1.2.4	Data	Propagation:	Enterprise	Data	Replication	(EDR)

The	 propagation	 pattern	 can	 also	 be	 applied	 at	 the	 level	 of	 the	 interaction
between	two	data	stores.	In	that	case,	we	speak	of	enterprise	data	replication
(EDR).	Here,	the	events	in	the	source	system	explicitly	pertain	to	update	events
in	the	data	store.	Replication	means	copying	the	updates	in	the	source	system	in

(near)	 real-time	 to	a	 target	data	 store,	which	serves	as	an	exact	 replica	 (Figure
18.7).	At	 the	software	 level,	 this	can	be	 implemented	by	 the	operating	system,
DBMS,	or	a	 separate	 replication	server.	As	an	alternative,	a	 separate	hardware
storage	controller	can	be	used.	The	respective	options	were	already	discussed	in
Chapters	 13	 and	 16.	 EDR	 has	 been	 traditionally	 adopted	 for	 load	 balancing,
ensuring	 high	 availability	 and	 recovery,	 but	 not	 data	 integration	 as	 such.
However,	recently	it	has	been	used	more	often	for	(operational)	BI	and	to	offload
data	 from	 the	 source	 systems	 onto	 a	 separate	 data	 store,	 which	 is	 an	 exact
replica.	 In	 this	way,	 analytics	 can	 be	 performed	 on	 real-time	 operational	 data,
without	 burdening	 the	 original	 operational	 source	 systems	 with	 additional
workload.	 In	 this	 context,	 load	 balancing	 is	 the	main	 driver	 for	 offloading	 the
data	 to	another	data	 store,	 rather	 than	 the	need	 for	data	 transformation	as	with
ETL.

Figure	18.7	Enterprise	data	replication	(EDR).

Although	they	originally	represent	different	patterns,	the	boundary	between
EDR	and	ETL	is	not	always	sharp.	The	event	paradigm	and	real-time	aspect	of
EDR	 can	 be	 combined	with	 the	 consolidation	 and	 transformation	 elements	 of
ETL,	 resulting	 in	 so-called	 near-real-time	 ETL.	 The	 latter	 is	 discussed	 in	 the
next	section.

Connections

Chapters	13	and	16	discussed	 several	 aspects	 and	 techniques	 regarding
data	replication.

18.1.2.5	Changed	Data	Capture	(CDC),	Near-Real-Time	ETL,	and	Event
Processing

A	technology	complementary	to	ETL,	which	adds	the	event	paradigm	to	ETL,	is
changed	data	capture	(CDC).	CDC	technology	can	detect	update	events	in	the
source	 data	 store,	 and	 trigger	 the	ETL	process	 based	 on	 these	 updates.	 In	 this
way,	a	“push”	model	to	ETL	is	supported:	the	ETL	process	is	 triggered	by	any
significant	 change	 in	 the	 underlying	 data	 store(s).	 This	 is	 in	 contrast	 with
traditional	ETL,	where	data	extraction	occurs	on	scheduled	time	intervals	or	 in
periods	with	low	system	workload,	but	without	considering	actual	changes	in	the
source	data.

This	approach	is	often	technically	more	complex,	and	its	feasibility	depends
to	a	certain	extent	on	the	characteristics	and	openness	of	the	source	systems.	It
has	several	advantages.	A	first	advantage	is	a	real-time	capability;	changes	in	the
source	systems	can	be	detected	and	propagated	as	 they	occur,	rather	 than	them
being	propagated	with	a	certain	 latency,	according	 to	 the	 fixed	schedule	of	 the
ETL	process.	The	approach	may	also	 reduce	network	 load	since	only	data	 that
have	actually	changed	are	transferred.

Finally,	 the	 event	 notification	 pattern	 can	 also	 play	 other	 roles	 in	 a	 data-
processing	setting.	Relevant	events	(updates	to	source	data,	but	also	other	events
with	semantics	at	the	business	process	level,	e.g.,	an	order	being	confirmed	or	a
credit	 card	 purchase	 being	 made)	 can	 be	 notified	 to	 multiple	 components	 or
applications	that	can	act	upon	the	event	and	trigger	some	processing,	e.g.,	with

EAI	 technology.	Also,	 the	 events	generated	 in	 this	 context	 are	more	 and	more
also	the	focus	of	analytics	techniques,	especially	in	business	activity	monitoring
and	process	analytics	(see	also	Chapter	20).	Complex	event	processing	(CEP)
refers	to	a	series	of	analytics	techniques	that	do	not	focus	on	individual	events,
but	rather	on	the	interrelationships	between	events	and	patterns	within	so-called
event	clouds.	For	example,	a	suddenly	changing	pattern	in	purchases	made	with
a	 certain	 credit	 card	may	be	 an	 indication	of	 fraud.	Event	 notifications	 can	be
buffered,	and	in	this	way	acted	upon	asynchronously,	or	they	can	be	processed	in
real-time.	 The	 latter	 can	 be	 supported	 by	 technologies	 that	 can	 cope	with	 so-
called	streaming	data,	as	discussed	in	Chapter	19.

Connections

Chapter	 19	 focuses	 on	 Big	 Data,	 including	 methods	 for	 dealing	 with
streaming	data.	Chapter	20	discusses	different	analytics	techniques.

18.1.2.6	Data	Virtualization

Data	 virtualization	 is	 a	 more	 recent	 approach	 to	 data	 integration	 and
management	 that	 also	 aims	 (like	 the	 other	 approaches)	 to	 offer	 a	 unified	 data
view	 for	 applications	 to	 retrieve	 and	 manipulate	 data	 without	 necessarily
knowing	where	 the	 data	 are	 stored	 physically	 or	 how	 they	 are	 structured	 and
formatted	 at	 the	 sources.	 Data	 virtualization	 builds	 upon	 the	 basic	 data
integration	patterns	discussed	previously,	but	also	isolates	applications	and	users
from	the	actual	(combinations	of)	integration	patterns	used.

The	technologies	underlying	data	virtualization	solutions	vary	widely	from
vendor	 to	 vendor,	 but	 they	 often	 avoid	 data	 consolidation	 techniques	 such	 as
ETL:	 the	 source	 data	 remain	 in	 place,	 and	 real-time	 access	 is	 provided	 to	 the

source	 systems	 of	 the	 data.	 This	 approach	 hence	 seems	 familiar	 to	 data
federation,	but	an	important	difference	of	data	virtualization	is	that,	contrary	to	a
federated	 database	 as	 offered	 by	 basic	 EII,	 virtualization	 does	 not	 impose	 a
single	data	model	on	top	of	the	heterogeneous	data	sources.	Virtual	views	(often
structured	as	virtual	relational	tables)	on	the	data	can	be	defined	at	will	and	can
be	 mapped	 top-down	 onto	 relational	 and	 non-relational	 data	 sources.	 Data
virtualization	systems	can	apply	various	transformations	before	offering	the	data
to	 their	 consumers.	 Hence,	 they	 combine	 the	 best	 features	 of	 traditional	 data
consolidation,	such	as	the	ability	to	provide	data	transformations,	and	the	ability
to	provide	data	in	real-time.	To	guarantee	sufficient	performance,	virtual	views
are	cached	 transparently,	and	query	optimization	and	parallelization	 techniques
are	 applied.	 However,	 for	 very	 large	 volumes	 of	 data,	 the	 combination	 of
consolidation	 and	 ETL	may	 still	 be	 the	most	 efficient	 approach	 performance-
wise.	 There,	 virtualization	 techniques	 can	 provide	 a	 unified	 view	 of	 the
consolidated	 data	 and	 other	 data	 sources,	 e.g.,	 to	 integrate	 historical	 data	with
real-time	data.	Hence,	in	many	real-life	contexts,	a	data	integration	exercise	is	an
ongoing	 initiative	 within	 an	 organization,	 and	 will	 often	 combine	 many
integration	strategies	and	approaches.	This	is	illustrated	in	Figure	18.8.

Figure	18.8	Data	integration	practices	often	combine	a	variety	of	patterns	and

approaches.

18.1.2.7	Data	as	a	Service	and	Data	in	the	Cloud

The	pattern	of	virtualization	is	often	linked	to	the	concept	of	Data	as	a	Service
(DaaS),	 in	 which	 data	 services	 are	 offered	 as	 part	 of	 the	 overall	 Service-
Oriented	Architecture	(SOA)	 in	which	business	processes	are	supported	by	a
set	 of	 loosely	 coupled	 software	 services.	The	 data	 services	 can	 be	 invoked	 by
different	 applications	and	business	processes,	which	are	 isolated	 from	how	 the
data	 services	are	 realized	 regarding	 location,	data	 storage,	 and	data	 integration
technology.	 Many	 commercial	 data	 integration	 suites	 adhere	 to	 the	 SOA
principles	and	support	 the	creation	of	data	services.	Data	services	can	be	read-
only	or	updatable,	in	which	case	they	must	be	able	to	map	the	updates	as	issued
by	 consumers	 of	 the	 data	 service	 to	 the	 underlying	 data	 stores	 in	 an
unambiguous	 way.	Most	 data	 integration	 suites	 also	 provide	 easy	 features	 for
data	 service	 composition,	 in	 which	 data	 from	 different	 services	 can	 be
combined	and	aggregated	into	a	new,	composite	service.

The	 concept	 of	 data	 services	 and	 data	 services	 composition	 also	 raises
questions	 concerning	 the	 boundary	 between	 the	 responsibility	 of	 the	 business
user	 and	 the	 ICT	 provider.	 Data	 integration	 as	 such	 was	 traditionally	 the
responsibility	of	the	ICT	department.	However,	exactly	because	the	consumer	is
isolated	 from	 most	 technical	 details,	 data	 services	 cater	 for	 a	 degree	 of	 self-
service	BI,	 in	which	data	services	can	be	composed,	and	then	subjected	to	data
analytics	 algorithms,	 simply	 by	 a	 business	 user	 dragging	 and	 dropping	 icons
representing	data	services	in	a	graphical	user	interface.	This	self-service	aspect	is
very	 appealing	 from	 a	 productivity	 perspective.	 It	 offers	 the	 business	 user	 the
freedom	 to	 integrate	 data	 on	 demand	 and	 perform	 analyses	 on	 them,	 without
relying	 on	 the	 ICT	 department	 to	 integrate	 and	 transform	 the	 required	 data,

which	 often	 involves	 delays	 and/or	 coordination	 overhead.	 Experience	 shows
that,	 exactly	 because	 all	 technical	 details	 are	 hidden,	 there	 is	 also	 the	 risk	 of
leaving	data	integration	and	data	transformation	to	end-users	without	a	technical
background,	 as	 they	 are	 unaware	 of	 the	 impact	 of	 different	 data	 integration
patterns,	 cleansing	 activities,	 transformations,	 etc.	 on	 data	 quality.	 Therefore,
offering	 self-service	 features	 regarding	 data	 integration	 and	 BI	 should	 not	 be
avoided	per	se,	but	should	nonetheless	be	considered	with	sufficient	caution.

DaaS	is	in	its	turn	often	related	to	cloud	computing.	The	“as	a	service”	and
“in	the	cloud”	concepts	are	very	related,	with	the	former	putting	more	emphasis
on	 the	 consumer	 perspective	 (invocation	 of	 the	 service)	 and	 the	 latter	 mainly
emphasizing	 the	 provisioning	 and	 infrastructure	 aspect.	 The	 (positive	 and
negative)	properties	of	cloud	computing	are	as	follows:

Hardware,	software,	and/or	infrastructure	are	provided	“on	demand”	over
a	network.

Clouds	can	be	public	(offered	by	an	external	cloud	service	provider),
private	(cloud	technology	being	set	up	in-company),	or	hybrid	(a	mixture
of	both).

An	attractive	property	of	public	and	hybrid	clouds	are	the	fading
boundaries	between	one’s	own	infrastructure	and	the	service	providers’
infrastructure,	hence	removing	capacity	constraints	and	allowing	for
extending	storage	or	processing	capacity	gradually	and	on	demand,
without	having	to	make	extensive	investments	upfront,	in	situations
where	the	future	workload	is	very	unpredictable.

The	ability	to	convert	fixed	infrastructure	costs,	and	upfront	investments,
into	variable	costs	(payment	per	unit	of	time	or	volume,	payment
depending	on	features	or	service	levels,	etc.).

Different	 data-related	 services	 can	 be	 hosted	 in	 the	 cloud.	 Below,	 we
provide	a	widely	used	classification	of	different	cloud	offerings	(although	other,
not	necessarily	congruent,	classifications	exist	as	well),	and	indicate	which	data-
related	services	could	relate	to	them:

A	downside	is	the	risk	of	vendor	lock-in	and/or	unexpected	switching
costs.

Another	possible	risk	exists	regarding	performance	guarantees,	privacy,
and	security,	which	can	be	partially	mitigated	by	scrupulously	asserting
formal	Service	Level	Agreements	(SLAs).

The	question	of	accountability	of	the	cloud	service	provider,	if	a	calamity
occurs	or	damage	is	incurred	(e.g.,	data	loss	or	breach	of	privacy).

Software	as	a	Service	(SaaS):	Full	applications	are	hosted	in	the	cloud,
e.g.,	applications	for	analytics,	data	cleansing,	or	data	quality	reporting.

Platform	as	a	Service	(PaaS):	Computing	platform	elements	are	hosted
in	the	cloud,	which	can	run	and	integrate	with	one’s	own	applications,
e.g.,	a	cloud	storage	platform	offering	simple	key–value	store
functionality,	such	as	Amazon	S3.

Infrastructure	as	a	Service	(IaaS):	Hardware	infrastructure	(servers,
storage,	etc.)	are	offered	as	virtual	machines	in	the	cloud,	e.g.,	cloud-
hosted	storage	hardware.

Data	as	a	Service	(DaaS):	Data	services	are	hosted	in	the	cloud,
typically	based	on	strict	SLAs	and	sometimes	with	additional	features
such	as	data	quality	monitoring	or	cloud-based	data	integration	tools,	to
integrate	one’s	own	data	with	data	from	external	providers.

These	 respective	 cloud	 components	 can	 also	 be	 combined,	 e.g.,	 to	 store,
integrate,	 and	 analyze	 data	 in	 the	 cloud.	 The	 pros	 and	 cons	 of	 a	 cloud-based
approach	regarding	analytics	are	discussed	further	in	Chapter	20.

Drill	Down

The	below	chart	displays	the	projected	growth	in	the	As-a-Service	sector
based	on	a	Gartner	study.1	Both	PaaS	and	SaaS	are	projected	to	double	in
size,	 whereas	 IaaS	 is	 about	 to	 triple.	 These	 numbers	 demonstrate
impressive	growth	during	a	three-year	time	period.

18.1.3	Data	Services	and	Data	Flows	in	the	Context	of	Data	and	Process
Integration

Complementary	to	data	integration,	the	idea	of	process	integration	is	to	integrate
and	harmonize	the	business	processes	in	an	organization	as	much	as	possible.	A
business	process	is	defined	as	a	set	of	tasks	or	activities	with	a	certain	ordering
that	 must	 be	 executed	 to	 reach	 a	 certain	 organizational	 goal.	 As	 an	 example,
think	 of	 a	 loan	 approval	 process	 with	 various	 tasks	 such	 as	 filing	 a	 loan
application,	 calculating	 the	 credit	 score,	 drafting	 the	 loan	 offer,	 signing	 the
contract,	 etc.	 This	 also	 includes	 a	 data	 flow	 specifying	 the	 path	 of	 the	 data
between	 these	 tasks.	 Business	 processes	 can	 be	 considered	 from	 two
perspectives.	The	control	flow	perspective,	on	the	one	hand,	specifies	the	correct
sequencing	of	 tasks	 (e.g.,	a	 loan	offer	can	only	be	made	when	 the	credit	 score
has	been	calculated).	The	data	 flow	perspective,	on	 the	other	hand,	 focuses	on
the	 inputs	 of	 the	 tasks	 (e.g.,	 the	 interest	 rate	 calculation	depends	 on	 the	 credit
score).	 As	 to	 the	 actual	 implementation	 in	 an	 information	 system,	 task
coordination/triggering,	on	the	one	hand,	and	task	execution,	on	the	other	hand,
are	often	intertwined	in	the	same	software	code.	However,	among	other	things	in
a	 service-oriented	 context,	 there	 is	 a	 tendency	 to	 separate	 services	 with	 the
purpose	of	task	coordination	from	services	that	perform	the	actual	task	execution
and	 from	 services	 that	 provide	 access	 to	 the	necessary	data.	We	come	back	 to
this	divide	later	in	this	section.

18.1.3.1	Business	Process	Integration

Due	 to	 the	 control	 flow	 perspective,	 which	 defines	 a	 sequence	 and	 ordering
among	tasks,	the	modeling	of	business	processes	is	often	performed	using	visual,
flowchart-like	languages	such	as	Business	Process	Model	and	Notation	(BPMN),

Yet	Another	Workflow	Language	(YAWL),	Unified	Modeling	Language	(UML)
Activity	 Diagrams,	 Event-driven	 Process	 Chain	 (EPC)	 diagrams,	 and	 so	 on.
Figure	18.9	shows	our	loan	approval	process	modeled	using	BPMN.

Figure	18.9	Loan	approval	process	expressed	using	the	BPMN	modeling
language.

Drill	Down

Most	business	process	modeling	 languages	are	 rigid	and	explicit	 in	 the
sense	that	the	ordering	between	tasks	is	defined	so	it	does	not	allow	for
much	 deviation.	 In	 many	 business	 environments,	 this	 is	 seen	 as	 an
advantage,	 as	 it	 allows	 for	 better	 control	 and	 monitoring	 of	 business
activities,	 and	 removing	 room	 for	 ambiguities	 that	 might	 arise.	 Other
practitioners	 and	 researchers,	 however,	 have	 argued	 this	 way	 of	 over-
specifying	processes	is	not	capable	of	handling	the	deviations	that	arise
in	 most	 business	 environments	 and	 is	 hence	 not	 very	 flexible.	 Other
process	 modeling	 languages	 exist	 that	 only	 specify	 the	 crucial	 control
flow	constraints	 among	activities,	but	 leave	 the	 rest	open	 to	 the	parties
executing	the	tasks	in	the	process.

Once	 a	 business	 process	 is	 modeled,	 it	 can	 be	 used	 “as	 is”	 in	 manual
processes	 by	 workers	 and	 employees,	 then	 acting	 as	 a	 prescriptive	 guide
governing	the	executions	of	required	steps	to	which	the	involved	parties	should
adhere.	 In	 most	 settings,	 however,	 the	 idea	 is	 to	 use	 the	 modeled	 business

process	in	such	a	way	that	it	can	drive	the	steps	of	an	information	system,	hence
aiding	in	the	automation	of	the	process	at	hand.	In	this	context,	the	execution	of
the	 process	 is	 handled	 by	 a	 so-called	process	 engine,	 which	 will	 oversee	 the
steps	in	the	process	to	ensure	they	are	performed	correctly.	To	do	so,	a	process
model	 is	often	 translated	 into	 a	declarative	definition	of	 an	executable	process
that	 can	 then	 be	 understood	 and	 used	 by	 the	 process	 engine.	One	 example	 of
such	 an	 execution	 language	 is	 the	 Business	 Process	 Execution	 Language
standard,	WS-BPEL.	Let’s	illustrate	this	concept	again	for	our	loan	application
process.	 After	 converting	 the	 process	 model	 into	 an	 executable	 WS-BPEL
process	 definition,	 the	 business	 process	 engine	 can	 then	 use	 this	 definition	 to
lead	 a	 clerk	 through	 different	 user-interfacing	 tasks	 by	 generating	 a	 user
interface	 and	 consecutive	 data	 entry	 screens,	 making	 sure	 that	 the	 correct
execution	order	is	followed.	It	can	also	trigger	the	execution	of	automated	tasks,
e.g.,	 by	 invoking	 a	 software	 component	 that	 implements	 an	 algorithm	 that
calculates	 the	 credit	 score,	 based	 on	 the	 appropriate	 input	 parameters.	 In	 this
way,	 WS-BPEL	 can	 also	 handle	 the	 data	 flow	 perspective,	 making	 sure,	 for
instance,	that	a	next	step	in	the	loan	application	process	can	only	be	started	once
all	details	have	been	filled	out	correctly	in	the	current	step.	Note	that	in	this	way,
the	 responsibility	of	 task	 coordination	 (as	performed	by	 the	process	 engine)	 is
separated	from	the	task	execution	(as	performed	by	other	software	components
and/or	human	actors).

Business	 processes	 can	 become	 complex,	 and	 several	 steps	 in	 a	 business
process	 will	 often	 spawn	 subprocesses	 across	 departments.	 For	 instance,	 the
review	of	 the	 loan	 application	was	modeled	 as	 a	 single	 activity	 in	 the	 process
above,	but	might	start	off	a	new	“review”	process	where	several	steps	must	be
performed	before	reaching	the	outcome	of	the	review.	Integrating	these	business
processes	 is	 hence	 an	 essential	 task	 for	 an	 organization	 where	many	 of	 these
processes	depend	on	each	other,	and	where	many	processes	may	span	multiple

organizational	 units,	 such	 as	 departments	 or	 even	 external	 partners.	 In	modern
business	 process	 set-ups,	 different	 business	 process	 tasks	 or	 subprocesses	will
hence	 be	 offered	 as	 services,	which	 other	 parties	 can	 then	 invoke	 or	 utilize	 to
achieve	a	certain	goal,	reach	an	outcome,	or	receive	a	result.	A	popular	way	of
exposing	 such	 services	 both	 within	 and	 across	 organizations	 is	 web	 services
technology,	as	discussed	in	Chapter	10.

Connections

Web	services	and	WS-BPEL	were	introduced	in	Chapter	10.	Chapter	16
focuses	 on	 the	 transactional	 aspects	 of	 web	 services	 and	 WS-BPEL
processes.

Process	 execution	 languages	 such	 as	 WS-BPEL	 aim	 at	 managing	 the
control	 flow	 and	 data	 flow	 across	 services	 that	 together	 perform	 the	 business
process	 as	 expressed	 in	 the	 WS-BPEL	 document.	 Therefore,	 two	 types	 of
dependencies	 should	 be	 appropriately	 managed	 to	 guarantee	 the	 successful
overall	 process	 execution.	 First,	 a	 sequence	 dependency	 states	 that	 the
execution	of	a	service	B	depends	on	completing	the	execution	of	another	service
A,	 hence	 guaranteeing	 that	 all	 services	 are	 consumed	 in	 the	 right	 order.	 An
example	could	be	a	 loan	proposal	 that	can	only	be	made	after	a	positive	credit
score	 has	 been	 calculated.	 As	 another	 example,	 think	 of	 an	 order	 fulfillment
process	 in	which	 there	 is	a	sequence	dependency	between	 the	payment	service
and	the	shipping	service:	an	order	can	only	be	shipped	after	payment	is	arranged.
A	data	dependency,	on	the	other	hand,	specifies	that	the	execution	of	a	service
B	depends	on	data	provided	by	a	 service	A.	An	example	 could	be	 the	 interest
rate	of	a	loan	proposal	that	depends	upon	the	credit	score	calculated	during	the
credit	check.	Data	dependencies	should	also	be	carefully	managed	to	ensure	that

a	 service	 is	 always	 provided	 with	 all	 the	 data	 it	 needs	 to	 perform	 its	 task.
Another	 example	 is	 the	 data	 dependency	 between	 a	 shipping	 service	 and	 a
customer	 relationship	 service:	 the	 shipping	 service	 can	only	 ship	 an	order	 if	 it
received	the	customer’s	address	from	the	customer	relationship	service.	In	what
follows,	we	discuss	how	to	deal	with	data	dependencies,	given	different	possible
patterns	for	data	integration	and	process	integration.

18.1.3.2	Patterns	for	Managing	Sequence	Dependencies	and	Data
Dependencies	in	Processes

Different	 patterns	 exist	 to	 manage	 the	 sequence	 and	 data	 dependencies	 in
business	processes.	Many	process	engine	vendors,	and	the	WS-BPEL	language,
favor	 the	 orchestration	 pattern.	 Process	 orchestration	 assumes	 a	 single
centralized	 executable	 business	 process	 (the	 orchestrator)	 that	 coordinates	 the
interaction	among	different	services	and	subprocesses.	The	control	flow	and	data
flow	are	described	at	a	single,	central	place,	and	the	orchestrator	is	responsible
for	invoking	and	combining	the	services,	as	illustrated	in	Figure	18.10.	Compare
this	with	a	team	of	people	with	a	central	manager	telling	everyone	exactly	what
and	when	something	should	be	done.	The	team	members	do	not	care	about	the
overall	 goal	of	 the	process,	 as	 the	manager	 combines	 the	outputs	 into	 a	 single
deliverable.

Figure	18.10	Illustration	of	the	orchestration	pattern.

Another	 pattern	 to	 manage	 sequence	 and	 data	 dependencies	 is
choreography,	 which	 differs	 from	 orchestration	 because	 it	 relies	 on	 the
participants	 themselves	 to	 coordinate	 their	 collaboration.	 It	 is	 hence	 a
decentralized	 approach	 in	 which	 the	 decision	 logic	 and	 interactions	 are
distributed,	with	no	centralized	point	(Figure	18.11).	Compare	this	again	with	a
team	of	people,	but	now	without	a	central	manager.	All	the	team	members	must
know	the	overall	process	(the	goal	 to	be	reached),	so	everyone	knows	when	to
do	something	and	to	whom	to	pass	the	work.

Figure	18.11	Illustration	of	the	choreography	pattern.

Even	though	the	central	aspect	of	orchestration	might	look	more	appealing
from	 a	 managerial	 point	 of	 view,	 many	 actual	 processes	 follow	 a	 more
choreographed	approach,	and	both	come	with	their	respective	benefits	and	costs.
In	 many	 real-life	 settings,	 a	 combination	 of	 both	 approaches	 will	 be	 applied,
where,	 e.g.,	 some	processes	 are	 orchestrated	 by	 a	 central	 authority,	 and	 others
might	be	easier	to	integrate	using	a	choreography-inspired	approach.	However,	a
very	important	remark,	given	data	management,	is	that	in	scientific	literature	and
in	most	real-life	contexts,	the	choice	of	a	process	integration	pattern	is	primarily
made	 based	 on	 considerations	 regarding	 optimally	 managing	 the	 sequence
dependencies	 –	 i.e.,	 according	 to	 which	 pattern	 service	 execution	 should	 be
triggered.	Data	flow	then	just	follows	the	same	pattern	as	the	control	flow	–	i.e.,
the	 input	 data	 needed	 to	 perform	 a	 certain	 task	 are	 simply	 embedded	 in	 the
message	that	triggers	the	task	execution,	e.g.,	as	parameters	in	a	SOAP	message
or	method	invocation.

Despite	 the	 above,	 and	without	 going	 into	 too	much	 detail	 about	 process
coordination,	 it	 is	 important	 to	 stress	 that	 the	 decisions	 regarding	 managing
sequence	dependencies	and	data	dependencies	can	be	made,	to	a	certain	extent,
independently.	For	example,	a	service	that	determines	the	interest	rate	of	a	loan
proposal	 may	 be	 triggered	 by	 a	 central	 coordinator,	 according	 to	 the
orchestration	pattern.	There	is	no	reason,	however,	why	all	necessary	input	data
should	 be	 provided	 in	 the	 triggering	 message	 as	 well.	 Other	 patterns	 may	 be
chosen	 here,	 and	 the	 choice	may	 even	 be	 different	 for	 different	 subsets	 of	 the
input	data.	In	addition,	part	of	the	data	dependencies	may	be	satisfied	using	data
flow	 at	 the	 process	 level,	 and	 part	 may	 be	 satisfied	 by	 data	 integration
technology.	For	 example,	 the	 interest	 rate	 service	may	 request	 the	 credit	 score
directly	 from	 the	 service	 that	 calculated	 the	 credit	 risk,	 hence	 applying	 the
choreography	pattern	for	this	data	flow.	However,	it	may	be	more	appropriate	for
the	 interest	 rate	 service	 to	 retrieve	 other	 customer	 data,	 e.g.,	 to	 decide	 on	 a
commercial	 discount	 for	 excellent	 customers,	 directly	 from	 the	 database	 that
contains	 all	 customer	 information,	 hence	 applying	 the	 “consolidation”	 data
integration	pattern.	From	this	example,	 it	 is	clear	 that	data	 flow	patterns	at	 the
process	layer	and	data	integration	patterns	at	the	data	layer	are	complementary	in
satisfying	a	service’s	data	needs.	Therefore,	data	integration	and	(the	data	flow
aspects	of)	process	integration	should	be	considered	in	a	single	effort.	They	both
contribute	 to	 managing	 data	 dependencies	 and	 the	 respective	 pattern	 choices
made	at	the	level	of	the	process	layer	and	the	data	layer	will	together	determine
the	data	lineage	and	quality.	The	next	section	provides	a	unified	perspective	on
the	data	flow	in	the	process	layer	and	on	the	data	integration	layer	by	identifying
three	types	of	services	that	deal	with	the	processing	and	exchange	of	data.

18.1.3.3	A	Unified	View	on	Data	and	Process	Integration

Roughly	speaking,	a	data	dependency	between	service	A	and	service	B	can	be
resolved	 in	 two	ways.	The	 first	option	 is	 that	 the	process	provides	a	data	 flow
between	A	and	B,	making	sure	that	the	necessary	data	are	passed	from	service	A
to	service	B	at	the	level	of	the	business	process.	The	other	option	is	for	service	A
to	persist	these	data	into	a	data	store,	which	is	also	accessible	through	one	of	the
aforementioned	data	 integration	 techniques	 to	service	B	 to	 retrieve	and	use	 the
data	 afterward.	 In	 this	 way,	 managing	 data	 dependencies	 is	 a	 shared
responsibility	 of	 the	 process	 layer	 (where	 the	 control	 flow	 and	 data	 flow	 are
handled)	and	the	data	layer	(where	data	integration	and	data	storage	capabilities
reside).

To	 analyze	 data	 flow	 at	 the	 process	 level	 and	 data	 integration	 at	 the	 data
layer	 level	 in	 a	 unified	way,	we	 discriminate	 between	 three	 types	 of	 services:
workflow	 services,	 activity	 services,	 and	 data	 services.	 In	 actual	 SOAs,	 these
services	 will	 correspond	 to	 real	 separate	 software	 artifacts.	 For	 example,	 a
workflow	 service	may	 correspond	 to	 a	 process	 engine	 and	 an	 activity	 service
may	 correspond	 to	 a	 web	 service.	 However,	 the	 analysis	 is	 also	 useful	 for
architectures	 in	which	 the	 implementation	 of	 these	 services	 is	 interwoven	 into
monolithic	 software	 modules	 or	 even	 legacy	 code.	 Workflow	 and	 activity
services	 needn’t	 even	 be	 automated,	 but	 can	 also	 be	 performed	 manually,	 by
human	actors.	Even	if	the	three	service	types	are	just	used	as	an	instrument	for
analysis	and	do	not	correspond	to	actual	software	artifacts,	they	provide	a	means
to	assess	the	coordination	functionality,	the	task	execution	functionality,	and	the
data	provisioning	in	any	information	system.	In	this	way,	they	capture	process-
level	 data	 flow	 and	 data	 sharing	 through	 data	 integration	 technology	 into	 a
unified	 perspective.	We	 distinguish	 between	 the	 following	 three	 service	 types
(Figure	18.12):

Workflow	services:	These	services	coordinate	the	control	flow	and	data
flow	of	a	business	process	by	triggering	its	respective	tasks	in	line	with
the	sequence	constraints	in	the	process	model,	and	according	to	an
orchestration	or	choreography	pattern.	For	example,	workflow	services
will	trigger	the	different	tasks	in	a	loan	approval	process.	Some	of	these
tasks	will	be	human	interfacing	activities,	e.g.,	a	business	expert
assessing	the	risk	of	a	complex	loan	request.	There,	the	workflow	service
assigns	the	task	to	the	appropriate	human	actor.	For	fully	automated
tasks,	e.g.,	an	algorithm	that	assesses	the	credit	risk,	the	workflow	service
triggers	an	activity	service	(see	below)	to	perform	the	task.	This
triggering	occurs	through,	e.g.,	a	message	being	sent	or	a	method	being
invoked.	Certain	variables	or	parameters	are	passed	as	input	along	with
this	triggering	message	or	method,	e.g.,	containing	the	ID	of	the
customer,	the	amount	of	the	requested	loan,	etc.	This	passing	of	variables
constitutes	the	data	flow	in	a	business	process.

Activity	services:	These	services	perform	one	task	in	a	business	process.
They	are	triggered	by	a	workflow	service	when	the	corresponding	task	is
due	in	the	process.	They	can	also	be	triggered	by	different	workflow
services,	for	example	in	a	situation	in	which	different	purchase	processes
(possibly	even	belonging	to	different	organizations)	make	use	of	the
same	“credit	card	validation”	activity	service.	The	activity	service	is
triggered	(representing	the	control	flow)	and	may	receive	input	variables
(representing	the	data	flow).	The	activity	service	may	just	return	a	result
to	the	workflow	service	(e.g.,	the	result	of	a	credit	risk	calculation),	but	it
may	also	alter	the	business	state,	e.g.,	for	an	activity	service	that	creates	a
new	purchase	order	or	that	brings	a	loan	into	an	“approved”	state.	This
manipulation	of	business	state	occurs	through	interaction	with	the	data

services	(see	below)	that	provide	access	to	the	actual	business	data.	Also,
activity	services	may	interact	with	the	data	services	to	retrieve	business
state	not	provided	in	their	input	variables.	For	example,	whereas	an
activity	service	responsible	for	creating	a	transportation	order	may
receive	the	CustomerID	as	an	input	variable,	it	may	need	to	retrieve	the
CustomerAddress	through	the	data	services.	This	already	illustrates	that
providing	an	activity	service	with	the	appropriate	data	to	perform	its	task,
hence	dealing	with	a	data	dependency,	will	correspond	to	an	interplay
between	data	flow	at	the	process	level	and	data	integration	at	the	data
layer	level.

Data	services:	These	services	provide	access	to	the	business	data.	Their
only	logic	consists	of	so-called	CRUDS	functionality:	Create,	Read,
Update,	Delete,	and	Search	on	data	stored	in	the	underlying	data	stores.
Some	data	services	will	be	read-only	(e.g.,	an	external	service	with
demographic	data),	whereas	others	are	used	by	activity	services	to	alter
the	business	state	(e.g.,	a	service	containing	order	data,	which	can	be
updated).	Data	services	provide	unified	access	to	the	underlying	data
stores	and	are	realized	using	the	data	integration	patterns	discussed
previously.	The	actual	pattern(s)	chosen	for	a	certain	data	service	depend
on	the	QoS	characteristics	required	for	those	data,	regarding	latency,
response	time,	completeness,	consistency,	etc.

Figure	18.12	Workflow	services,	activity	services,	and	data	services.

Different	 data	 services	 can	 be	 realized	 according	 to	 different	 data
integration	 patterns.	 Data	 services	 based	 on	 federation	 provide	 real-time,
comprehensive	 data	 about	 the	 business	 state,	 hiding	 the	 complexity	 of	 the
disparate	 data	 sources	 from	 workflow	 and	 activity	 services.	 If	 extensive
transformation,	 aggregation,	 and/or	 cleansing	 capabilities	 are	 needed,	 or
performance	 is	 an	 issue,	 it	 is	 better	 to	 implement	 the	 data	 services	 using
consolidation.	 This	 pattern	 is	 also	 required	 if	 the	 data	 service	 should	 provide
access	to	historical	data.	If	only	performance	is	a	criterion	without	the	need	for
transformation/cleansing	 or	 historical	 data,	 replication	 can	 be	 used	 to,	 e.g.,
offload	 analytical	 workload	 from	 source	 systems	 and	 provide	 access	 to	 zero-
latency	operational	data	for	analysis.	These	basic	patterns	can	be	combined	with
approaches	such	as	CDC	and	virtualization.	In	this	way,	a	hybrid	data	integration
landscape	emanates.	This	is	also	facilitated	by	the	contemporary	data	integration
suites	from	the	main	vendors,	which	support	different	data	integration	patterns,
and	the	possibility	to	publish	data	services	formally.

The	picture	is	only	complete	if	the	data	services	perspective	and	the	process
perspective	 are	 combined	 to	 provide	 activity	 services	with	 the	 necessary	 input

data.	For	 example,	 the	 “order	creation”	 activity	 service	will	 receive	 part	 of	 its
input	through	process-level	data	flow,	as	part	of	the	task	triggering.	At	least	data
that	define	 the	very	 task	 to	be	performed	(e.g.,	 the	 ID	of	 the	customer	and	 the
ordered	product,	and	the	ordered	quantity)	should	be	received	from	the	process,
embedded	 in	 the	 triggering	message.	This	 is	none	other	 than	an	application	of
the	EAI	pattern.	The	other	data	necessary	to	perform	the	task	can	be	retrieved	by
the	activity	 service	 from	 the	data	 services.	The	balance	between	 input	 through
data	flow	and	through	data	layer	can	differ	from	context	to	context:	sometimes,
all	necessary	input	data	will	be	provided	as	part	of	the	triggering	of	the	activity
service,	on	top	of	what	is	minimally	required.	For	example,	all	customer	data	can
be	 provided	 within	 the	 triggering	 message,	 even	 if	 it	 is	 available	 in	 the	 data
layer,	so	the	activity	service	needn’t	contact	any	data	services.	We	then	speak	of
comfort	data.	There	is	always	a	tradeoff	though:	The	more	comfort	data,	the	less
the	 activity	 service	 depends	 on	 access	 to	 the	 data	 layer	 for	 its	 functioning.	 If
such	data,	e.g.,	 the	customer	address,	were	recently	altered	in	the	data	layer	by
another	 process,	 the	 activity	 service	 may	 not	 be	 aware	 of	 this	 if	 the	 data	 are
received	as	comfort	data	and	will,	therefore,	work	with	outdated	data.

The	above	discussion	is	closely	related	to	the	concept	of	data	lineage.	Data
lineage	 refers	 to	 the	whole	 trajectory	 followed	 by	 a	 data	 item,	 from	 its	 origin
(data	entry),	possibly	over	respective	transformations	and	aggregations,	until	it	is
ultimately	 being	 used	 or	 processed.	 Often,	 the	 same	 data	 will	 be	 copied	 and
distributed	to	multiple	business	processes,	users,	and/or	data	stores,	so	what	was
originally	entered	as	a	single	data	item	may	result	in	many	trajectories	and	paths
down	 the	 line,	making	 the	 lineage	even	more	difficult	 to	 trace.	And	yet,	 if	 the
data	lineage	is	unknown	or	unclear,	it	is	very	difficult	to	assess	the	data’s	quality,
since	the	quality	is	affected	by	all	transformations	and	manipulations	a	data	item
underwent	 throughout	 its	 journey.	 In	 this	 respect,	 it	 is	 important	 to	 take	 data
integration	 patterns	 at	 the	 data	 layer	 level,	 and	 data	 flow	 at	 the	 business

processes	level,	into	account	to	see	the	whole	picture	regarding	data	lineage	and
to	assess	the	impact	of	the	data’s	lineage	on	different	data	quality	dimensions.

A	rule	of	thumb	is	that	event	data	(When	was	an	order	created?	What	is	the
order	 quantity?	By	whom	was	 the	 stock	 replenished?)	 can	be	 safely	passed	 as
data	 flow,	as	 these	data	will	never	 change	after	 the	actual	 event	 they	describe.
Other	 data,	 which	 refer	 to	 the	 business	 state	 (What	 is	 the	 customer’s	 current
address?	What	 is	 the	 current	 stock?	What	 is	 the	 client’s	 current	 credit	 score?)
should	be	treated	with	more	care.	It	is	safer	that	these	data	are	retrieved	through
the	data	layer	when	needed	unless	the	data	are	very	stable	or	the	impact	of	some
of	 the	 data	 being	 somewhat	 outdated	 is	 limited.	 Therefore,	 ideally,	 different
subsets	 of	 the	 input	 data	 for	 an	 activity	 service	 to	 perform	 its	 task	 may	 be
provided	 through	a	combination	of	patterns	at	 the	process	 layer	and	data	 layer
level,	as	illustrated	in	Figure	18.13.

Figure	18.13	Combining	different	patterns	to	resolve	data	dependencies.

Besides	 the	 data	 services	 that	 provide	 the	 actual	 data,	most	 SOA-enabled
data	 integration	suites	also	provide	different	data-related	 infrastructure	services
that	support	the	exploitation	and	management	of	data	services.	We	provide	some

examples	 below.	 Many	 services	 are	 also	 related	 to	 data	 quality	 and	 data
governance,	which	will	be	discussed	in	more	detail	in	Sections	18.3	and	18.4.

Retention	Questions

Data	profiling	services:	providing	automated	support	for	assessing	and
understanding	content,	quality,	and	structure	of	enterprise	data;	relating
data	from	various	sources	to	one	another	based	on	the	patterns	and	values
in	the	data,	e.g.,	by	automatically	detecting	and	matching	foreign	keys.

Data	cleansing	services:	ensuring	the	validity	and	consistency	of	data
using	name-and-address	cleansing;	resolving	missing	fields,	poor
formatting,	and	conflicting	data;	and	standardization	to	various	industry
formats.

Data	enrichment	services:	enhancing	the	data	by	exploiting	external
data	sources.

Data	transformation	services:	transforming	data	to	match	the	target
application’s	requirements	or	reconciling	between	data	items	residing	in
different	data	sources.

Data	event	services:	monitoring	data	for	state	changes	and	rules,	raising
events	that	can	be	acted	upon	by	other	services.

Data	auditing	services:	reporting	on	data	lineage	and	when/how/by
whom	data	was	changed.	This	is	important	in	auditing,	reporting,	and
meeting	the	demands	of	internal/external	auditors	and	legislated
regulations	(Sarbanes–Oxley,	Basel	III,	etc.)

Metadata	services:	supporting	the	storage,	integration,	and	exploitation
of	diverse	types	of	metadata.

Why	is	data	integration	important?

Discuss	and	contrast	different	patterns	for	data	integration.

What	patterns	are	needed	for	managing	sequence	and	data
dependencies	in	processes?

18.2	Searching	Unstructured	Data	and
Enterprise	Search

The	data	integration	patterns	discussed	in	the	previous	sections	are,	in	principle,
applicable	 to	structured,	 semi-structured,	and	unstructured	data.	However,	with
unstructured	 data,	 even	 if	 data	 integration	 technology	 yields	 unified	 access	 to
collections	of	full-text	documents	or	multimedia	data,	there	remains	the	question
of	how	to	search	 these	documents	efficiently.	As	Google	and	others	would	 tell
you,	making	 vast	 repositories	 of	 data	 searchable	 is	 a	 daunting	 task,	 especially
when	the	majority	of	data	consist	of	textual	and	other	unstructured	formats.	Over
the	 years,	 various	 database	 providers	 have	 worked	 on	 offering	 specialized
features	to	tackle	this	problem,	in	full-text	search	engines.	These	can	be	systems
of	 their	 own,	 or	 components	 of	 a	 DBMS,	 in	 particular	 to	 process	 CLOB
(character	 large	 object;	 see	 also	 Chapter	 9)	 data	 types.	 They	 allow	 quickly
searching	large	volumes	of	unstructured	text,	stored	as	several	“documents”,	and
return	documents	based	on	how	well	they	match	a	query.

The	querying	capabilities	of	such	engines	differ	from	those	offered	in	SQL.
Whereas	SQL	is	primarily	well	suited	to	query	structured	collections	of	records,
using	such	languages	becomes	hard	when	dealing	with	text	fields.	For	example,
writing	 out	 a	 query	 to	match	 documents	 having	 something	 to	 do	with	 “SQL”
might	be	done	as	follows:

SELECT	*	FROM	documents
WHERE	text	LIKE	'%SQL%'	OR	text	LIKE	'%STRUCTURED	
QUERY	LANGUAGE%'

This	approach,	however,	comes	with	several	questions.	For	instance,	how	can	we
sort	the	results	based	on	some	notion	of	relevancy?	What	about	documents	that
do	not	mention	 the	 terms	“SQL”	or	“Structured	Query	Language”	 but	 are	 still
related	to	our	topic?	How	do	we	extract	matching	fragments	and	show	them	to
the	 user?	 Therefore,	 this	 section	 deals	 with	 the	 main	 principles	 of	 searching
unstructured	 data,	 and	 full-text	 search	 in	 particular.	 We	 also	 zoom	 in	 to	 the
specifics	of	searching	collections	of	full	text	documents	in	the	World	Wide	Web,
with	 web	 search	 engines.	 We	 conclude	 these	 sections	 with	 a	 discussion	 of
enterprise	 search,	 which	 applies	 the	 same	 techniques	 to	 organize	 and	 search
distributed	 collections	 of	 both	 structured	 and	 unstructured	 content	 within	 an
enterprise	or	organization.

18.2.1	Principles	of	Full-Text	Search

So	 far,	most	 of	 the	 query	 languages	 and	 search	 techniques	we	 have	 discussed
focused	on	structured	data,	expressed	as	collections	of	neatly	organized	records
consisting	 of	 typed	 fields.	 Even	 NoSQL	 databases,	 which	 generally	 allow	 for
more	 flexibility	 and	 emphasize	 less	 the	 aspect	 of	 a	 strict	 schema	 design,	 do
assume	some	structure,	e.g.,	in	the	form	of	records	consisting	of	key–value	pairs
or	dictionary-like	data	structures.	However,	in	today’s	data-driven	world,	a	lot	of
data	are	being	captured	and	stored	in	an	unstructured	format.	Taking	text	as	an
example,	it	is	easy	to	imagine	environments	generating	thousands	of	documents
in	the	form	of	text	files,	PDFs,	and	so	on.	The	internet	itself	consists	of	a	huge
amount	 of	 interlinked	 web	 pages,	 the	 majority	 of	 which	 follow	 no	 standard
structure	and	just	represent	their	content	and	information	as	“text”,	rendered	by
your	web	browser.

The	main	difference	between	structured	and	unstructured	data	was	already
explained	in	Chapter	1.	Structured	data	can	be	described	according	 to	a	 formal
logical	data	model.	Individual	characteristics	of	data	items	can	be	identified	and
formally	specified,	such	as	the	number,	name,	address,	and	email	of	a	student	or
the	number	and	name	of	a	course.	The	advantage	in	searching	these	kinds	of	data
is	 that	 a	 query	 mechanism	 has	 fine-grained	 control	 over	 the	 data:	 it	 can,	 for
example,	 discriminate	 between	 a	 series	 of	 characters	 representing	 a	 student’s
name	and	a	student’s	address.	In	this	way,	it	becomes	possible	to	formulate	fine-
grained	search	criteria,	such	as	all	the	names	of	students	who	live	in	New	York.
With	 unstructured	 data,	 there	 are	 no	 finer-grained	 components	 in	 a	 text
document	that	can	be	interpreted	in	a	meaningful	way	by	the	search	mechanism.
For	example,	given	a	collection	of	text	documents	containing	the	biographies	of
famous	New	York	citizens,	it	is	impossible	to	retrieve	only	those	biographies	of

people	who	 lived	 in	New	York	 as	 a	 student.	One	 could	 search	 for	 documents
containing	 the	 terms	 “name”,	 “student”,	 and	 “New	 York”	 occurring	 closely
together,	but	such	a	search	would	also	yield	biographies	of	people	born	in	New
York,	but	who	studied	elsewhere,	or	maybe	even	people	who	 the	 text	explains
that	 as	 a	 student	 they	 always	 wore	 the	 same	 sweater,	 with	 the	 imprint	 “New
York”	on	it.	The	search	result	will	always	consist	of	entire	biography	documents,
but	it	is	impossible	to	retrieve,	e.g.,	only	the	names	and	birth	dates	of	the	people
mentioned	in	a	biography.

And	yet,	given	the	huge	amounts	of	unstructured	text	documents	that	may
contain	 vital	 data	 (emails,	 contracts,	 manuals,	 legal	 documents,	 etc.),	 it	 is
important	to	examine	how	the	rudimentary	search	techniques	available	to	these
kinds	of	data	can	be	exploited	to	the	fullest.	The	main	idea	of	full-text	search	is
that	 individual	 text	documents	 can	be	 selected	 from	a	 collection	of	documents
according	 to	 the	 presence	 of	 a	 single	 search	 term	 or	 a	 combination	 of	 search
terms	 in	 the	 document.	 This	 is	 also	 the	 basic	 principle	 behind	 web	 search
engines	 like	Google	or	Bing.	An	additional	criterion	can	be	proximity,	 i.e.,	 the
fact	that	some	search	terms	occur	closely	together,	or	the	absence	of	some	terms.
For	example,	searching	for	documents	containing	the	term	“python”	may	yield	a
completely	 different	 result	 than	 a	 search	 for	 documents	 containing	 the	 term
“python”	but	not	the	term	“monty”.	Often,	the	set	of	documents	resulting	from	a
full-text	 search	 is	ordered	according	 to	 relevance.	A	 simple	way	of	 expressing
the	 latter	 is	 the	 frequency	 with	 which	 the	 search	 term(s)	 occur(s)	 in	 the
document,	meaning	 that	 a	 document	 containing	 a	 term	multiple	 times	will	 be
more	 relevant	 to	 the	 search	 than	 a	 document	 containing	 the	 term	 only	 once.
Typically,	 this	 frequency	 is	 expressed	 in	 relative	 terms,	 i.e.,	 relative	 to	 the
frequency	of	occurrence	of	the	term	in	the	entire	document	collection.

18.2.2	Indexing	Full-Text	Documents

Whereas	 the	 most	 basic	 functionality	 of	 a	 full-text	 search	 engine	 is	 simple	 –
receive	a	set	of	search	terms	as	input	and	return	a	set	of	references	to	documents
containing	 the	 search	 terms	 as	 a	 result	 –	 its	 implementation	 becomes	 less
straightforward	for	document	collections	of	a	size	 that	prohibits	 the	documents
being	searched	on	the	fly.	The	only	option	is	to	search	the	documents	in	advance
for	relevant	terms	and	to	capture	the	results	in	an	index,	relating	search	terms	to
documents.	 In	 this	way,	 only	 the	 index	must	 be	 searched	 on	 the	 fly,	which	 is
much	more	efficient.

The	 prevalent	 approach	 for	 indexing	 full-text	 documents	 is	 an	 inverted
index,	 which	 was	 introduced	 in	 the	 context	 of	 structured	 data	 in	 Chapter	 12.
Basically,	a	single	index	is	used,	which	is	conceived	as	follows:

The	document	collection	is	parsed	upfront,	with	only	relevant	terms
being	withheld	–	i.e.,	prepositions,	articles,	conjunctions,	etc.	are
typically	omitted.

An	index	entry	is	created	for	every	individual	search	term.	The	index
entries	consist	of	(search	term,	list	pointer)	pairs,	with	the	list	pointer
referring	to	a	list	of	document	pointers.	Each	document	pointer	refers	to	a
document	that	contains	the	corresponding	search	term.

For	a	search	term	ti	the	list	is	typically	of	this	format:	[(di1,	wi1),	…	(din,
win)].	A	list	item	(dij,	wij)	contains	a	document	pointer	dij,	referring	to	a
document	j	that	contains	the	search	ti,	with	j	=	1..n.	The	list	item	also
contains	a	weight	wij,	denoting	how	important	term	ti	is	to	document	j.
The	weight	can	be	calculated	in	different	ways,	but	often	depends	on	the
number	of	occurrences	of	ti	in	document	j.

Connections

The	distinction	between	structured	and	unstructured	data	was	introduced
in	Chapter	 1.	 Chapter	 9	 discussed	 the	 CLOB	 data	 type	 as	 a	means	 to
store	 full-text	 content	 in	 (extended)	 RDBMSs.	 Chapter	 12	 dealt	 with
different	 index	 types,	 including	 inverted	 indexes,	 in	 the	 context	 of
structured	data.

A	full-text	search	then	comes	down	to	providing	one	or	more	search	terms.
At	 that	 time,	only	the	index	is	searched,	not	 the	document	collection.	For	each
search	term,	the	corresponding	index	entry	yields	access	to	a	list	with	pointers	to
documents	that	contain	the	search	term.	If	multiple	search	terms	are	used	(e.g.,
the	terms	“full”	and	“text”),	the	intersection	of	the	two	lists	yields	the	pointers	to
all	 documents	 containing	 both	 terms.	 If	 the	 search	 pertains	 to	 all	 documents
containing	 the	 terms	“full”	or	“text”,	 the	 union	 of	 both	 lists	 can	 be	 used.	 The
ranking	algorithm	sorts	the	results	in	descending	order	of	relevance,	according	to
the	 combined	 weights	 and	 other	 statistical	 information	 in	 the	 lexicon.	 This	 is
illustrated	in	Figure	18.14.	In	many	cases,	the	result	also	contains	a	summary	or
description	of	the	selected	documents	with	the	pointers	to	the	full	documents.

In	addition,	most	search	engines	contain	a	lexicon,	which	maintains	some
statistics	per	search	term,	e.g.,	the	total	number	of	documents	that	contain
the	term.	These	statistics	can	also	be	used	by	the	ranking	algorithm	(see
below),	besides	the	weights.

Figure	18.14	Illustration	of	full-text	search	and	inverted	index.

Many	 search	 engines	 extend	 this	 basic	 approach	with	 additional	 features,
such	as	the	following:

In	 many	 cases,	 document	 metadata	 can	 also	 be	 included	 in	 the	 search
criteria.	Document	metadata	do	not	pertain	to	the	actual	document	content,	but	to
the	properties	of	the	document	itself:	file	name,	creator	of	the	file,	creation	and
last	modification	date	of	the	file,	file	type	(text,	image,	audio,	etc.),	for	example.

A	thesaurus,	allowing	inclusion	of	documents	containing	synonyms	or
derived	terms	of	the	search	terms	in	the	search	result.

Proximity,	allowing	to	enforce	that	only	documents	are	included	where
particular	search	terms	occur	closely	together.

The	use	of	fuzzy	logic	or	similarity	measures	to	also	take	into	account
terms	very	similar	to	the	search	terms,	among	other	things	to
accommodate	for	misspellings	(e.g.,	documents	containing	the	term
“dtaabases”	would	be	retrieved	when	searching	for	“databases”).

The	use	of	text	mining	techniques:	these	are	advanced	analytics
techniques	specifically	focusing	on	unstructured,	textual	data,	e.g.,	to
automatically	derive	the	most	representative	key	terms	from	a	document,
or	to	classify	documents	according	to	similarity.

Using	document	metadata	can	improve	search	efficiency,	as	document	metadata
are	 themselves	 structured	 data,2	 so	 one	 can	 distinguish	 between,	 e.g.,	 a	 date
denoting	when	the	document	was	created	and	a	date	denoting	when	it	was	 last
modified.	Still,	the	search	result	will	be	entire	documents,	not	individual	fields,
since	 the	 result	 still	 consists	 of	 unstructured	 data.	 In	 this	 way,	 it	 becomes
possible	 to,	 e.g.,	 search	 for	 all	 documents	 authored	 by	 Wilfried	 Lemahieu,
modified	after	8	June	2017,	and	containing	the	terms	“database	management”.

18.2.3	Web	Search	Engines

The	basic	principles	of	web	search	engines	are	very	similar	to	the	ones	described
above,	apart	from	obviously	the	larger	scale	of	the	document	collection.	This	is
illustrated	in	Figure	18.1.	A	first	important	component	of	web	search	technology
is	 the	 web	 crawler	 or	 web	 spider,	 which	 continuously	 retrieves	 web	 pages,
extracts	their	links	(URLs)	to	other	pages,	and	adds	these	URLs	to	a	buffer	that
contains	 the	 links	 to	 pages	 yet	 to	 be	 visited.	Each	 retrieved	page	 is	 sent	 to	 an
indexer,	 which	 extracts	 all	 relevant	 terms	 from	 the	 page	 and	 updates	 the
inverted	 index	 structure	 we	 discussed	 previously.	 Each	 relevant	 term
corresponds	 to	 an	 index	 entry,	 referring	 to	 a	 list	 with	 (dij,	 wij)	 pairs,	 with	 dij
representing	 the	 web	 page’s	 URL	 and	 wij	 denoting	 the	 weight	 of	 the
corresponding	search	term	to	the	page.	If	a	user	issues	a	web	search	with	one	or
more	search	terms,	the	query	engine	searches	the	index	according	to	the	search
terms	and	 sends	 the	matching	pages,	with	 their	weights,	 to	 a	ranking	module
that	 sorts	 the	 result	 set	 according	 to	 relevance.	 Finally,	 this	 ranked	 result,
containing	 essentially	 a	 list	 of	 URLs	 (and	 possibly	 brief	 descriptions	 of	 the
corresponding	web	pages)	is	returned	to	the	user.

Drill	Down

The	 ranking	 module	 for	 Google’s	 search	 engine	 is	 based	 on	 the
PageRank	algorithm	introduced	by	Page	et	al.	 in	1999.3	The	PageRank
algorithm	 aims	 to	 simulate	 surfing	 behavior.	 Figure	 18.15	 represents	 a
network	of	web	pages	linked	to	each	other.	Given	the	figure,	what	is	the
probability	 that	a	 surfer	will	visit	web	page	A?	Assume	for	now	 that	a
surfer	only	browses	web	pages	by	following	 the	 links	on	 the	web	page

she/he	is	currently	visiting.	The	figure	shows	that	web	page	A	has	three
incoming	 links.	 A	 surfer	 currently	 visiting	 web	 page	 B	 will	 visit	 web
page	A	next	with	a	probability	of	20%	(1/5).	This	is	because	web	page	B
has	 five	 links	 to	 other	 web	 pages,	 among	 which	 is	 web	 page	 A.
Analogously,	 if	 a	 surfer	 is	 currently	 on	 web	 page	 C	 or	 D,	 there	 is	 a
probability	 of	 33.33%	 and	 50%	 respectively	 that	 web	 page	 A	 will	 be
visited	 next.	 The	 probability	 of	 visiting	 a	 web	 page	 is	 called	 the
PageRank	of	that	web	page.	To	know	the	PageRank	of	web	page	A,	we
must	know	the	PageRank	of	web	page	B,	C,	and	D.	This	is	often	called
collective	inference:	the	ranking	of	one	web	page	depends	on	the	ranking
of	other	web	pages;	and	a	change	in	the	ranking	of	one	web	page	might
affect	the	ranking	of	all	other	web	pages.

Figure	18.15 	The	PageRank	algorithm.

Specifically,	 the	main	 idea	 is	 that	 important	 web	 pages	 (i.e.,	 web
pages	 that	appear	at	 the	 top	of	 the	search	 results)	have	many	 incoming
links	 from	 other	 (important)	 web	 pages.	 Hence,	 the	 ranking	 of	 a	 web
page	depends	on	 (a)	 the	 ranking	of	web	pages	 linking	 toward	 that	web
page;	 and	 (b)	 the	 number	 of	 outgoing	 links	 of	 the	 linking	web	 pages.
However,	visiting	web	pages	by	following	a	random	link	on	the	current
web	 page	 is	 not	 a	 realistic	 assumption.	 Surfers’	 behavior	 is	 typically
more	random:	instead	of	following	one	of	the	links	on	a	web	page,	they

might	 also	 randomly	 visit	 another	web	 page.	 Therefore,	 the	 PageRank
algorithm	includes	this	random	surfer	factor,	which	assumes	that	surfers
might	 randomly	 jump	to	another	web	page.	With	a	probability	of	α	 the
surfer	 will	 follow	 a	 link	 on	 the	 web	 page	 she/he	 is	 currently	 visiting.
However,	with	a	probability	1	−	α,	the	surfer	visits	a	random	other	web
page.	The	PageRank	formula	can	then	be	expressed	as	follows:

where	PR(A)	is	the	PageRank	of	web	page	A,	NA	is	the	pages	linking	to
page	A,	Dout,i	 is	 the	number	of	outgoing	links	of	web	page	 i,	(1	−	α)	 is
the	restart	probability,	and	eA	is	the	restart	value	for	web	page	A,	which
is	 often	 uniformly	 distributed	 among	 all	 web	 pages.	 This	 equation
requires	the	ranking	of	the	neighboring	web	pages.	One	option	is	to	start
with	a	random	PageRank	value	for	every	web	page	and	iteratively	update
the	PageRank	scores	until	a	predefined	number	of	iterations	is	reached	or
a	stopping	criterion	is	met	(e.g.,	when	the	change	in	the	PageRank	scores
is	marginal).

The	above	equation	can	be	rewritten	so	the	ranking	is	computed	for
all	web	pages	simultaneously:

where	 	is	a	vector	of	size	n	containing	the	PageRanks	of	all	n	web
pages,	 A	 is	 the	 column-normalized	 adjacency	 matrix	 of	 size	 n	 ×	 n,
(1	−	α)	 is	 the	restart	probability,	and	 	 is	 the	restart	vector.	The	restart
vector	 is	 generally	 uniformly	 distributed	 among	 all	 web	 pages,	 and
normalized	afterwards.

Many	 variations	 are	 possible	 in	 this	 basic	 technology,	 also	 taking	 into
account	 the	 particularities	 of	 the	 World	 Wide	 Web.	 For	 example,	 when
calculating	the	weight	of	a	term	to	a	page,	the	HTML	markup	can	be	considered,
e.g.,	attributing	a	higher	weight	 to	 terms	 in	bold	or	 in	headings,	assuming	 that
these	 terms	are	 considered	more	 important	or	more	 representative	of	 the	page.
Also,	 the	 HTML	 markup	 contains	 document	 metadata	 such	 as	 the	 last
modification	date	and	the	author	of	the	document,	which	can	be	used	as	search
criteria	or	to	further	refine	the	search	results.	Finally,	given	the	huge	number	of
web	 users,	 the	 behavior	 of	 these	 users	 can	 also	 be	 exploited	 to	 improve	 the
search	results.	For	example,	links	clicked	upon	in	the	past	by	many	users	using
the	 same	 search	 terms	 as	 the	ones	 at	 hand	 are	 probably	very	 relevant	 to	 these
search	terms	and	should	be	ranked	higher	in	the	result,	even	if	 the	terms	occur
not	 very	 frequently	 in	 the	 document.	 A	 complementary	 technique	 is	 the
recognition	and	grouping	of	web	pages	with	the	same	content	into	a	single	item
in	 the	result,	so	as	not	 to	clutter	up	 the	result	set	with	 too	many	similar	pages.
Such	mechanisms	show	us	that	web	search	engines	and	recommender	systems,
which	 recommend	 products	 or	 items	 to	 users	 according	 to	 their	 (predicted)
interest,	 are	 very	 related	 technologies.	Recommender	 systems	 are	 discussed	 in
more	detail	in	Chapter	20.

Figure	18.16	Illustration	of	the	functioning	of	a	web	search	engine.

Drill	Down

Search	data	themselves	can	also	be	a	very	relevant	source	of	information.
Website	owners	are	interested	to	know	when	the	search	functionality	on
their	website	 is	 invoked	and	what	are	 the	most	popular	search	 terms	 to
understand	 the	key	 interests	of	 their	visitors	and	 improve	 the	design	of
their	website.

Google	 Trends	 is	 another	 example	 and	 shows	 how	 often	 a	 search
term	is	entered	relative	to	the	total	number	of	searches	per	region,	 time
period,	interest	category,	and	type	of	search.	Google	Trends	search	data
have	 been	 successfully	 used	 to	 forecast	 housing	 market	 trends,
unemployment	 rates,	and	 flu	outbreaks	based	on	searches	 for,	e.g.,	buy
house,	 employment	 benefits,	 and	 flu	 symptoms.	 The	 forecasts	 are
especially	 good	 at	 predicting	 the	 present	 (also	 called	 nowcasting)	 or
short-term	 future,	 which	 allows	 getting	 the	 measures	 of	 interest	 in	 a
quicker	 way	 than	 having	 to	 wait	 for	 the	 statistical	 releases	 from	 the
official	(e.g.,	government)	channels.

18.2.4	Enterprise	Search

Another	related	concept	is	enterprise	search,	referring	to	the	practice	of	making
the	content	stemming	from	various	distributed	data	sources	(databases,	but	also
plain	 files)	 in	 an	 organization	 searchable.	 Enterprise	 search	 technologies	 are
strongly	related	to	standard	web	search	products	and	providers	(such	as	Google
and	 the	 like),	 but	 aim	 to	 offer	 tools	 that	 can	 be	 deployed	 and	 used	 internally,
within	an	organization’s	boundaries	and	not	exposed	to	the	outside	world.

The	 open-source	 technology	 that	 provided	 a	 lot	 of	 groundbreaking
fundamental	work	for	subsequent	 tools	 in	 full-text	search	was	Apache	Lucene.
Originally	written	in	1999	in	Java,	it	supported	information	retrieval	from	textual
sources	by	offering	 indexing	and	search	capabilities.	At	 the	center	of	Lucene’s
architecture	is	the	idea	of	documents	containing	fields	of	text,	be	it	from	PDFs,
HTML,	Word	 files,	 or	 many	 others.	 These	 can	 be	 indexed	 in	 Lucene	 if	 their
textual	 information	 can	 be	 extracted.	 Lucene	 offers	 a	 custom	 query	 syntax
allowing	for	rich	query	expressions,	including	searching	for	keywords	in	named
text	 fields,	 Boolean	 operators,	 wildcard	 matching,	 proximity	 matching,	 range
searches,	and	so	on.

Lucene	has	given	 rise	 to	a	 large	number	of	 spinoff	projects.	Apache	Solr,
for	 instance,	 builds	 on	 top	 of	 Lucene	 and	 adds	 various	 APIs,	 highlighting
matches,	 additional	 search	 capabilities,	 a	 web	 administration	 interface,	 and
more.	Lucene	is	commonly	compared	to	an	engine,	with	Solr	being	the	car.	Solr
is	particularly	well-suited	for	search	in	applications	served	over	the	web.

Another	 popular	 search	 solution	 that	 has	 seen	 widespread	 adoption	 is
Elasticsearch.	 Just	 like	 Solr,	 Elasticsearch	 is	 built	 on	 top	 of	 Lucene	 and	 adds
additional	APIs,	distributed	search	support,	grouping	and	aggregation	in	queries,
and	 allows	 storing	 documents	 in	 a	 schema-free	 JSON	 format,	 which	 means

Elasticsearch	can	also	be	described	as	a	NoSQL	database.	Elasticsearch	is	based
on	 the	 same	 inverted	 index	 principles	 as	 described	 before,	 but	 adds	 the
distribution	 aspect.	 An	 Elasticsearch	 index	 consists	 of	 multiple	 individual
Lucene	indexes,	which	are	distributed	and	replicated	to	cater	for	parallelism	and,
hence,	search	performance.	Elasticsearch	is	frequently	combined	with	two	other
applications	 that	 work	 with	 it	 (forming	 the	 “ELK	 stack”	 –
Elasticsearch–Logstash–Kibana).	Logstash	is	a	tool	to	collect	and	process	data	to
store	it	in	a	back-end	system	(not	necessarily	an	Elasticsearch	database,	though	it
can	be).	It	is	hence	typically	used	in	the	ETL	process	of	a	data	analysis	exercise.
Logstash	 comes	 with	 many	 typical	 parsing	 actions	 and	 predefined	 regular
expression	patterns	 that	allow	rapid	development	of	parsing	routines.	The	K	in
“ELK”	 stands	 for	 Kibana,	 which	 is	 a	 web-based	 analytics,	 visualization,	 and
search	 interface	 for	 Elasticsearch.	 Kibana	 supports	 a	 large	 number	 of
visualization	types	like	area	charts,	data	tables,	line	charts,	pie	charts,	tag	clouds,
geographic	maps,	vertical	bar	charts,	and	 time	series	charts	with	 functions	 like
derivatives	 and	 moving	 averages	 which	 can	 all	 be	 put	 in	 user-defined
dashboards.	These	three	tools	together	form	a	powerful	data	analysis	framework
that	 is	 open-source.	 The	ELK	 stack	 is	 becoming	 increasingly	 popular,	 both	 in
non-commercial	environments	and	in	large	enterprises.

Although	a	lot	of	attention	is	being	devoted	to	text	as	a	form	of	unstructured
data,	 other	 types	of	unstructured	data	 exist	 as	well,	 such	as	 audio,	 imagery,	or
video	data.	Technology	support	in	terms	of	providing	database-like	functionality
for	 these	 types	of	data	 is	not	as	developed	as	for	full-text	search,	 though	some
DBMSs	 support	 storing	 and	 querying	 images	 by	 means	 of	 image	 similarity
matching	or	even	computer-vision-based	techniques.

Retention	Questions

Discuss	the	basic	principles	of	full-text	search.

How	can	full-text	documents	be	indexed?

How	do	web	search	engines	work?

Discuss	the	basic	principles	of	Elasticsearch.

18.3	Data	Quality	and	Master	Data	Management

Not	surprisingly,	 the	aspect	of	data	integration	is	also	heavily	related	to	that	of
data	 quality.	 As	 was	 introduced	 in	 Chapter	 4,	 data	 quality	 can	 be	 defined	 as
“fitness	for	use”,	meaning	that	 the	required	level	of	quality	of	data	depends	on
the	context.	Data	quality	is	a	multidimensional	concept	involving	various	aspects
or	criteria	by	which	to	assess	the	quality	of	a	dataset	or	individual	data	record.	In
Chapter	 4,	 the	 following	 data	 quality	 dimensions	 were	 already	 highlighted	 as
being	important:

Also,	timeliness	–	the	extent	to	which	data	are	sufficiently	up-to-date	for	the	task
at	hand	–	has	already	been	mentioned	as	an	essential	dimension	in	the	respective
data	integration	patterns.

Connections

Data	accuracy,	referring	to	whether	the	data	values	stored	are	correct
(e.g.,	the	name	of	the	customer	should	be	spelled	correctly).

Data	completeness,	referring	to	whether	both	metadata	and	values	are
represented	to	the	degree	required	and	are	not	missing	(e.g.,	a	date	of
birth	should	be	filled	out	for	each	customer).

Data	consistency,	relating	to	consistency	between	redundant	or	duplicate
values,	and	consistency	among	different	data	elements	referring	to	the
same	or	a	related	concept	(e.g.,	the	name	of	a	city	and	postal	code	should
be	consistent).

Data	accessibility,	which	reflects	the	ease	of	retrieving	the	data.

Refer	 to	Chapter	4	 for	more	 information	regarding	data	quality	and	 the
dimensions	of	data	quality.

Approached	 from	 the	angle	of	data	 integration,	 it	 is	 important	 to	mention
that	data	integration	can	aid	in	improving	data	quality,	but	might	also	hamper	it.
We	 have	 seen	 how	 data	 consolidation	 and	 ETL	 allow	 performing	 different
transformation	 and	 cleansing	 operations,	 so	 the	 consolidated	 view	 of	 the	 data
should	be	of	higher	quality,	but	one	might	–	appropriately	so	–	wonder	why	 it
wouldn’t	 be	 better	 to	 invest	 in	 data	 quality	 improvements	 at	 the	 source.	 The
same	 remark	 holds	 for	 environments	 in	 which,	 throughout	 time,	 different
integration	 approaches	 have	been	 combined,	 leading	 to	 a	 jungle	 of	 legacy	 and
newer	 systems	 and	 databases	 that	 now	 all	 must	 be	 maintained	 and	 integrated
with	one	another.

This	is	a	key	challenge	for	many	organizations	and	one	that	is	indeed	very
difficult	 to	 solve.	 In	 these	 settings,	 master	 data	 management	 (MDM)	 is
frequently	 mentioned	 as	 a	 management	 initiative	 to	 counteract	 these	 quality-
related	issues.

Master	 data	 management	 (MDM)	 comprises	 a	 series	 of	 processes,
policies,	standards,	and	tools	to	help	organizations	to	define	and	provide	a	single
point	of	reference	for	all	data	that	are	“mastered”.	Its	key	concern	is	to	provide	a
trusted,	 single	 version	 of	 the	 truth	 on	 which	 to	 base	 decisions	 to	 ensure	 that
organizations	do	not	use	multiple,	potentially	 inconsistent	versions	of	 the	same
concept	in	different	parts	of	their	operations.	The	focus	is	on	unifying	company-
wide	 reference	 data	 types	 such	 as	 customers	 and	 products.	 This	 might	 seem
straightforward,	 but	 imagine	 the	 situation	 of	 a	 large	 bank	 in	 which	 one
department	 is	 using	 an	 operational	 customer	 database	 for	 its	 day-to-day
interactions,	 while	 the	 marketing	 department	 is	 setting	 up	 a	 campaign	 by

selecting	 leads	 from	 a	 data	 warehouse	 using	 a	 BI	 tool,	 which,	 however,	 is
running	behind	compared	to	the	operational	view.	A	customer	that	has	just	taken
out	a	mortgage	at	the	bank	might	receive	a	mortgage	solicitation	a	week	later,	as
the	customer	 information	used	by	 the	marketing	department	 lacks	 fast	or	 solid
integration	with	 the	 customer	operational	 systems.	Putting	 a	data	 federation	or
virtualization	 solution	 on	 top	 can	 help,	 but	 converting	 all	 departments	 and
applications	to	go	through	this	newer	layer	can	take	years,	let	alone	coming	up
with	a	clear	mapping	of	the	current	data	and	systems	overview	and	architecture.
Modern	information	systems	can	be	very	complicated	and	entangled	constructs,
which	should	emphasize	the	necessity	for	master	data	management.

Setting	 up	 a	master	 data	 management	 initiative	 involves	many	 steps	 and
tools,	including	data	source	identification,	mapping	out	the	systems	architecture,
constructing	 data	 transformation,	 cleansing	 and	 normalization	 rules,	 providing
data	 storage	 capabilities,	 monitoring	 and	 governance	 facilities,	 and	 so	 on.
Another	key	element	is	a	centrally	governed	data	model	and	metadata	repository.
Perhaps	surprisingly,	many	vendor	“solutions”	to	set	up	an	MDM	initiative	look
very	 similar	 to	 data	 integration	 solutions	 we	 discussed	 before	 –	 data
consolidation,	 federation,	 propagation,	 or	 virtualization	 techniques.	 These
integration	 approaches	 can	 be	 used	 as	 a	method	 to	 achieve	maturity	 in	master
data	management.	Note,	however,	 that	 this	assumes	 these	solutions	are	used	 to
set	 up	 a	 trusted,	 single	version	of	 the	 truth	of	 the	data	on	which	decisions	 are
based,	 and	 that	 no	 other	 representation	 of	 the	 data	 is	 used	 anywhere	 in	 the
organization.	 The	 challenge	 hence	 lies	 in	 the	 execution:	 following	 these	 core
principles	 is	 a	 daunting	 task,	 and	 integration	 officers	 must	 avoid	 adding	 yet
another	few	strands	of	“spaghetti	systems”	and	cross-links	between	data	stores,
causing	 the	master	 data	 repository	 to	 become	 yet	 another	 half-integrated	 data
silo.

Retention	Questions

How	can	master	data	management	(MDM)	contribute	to	data	quality?

18.4	Data	Governance

Due	 to	 data	 quality	 and	 integration	 concerns,	 organizations	 are	 increasingly
implementing	company-wide	data	governance	initiatives	to	govern	and	oversee
these	concerns.	To	manage	and	safeguard	data	quality,	a	data	governance	culture
should	 be	 put	 in	 place	 assigning	 clear	 roles	 and	 responsibilities.	 These	 roles
(data	 owner,	 data	 steward,	 etc.)	 were	 already	 tackled	 in	 Chapter	 4.	 Another
important	element	is	the	ability	to	assess	data	lineage,	as	discussed	earlier	in	this
chapter.	 The	 ultimate	 aim	 of	 data	 governance	 is	 to	 set	 up	 a	 company-wide
controlled	 and	 supported	 approach	 toward	 data	 quality,	 accompanied	 by	 data
quality	management	processes.	The	core	idea	is	to	manage	data	as	an	asset	rather
than	a	liability,	and	adopt	a	proactive	attitude	toward	data	quality	problems.	To
succeed,	 it	 should	be	a	key	element	of	a	company’s	 corporate	governance	and
supported	by	senior	management.

Different	 frameworks	 and	 standards	 have	 been	 introduced	 for	 data
governance.	Some	are	rooted	in	process	maturity	or	quality	management,	while
others	 focus	 explicitly	 on	 data	 quality	 or	 data	 integration.	 Other	 standards
propose	methods	to	organize	the	governance	of	IT	and	IT	departments.	In	what
follows,	 we	 summarize	 some	 notable	 data	 governance	 standards	 and
frameworks.

18.4.1	Total	Data	Quality	Management	(TDQM)

The	Total	 Data	 Quality	 Management	 (TDQM)	 framework	 is	 illustrated	 in
Figure	 18.17.4	 It	 presents	 a	 cycle	 consisting	 of	 four	 steps	 related	 to	 the
management	of	data	quality	–	Define,	Measure,	Analyze,	and	Improve	–	which
are	 performed	 iteratively.	 The	Define	 step	 identifies	 the	 pertinent	 data	 quality
dimensions.	 These	 can	 then	 be	 quantified	 using	 metrics	 in	 the	Measure	 step.
Some	example	metrics	are:	the	percentage	of	customer	records	with	an	incorrect
address	(accuracy);	the	percentage	of	customer	records	with	a	missing	birth	date
(completeness);	or	an	indicator	specifying	when	customer	data	were	last	updated
(timeliness).	The	Analyze	step	 tries	 to	 identify	 the	 root	cause	of	 the	diagnosed
data	quality	problems.	These	can	then	be	remedied	in	the	Improve	step.	Example
actions	could	be:	automatic	and	periodic	verification	of	customer	addresses;	the
addition	of	a	constraint	that	makes	the	date	of	birth	a	mandatory	data	field;	and
the	generation	of	 alerts	when	 customer	data	 have	not	 been	updated	during	 the
previous	six	months.

Figure	18.17	Total	Data	Quality	Management.

18.4.2	Capability	Maturity	Model	Integration	(CMMI)

The	 Capability	 Maturity	 Model	 Integration	 (CMMI)	 is	 a	 training	 and
appraisal	program	geared	toward	the	improvement	of	business	processes.	It	was
developed	 at	 Carnegie	 Mellon	 University	 (CMU)	 and	 is	 required	 by	 many
United	States	Department	of	Defense	and	US	Government	contracts,	especially
in	software	development.

CMMI	 defines	 the	 maturity	 of	 a	 process	 by	 five	 levels:	 Performed,
Managed,	Defined,	Measured,	and	Optimized.	Every	level	aims	at	improving	the
description,	predictability,	control,	and	measurement	of	the	process	at	hand.

While	 CMMI	 focuses	 on	 a	 process-oriented	 view,	 CMU	 has	 developed
various	side-standards	applying	 the	same	concept	of	maturity	 levels.	The	Data
Management	 Maturity	 Model	 applies	 the	 five	 levels	 of	 maturity	 to	 the
governance	of	data,	its	quality,	and	its	supporting	infrastructure:

Level	1	–	Performed:	Data	are	managed	as	a	requirement	for
implementing	a	project	in	a	reactive	manner,	with	little	discipline	or
emphasis	on	data	quality.	The	emphasis	is	on	data	repair.

Level	2	–	Managed:	There	is	awareness	of	the	importance	of	managing
data.	Data	are	understood	to	be	a	critical	infrastructure	asset.	Some
policies	are	set	in	place	to	control	quality	and	monitor	data.

Level	3	–	Defined:	Data	are	treated	as	a	critical	asset	for	successful
performance.	Data	quality	is	predictable,	and	policies	are	set	in	place	to
meet	specific	needs.

Level	4	–	Measured:	Data	are	treated	as	a	source	of	competitive
advantage	and	seen	as	a	strategic	asset.	Fully	managed	policies	and

formal	specifications	govern	the	quality	of	the	data.	A	single	source	of
truth	is	provided	for	the	data.

Level	5	–	Optimized:	Data	are	seen	as	critical	to	survival	in	a	dynamic
market.	The	organization	is	continuously	improving	its	data	governance
initiatives	and	the	quality	of	its	data	sources.

18.4.3	Data	Management	Body	of	Knowledge	(DMBOK)

Inspired	 by	 the	 Project	 Management	 Body	 of	 Knowledge	 (PMBOK),	 a
collection	of	processes,	best	practices,	terminologies,	and	guidelines	for	project
management	 overseen	 by	 the	 Project	 Management	 Institute	 (PMI),	 the	 Data
Management	Body	of	Knowledge	(DMBOK)	aims	to	offer	a	similar	collection
toward	 data	 management.	 DMBOK	 is	 overseen	 by	 DAMA	 International	 (the
Data	 Management	 Association)	 and	 lists	 best	 practices	 toward	 data	 quality
management,	 metadata	 management,	 data	 warehousing,	 data	 integration,	 and
data	governance.	DMBOK	is	in	its	second	version.

18.4.4	Control	Objectives	for	Information	and	Related	Technology
(COBIT)

Control	Objectives	for	Information	and	Related	Technologies	(COBIT)	is	a
framework	 created	 by	 the	 international	 professional	 association	 ISACA	 for	 IT
management	 and	 IT	 governance.	 As	 the	 name	 suggests,	 COBIT	 describes	 a
series	of	implementable	control	sets	and	organizes	them	in	a	logical	framework.
The	 core	 goal	 of	 COBIT	 is	 to	 link	 business	 goals	 to	 IT	 goals,	 starting	 from
business	requirements	and	mapping	these	to	IT	requirements,	and	hence	provides
measurement	tools,	metrics,	and	maturity	models	to	measure	the	effectiveness	of
these	IT	goals.	Even	though	many	of	these	focus	on	aspects	such	as	data	quality
and	 integration,	 COBIT	 itself	 is	 a	 very	 large	 and	 comprehensive	 framework
encompassing	much	more	than	just	data	governance.	It	is	important	to	mention,
however,	 that	 COBIT	 will	 often	 be	 positioned	 as	 an	 overall	 IT	 governance
standard	utilized	 at	 a	 high	 level,	 under	which	different	 standards,	 frameworks,
and	practices	will	be	placed	and	aligned.

Drill	Down

COBIT	 is	 sometimes	 called	 the	 “integrator	 standard”	 to	 integrate	 all
other	 standards.	 There’s	 perhaps	 a	 certain,	 Kafkaesque	 beauty	 in
standards	 talking	 about	 integration	 requiring	 their	 own	 integration
framework.

18.4.5	Information	Technology	Infrastructure	Library

The	 Information	 Technology	 Infrastructure	 Library	 (ITIL)	 is	 a	 set	 of	 detailed
practices	for	IT	service	management	that	focuses	on	aligning	IT	services	with	the
needs	and	requirements	of	business.	ITIL	is	published	in	five	volumes,	each	of
which	covers	a	different	IT	service	management	lifecycle	stage.

Drill	Down

Recent	versions	of	ITIL	are	just	called	“ITIL”,	without	it	being	regarded
as	an	acronym	anymore.

Just	 as	with	COBIT,	 ITIL	 also	 encompasses	much	more	 governance	 than
just	data	quality	and	integration	aspects,	though	puts	a	heavy	emphasis	on	these
elements	 in	 its	 fifth	 volume.	 The	 latter	 focuses	 on	 continuous	 service
improvement,	where	 several	 best	 practices	 are	 outlined	 toward	 benchmarking,
monitoring,	measuring,	and	improving	the	quality	of	IT	services	and	hence	also
that	 of	 the	 underlying	 data	 sources.	 Other	 parts	 of	 ITIL	 deal	 with	 integration
issues	and	their	impact	on	different	IT	services.

Retention	Questions

What	is	data	governance	and	why	is	it	needed?

Give	two	examples	of	data	governance	frameworks.

18.5	Outlook

As	 infrastructure	 and	 data(base)	 requirements	 continue	 to	 change,	 it	 is	 only
natural	 that	 managerial	 concerns	 regarding	 data	 integration,	 quality,	 and
governance	follow.	To	conclude	our	discussion	on	data	integration,	quality,	and
governance,	it	is	interesting	to	highlight	some	more	recent	approaches	to	tackle
these	issues.	It	is	remarkable	how	many	vendors	and	cloud	providers	are	trying
to	offer	ways	to	handle	the	data	integration	issue	in	a	world	in	which	companies
are	 either	 moving	 their	 data	 to	 the	 cloud	 or	 are	 shifting	 to	 a	 Big	 Data
environment.	Some	examples	include:

Sqoop	and	Flume	for	Hadoop:	Apache	Sqoop	is	a	tool	designed	for
efficiently	transferring	data	in	bulk	between	Hadoop	(an	environment	for
Big	Data	processing	we	will	discuss	in	Chapter	19)	and	“traditional”
structured	data	stores	such	as	relational	databases.	Apache	Flume	is	a
distributed	system	for	efficiently	collecting,	aggregating,	and	moving
large	amounts	of	log	data	from	many	different	sources	to	a	centralized
data	store.

Apache	Kylin:	An	open-source	analytics	engine	designed	to	provide	an
SQL	interface	and	multidimensional	analysis	(OLAP)	on	top	of	Hadoop,
supporting	extremely	large	datasets.	Think	of	it	as	a	technology	to	define
star	schemas	and	analyze	OLAP	cubes	on	top	of	data	stored	in	Hadoop.

Google	Cloud	Dataflow	and	BigQuery	ETL:	Google	is	offering	a
managed	service	for	developing	and	executing	data	processing	and
integration	patterns,	including	ETL,	to	bring	data	to	its	Google	Cloud
platform.

Amazon	Redshift:	A	managed,	cloud-based	data	warehouse	solution	that
tries	to	integrate	well	with	existing	BI	tools,	but	can	run	queries	against
petabytes	of	structured	data.

Amazon	Relational	Database	Service	(RDS):	A	managed	web	service
that	makes	it	easier	to	set	up,	operate,	and	automatically	scale	a	relational
database	in	the	cloud	without	having	to	set	up	such	a	database	yourself.

18.6	Conclusion

In	 this	 chapter,	 we	 have	 discussed	 some	 managerial	 aspects	 of	 data	 and
databases,	 namely	 data	 integration,	 data	 quality,	master	 data	management,	 and
data	governance.	Some	had	also	a	 technical	element,	 in	particular	 the	different
data	 integration	 technologies	 and	 the	 complementary	 techniques	 to	 efficiently
search	 unstructured	 data	 in	 a	 company-wide	 or	World	Wide	Web	 setting.	We
have	seen	how	these	aspects	play	an	 important	 role	as	companies	start	using	a
multitude	of	databases	and	information	systems	over	 time,	especially	when	the
need	arises	to	consolidate	a	company’s	data	to	provide	a	single,	unified	view,	for
instance,	to	construct	a	data	warehouse	to	provide	BI	solutions.

Data,	 and	 BI,	 are	 fields	 still	 heavily	 evolving	 today.	 In	 recent	 years,	 we
have	 seen	 companies	 being	 concerned	 not	 only	 with	 offering	 a	 unified	 view
across	their	data	sources,	but	also	with	looking	for	ways	to	tackle	the	Big	Data
challenge,	 i.e.,	 looking	 for	 solutions	 to	 deal	 with	 incredibly	 large	 or	 even
unstructured	volumes	of	data.	Also,	analytics	 techniques	have	been	developing
rapidly,	leading	to	several	data	science	practices	to	perform	both	descriptive	and
predictive	 analytics.	 Big	 Data	 and	 analytics	 form	 the	 topics	 of	 the	 upcoming
chapters.

Scenario	Conclusion

Based	 on	 a	 thorough	 analysis	 of	 their	 current	 data	 and	 process	 set-up,
Sober’s	 team	 implemented	 the	 following	 data	 quality	 and	 governance
measures.	 First,	 regarding	 data	 quality,	 Sober	 plans	 to	 implement	 a
checklist	of	various	data	quality	checks	routinely	run	over	 its	 relational

database	–	e.g.,	 to	make	sure	street	 information	 is	up-to-date,	customer
and	 driver	 details	 are	 entered	 correctly	 –	 in	 accordance	with	 the	 Total
Data	 Quality	 Management	 (TDQM)	 framework.	 Regarding	 the
integration	between	the	NoSQL	database	driving	the	mobile	app	and	the
RDBMS,	 Sober	 implements	 a	 changed	 data	 capture	 (CDC)	 solution	 in
which	 all	 changes	 made	 to	 the	 NoSQL	 database	 are	 immediately
propagated	 to	 the	RDBMS.	A	queue	 is	used	 to	prevent	overloading	 the
RDBMS,	and	various	checks	are	implemented	to	verify	that	the	updates
are	 executed	 correctly.	 Regarding	 experimental	 features,	 the	 mobile
development	 team	 can	 continue	 to	 add	 NoSQL	 tables	 in	 an	 ad-hoc
manner,	 but	 are	 requested	 to	 properly	 track	 and	 document	 the
development	 of	 such	 features	 so	 the	 relational	 database	 schema	 can	be
modified	later	to	also	incorporate	data	from	these	features	once	they	are
vetted	for	a	full	release.

Key	Terms	List

activity	services

business	process

Capability	Maturity	Model	Integration	(CMMI)

changed	data	capture	(CDC)

choreography

complex	event	processing	(CEP)

Control	Objectives	for	Information	and	Related	Technologies
(COBIT)

CRUDS	functionality

data	accessibility

data	accuracy

Data	as	a	Service	(DaaS)

data	auditing	services

data	cleansing	services

data	completeness

data	consistency

data	consolidation

data	dependency

data	enrichment	services

data	event	services

data	federation

data	flow

data	integration

data	integration	pattern

data	lineage

Data	Management	Body	of	Knowledge	(DMBOK)

Data	Management	Maturity	Model

data	profiling	services

data	propagation

data	service	composition

data	services

data	silo

data	transformation	services

data	virtualization

document	metadata

enterprise	application	integration	(EAI)

enterprise	data	replication	(EDR)

enterprise	information	integration	(EII)

enterprise	search

indexer

Information	Technology	Infrastructure	Library	(ITIL)

Infrastructure	as	a	Service	(IaaS)

master	data	management	(MDM)

metadata	services

operational	BI

orchestration	pattern

Platform	as	a	Service	(PaaS)

process	engine

process	integration

ranking	module

service	oriented	architectures	(SOA)

Software	as	a	Service	(SaaS)

streaming	data

Total	Data	Quality	Management	(TDQM)

web	crawler

workflow	service

WS-BPEL

Review	Questions

18.1.	Ideally,	data	integration	should	include…

a.	only	data.

b.	only	processes.

c.	both	processes	and	data.

18.2.	Which	statement	is	not	correct?

a.	Analytics	techniques	are	more	and	more	used	at	the	operational
level	as	well	by	front-line	employees.

b.	Analytics	for	tactical/strategic	decision-making	increasingly	uses
real-time	operational	data	combined	with	the	aggregated	and	historical
data	found	in	more	traditional	data	warehouses.

c.	The	operational	usage	of	business	intelligence	aims	for	a	low	(or
even	zero)	latency	so	interesting	events	or	trends	in	the	data	can	be

immediately	detected	and	accompanied	with	the	appropriate	response.

d.	Nowadays,	we	see	a	complete	divergence	of	the	operational	and
tactical/strategic	data	needs	and	of	the	corresponding	data	integration
tooling.

18.3.	Which	statement	is	not	correct?

a.	The	essence	of	data	consolidation	as	a	data	integration	pattern	is	to
capture	the	data	from	multiple,	heterogeneous	source	systems	and
integrate	it	into	a	single	persistent	store	(e.g.,	a	data	warehouse	or	data
mart).

b.	An	important	disadvantage	of	the	consolidation	approach	is	that	it
does	not	cater	for	historical	data.

c.	An	ETL	process	typically	induces	a	certain	measure	of	latency,	so
the	timeliness	dimension	may	suffer,	with	the	data	being	slightly	out
of	date.

d.	Besides	the	traditional	set-up	with	ETL	and	a	data	warehouse,	data
lakes	can	also	be	considered	an	implementation	of	the	consolidation
pattern.

18.4.	The	federation	pattern	typically	follows…

a.	a	pull	approach.

b.	a	push	approach.

18.5.	Enterprise	information	integration	(EII)	is	an	example	of…

a.	data	consolidation.

b.	data	integration.

c.	data	propagation.

d.	data	replication.

18.6.	Enterprise	application	integration	(EAI)	and	enterprise	data
replication	(EDR)	are	examples	of…

a.	data	consolidation.

b.	data	federation.

c.	data	propagation.

d.	data	virtualization.

18.7.	Which	statement	is	not	correct?

a.	Data	virtualization	isolates	applications	and	users	from	the	actual
(combinations	of)	data	integration	patterns	used.

b.	Data	virtualization	extensively	uses	data	consolidation	techniques
such	as	ETL.

c.	Contrary	to	a	federated	database	as	offered	by	basic	EII,	data
virtualization	does	not	impose	a	single	data	model	on	top	of	the
heterogeneous	data	sources.

d.	In	many	real-life	contexts,	a	data	integration	exercise	is	an	ongoing
initiative	within	an	organization,	and	will	often	combine	a	variety	of
integration	strategies	and	approaches.

18.8.	Which	statement	is	not	correct?

a.	Process	integration	is	to	integrate	and	harmonize	the	various
business	processes	in	an	organization	as	much	as	possible.

b.	The	control	flow	perspective	of	a	business	process	specifies	the
correct	sequencing	of	tasks	(e.g.,	a	loan	offer	can	only	be	made	when
the	credit	score	has	been	calculated).

c.	The	data	flow	perspective	of	a	business	process	focuses	on	the
inputs	of	the	tasks	(e.g.,	the	interest	rate	offered	depends	on	the	credit
score).

d.	In	a	service-oriented	context,	there	is	a	tendency	to	physically
integrate	services	with	the	purpose	of	task	coordination	with	services
that	perform	the	actual	task	execution	and	services	that	provide	access
to	the	necessary	data.

18.9.	Process	execution	languages	such	as	WS-BPEL	aim	at	managing…

a.	only	the	control	flow.

b.	only	the	data	flow.

c.	both	the	control	and	data	flow.

18.10.	The	choreography	pattern	to	manage	sequence	and	data
dependencies	is	a…

a.	centralized	approach.

b.	decentralized	approach.

18.11.	Which	statement	is	correct?

a.	The	prevalent	approach	for	indexing	full-text	documents	is	an
inverted	index.

b.	SQL	is	well	suited	to	query	structured	collections	of	records	as	well
as	unstructured	data	such	as	text.

c.	It	makes	no	sense	to	look	at	HTML	markup	when	calculating	the
weight	of	a	term	to	a	page	for	web	search.

d.	Enterprise	search	technologies	are	strongly	related	to	standard	web
search	products	and	providers	(e.g.,	Google),	but	aim	to	offer	a	series
of	tools	that	can	be	deployed	and	used	externally	such	that	an
organization	can	expose	itself	to	the	outside	world.

18.12.	Which	statement	is	not	correct?

a.	Master	data	management	(MDM)	compromises	a	series	of
processes,	policies,	standards,	and	tools	to	help	organizations	define
and	provide	multiple	points	of	reference	for	all	data	that	are
“mastered”.

b.	The	focus	of	MDM	is	on	unifying	company-wide	reference	data
types	such	as	customers	and	products.

c.	Setting	up	an	MDM	initiative	involves	a	large	number	of	steps	and
tools,	including	data	source	identification,	mapping	out	the	systems
architecture,	constructing	data	transformation,	cleansing	and
normalization	rules,	providing	data	storage	capabilities,	monitoring
and	governance	facilities,	and	so	on.

d.	A	key	element	in	MDM	is	a	centrally	governed	data	model	and
metadata	repository.

Problems	and	Exercises

18.1E	Give	some	examples	of	operational	business	intelligence.

18.2E	Conduct	an	illustrated	SWOT	analysis	of	data	consolidation	versus	data
integration	versus	data	propagation.

18.3E	What	is	data	virtualization	and	what	can	it	be	used	for?	How	does	it	differ
from	data	consolidation,	data	federation,	and	data	propagation?

18.4E	What	is	meant	by	“Data	as	a	Service”?	How	does	this	relate	to	cloud
computing?	What	kind	of	data-related	services	can	be	hosted	in	the	cloud?
Illustrate	with	examples.

18.5E	Discuss	two	types	of	dependencies	that	should	be	appropriately	managed
to	guarantee	the	successful	overall	process	execution.	What	patterns	can	be	used
to	manage	these	dependencies?

18.6E	Discuss	and	contrast	the	following	three	service	types:	workflow	services,
activity	services,	and	data	services.	Illustrate	with	an	example.

18.7E	Discuss	how	different	data	services	can	be	realized	according	to	different
data	integration	patterns.

18.8E	How	can	full-text	documents	be	indexed?	Illustrate	with	an	example.

18.9E	How	do	web	search	engines	work?	Illustrate	in	the	case	of	Google.

18.10E	Discuss	the	impact	of	data	lineage	on	data	quality.	Illustrate	with
examples.

18.11E	What	is	data	governance	and	why	is	it	important?

18.12E	Discuss	and	contrast	the	following	data	governance	frameworks:	Total
Data	Quality	Management	(TDQM);	Capability	Maturity	Model	Integration
(CMMI);	Data	Management	Body	of	Knowledge	(DMBOK);	Control	Objectives
for	Information	and	Related	Technology	(COBIT);	and	Information	Technology
Infrastructure	Library	(ITIL).

1	Gartner,	Forecast:	Public	Cloud	Services,	Worldwide,	2014–2020,	4Q16
Update,	2017.

2	To	illustrate	the	difference	between	structured	data	and	structured	metadata,
let’s	consider	the	example	of	a	document	containing	book	descriptions.	If	the
document	contains	structured	data,	it	would	be	possible	to	refer	to	the
“author”	field	for	each	individual	book	in	the	document.	If	the	document
contains	unstructured	data,	it	would	be	possible	to	refer	to	the	“author”	of	the
document	itself	(which	is	metadata),	but	not	to	the	author	information	of	the
individual	books	(which	is	unstructured	content).

3	Page	L.,	Brin	S.,	Motwani	R.,	Winograd	T.,	The	PageRank	citation	ranking:
Bringing	order	to	the	Web,	Proceedings	of	the	7th	International	World	Wide
Web	Conference,	pp.	161–172.	Brisbane,	Australia,	1998.

4	Wang	R.Y.,	A	product	perspective	on	total	data	quality	management,
Communications	of	the	ACM,	1998;	41(2):	58–65.

19

Big	Data
◈

Chapter	Objectives

In	this	chapter,	you	will	learn:

Opening	Scenario

Sober	has	made	its	first	steps	in	setting	up	a	data	warehouse	on	top	of	its
existing	 DBMS	 stack	 to	 kick-start	 its	 business	 intelligence	 activities,

what	is	meant	by	“Big	Data”	and	its	“5	Vs”;

to	understand	the	differences	between	traditional	database
management	systems	and	Big	Data	technologies	such	as	Hadoop;

to	understand	the	differences	between	traditional	data	warehousing
approaches	and	Big	Data	technologies;

to	identify	the	tradeoffs	when	opting	to	adopt	a	Big	Data	stack;

what	the	links	are	between	Big	Data	and	NoSQL	databases.

with	the	main	goal	of	reporting	purposes.	However,	Sober’s	management

is	 hearing	 a	 lot	 lately	 about	 “Big	Data”	 and	 “Hadoop”	with	 regards	 to
storing	and	analyzing	huge	amounts	of	data.	Sober	is	wondering	whether
these	technologies	would	offer	an	added	benefit.	So	far,	Sober	is	happy
with	 its	 relational	 DBMS,	 which	 integrates	 nicely	 with	 its	 business
intelligence	tooling.	The	mobile	development	team,	meanwhile,	has	been
happy	 to	 work	 with	 MongoDB,	 a	 NoSQL	 database,	 to	 handle	 the
increased	workload	from	mobile	users.	Hence,	the	question	for	Sober	is:
what	would	a	Big	Data	stack	offer	on	top	of	this?

Data	 are	 everywhere.	 To	 give	 some	 staggering	 examples,	 IBM	 projects	 that
every	 day	we	 generate	 2.5	 quintillion	 bytes	 of	 data.	 Every	minute,	more	 than
300,000	tweets	are	created,	Netflix	subscribers	are	streaming	more	than	70,000
hours	 of	 video,	 Apple	 users	 download	 30,000	 apps,	 and	 Instagram	 users	 like
almost	two	million	photos.	In	relative	terms,	90%	of	the	data	in	the	world	have
been	 created	 in	 the	 last	 two	 years.	 These	 massive	 amounts	 of	 data	 yield	 an
unprecedented	 treasure	 of	 internal	 customer	 knowledge,	 ready	 to	 be	 analyzed
using	 state-of-the-art	 analytical	 techniques	 to	 better	 understand	 and	 exploit
customer	behavior	by	identifying	new	business	opportunities	together	with	new
strategies.	In	this	chapter,	we	zoom	into	this	concept	of	“Big	Data”	and	explain
how	these	huge	data	troves	are	changing	the	world	of	DBMSs.	We	kick-off	by
reviewing	 the	 5	Vs	 of	Big	Data.	Next,	we	 zoom	 in	 on	 the	 common	Big	Data
technologies	 in	 use	 today.	We	 discuss	 Hadoop,	 SQL	 on	 Hadoop,	 and	 Apache
Spark.

19.1	The	5	Vs	of	Big	Data

Datasets	are	growing	rapidly.	We	are	living	in	a	digitalized	world,	and	the	rise	of
internet	 giants	 such	 as	 Facebook,	Google,	 and	 Twitter	 has	 led	 to	 an	 immense
amount	 of	 data	 being	 generated	 each	 day,	 be	 it	 users	 posting	 pictures,	 tweets,
messages,	checking	Google	Maps,	or	talking	to	smart	agents	such	as	Siri,	Alexa,
or	Google’s	assistant.	Recent	developments	in	research	and	technology	have	also
brought	along	new	devices,	such	as	sensors	or	drones	capturing	high-resolution
photographs,	or	3D	point	maps	user	LIDAR	(laser)	scanners.

Drill	Down

Another	example	of	Big	Data	are	Rolls	Royce’s	airplane	engines,	which
are	packed	with	sensors	generating	hundreds	of	terabytes	of	data	that	can
then	 be	 analyzed	 to	 improve	 fleet	 performance	 and	 safety.	 Another
captivating	example	is	Tesla’s	Autopilot,	which	has	so	far	collected	more
than	 one	 billion	 miles	 of	 data	 and	 is	 being	 used	 by	 the	 company	 to
continuously	improve	its	self-driving	software.

Drill	Down

All	these	new	devices	and	sensors	generating	data	are	often	described	as
the	 “Internet	 of	 Things”.	 Gartner	 says	 that	 8.4	 billion	 connected
“Things”	will	be	in	use	in	2017.	Examples	are	automotive	systems,	smart
TVs,	 digital	 set-top	 boxes,	 smart	 electric	 meters,	 and	 commercial

security	 cameras.	 All	 these	 applications	 will	 generate	 a	 tremendous
amount	of	sensor	data.

Even	 though	 the	 term	 “Big	 Data”	 only	 became	 widespread	 in	 the	 last
several	years,	 it	has	been	 in	use	 since	 the	1990s.	 It	 is	hard	 to	pinpoint	 exactly
how	the	term	was	brought	into	existence,	though	many	sources	refer	to	John	R.
Mashey,	chief	scientist	at	SGI,	making	it	popular	by	using	it	in	his	work	around
1998.	When	people	refer	to	Big	Data,	they	usually	refer	to	datasets	with	volumes
beyond	the	ability	of	common	tools	to	store,	manage,	or	process	in	a	reasonable
amount	 of	 time.	 In	 addition,	 the	 Big	 Data	 philosophy	 encompasses	 both
structured	and	highly	unstructured	forms	of	data.

In	a	2001	research	report,	Gartner	set	out	to	define	the	scope	of	Big	Data	by
listing	its	characteristics	in	the	now-famous	3	Vs:	volume	 (the	amount	of	data,
also	referred	to	the	data	“at	rest”);	velocity	(the	speed	at	which	data	come	in	and
go	out,	data	“in	motion”);	and	variety	(the	range	of	data	types	and	sources	that
are	used,	data	in	its	“many	forms”).	Many	vendors	and	industry	actors	continue
to	use	these	Vs	to	describe	Big	Data	today.

In	recent	years,	vendors	and	researchers	have	also	argued	for	a	fourth	V	to
be	 included	 in	 the	 description	 of	 Big	 Data:	 veracity,	 or	 data	 “in	 doubt”.	 It
describes	 the	 uncertainty	 due	 to	 data	 inconsistency	 and	 incompleteness,	 to
ambiguities	 present	 in	 the	 data,	 as	 well	 as	 latency	 or	 certain	 data	 points	 that
might	 be	derived	 from	estimates	 or	 approximations.	Finally,	 to	 emphasize	 that
being	able	to	store	or	process	these	forms	of	data	is	not	enough,	many	vendors,
such	as	IBM,	have	also	included	an	obvious	though	crucial	fifth	V:	value.	This	is
the	end	game	–	after	spending	a	lot	of	time,	effort,	and	resources	in	setting	up	a
Big	Data	 initiative,	 one	 needs	 to	make	 sure	 that	 actual	 value	 is	 being	 derived
from	doing	so.	This	V	refers	specifically	to	the	economic	value	of	Big	Data	as

quantified	 using	 the	 total	 cost	 of	 ownership	 (TCO)	 and	 return	 on	 investment
(ROI).	This	aspect	has	become	especially	 important	as	many	early	adopters	of
the	 Big	 Data	 hype	 lost	 significant	 effort	 and	 time	 in	 setting	 up	 a	 Big	 Data
initiative,	without	any	advantages,	insights,	or	efficiency	gains	to	justify	it	in	the
end.

Drill	Down

One	can	even	find	resources	coming	up	with	seven	(!)	Vs	of	Big	Data:
volume,	 velocity,	 variety,	 variability,	 veracity,	 visualization,	 and	 value.
Variability	here	is	seen	as	differing	from	variety;	the	latter	describes	the
different	 types	 of	 data	 (from	 JSON	 to	 text	 to	 video	 to	 sound,	 for
instance),	whereas	variability	(data	“in	change”)	refers	to	the	same	type
of	data,	but	where	the	meaning	and	structure	of	the	data	shift	over	time.
Our	advice	here	is	to	stick	to	the	5	Vs,	as	this	is	the	most	widely	adopted
definition.

To	illustrate	the	5	Vs	of	Big	Data	in	more	detail,	let’s	have	a	closer	look	at
some	example	sources	or	processes	generating	Big	Data.	A	traditional	source	is
large	 scale	 enterprise	 systems	 such	 as	 enterprise	 resource	 planning	 (ERP)
packages,	 customer	 relationship	 management	 (CRM)	 applications,	 and	 supply
chain	 management	 (SCM)	 systems.	 Companies	 have	 been	 deploying	 these
systems	for	about	 two	decades	now,	yielding	an	unprecedented	amount	of	data
stored	in	various	formats.	The	online	social	graph	is	another	example.	Consider
the	 major	 social	 networks	 such	 as	 Facebook,	 Twitter,	 LinkedIn,	 Weibo,	 and
WeChat.	 All	 together	 these	 networks	 capture	 information	 about	 two	 billion
people,	 their	 friends,	preferences,	and	other	behavior,	 leaving	a	massive	digital
trail	of	data.	With	close	to	five	billion	handsets	worldwide	and	with	the	mobile

channel	serving	as	 the	primary	gateway	 to	 the	 internet	 in	many	developed	and
developing	countries,	this	is	another	source	of	Big	Data	as	every	action	taken	by
the	user	can	be	tracked	and	potentially	geo-tagged.	Also	think	about	the	Internet
of	 Things	 (IoT)	 or	 the	 emerging	 sensor-enabled	 ecosystem	 that	 is	 going	 to
connect	 various	 objects	 (e.g.,	 homes,	 cars,	 etc.)	 with	 each	 other,	 and	 with
humans.	Finally,	we	see	more	and	more	open	or	public	data	such	as	data	about
weather,	traffic,	maps,	macro-economy,	etc.

All	the	above	data-generating	processes	can	be	characterized	in	terms	of	the
sheer	volume	of	data	being	generated.	This	poses	serious	challenges	in	terms	of
setting	up	scalable	storage	architectures	combined	with	a	distributed	approach	to
data	manipulation	and	querying.

To	illustrate	variety,	consider	 traditional	data	types	or	structured	data	such
as	 employee	 name	 or	 employee	 date	 of	 birth,	 which	 are	 more	 and	 more
complemented	 with	 unstructured	 data	 such	 as	 images,	 fingerprints,	 tweets,
emails,	Facebook	pages,	MRI	scans,	sensor	data,	GPS	data,	and	so	on.	Although
the	former	can	be	easily	stored	in	traditional	(e.g.,	relational)	databases,	the	latter
needs	to	be	accommodated	using	the	appropriate	database	technology	facilitating
the	 storage,	 querying,	 and	manipulation	of	 each	of	 these	 types	of	 unstructured
data.	Here,	 too,	 a	 substantial	 effort	 is	 required	 since	 it	 is	 claimed	 that	 at	 least
80%	of	all	data	are	unstructured.

Velocity,	the	speed	at	which	the	data	are	generated,	can	be	illustrated	with
streaming	 applications	 such	 as	 online	 trading	 platforms,	 YouTube,	 SMS
messages,	credit	card	swipes,	phone	calls,	etc.,	which	are	all	examples	in	which
high	velocity	is	a	key	concern.	Successfully	dealing	with	data	velocity	paves	the
way	for	real-time	analytics,	which	can	create	substantial	competitive	advantage.

Veracity	indicates	the	quality	or	trustworthiness	of	the	data.	Unfortunately,
more	data	does	not	 automatically	 imply	better	data,	 so	 the	quality	of	 the	data-
generating	 process	 must	 be	 closely	 monitored	 and	 guaranteed.	 As	 mentioned

earlier	(see	Chapters	4	and	18),	the	degree	of	veracity	required	depends	upon	the
business	application.

Connections

Refer	 to	Chapters	4	and	18	 for	more	details	 regarding	data	quality	 and
veracity.

Recall	that	value,	finally,	complements	the	4	Vs	framework	from	a	business
perspective.	 It	 refers	 specifically	 to	 the	 economic	 value	 of	 Big	 Data.	 This	 V
refers	to	both	an	opportunity	and	a	challenge.	To	provide	an	example:	in	2016,
Microsoft	bought	the	professional	social	network	site	LinkedIn	for	$26.2	billion.
Prior	 to	 the	 acquisition,	 LinkedIn	 had	 422	 million	 registered	 users	 and	 100
million	active	users	per	month.	Microsoft	paid	approximately	$260	per	monthly
active	user.	This	 clearly	 illustrates	why	data	 are	often	branded	 as	 the	new	oil!
Just	 as	 with	 oil,	 data	 need	 to	 be	 refined	 and	 treated	 to	 become	 valuable;	 just
storing	your	piles	of	data	without	a	clear	business	objective	is	not	enough.	This
seems	straightforward,	but	in	recent	years	many	organizations	have	reported	on
Big	Data	 failures	with	 projects	 coming	with	 high	 expectations	 and	 high	 costs,
but	without	 a	 clear	 plan	or	 process	 in	 place.	The	main	 root	 cause	 is	 failing	 to
start	with	 a	 clear	 business	 objective	 and	 jumping	 into	Big	Data	 due	 to	 an	 “us
too”	mentality,	without	 first	understanding	your	needs.	The	 two	most	common
pitfalls	 are	 the	 following.	 First,	 believing	 that	 one	 has	 huge	 volumes	 of	 data
(millions	of	customer	records),	hence	requiring	a	Big	Data	set-up,	even	though
modern	 RDBMSs	 are	 perfectly	 capable	 of	 handling	 these.	 The	 data	 are
structured,	 do	 not	 move	 at	 high	 velocities,	 and	 even	 the	 volume	 is	 still
reasonable	compared	to	the	scale	that	companies	such	as	Netflix	and	Google	are
working	at.

Drill	Down

To	provide	another	example	of	what	constitutes	high	volume:	eBay.com
works	with	a	data	warehouse	of	40	petabytes	(that’s	40,000	terabytes!).

Here,	 there	might	not	be	a	 true	need	 to	switch.	 In	 the	chapter	on	NoSQL,
we	 already	 discussed	 how	 traditional	 DBMSs	 are	 not	 good	 at	 extensive
horizontal	scaling.	If	you	have	the	need	for	such	a	set-up,	a	NoSQL	database	can
offer	benefits,	but	potentially	at	the	cost	of	consistency	or	querying	capabilities.

Connections

NoSQL	databases	can	be	seen	as	one	component	in	the	whole	Big	Data
technology	 ecosystem.	 Refer	 to	 Chapter	 11	 for	 a	 comprehensive
discussion	of	NoSQL	databases.

A	 second	 pitfall	 concerns	 the	 fact	 that	 many	 Big	 Data	 technologies
originally	 came	 around	 to	 handle	 unstructured,	 high-speed,	 or	 huge	 datasets,
something	which	was	 simply	 not	 possible	with	 traditional	DBMSs.	This	 does,
however,	not	mean	 they	are	as	easy	 to	query,	analyze,	or	derive	 insights	 from.
The	 concept	 of	 data	 “analytics”	 frequently	 gets	mentioned	 together	with	 “Big
Data”,	 but	 one	 can	 just	 as	 well	 derive	 insights	 from	 reasonably	 sized	 and
structured	 datasets.	 As	 we	 will	 illustrate	 throughout	 the	 remainder	 of	 this
chapter,	true	Big	Data	stacks	are	often	not	that	straightforward	to	work	with	or	to
derive	insights	from.

To	put	 it	another	way:	Big	Data	 is	 first	about	managing	and	storing	huge,
high-speed,	 and/or	 unstructured	 datasets,	 but	 this	 does	 not	 automatically	mean

http://eBay.com

one	 can	 analyze	 them	 or	 easily	 leverage	 them	 to	 obtain	 insights.	 As	 we	 will
discuss,	 this	 requires	 specialized	 skills	 and	 strong	 management	 follow-up.
Analytics,	 on	 the	 other	 hand	 (or	 “data	 science”)	 is	 about	 analyzing	 data	 and
obtaining	 insights	 and	 patterns	 from	 it,	 but	 does	 not	 necessarily	 have	 to	 be
applied	on	huge	volumes	or	unstructured	datasets.

Connections

In	 this	 chapter,	we	 focus	on	Big	Data.	 In	Chapter	20,	we	 focus	 on	 the
actual	“analytics”	aspects	of	data	in	general.

Retention	Questions

What	is	meant	by	the	5	Vs	of	Big	Data?	What	does	each	V	mean	or
refer	to?

19.2	Hadoop

It	is	impossible	to	talk	about	Big	Data	without	mentioning	Hadoop.	Hadoop	is
an	open-source	software	framework	used	for	distributed	storage	and	processing
of	big	datasets.	The	main	difference	between	Hadoop	and	other	attempts	to	work
with	huge	volumes	of	data	that	came	before	is	that	Hadoop	can	be	set	up	over	a
cluster	 of	 computers	 built	 from	 normal,	 commodity	 hardware,	 instead	 of
requiring	 specialized,	 expensive	 machines.	 Hadoop	 is	 designed	 with	 the
fundamental	 assumption	 that	 hardware	 failures	 are	 common	 occurrences	 and
should	be	gracefully	handled.

Nowadays,	 Hadoop	 has	 almost	 become	 a	 synonym	 of	 “Big	 Data”,	 even
though	Hadoop	itself	in	its	rawest	form	offers	a	relatively	simple	and	limited	set
of	 features.	 Although	 Hadoop	 is	 managed	 by	 the	 Apache	 Foundation	 and	 is
open-source,	many	vendors	offer	their	implementation	of	a	Hadoop	stack,	which
all	differ	in	features,	extra	components,	and	support	offered.	To	understand	what
is	going	on,	we	will	first	look	at	the	history	of	Hadoop	and	what	it	entails.

Drill	Down

Amazon,	 Cloudera,	 Datameer,	 DataStax,	 Dell,	 Oracle,	 IBM,	 MapR,
Pentaho,	Databricks,	Microsoft,	Hortonworks,	 and	many	 other	 vendors
offer	their	own	version	of	a	Hadoop-based	Big	Data	stack.

19.2.1	History	of	Hadoop

The	genesis	of	Hadoop	came	 from	 the	Google	File	System	paper	published	 in
2003.1	In	this	paper,	researchers	at	Google	introduced	a	new	file	system,	meant
to	 support	 Google’s	 growing	 storage	 needs.	 The	 goal	 was	 to	 develop	 a	 file
system	that	could	be	easily	distributed	across	inexpensive	commodity	hardware
while	 providing	 fault	 tolerance.	 This	work	 led	 to	 another	 research	 paper	 from
Google,	 called	 “MapReduce:	 Simplified	Data	 Processing	 on	 Large	 Clusters”.2

Whereas	 the	Google	 File	 System	mainly	 concerned	 itself	with	 distributing	 the
storage	 of	 data	 across	 a	 cluster	 of	 computers,	 MapReduce	 introduced	 a
programming	paradigm	to	write	programs	that	can	be	automatically	parallelized
and	executed	across	a	cluster	of	different	computers.	This	way,	Google	not	only
had	a	way	 to	distribute	 the	 storage	of	data,	but	 could	also	write	programs	 that
were	 able	 to	 work	 on	 top	 of	 it.	 Consider	 a	 program	 working	 over	 a	 huge
repository	of	web	logs,	simply	counting	the	number	of	times	a	link	is	present.	A
simple	 task	 to	express	 in	SQL	on	 top	of	a	 relational	database,	but	 a	 lot	harder
once	one	is	dealing	with	a	distributed	set	of	files	consisting	of	many	petabytes	of
data.

Connections

In	Chapter	11,	when	discussing	MongoDB	and	other	NoSQL	databases,
we	 have	 already	 encountered	MapReduce	 as	 a	 way	 to	 construct	 more
complicated	queries.

Around	 the	 same	 time,	Doug	Cutting	was	 developing	 a	 new	web	 crawler
prototype	that	would	be	better	able	to	handle	the	growing	web,	called	“Nutch”.

Connections

A	web	crawler	(also	called	a	web	spider)	is	a	program	that	systematically
browses	the	World	Wide	Web,	typically	for	the	purpose	of	indexing	the
web.	It	is	naturally	one	of	the	main	components	of	a	search	engine.	Refer
back	to	Chapter	18	for	more	details	on	search.

The	 project	 had	 its	 first	 version	 demonstrated	 in	 2003,	 successfully
handling	 100	 million	 web	 pages.	 To	 do	 so,	 the	 Nutch	 project	 had	 also
implemented	 a	 MapReduce-based	 programming	 facility	 and	 a	 distributed	 file
system,	called	NDFS	(Nutch	Distributed	File	System),	 the	 latter	encompassing
barely	5000	lines	of	Java	code.	In	2006,	Doug	Cutting	joined	Yahoo!,	who	had
taken	an	interest	in	his	project,	to	work	in	its	search	engine	division.	The	part	of
Nutch	which	 dealt	 with	 distributed	 computing	 and	 processing	 (NDFS	 and	 the
MapReduce	 subsystems)	was	 split	 off	 and	 renamed	 to	 “Hadoop”,	 named	 after
the	yellow	toy	elephant	of	Cuttings’s	son.	The	first	version	of	Hadoop	showed
that	 it	could	successfully	sort	about	 two	 terabytes	of	data	on	188	computers	 in
two	days,	and	Yahoo!’s	Hadoop	cluster	quickly	grew	to	include	1000	machines
in	 the	 following	 months.	 In	 2008,	 Yahoo!	 open-sourced	 Hadoop	 as	 “Apache
Hadoop”,	since	it	was	managed	by	the	Apache	Software	Foundation,	a	US-based
non-profit	corporation	overseeing	a	multitude	of	open-source	projects,	including
the	 well-known	 Apache	 HTTP	 web	 server.	 Hadoop	 continues	 to	 be	 actively
maintained	 and	 worked	 on	 by	 an	 ecosystem	 of	 developers	 across	 multiple
organizations.

19.2.2	The	Hadoop	Stack

When	talking	about	Hadoop	in	its	“pure”	form,	with	no	additional	components
or	 technology,	 it	 is	 important	 to	know	 that	 it	 describes	a	 stack	containing	 four
modules.	 The	 first	 one	 is	 Hadoop	 Common,	 a	 set	 of	 shared	 programming
libraries	used	by	the	other	modules.	The	second	is	the	Hadoop	Distributed	File
System	 (HDFS),	 a	 Java-based	 file	 system	 to	 store	 data	 across	 multiple
machines,	 renamed	 from	NDFS	 in	 the	Nutch	Project.	The	 third	module	entails
the	MapReduce	framework,	a	programming	model	to	process	large	sets	of	data
in	parallel.	YARN	(Yet	Another	Resource	Negotiator)	forms	the	fourth	module
and	handles	the	management	and	scheduling	of	resource	requests	in	a	distributed
environment.

In	 the	 first	 versions	 of	Hadoop	 (Hadoop	1),	HDFS	and	MapReduce	were
tightly	coupled,	with	the	MapReduce	component	overseeing	its	own	scheduling
and	resource	request	concerns.	Since	this	didn’t	scale	well	to	bigger	clusters,	the
current	 versions	of	Hadoop	 (Hadoop	2)	 split	 up	 the	 resource	management	 and
scheduling	tasks	from	MapReduce,	which	are	now	present	in	YARN	(YARN	was
not	present	in	Hadoop	1).

19.2.2.1	The	Hadoop	Distributed	File	System

HDFS	is	the	distributed	file	system	used	by	Hadoop	to	store	data	across	a	cluster
of	commodity	machines.	It	lets	users	connect	to	nodes	over	which	data	files	are
distributed,	 in	a	manner	that	allows	for	accessing	and	storing	files	as	if	 it	were
one	 seamless	 file	 system	 (just	 as	 you	would	work	with	 the	hard	drive	 in	 your
own	computer).	HDFS	puts	a	high	emphasis	on	fault	tolerance,	since	it	assumes
that	commodity	hardware	will	commonly	fail.

Drill	Down

Hard	drives	fail	often.	In	2007,	Google	already	analyzed	100,000	drives
in	its	data	center	and	found	that	hard	drives	older	than	one	year	had	an
annual	 failure	 rate	 of	 8%,	meaning	 that	 every	 year	 8000	 drives	would
fail.	That	is	about	21	failures	every	day!

Technology-wise,	an	HDFS	cluster	 is	composed	of	a	NameNode,	a	server
which	holds	all	the	metadata	regarding	the	stored	files.	Think	of	this	as	a	registry
containing	 file	 names	 and	 their	 size,	 and	 where	 to	 find	 their	 contents	 in	 the
cluster.	A	NameNode	manages	incoming	file	system	operations	such	as	opening,
closing,	 and	 renaming	 files	 and	 directories.	 It	 is	 also	 responsible	 for	mapping
data	 blocks	 (parts	 of	 files)	 to	 DataNodes,	 which	 handle	 file	 read	 and	 write
requests.	DataNodes	will	 create,	 delete,	 and	 replicate	 data	 blocks	 among	 their
disk	 drives	 according	 to	 instructions	 from	 the	 governing	 NameNode.	 They
continuously	 loop,	 asking	 the	 NameNode	 for	 instructions.	 Data	 replication	 is
important	 to	ensure	fault	 tolerance.	 It	 is	possible	 to	specify	how	many	replicas
(or	copies)	of	a	file	have	to	be	created	across	different	DataNodes	at	the	time	the
file	is	created,	a	number	that	can	also	be	changed	after	creation.	The	NameNode
will	 make	 sure	 to	 then	 adhere	 to	 this	 request	 and	 distribute	 data	 blocks
accordingly.

Since	one	of	 the	main	goals	of	HDFS	is	 to	support	 large	files,	 the	size	of
one	data	block	is	typically	64	megabytes.	Each	file	that	gets	stored	on	HDFS	is
hence	 cut	 up	 into	 one	 or	more	 64	MB	data	 blocks,	which	 are	 then	 placed	 (in
multiple	copies)	by	 the	NameNode	on	multiple	DataNodes.	Finally,	 if	a	 failure
of	 the	 NameNode	 occurs	 (which	 also	 stores	 its	 register	 on	 its	 own	 disks),

SecondaryNameNode	 servers	 can	 be	 provisioned.	 Figures	 19.1–19.4	 illustrate
the	operations	of	HDFS.

Figure	19.1	A	client	requests	metadata	from	the	NameNode.

Figure	19.2	A	client	wants	to	read	out	a	file	from	the	HDFS	cluster.

Figure	19.3	A	clients	wants	to	write	a	file	to	the	HDFS	cluster.

Figure	19.4	A	NameNode	makes	sure	that	replication	is	handled.

Figure	 19.1	 illustrates	 a	 basic	 metadata	 operation	 in	 action.	 The	 client
consults	 the	NameNode	 to	 find	 out	which	 files	 are	 in	 the	 directory	 “/mydir/”.
The	NameNode	maintains	 a	 registry	of	 files,	 and	can	 immediately	 answer	 that
one	file	is	present	with	two	replicas,	and	that	the	size	is	1	GB.

Next,	 our	 client	 wishes	 to	 read	 out	 this	 file	 (Figure	 19.2).	 It	 sends	 the
NameNode	a	request	to	perform	a	read.	The	NameNode	will	look	in	its	registry,
and	instruct	the	client	that	it	can	read	the	first	64	MB	data	block	from	DataNode
1,	the	next	block	from	DataNode	3,	and	so	on.	The	client	can	then	contact	each
DataNode	to	receive	the	contents	of	the	file.

In	Figure	19.3,	our	client	wants	to	create	a	new	file,	and	indicates	this	once
again	through	a	request	to	the	NameNode,	together	with	the	instruction	to	create
two	replicas.	The	NameNode	responds	with	instructions	regarding	how	to	send
the	data	blocks	to	the	DataNodes.	The	client	will	then	contact	the	DataNodes	and
start	sending	the	contents	of	this	new	file.

The	work	of	the	NameNode	is	not	done	yet,	however.	Every	few	seconds,
DataNodes	will	report	in	to	the	NameNode	to	indicate	that	they’re	still	alive	(i.e.,
send	a	“heartbeat”)	and	to	update	the	NameNode	regarding	the	blocks	they	are
storing.	The	NameNode	now	sees	that	our	recently	written	file	has	not	yet	been
replicated,	and	hence	instructs	the	DataNodes	to	perform	the	replication	(Figure
19.4).

If	the	NameNode	stops	receiving	heartbeats	from	a	DataNode,	it	presumes
it	is	gone	and	that	any	data	blocks	it	stores	are	gone.	By	comparing	its	registry
with	the	reports	it	had	been	receiving	from	the	dead	node,	the	NameNode	knows
which	copies	of	blocks	died	with	the	node	and	can	then	re-replicate	those	blocks
to	other	DataNodes.	Note,	these	figures	describe	a	very	basic	set-up.	In	practice,
DataNodes	 will	 also	 be	 organized	 in	 different	 “racks”	 holding	 several
DataNodes.	This	allows	for	more	efficient	resource	management	and	replication.

It	 is	 easy	 to	 see	 how	 the	 NameNode	 plays	 a	 crucial	 role	 within	 HDFS.
Hence,	to	foresee	a	failure	in	the	NameNode	occurring,	a	SecondaryNameNode
is	often	added	to	the	cluster	as	well.	The	SecondaryNameNode	also	occasionally
connects	to	the	NameNode	(but	less	often	than	the	DataNodes)	and	grabs	a	copy
of	the	NameNode’s	registry.	Should	the	main	NameNode	die,	the	files	retained
by	the	SecondaryNameNode	can	be	used	to	recover	the	NameNode.

HDFS	provides	a	native	Java	API	 to	allow	for	writing	Java	programs	that
can	interface	with	HDFS.	Throughout	the	years,	various	ports	and	bindings	have
been	 created	 for	 other	 programming	 languages	 so	 they	 can	 communicate	with
HDFS.	 HDFS	 also	 comes	 with	 several	 command-line	 commands	 to	 interface
with	 HDFS.	 The	 following	 code	 fragment	 shows	 a	 simple	 client	 program
accessing	HDFS	from	Java	and	reading	out	a	file:

String	filePath	=	"/data/all_my_customers.csv";
Configuration	config	=	new	Configuration();
#	Connect	to	the	HDFS	filesystem
org.apache.hadoop.fs.FileSystem	hdfs	=	
org.apache.hadoop.fs.FileSystem.get(config);
#	Create	Path	object	using	our	file	location	string
org.apache.hadoop.fs.Path	path	=	new	
org.apache.hadoop.fs.Path(filePath);
#	Open	the	file	on	HDFS

org.apache.hadoop.fs.FSDataInputStream	inputStream	=	
hdfs.open(path);
#	Create	a	byte	array	to	store	the	contents	of	the	file
#	Warning:	can	exceed	Java's	memory	in	case	the	HDFS	file	is	very	
large
byte[]	received	=	new	byte[inputStream.available()];
#	Read	the	file	into	the	byte	array
inputStream.readFully(received);

This	 example	 shows	off	 an	 important	 point	when	working	with	HDFS.	Recall
that	 the	 whole	 goal	 of	 HDFS	 is	 to	 split	 up	 potentially	 very	 large	 files	 and
distribute	 them	across	machines.	 In	 this	 example,	we’re	 reading	 in	 a	 complete
file	and	storing	it	 in	a	byte	array	in	the	memory	of	 the	computer	executing	the
Java	program.	When	working	with	big	 files,	 the	 received	 file’s	 size	 can	easily
exceed	that	of	the	client’s	available	memory.	Hence,	it	is	important	to	construct
programs	in	such	a	way	that	 they	can	deal	with	files	 line	by	line,	or	 in	 limited
blocks,	such	as	shown	below:

//	…
org.apache.hadoop.fs.FSDataInputStream	inputStream	=	
hdfs.open(path);
byte[]	buffer	=	new	byte[1024];	//	Only	handle	1KB	at	once
int	bytesRead;
while	((bytesRead	=	in.read(buffer))	>	0)	{
				//	Do	something	with	the	buffered	block	here
}

This	shows	(through	a	very	simple	example)	how	users	aiming	to	do	something
with	files	stored	on	HDFS	should	still	think	of	how	best	to	approach	the	problem
at	hand,	knowing	that	incoming	files	can	potentially	be	very	large.

Finally,	 we	 also	 provide	 a	 listing	 of	 the	 most	 common	 Hadoop	 HDFS
command-line	commands,	which	allow	you	to	access	an	HDFS	cluster	from	the
command	line:

●	hadoop	fs	-mkdir	mydir Create	a	directory	on	HDFS

●	hadoop	fs	-ls List	files	and	directories	on	HDFS

●	hadoop	fs	-cat	myfile View	a	file’s	content

●	hadoop	fs	-du Check	disk	space	usage	on	HDFS

●	hadoop	fs	-expunge Empty	trash	on	HDFS

●	hadoop	fs	-chgrp	mygroup
myfile

Change	group	membership	of	a	file	on
HDFS

●	hadoop	fs	-chown	myuser
myfile

Change	file	ownership	of	a	file	on	HDFS

●	hadoop	fs	-rm	myfile Delete	a	file	on	HDFS

●	hadoop	fs	-touchz	myfile Create	an	empty	file	on	HDFS

●	hadoop	fs	-stat	myfile Check	the	status	of	a	file	(file	size,	owner,
etc.)

●	hadoop	fs	-test	-e	myfile Check	if	a	file	exists	on	HDFS

●	hadoop	fs	-test	-z	myfile Check	if	a	file	is	empty	on	HDFS

●	hadoop	fs	-test	-d	myfile Check	if	myfile	is	a	directory	on	HDFS

19.2.2.2	MapReduce

MapReduce	 forms	 the	 second	 main	 important	 component	 of	 Hadoop.
MapReduce	 is	 a	 programming	 paradigm	 (a	 way	 to	 construct	 programs)	made
popular	 by	 Google	 and	 subsequently	 implemented	 by	 Apache	 Hadoop,	 as
discussed	above.	It	 is	 important	 to	note	 that	 the	main	innovative	aspects	of	 the
MapReduce	model	 do	 not	 come	 from	 the	 map-and-reduce	 paradigm	 itself,	 as
these	 concepts	were	 long	known	 in	 functional	 programming	 circles,	 but	 rather
from	applying	these	functions	in	a	manner	that	is	scalable	and	fault-tolerant.

A	map–reduce3	pipeline	starts	from	a	series	of	values	and	maps	each	value
to	 an	output	using	a	given	mapper	 function.	 In	many	programming	 languages,
this	 concept	 of	 applying	 a	 “mapping”	 exists	 natively,	 as	 this	 Python	 example
illustrates:

>>>	numbers	=	[1,2,3,4,5]
>>>	numbers.map(lambda	x	:	x	*	x)	#	Map	a	function	to	our	list
[1,4,9,16,25]

The	reduce	operation	then	applies	a	reducing	function	to	a	series	of	values,	but
now	 operates	 on	 the	 list	 as	 a	 whole,	 instead	 of	 element-by-element.	 A	 list	 of
values	hence	gets	reduced	to	a	single	value:

>>>	numbers.reduce(lambda	x	:	sum(x)	+	1)	#	Reduce	a	list	using	
given	function
16

These	 two	 components	 form	 the	 basics	 behind	 the	 Hadoop	 MapReduce
programming	 model,	 although	 some	 differences	 are	 present	 here.	 First,	 a
MapReduce	pipeline	in	Hadoop	starts	from	a	list	of	key–value	pairs,	and	maps
each	 pair	 to	 one	 or	 more	 output	 elements.	 The	 output	 elements	 are	 also
key–value	pairs.	This	operation	can	easily	be	run	in	parallel	over	the	input	pairs.
Next,	the	output	entries	are	grouped	so	all	output	entries	belonging	to	the	same

key	are	assigned	 to	 the	same	worker	 (in	most	distributed	set-ups,	workers	will
correspond	 to	different	physical	machines,	 so	 that	 this	 step	can	also	happen	 in
parallel).	These	workers	then	apply	the	reduce	function	to	each	group,	producing
a	new	list	of	key–value	pairs.	The	 resulting,	 final	outputs	are	 then	 (optionally)
sorted	by	their	key	to	produce	the	final	outcome.

There	 is	 another	particularly	 important	 aspect	 to	note	when	working	with
MapReduce	in	Hadoop:	even	though	not	all	mapping	operations	have	finished,
reduce-workers	 can	 already	get	 started	 on	 their	work	by	 applying	 their	 reduce
function	 on	 a	 partial	 group	 of	 results	 with	 the	 same	 key.	When	 new	mapped
results	come	in,	the	reduce	operation	can	be	applied	again	to	form	the	ultimately
resulting	outcome.	This	has	two	important	implications:	first,	the	reduce	function
should	 output	 the	 same	 key–value	 structure	 as	 the	 one	 emitted	 by	 the	 map
function,	since	this	output	can	be	used	again	in	an	additional	reduce	operation.
Second,	the	reduce	function	itself	should	be	built	in	such	a	way	that	it	provides
correct	 results,	 even	 if	 called	multiple	 times.	 Briefly:	 the	MapReduce	 way	 of
writing	 programs	 is	 “embarrassingly	 parallel”,	 since	 both	 the	map	 and	 reduce
operations	can	be	split	over	multiple	machines,	and	the	reducers	can	already	get
to	work	 even	when	 not	 all	mappers	 have	 finished.	MapReduce	 hence	 offers	 a
powerful	 programming	 framework,	 but	 one	 that	 requires	 some	 clever	 thinking
on	the	part	of	the	programmer	or	analyst.

Connections

In	Chapter	11,	when	discussing	MongoDB	and	other	NoSQL	databases,
we	saw	how	many	databases	have	adopted	MapReduce	to	construct	more
complicated	queries.	Refer	 to	 that	chapter	 if	you	want	 to	freshen	up	on
more	 details	 regarding	 MapReduce.	 In	 what	 follows,	 we	 continue
working	with	the	MapReduce	paradigm	on	Hadoop.

In	 Hadoop,	 MapReduce	 tasks	 are	 written	 using	 the	 Java	 programming
language.	Bindings	for	Python	and	other	programming	languages	exist,	but	Java
is	 still	 regarded	 as	 the	 “native”	 environment	 to	 construct	 programs.	 To	 run	 a
MapReduce	 task,	 a	 Java	 program	 is	 packaged	 as	 a	 JAR	 archive	 and	 launched
using	the	command:

hadoop	jar	myprogram.jar	TheClassToRun	[args…]

Let’s	 illustrate	 how	 a	 MapReduce	 task	 runs	 in	 a	 distributed	 cluster	 by
constructing	a	Java	program	to	count	the	appearance	of	a	word	in	a	file	(imagine
again	an	incredibly	huge	file	with	long	lines).	To	keep	things	simple,	we’ll	write
our	program	using	one	Java	class:

import	java.io.IOException;
import	org.apache.hadoop.conf.Configuration;
import	org.apache.hadoop.fs.*;
import	org.apache.hadoop.io.*;
import	org.apache.hadoop.mapreduce.*;
import	org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import	org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public	class	WordCount	{
		//	Following	fragments	will	be	added	here
}

First,	 we	 need	 to	 define	 our	mapper	 function.	 In	 Hadoop	MapReduce,	 this	 is
defined	 as	 a	 class	 extending	 the	 built-in	 Mapper<KeyIn,	 ValueIn,	 KeyOut,
ValueOut>	class,	 indicating	which	 type	of	key–value	 input	pair	we	expect	and
which	type	of	key–value	output	pair	our	mapper	will	emit:

//	Add	this	in	the	WordCount	class	body	above:

public	static	class	MyMapper	extends	Mapper<Object,	Text,	Text,	
IntWritable>	{
								//	Our	input	key	is	not	important	here,	so	it	can	just	be	any	
generic	object
								//	Our	input	value	is	a	piece	of	text	(a	line)
								//	Our	output	key	will	also	be	a	piece	of	text	(a	word)
								//	Our	output	value	will	be	an	integer
								public	void	map(Object	key,	Text	value,	Context	context)
																				throws	IOException,	InterruptedException	{
														//	Take	the	value,	get	its	contents,	convert	to	lowercase,
														//	and	remove	every	character	except	for	spaces	and	a-z	
values:
														String	document	=	value.toString().toLowerCase()
																										.replaceAll("[^a-z\\s]",	"");
														//	Split	the	line	up	in	an	array	of	words
														String[]	words	=	document.split("	");
														//	For	each	word…
														for	(String	word	:	words)	{
																				//	"context"	is	used	to	emit	output	values
																				//	Note	that	we	cannot	emit	standard	Java	types	such	as	
int,
																				//	String,	etc.	Instead,	we	need	to	use	a
																				//	org.apache.hadoop.io.*	class	such	as	Text
																				//	(for	string	values)	and	IntWritable	(for	integers)4
																				Text	textWord	=	new	Text(word);
																				IntWritable	one	=	new	IntWritable(1);
																				//	…	simply	emit	a	(word,	1)	key-value	pair:
																				context.write(textWord,	one);
																				}
														}
}

The	mapper	in	our	basic	word-counting	example	works	like	this.	Our	given
input	line	will	be	split	up	in	key–value	pairs	as	follows:	every	line	in	the	file	will
become	one	pair,	with	the	key	indicating	the	starting	position	of	the	line	(which
we	won’t	 need	 to	 use)	 and	 the	 value	 being	 the	 line	 of	 text	 itself.	This	will	 be
mapped	 to	multiple	key–value	output	pairs.	For	each	word	we	 find,	we	emit	a
(word,	1)	pair:

Input	key–value	pairs

Key	<Object> Value	<Text>

0 This	is	the	first	line

23 And	this	is	the	second	line,	and	this	is	all

will	be	mapped	to:

Mapped	key–value	pairs

Key	<Text> Value	<IntWritable>

this 1

is 1

the 1

first 1

line 1

and 1

… …

This	operation	will	happen	in	parallel.	While	our	mappers	are	busy	emitting
output	 pairs,	 our	 reducers	 will	 start	 working.	 Also,	 the	 reducer	 function	 is
specified	 as	 a	 class	 extending	 the	 built-in	 Reducer<KeyIn,	 ValueIn,	 KeyOut,
ValueOut>	class:

public	static	class	MyReducer	extends	Reducer<Text,	IntWritable,	
Text,	IntWritable>	{					public	void	reduce(Text	key,	
Iterable<IntWritable>	values,	Context	context)
																										throws	IOException,	InterruptedException	{
														int	sum	=	0;
														IntWritable	result	=	new	IntWritable();
														//	Summarize	the	values	so	far…
														for	(IntWritable	val	:	values)	{
																										sum	+=	val.get();
														}
														result.set(sum);
														//	…	and	output	a	new	(word,	sum)	pair
														context.write(key,	result);
							}
}

Our	reducer	works	as	follows	(keep	in	mind	that	the	reducer	works	over	a
list	of	values	and	reduces	them).	Here,	our	list	of	values	is	a	list	of	integer	counts
for	a	particular	key	(a	word),	which	we	sum	and	output	as	(word,	sum).	To	see
how	this	works,	imagine	that	our	mappers	have	already	emitted	these	pairs:

Mapped	key–value	pairs

Key	<Text> Value	<IntWritable>

this 1

is 1

the 1

first 1

line 1

and 1

this 1

is 1

Since	we	already	have	duplicate	keys	 (for	 “this”	 and	 “is”),	 some	 reducers	 can
already	get	started:

Mapped	key–value	pairs	for	“this”

Key	<Text> Value	<IntWritable>

this 1

this 1

will	be	reduced	to:

Reduced	key–value	pairs	for	“this”

Key	<Text> Value	<IntWritable>

this 1	+	1	=	2

When	later	additional	mapped	output	pairs	appear	with	the	key	“this”,	they
can	be	reduced	again	to	one	output	pair	for	“this”:

Reduced	key–value	pairs	for	“this”

Key	<Text> Value	<IntWritable>

this 2	+	1	=	3

Finally,	 we	 also	 need	 to	 add	 a	 main	 method	 to	 our	 Java	 program	 to	 set
everything	up:

public	static	void	main(String[]	args)	throws	Exception	{
								Configuration	conf	=	new	Configuration();
							
								//	Set	up	a	MapReduce	job	with	a	sensible	short	name:
								Job	job	=	Job.getInstance(conf,	"wordcount");
							
								//	Tell	Hadoop	which	JAR	it	needs	to	distribute	to	the	workers
								//	We	can	easily	set	this	using	setJarByClass
								job.setJarByClass(WordCount.class);
							
								//	What	is	our	mapper	and	reducer	class?
								job.setMapperClass(MyMapper.class);
								job.setReducerClass(MyReducer.class);
							
								//	What	does	the	output	look	like?
								job.setOutputKeyClass(Text.class);
								job.setOutputValueClass(IntWritable.class);
							
								//	Our	program	expects	two	arguments,	the	first	one	is	the	input	
file	on	HDFS
								//	Tell	Hadoop	our	input	is	in	the	form	of	TextInputFormat

								//	(Every	line	in	the	file	will	become	value	to	be	mapped)
								TextInputFormat.addInputPath(job,	new	Path(args[0]));
							
								//	The	second	argument	is	the	output	directory	on	HDFS
								Path	outputDir	=	new	Path(args[1]);
								//	Tell	Hadoop	what	our	desired	output	structure	is:	a	file	in	a	
directory
								FileOutputFormat.setOutputPath(job,	outputDir);
							
								//	Delete	the	output	directory	if	it	exists	to	start	fresh
								FileSystem	fs	=	FileSystem.get(conf);
								fs.delete(outputDir,	true);
							
								//	Stop	after	our	job	has	completed
								System.exit(job.waitForCompletion(true)	?	0	:	1);
}

After	 compiling	 and	 packaging	 our	 program	 as	 a	 JAR	 file,	 we	 can	 now
instruct	the	Hadoop	cluster	to	run	our	word	counting	program:

hadoop	jar	wordcount.jar	WordCount	/users/me/dataset.txt	
/users/me/output/

Hadoop	will	start	executing	our	MapReduce	program	and	report	on	its	progress
(Figure	19.5).

Figure	19.5	Running	a	Hadoop	MapReduce	program.

When	finished,	the	“/users/me/output/”	will	contain	the	following	contents

$	hadoop	fs	-ls	/users/me/output
Found	2	items
-rw-r—r--		1	root		hdfs			0		2017-05-
20				15:11		/users/me/output/_SUCCESS
-rw-r—r--		1	root		hdfs		2069		2017-05-
20		15:11		/users/me/output/part-r-00000

$	hadoop	fs	-cat	/users/me/output/part-r-00000and		2
first			1
is						3
line				2
second		1
the					2
this				3

This	is	a	very	basic	example.	In	Hadoop,	a	MapReduce	task	can	consist	of	more
than	 mappers	 and	 reducers,	 and	 can	 also	 include	 partitioners,	 combiners,
shufflers,	and	sorters	that	specify	in	more	detail	how	key–value	pairs	have	to	be

shuffled	around,	distributed,	and	sorted	across	the	computing	nodes	(one	sorter	is
implicitly	 enabled	 and	 shown	 in	 our	 example	 above,	 as	 the	 output	 has	 been
sorted	by	key).

What	 should	 be	 clear	 from	 this	 example	 is	 that	 constructing	MapReduce
programs	 requires	 a	 certain	 skillset	 in	 terms	 of	 programming.	 To	 tackle	 a
problem,	 multiple	 ways	 of	 approaching	 it	 usually	 exist,	 all	 with	 different
tradeoffs	 in	 terms	of	speed,	memory	consumption,	and	scalability	over	a	set	of
computers.	There	 is	 a	 reason	most	 guides	 and	 tutorials	 never	 go	much	 further
than	a	basic	word-counting	or	 averaging	example,	 and	most	organizations	 that
have	adopted	the	MapReduce	framework	in	their	data	pipeline	haven’t	been	very
eager	to	share	their	efforts.

19.2.2.3	Yet	Another	Resource	Negotiator

One	 question	 we	 still	 need	 to	 answer	 is	 how	 a	 MapReduce	 program	 gets
distributed	 across	 different	 nodes	 in	 the	 cluster	 and	 how	 coordination	 among
them	happens.	This	is	the	job	of	YARN,	the	final	“main”	Hadoop	component.	In
early	 Hadoop	 versions	 (Hadoop	 1),	 YARN	 did	 not	 exist,	 and	 the	MapReduce
component	 itself	 was	 responsible	 for	 the	 setting	 up	 and	 organization	 of
MapReduce	programs.	To	do	so,	Hadoop	1	appointed	one	node	in	a	cluster	to	be
a	JobTracker:	a	service	that	would	accept	 incoming	jobs	and	serve	information
about	 completed	 ones.	 Next,	 each	 node	 that	 needs	 to	 handle	map	 and	 reduce
tasks	 runs	 a	 TaskTracker	 service,	 which	would	 launch	 tasks	 as	 instructed	 and
governed	 by	 the	 JobTracker.	 This	 system	worked	 for	 smaller	 clusters,	 but	 for
larger	 set-ups,	 with	 many	 jobs	 being	 executed	 and	 submitted	 at	 once,	 the
JobTracker	could	become	overloaded.

In	 Hadoop	 2,	 MapReduce	 was	 split	 up	 into	 two	 components:	 the
MapReduce-specific	 programming	 framework	 remained	 MapReduce	 (see

above),	while	the	cluster	resource	management	capabilities	were	put	under	a	new
component,	called	YARN.	Three	important	services	are	present	in	YARN.	First,
the	 ResourceManager	 is	 a	 global	 YARN	 service	 that	 receives	 and	 runs
applications	 (an	 incoming	 MapReduce	 job,	 for	 instance)	 on	 the	 cluster.	 It
contains	a	scheduler	to	govern	the	order	in	which	jobs	are	handled.	Second,	the
JobTracker’s	 function	 of	 serving	 information	 about	 completed	 jobs	 is	 now
handled	by	the	JobHistoryServer,	keeping	a	log	of	all	finished	jobs.	Finally,	the
TaskTracker	service	in	Hadoop	1	is	replaced	by	a	NodeManager	service,	which
is	 responsible	 to	 oversee	 resource	 consumption	 on	 a	 node.	NodeManagers	 are
responsible	 for	 setting	 up	 containers	 on	 a	 node,	 each	 of	 which	 can	 house	 a
particular	 task,	 such	 as	 a	 single	 map	 or	 reduce	 task.	 By	 doing	 so,	 the
NodeManager	can	also	keep	 track	of	how	“busy”	a	node	 is	and	whether	 it	can
accept	more	tasks	at	the	moment.

Note	that	once	an	application	(such	as	our	word-count	program	above)	gets
accepted	 by	 the	 ResourceManager	 and	 is	 scheduled	 to	 start,	 the
ResourceManager	 will	 delegate	 the	 responsibility	 to	 further	 oversee	 it	 by
instructing	one	of	 the	NodeManagers	 to	set	up	a	container	with	an	Application
Master	 for	 that	 job,	 which	 will	 handle	 the	 further	 management	 of	 that
application.	That	way,	the	ResourceManager	can	free	up	resources	to	handle	and
schedule	other	incoming	applications,	without	having	to	also	follow-up	on	their
execution.

The	whole	YARN	set-up	can	 look	daunting.	Let	us	provide	a	step-by-step
example	 as	 follows.	 Figure	 19.6	 introduces	 a	 simple	 YARN	 cluster	 with	 four
servers,	one	of	which	is	running	the	ResourceManager,	one	of	which	is	running
the	JobHistoryServer,	and	two	of	which	are	running	NodeManagers.

Figure	19.6	A	basic	YARN	cluster.

Our	client	wishes	to	submit	an	application	to	the	cluster	(like	we	submitted
our	word-count	program	before).	The	client	contacts	the	resource	manager	with
the	request	to	deploy	and	run	a	MapReduce	program	(Figure	19.7).

Figure	19.7	A	client	submits	an	application	to	the	ResourceManager.

The	 ResourceManager	 will	 keep	 our	 application	 in	 a	 queue	 until	 its
scheduler	 determines	 that	 it	 is	 time	 to	 start	 our	 application.	 The
ResourceManager	will	now	negotiate	with	a	NodeManager	to	instruct	the	setting
up	of	a	container	in	which	to	start	the	ApplicationMaster.	The	ApplicationMaster
will	register	itself	on	startup	with	the	ResourceManager,	which	can	then	be	kept
up-to-date	with	 further	 job	status	 information.	This	also	allows	us	 to	 relay	 this
information	 to	 the	 client,	 which	 can	 then	 communicate	 directly	 with	 the
ApplicationMaster	 for	 further	 job	 follow-up	 (progress	 updates,	 status)	 (Figure
19.8).

Figure	19.8	The	ResourceManager	sets	up	an	ApplicationMaster	by
negotiating	with	the	NodeManager	and	passes	the	client	the	information.

The	 ApplicationMaster	 will	 now	 handle	 the	 further	 execution	 of	 the
submitted	 application,	 including	 setting	 up	 containers	 for	 map	 and	 reduce
operations.	 To	 do	 so,	 the	ApplicationMaster	will	 ask	 the	ResourceManager	 to
negotiate	 with	 the	 NodeManagers	 (who	 all	 report-in	 regularly	 to	 the
ResourceManager)	 to	see	which	one	 is	 free.	When	a	NodeManager	 is	 free,	 the
ApplicationMaster	will	launch	the	container	by	providing	necessary	information
to	that	NodeManager	(Figure	19.9).

Figure	19.9	The	ApplicationMaster	will	set	up	containers	for	each	subtask	by
first	negotiating	with	the	ResourceManager	which	NodeManager	it	should
contact	to	do	so.

When	 a	 map	 or	 reduce	 container	 is	 finished,	 it	 will	 deregister	 itself	 by
letting	 the	 ApplicationMaster	 know	 it	 is	 done.	 This	 continues	 until	 the
application	has	completed,	at	which	point	also	the	ApplicationMaster	will	send	a
completion	update	 to	 the	client	and	deregister	 itself	with	 the	ResourceManager
and	shut	down,	allowing	 its	container	 to	be	repurposed.	The	ResourceManager
then	 contacts	 the	 JobHistoryServer	 to	 store	 a	 full	 execution	 log	 of	 this
application	in	its	archives.

YARN	 is	 a	 complex	 set-up,	 but	 the	 architecture	 comes	 with	 many
advantages.	 By	 breaking	 up	 the	 JobTracker	 into	 different	 services,	 it	 avoids
many	of	the	scaling	issues	still	present	in	Hadoop	1.	In	addition,	YARN	allows
us	to	run	programs	and	applications	other	than	MapReduce	on	its	cluster	as	well.
That	 is,	 YARN	 can	 be	 used	 for	 coordination	 of	 any	 sort	 of	 task	 in	 which
decomposition	 into	parallel	 subtasks	 is	 beneficial.	This	will	 become	especially
useful	once	we	move	away	from	MapReduce,	as	we	will	see	later.	First,	we	will
look	at	SQL	on	Hadoop.

Retention	Questions

Describe	the	Hadoop	stack.

What	is	HDFS?	Describe	the	architecture	and	key	components	behind
HDFS.

How	does	a	MapReduce	pipeline	work	in	Hadoop?

What	is	YARN?	Describe	the	architecture	and	key	components	behind
YARN.

19.3	SQL	on	Hadoop

It	 should	 be	 clear	 that	 MapReduce	 does	 not	 form	 the	 most	 pleasant	 way	 to
interact	 with	 and	 query	 datasets	 for	 end-users,	 even	 those	 with	 programming
experience.	The	fact	that	MapReduce	programs	can	operate	in	parallel	over	huge
datasets	is	a	strong	advantage,	as	is	the	fact	that	it	can	work	with	HDFS,	which
can	store	large	datasets	in	a	distributed	way	without	any	structure	imposed	on	the
actual	files	(note	that	we	have	made	no	mention	of	a	schema	or	structure	when
working	with	HDFS	–	it	is	simply	a	big	distributed	hard	drive).

It	 seems,	however,	 that	we	are	 far	 away	 from	 the	benefits	 that,	 e.g.,	SQL
offered	 us	 in	 terms	 of	 querying	 data,	 and	 even	 further	 from	 deriving	 business
intelligence	or	analytical	insights	from	it.	This	is	exactly	the	letdown	many	early
adopters	 of	 Hadoop	 faced.	 Imagine	 working	 with	 a	 relational	 data	 warehouse
that	 is	 tightly	 integrated	 with	 your	 business	 intelligence	 and	 reporting
applications.	Making	 the	move	 to	Hadoop	 does	 not	 seem	 like	 the	 best	 choice
here:	 your	 data	 are	 structured	 and	 easy	 to	 query	 using	 SQL,	whereas	Hadoop
offers	 an	 unstructured	 file	 system	 and	 no	 out-of-the-box	 querying	 capabilities,
other	than	writing	MapReduce	programs.	The	benefits	of	Hadoop,	such	as	being
capable	of	working	with	huge	amounts	of	data,	were	understood,	but	 the	need
for	a	more	database-like	set-up	on	top	of	Hadoop	became	clear.

19.3.1	HBase:	The	First	Database	on	Hadoop

MapReduce	and	HDFS	were	never	conceived	as	operational	support	systems	in
which	 data	 had	 to	 be	 accessed	 in	 a	 random,	 real-time	 fashion	 supporting	 both
fast	 reads	 and	writes.	 Instead,	 Hadoop	was	 primarily	 geared	 toward	 resource-
and	 time-intensive	 batch-computing	 operations.	 That	 is,	 geared	 toward	 long-
running	MapReduce	computing	tasks	that	had	to	ensure	the	capability	to	restart
subtasks	(map	or	reduce	operations)	when	a	node	went	down,	and	where	waiting
times	 for	 a	 job	 to	 complete	 were	 assumed	 to	 easily	 lie	 in	 the	 days-to-weeks
range.	 This	 presented	 a	 huge	 dichotomy	 from	 the	 thinking	 present	 in	 the
business	environment,	coming	from	data	warehouse-based	set-ups	together	with
business	 intelligence	 platforms.	 Businesses	 had	 hence	 invested	 in	 Hadoop
hoping	it	would	offer	a	faster,	more	feature-rich	platform	to	gain	insights	into	the
data.	 To	 remedy	 this,	 the	 October	 2007	 release	 of	 Hadoop	 included	 the	 first
version	 of	HBase,	 the	 first	 Hadoop	 database	 inspired	 by	 Google’s	 Bigtable,
offering	a	DBMS	that	can	be	run	on	top	of	HDFS,	handling	very	large	relational
tables.	 It	hence	puts	 some	 logical	 structure	on	 top	of	HDFS.	Note	 that	HBase,
with	its	focus	on	large	datasets	and	emphasis	on	running	in	a	distributed	fashion,
can	be	regarded	as	one	of	the	older	NoSQL	databases.	HBase	is	hence	also	more
a	“data	storage	platform”	rather	than	a	true	DBMS	as	it	still	lacks	many	features
you	find	in	a	relational	DBMS	such	as	typed	columns,	triggers,	advanced	query
capabilities,	and	so	on.	Instead,	HBase	focuses	on	offering	a	simplified	structure
and	query	language	in	a	way	that	is	highly	scalable	and	can	tackle	large	volumes
of	data.

Connections

HBase	was	one	of	the	main	projects	driving	the	NoSQL	movement	later
on,	as	we	discussed	in	Chapter	11.	Many	NoSQL	databases	aim	to	offer
the	 same	 scalability,	 without	 running	 on	 top	 of	 Hadoop.	 Also,	 if	 you
recall	our	discussion	on	consistency	in	Chapters	11	and	16	and	wonder
how	HBase	stands	in	this	field,	it	is	important	to	know	that	HBase	is	one
of	 the	 few	NoSQL	databases	 that	 does	 not	 adopt	 eventual	 consistency.
Instead,	HBase	offers	strongly	consistent	reads	and	writes.

Just	as	a	relational	DBMS,	HBase	also	organizes	its	data	in	tables	that	have
rows	and	columns.	Still,	the	similarities	end	there,	as	it	is	more	helpful	to	think
of	HBase’s	tables	as	being	multi-dimensional	maps	(or	multidimensional	arrays)
as	follows.	An	HBase	table	consists	of	multiple	rows.	A	row	consists	of	a	row
key	and	one	or	more	columns	with	values	associated	with	them.	Rows	in	a	table
are	sorted	alphabetically	by	the	row	key,	making	the	design	of	this	key	a	crucial
factor.	The	goal	 is	 to	 store	data	 in	 such	 a	way	 that	 related	 rows	 are	near	 each
other.	For	instance,	if	your	rows	relate	to	website	domains,	it	might	be	helpful	to
define	 the	 key	 in	 reverse	 order,	 so	 that	 “com.mycorp.mail”	 and
“com.mycorp.www”	 are	 closer	 to	 each	 other,	 rather	 than	 “www.mycorp.com”
being	closer	to	“www.yourcorp.mail”.

Each	 column	 in	HBase	 is	 denoted	 by	 a	 column	 “family”	 and	 an	 optional
“qualifier”,	 separated	 by	 a	 colon	 (:),	 e.g.,	 “name:first”	 and	 “name:last”.	 A
column	 family	 physically	 co-locates	 a	 set	 of	 columns	 and	 their	 values.	 Each
family	 has	 a	 set	 of	 storage	 properties,	 including	whether	 its	 values	 should	 be
cached,	whether	values	should	be	compressed,	and	so	on.	Every	row	in	a	table
has	the	same	column	families,	but	not	all	column	families	need	to	have	a	value
filled	 in	 for	 each	 row.	 The	 column	 qualifier	 is	 added	 to	 the	 column	 family	 to
provide	an	index	of	a	certain	piece	of	data.	Each	cell	in	a	table	is	hence	defined

by	 a	 combination	 of	 the	 row	 key,	 column	 family	 and	 column	 qualifier,	 and	 a
timestamp.	The	timestamp	represents	a	value’s	version	and	is	written	alongside
each	 value.	Hence	 the	 comparison	 to	 data	 being	 stored	 as	 a	multidimensional
map,	 in	 which	 “data[table][row	 key][column	 family][column	 qualifier]
[timestamp]	=	value”.

Drill	Down

In	the	online	playground,	you	can	experiment	with	the	HBase	shell	and
follow	along	with	the	queries	in	the	chapter	(see	the	Appendix	for	more
details).

To	 show	how	 this	works	 in	 practice,	 let’s	 create	 a	 simple	HBase	 table	 to
store	and	query	users	using	 the	HBase	shell	 (started	on	 the	command	prompt).
The	 row	 key	 will	 be	 the	 user	 ID.	 We’ll	 construct	 the	 following	 column
“families:qualifiers”:

Let’s	start	by	creating	our	“users”	table	with	two	column	families:

hbase(main):001:0>	create	'users',	'name',	'email'
0	row(s)	in	2.8350	seconds
=>	Hbase::Table	-	users

Describe	 the	 table	 (this	 statement	 will	 return	 a	 lot	 of	 additional	 configuration
information):

name:first

name:last

email	(without	a	qualifier).

hbase(main):002:0>	describe	'users'Table	users	is	ENABLED
users
COLUMN	FAMILIES	DESCRIPTION
{NAME	=>	'email',	BLOOMFILTER	=>	'ROW',	VERSIONS	=>	'1',	
IN_MEMORY	=>	'false',	K
EEP_DELETED_CELLS	=>	'FALSE',	DATA_BLOCK_ENCODING	
=>	'NONE',	TTL	=>	'FOREVER',	C
OMPRESSION	=>	'NONE',	MIN_VERSIONS	=>	'0',	
BLOCKCACHE	=>	'true',	BLOCKSIZE	=>	'6
5536',	REPLICATION_SCOPE	=>	'0'}
{NAME	=>	'name',	BLOOMFILTER	=>	'ROW',	VERSIONS	=>	'1',	
IN_MEMORY	=>	'false',	KE
EP_DELETED_CELLS	=>	'FALSE',	DATA_BLOCK_ENCODING	
=>	'NONE',	TTL	=>	'FOREVER',	CO
MPRESSION	=>	'NONE',	MIN_VERSIONS	=>	'0',	BLOCKCACHE	
=>	'true',	BLOCKSIZE	=>	'65
536',	REPLICATION_SCOPE	=>	'0'}
2	row(s)	in	0.3250	seconds

Another	way	to	list	this	table	(the	table	itself,	not	its	contents)	is:

hbase(main):003:0>	list	'users'TABLE
users
1	row(s)	in	0.0410	seconds
=>	["users"]

We	 can	 now	 start	 inserting	 values.	 Since	 HBase	 represents	 data	 as	 a
multidimensional	map,	we	store	values	using	“put”	one	by	one	by	specifying	the
table	name,	a	row	key,	column	family	and	qualifier,	and	the	value	itself	(note	the
deliberate	misspelling	of	“first”	as	“firstt”):

hbase(main):005:0>	put	'users',	'seppe',	'name:firstt',	'Seppe'
0	row(s)	in	0.0560	seconds

Oops,	we	made	a	 typo	 there,	 so	 let's	 insert	 the	correct	 column	 family:qualifier
instead:

hbase(main):006:0>	put	'users',	'seppe',	'name:first',	'Seppe'
0	row(s)	in	0.0200	seconds

hbase(main):007:0>	put	'users',	'seppe',	'name:last',	'vanden	
Broucke'
0	row(s)	in	0.0330	seconds

hbase(main):008:0>	put	'users',	'seppe',	'email',	
'seppe.vandenbroucke@kuleuven.be'
0	row(s)	in	0.0570	seconds

Now	list	the	full	contents	of	this	table	(using	scan):

hbase(main):011:0>	get	'users',	'seppe'
COLUMN								CELL
	email:							timestamp=1495293082872,	
value=seppe.vandenbroucke@kuleuven.be
	name:first			timestamp=1495293050816,	value=Seppe
	name:firstt		timestamp=1495293047100,	value=Seppe
	name:last				timestamp=1495293067245,	value=vanden	Broucke
4	row(s)	in	0.1250	seconds

Give	 the	 information	 for	 row	key	 “seppe”	 only	 (using	 “get”	 to	 select	 a	 single
row	key):

hbase(main):011:0>	get	'users',	'seppe'
COLUMN								CELL
	email:							timestamp=1495293082872,	
value=seppe.vandenbroucke@kuleuven.be
	name:first			timestamp=1495293050816,	value=Seppe

	name:firstt		timestamp=1495293047100,	value=Seppe
	name:last				timestamp=1495293067245,	value=vanden	Broucke
4	row(s)	in	0.1250	seconds

Our	incorrectly	spelled	entry	is	still	present.	Let’s	try	to	delete	it:

hbase(main):016:0>	delete	'users',	'seppe',	'name:firstt'
0	row(s)	in	0.1800	seconds
hbase(main):017:0>	get	'users',	'seppe'
COLUMN										CELL
	;email:								timestamp=1495293082872,	
value=seppe.vandenbroucke@kuleuven.be
	;name:first				timestamp=1495293050816,	value=Seppe
	;name:last					timestamp=1495293067245,	value=vanden	Broucke
3	row(s)	in	0.1750	seconds

We	can	change	the	email	value	by	just	running	“put”	again:

hbase(main):018:0>	put	'users',	'seppe',	'email',	
'seppe@kuleuven.be'0	row(s)	in	0.0240	seconds

Let’s	now	retrieve	this	row	again,	but	only	for	the	column	family	“email”:

hbase(main):019:0>	get	'users',	'seppe',	'email'
COLUMN				CELL
	email:			timestamp=1495293303079,	value=seppe@kuleuven.be
1	row(s)	in	0.0330	seconds

What	if	we	want	to	see	earlier	versions	as	well?

hbase(main):021:0>	get	'users',	'seppe',	{COLUMNS	=>	['email'],	
VERSIONS	=>	2}
COLUMN				CELL

	email:			timestamp=1495293303079,	value=seppe@kuleuven.be
1	row(s)	in	0.0220	seconds

That	didn’t	work,	we	first	need	to	instruct	HBase	to	keep	multiple	versions	for
this	column	family:

hbase(main):024:0>	alter	'users',	{NAME	=>	'email',	VERSIONS	
=>	3}
Updating	all	regions	with	the	new	schema…
0/1	regions	updated.
1/1	regions	updated.
Done.
0	row(s)	in	3.3310	seconds
hbase(main):025:0>	put	'users',	'seppe',	'email',	
'seppe.vandenbroucke@kuleuven.be'
0	row(s)	in	0.0540	secondshbase(main):026:0>	put	'users',	'seppe',	
'email',	'seppe@kuleuven.be'
0	row(s)	in	0.0330	secondshbase(main):027:0>	get	'users',	'seppe',	
{COLUMNS	=>	['email'],	VERSIONS	=>	2}
COLUMN					CELL
	email:				timestamp=1495294282057,	value=seppe@kuleuven.be
	email:				timestamp=1495294279739,	
value=seppe.vandenbroucke@kuleuven.be
2	row(s)	in	0.0480	seconds

We	 can	 delete	 all	 values	 pertaining	 to	 row	 key	 “seppe”	 in	 “users”	 as
follows:

hbase(main):026:0>	deleteall	'users',	'seppe'
0	row(s)	in	0.0630	seconds
hbase(main):027:0>	scan	'users'
ROW	COLUMN+CELL
0	row(s)	in	0.0280	seconds

We	then	try	to	delete	the	table:

hbase(main):029:0>	drop	'users'
ERROR:	Table	users	is	enabled.	Disable	it	first.

We	first	need	to	disable	the	table	before	it	can	be	dropped:

hbase(main):001:0>	disable	'users'
0	row(s)	in	3.5380	seconds
hbase(main):002:0>	drop	'users'
0	row(s)	in	1.3920	secondshbase(main):003:0>	list	'users'
TABLE
0	row(s)	in	0.0200	seconds
=>	[]

HBase’s	 query	 facilities	 are	 very	 limited.	 Just	 as	 we	 saw	 in	 Chapter	 11,
HBase	 offers	 a	 column-oriented,	 key–value,	 distributed	 data	 store	with	 simple
get/put	 operations.	 Like	 MongoDB,	 HBase	 includes	 facilities	 to	 write
MapReduce	 programs	 to	 perform	 more	 complex	 queries,	 but	 once	 again	 this
comes	at	an	extra	cognitive	overhead.	When	using	HBase,	make	sure	you	really
have	 that	 much	 data	 to	 warrant	 its	 usage	 in	 the	 first	 place,	 i.e.,	 if	 you	 have
hundreds	of	millions	or	billions	of	rows,	then	HBase	is	a	good	candidate.	If	you
have	only	a	few	million	rows,	then	using	a	traditional	RDBMS	might	be	a	better
choice	because	all	your	data	might	wind	up	on	a	few	nodes	 in	HBase	anyway,
and	the	rest	of	the	cluster	may	be	sitting	idle.

Additionally,	 think	about	portability	 issues	when	 trying	 to	 “migrate”	your
data	from	an	existing	RDBMS	set-up	to	HBase.	In	this	case,	it	is	not	as	simple	as
changing	a	JDBC	driver	and	being	able	to	re-use	the	same	SQL	queries.

Connections

Refer	 back	 to	 Chapter	 18	 where	 data	 migration	 and	 integration	 were
exhaustively	 discussed.	 Apache	 Sqoop	 and	 Flume	 were	 already
mentioned	there	as	interesting	projects	to	gather	and	move	data	between
relational	databases	and	HDFS.	Even	though	these	tools	can	offer	a	lot	of
help	in	migration	exercises,	 these	kinds	of	projects	still	require	a	heavy
investment	in	time	and	effort,	as	well	as	management	oversight.

Finally	–	and	this	is	also	often	forgotten	when	setting	up	a	Big	Data	cluster
–	 make	 sure	 you	 have	 enough	 hardware	 available.	 HBase,	 just	 as	 the	 rest	 of
Hadoop,	does	not	perform	that	well	on	anything	less	than	five	HDFS	DataNodes
with	 an	 additional	 NameNode.	 This	 is	 mainly	 due	 to	 the	 way	 HDFS	 block
replication	works,	which	only	makes	the	effort	worthwhile	when	you	can	invest
in,	set	up,	and	maintain	at	least	6–10	nodes.

19.3.2	Pig

Although	 HBase	 somewhat	 helps	 to	 impose	 structure	 on	 top	 of	 HDFS	 and
implements	 some,	 albeit	 basic,	 querying	 facilities,	 more	 advanced	 querying
functionality	must	still	be	written	using	the	MapReduce	framework.	To	mitigate
this	 problem,	 Yahoo!	 Developed	 “Pig”,	 which	 was	 also	 made	 open-source	 as
Apache	Pig	in	2007.	Pig	is	a	high-level	platform	for	creating	programs	that	run
on	Hadoop	(in	a	language	called	Pig	Latin),	which	uses	MapReduce	underneath
to	execute	the	program.	It	aims	to	enable	users	to	more	easily	construct	programs
that	 work	 on	 top	 of	 HDFS	 and	 MapReduce,	 and	 can	 somewhat	 resemble
querying	facilities	offered	by	SQL.	The	following	Pig	Latin	fragment	shows	how
a	CSV	 file	 (comma-separated	 values	 file)	 from	HDFS	 can	 be	 loaded,	 filtered,
and	aggregated.	The	“$0”,	“$1”,	…	refer	to	column	numbers	in	the	CSV	file:

timesheet	=	LOAD	'timesheet.csv'	USING	PigStorage(',');
raw_timesheet	=	FILTER	timesheet	by	$0	>	100;
timesheet_logged	=	FOREACH	raw_timesheet	GENERATE	$0	AS	
driverId,
																																														$2	AS	hours_logged,
																																														$3	AS	miles_logged;
grp_logged	=	GROUP	timesheet_logged	by	driverId;
sum_logged	=	FOREACH	grp_logged	GENERATE	group	as	driverId,
		SUM(timesheet_logged.hours_logged)	as	sum_hourslogged,
		SUM(timesheet_logged.miles_logged)	as	sum_mileslogged;

While	Pig	offers	several	benefits	compared	to	standard	SQL,	such	as	being
able	 to	 store	 data	 at	 any	 point	 during	 the	 execution	 of	 its	 programs	 (allowing
once	 again	 for	 failure	 recovery	 and	 restarting	 a	query),	 some	have	 argued	 that
RDBMSs	and	SQL	are	substantially	faster	 than	MapReduce	–	and	hence	Pig	–

especially	 for	 reasonably	 sized	and	structured	datasets	and	when	working	with
modern	RDBMS	engines	(which	are	capable	of	using	multiple	processing	units
in	 parallel).	 In	 addition,	 Pig	 Latin	 is	 relatively	 procedural,	 versus	 SQL’s
declarative	way	of	working.	In	SQL,	users	can	specify	that	two	tables	should	be
joined	or	an	aggregate	summary	should	be	calculated,	but	not	how	this	should	be
performed	on	the	physical	 level,	as	it	 is	up	to	the	DBMS	to	figure	out	the	best
query	 execution	 plan.	 Programming	 with	 Pig	 Latin	 is	 similar	 to	 specifying	 a
query	 plan	 yourself,	 meaning	 greater	 control	 over	 data	 flows,	 once	 again
imposing	 some	 extra	 requirements	 on	 the	part	 of	 the	programmer.	Pig	has	 not
seen	wide	adoption,	and	does	not	receive	frequent	updates	(only	one	version	was
released	in	2016).	The	question	hence	remains	whether	supporting	SQL	as-is	on
Hadoop	is	possible.

19.3.3	Hive

Supporting	SQL	on	top	of	Hadoop	is	what	Apache	Hive	set	out	to	do.	Hive	is	a
data	warehouse	solution	which	–	like	HBase	–	runs	on	top	of	Hadoop	but	allows
for	richer	data	summarization	and	querying	facilities	by	providing	an	SQL-like
interface.	Before	Hive,	 traditional	queries	had	 to	be	 specified	 in	a	MapReduce
program.	 Hive	 provides	 the	 necessary	 abstraction	 layer	 to	 convert	 SQL-like
queries	 to	 a	 MapReduce	 pipeline.	 Since	 most	 existing	 business	 intelligence
solutions	already	work	with	SQL-based	queries,	Hive	also	aids	portability	as	 it
offers	a	JDBC	interface.

Hive	was	initially	developed	by	Facebook,	but	was	open-sourced	later	and
is	now	being	worked	on	by	other	companies	as	well,	so	it	now	can	run	on	top	of
HDFS	 as	 well	 as	 other	 file	 systems	 such	 as	 Amazon’s	 S3	 cloud	 storage	 file
system.	 Physical	 storage	 of	 tables	 is	 done	 in	 plain	 text	 files,	 or	 other	 (better
suited)	formats	such	as	ORC,	RCFile,	and	Apache	Parquet,	which	try	to	organize
data	 in	 a	more	 efficient	manner	on	 the	physical	 level	 compared	 to	 simple	 text
files.

Architecturally,	Hive	puts	several	additional	components	on	top	of	Hadoop.
The	Hive	Metastore,	its	first	component,	stores	metadata	for	each	table	such	as
their	schema	and	 location	on	HDFS.	 It	 is	worth	noting	 that	 these	metadata	are
stored	 using	 a	 traditional	 RDBMS.	 By	 default,	 the	 embedded	 Apache	 Derby
database	 is	 used,	 but	 other	RDBMSs	 can	be	 used	 for	 this	 task.	The	Metastore
helps	 the	 rest	 of	 the	 Hive	 system	 to	 keep	 track	 of	 the	 data	 and	 is	 a	 crucial
component.	Hence,	a	backup	server	regularly	replicates	the	metadata,	which	can
be	retrieved	if	data	loss	occurs.

Next,	the	Driver	service	is	responsible	for	receiving	and	handling	incoming
queries.	It	starts	the	execution	of	a	query	and	monitors	the	lifecycle	and	progress

of	the	execution.	It	stores	the	necessary	metadata	generated	during	the	execution
of	 a	 query	 and	 acts	 as	 a	 collection	 point	 to	 obtain	 the	 query	 result.	 To	 run	 a
query,	the	Compiler	will	first	convert	it	to	an	execution	plan,	containing	the	tasks
needed	 to	 be	 performed	 by	 Hadoop’s	MapReduce.	 This	 is	 a	 complex	 step	 in
which	 the	 query	 is	 first	 converted	 to	 an	 abstract	 syntax	 tree,	 which,	 after
checking	for	errors,	 is	converted	again	 to	a	directed	acyclic	graph	representing
an	 execution	 plan.	 The	 directed	 acyclic	 graph	 will	 contain	 a	 number	 of
MapReduce	stages	and	tasks	based	on	the	input	query	and	data.	The	Optimizer
also	 kicks	 into	 gear	 to	 optimize	 the	 directed	 acyclic	 graph,	 for	 instance	 by
joining	various	transformations	in	a	single	operation.	It	can	also	split	up	tasks	if
it	determines	this	will	help	performance	and	scalability	once	the	directed	acyclic
graph	runs	as	a	series	of	map-and-reduce	operations.	Once	 the	directed	acyclic
graph	is	compiled,	optimized,	and	divided	into	MapReduce	stages,	the	Executer
will	 start	 sending	 these	 to	 Hadoop’s	 resource	 manager	 (YARN,	 usually)	 and
monitor	their	progress.	It	takes	care	of	pipelining	the	stages	by	making	sure	that
a	stage	gets	executed	only	if	all	other	prerequisites	are	done.

Finally,	to	interface	with	the	system,	Hive	provides	a	set	of	command-line
tools	 and	 a	 web-based	 user	 interface	 to	 allow	 users	 to	 submit	 queries	 and
monitor	running	queries.	The	Hive	Thrift	server,	finally,	allows	external	clients
to	 interact	 with	 Hive	 by	 implementing	 a	 JDBC	 and	 ODBC	 driver,	 greatly
improving	Hive’s	portability.

Though	 Hive	 queries	 strongly	 resemble	 SQL,	 HiveQL,	 as	 Hive’s	 query
language	 is	 named,	 does	 not	 completely	 follow	 the	 full	 SQL-92	 standard.
HiveQL	 offers	 several	 helpful	 extensions	 not	 in	 the	 SQL	 standard	 (such	 as
allowing	 for	 inserts	 in	 multiple	 tables	 at	 once),	 but	 lacks	 strong	 support	 for
indexes,	 transactions,	 and	 materialized	 views,	 and	 only	 has	 limited	 subquery
support,	 so	 some	 very	 complex	 SQL	 queries	 might	 still	 fail	 when	 trying	 to
execute	them	on	Hive.

Nevertheless,	 Hive’s	 ability	 to	 handle	 most	 SQL	 queries	 offers	 a	 huge
advantage.	 Hive	 offering	 JDBC	 drivers	 made	 the	 project	 wildly	 successful.	 It
was	quickly	adopted	by	various	organizations	that	had	realized	they	had	taken	a
step	back	from	their	traditional	data	warehouse	and	business	intelligence	set-ups
in	 their	desire	 to	 switch	 to	Hadoop	as	 soon	as	possible.	Hence,	one	can	easily
write	this	HiveQL	query:

SELECT	genre,	SUM(nrPages)	FROM	books	GROUP	BY	genre

which	automatically	gets	converted	to	a	MapReduce	pipeline	behind	the	scenes.
In	addition,	the	fact	that	Hive	stores	its	data	tables	on	top	of	HDFS	also	makes
the	query	 language	particularly	well	 suited	when	datasets	other	 than	structured
tables	 need	 to	 be	 queried,	 as	 long	 as	 it	 is	 possible	 to	 express	 a	 statement	 to
extract	data	out	of	 them	in	a	 tabular	 format.	For	 instance,	 this	query	 illustrates
the	word-count	example	using	HiveQL:

CREATE	TABLE	docs	(line	STRING);	--	create	a	docs	table
--	load	in	file	from	HDFS	to	docs	table,	overwrite	existing	data:
LOAD	DATA	INPATH	'/users/me/doc.txt'	OVERWRITE	INTO	
TABLE	docs;
--	perform	word	count
SELECT	word,	count(1)	AS	count
FROM	(--	split	each	line	in	docs	into	words
SELECT	explode(split(line,	'\s'))	AS	word	FROM	docs
)	t
GROUP	BY	t.word
ORDER	BY	t.word;

The	 storage	 and	 querying	 operations	 of	 Hive	 closely	 resemble	 those	 of
traditional	 DBMSs,	 but	 it	 internally	 works	 in	 a	 different	 manner,	 since	 Hive
utilizes	HDFS	and	MapReduce	 as	 its	 file	 system	and	query	 engine.	Designing

structured	 tables	 is	 now	 possible	 using	Hive,	with	 the	 defined	 structure	 being
kept	 in	Hive’s	Metastore.	One	difference	with	 traditional	DBMSs,	 however,	 is
that	 Hive	 does	 not	 enforce	 the	 schema	 at	 the	 time	 of	 loading	 the	 data.	 A
traditional	 RDBMS,	 for	 instance,	 can	 store	 data	 with	 a	 schema	 already	 being
defined,	meaning	 you	 have	 to	 define	 your	 schema	 ahead	 of	 time.	 This	 is	 also
called	 “schema	 on	 write”:	 the	 schema	 is	 applied	 and	 checked	 when	 data	 are
written	 to	 the	data	 store.	Hive,	 on	 the	other	 hand,	 applies	 a	 “schema	on	 read”
approach,	 in	which	 tables	 can	 just	 be	 defined	 over	 a	 series	 of	 input	 files,	 but
where	the	schema	check	will	occur	as	the	data	are	being	queried	and	read	from
the	data	store.	In	this	way,	you	can	quickly	load	your	data	into	the	data	store	and
figure	out	how	to	parse	and	handle	it	later.	To	put	it	another	way:	a	schema-on-
write	approach	means	you	need	to	figure	out	the	format	of	your	data	before	you
write	it,	whereas	a	schema-on-read	approach	means	you	can	indicate	what	your
data	are	first,	before	figuring	out	what	 their	structure	 is.	The	former	allows	for
early	 detection	 of	 corrupt	 data	 and	 better	 query	 time	 performance,	 since	 the
schema	 is	 known	 and	 enforced	 at	 the	 time	 of	 executing	 a	 query.	Hive,	 on	 the
other	hand,	 can	 load	data	dynamically,	 ensuring	a	 fast	 and	very	 flexible	 initial
load,	but	where	queries	might	fail	when	trying	to	access	 the	data	under	certain
assumptions	about	its	structure.	Queries	may	take	a	longer	time	to	execute	since
Hive	 needs	 to	 assume	 that	 a	 data	 schema	 can	 change	 or	 be	 interpreted	 in
different	ways	(e.g.,	 in	our	word-count	example,	 is	every	 line	one	column	in	a
table,	or	is	every	word	a	column?).

Transactions	are	another	area	where	Hive	differs	from	traditional	databases.
A	 typical	 RDBMS	 supports	 ACID	 transaction	 management	 (Atomicity,
Consistency,	Isolation,	and	Durability).	Transactions	in	Hive	were	introduced	in
Hive	0.13	but	were	 still	 limited.	Only	 in	 a	more	 recent	version	of	Hive	 (0.14)
was	functionality	added	to	support	full	ACID	transaction	management,	albeit	at
a	 high	 performance	 cost,	 since	 Hadoop	 itself	 has	 a	 hard	 time	 enforcing

immutability	 (i.e.,	 preventing	 changes	 being	 made)	 on	 a	 row-level	 basis.	 To
work	around	this	issue,	Hive	creates	a	new	table	first	which	contains	all	changes,
before	locking	it	and	replacing	the	old	table.

Connections

See	Chapters	14	and	16	for	an	overview	on	transactions	and	transaction
management,	with	Chapter	16	focusing	on	a	distributed	setting.

Performance	and	speed	of	SQL	queries	still	forms	the	main	disadvantage	of
Hive	today.	Just	as	with	HBase,	Hive	is	meant	 to	be	used	on	top	of	 truly	large
data	repositories,	i.e.,	together	with	a	large	HDFS	cluster	and	tables	having	many
millions	 of	 rows.	Many	 datasets	 that	 customers	 work	 with	 are	 not	 that	 large.
Since	 there	 is	 still	 a	 large	 overhead	 in	 setting	 up	 and	 coordinating	 a	 series	 of
MapReduce	 tasks,	even	 relatively	simple	Hive	queries	can	 take	a	 few	hours	 to
complete.	 Some	Hadoop	 vendors,	 such	 as	Hortonworks,	 have	 pushed	 strongly
toward	 the	 adoption	 of	 Hive,	 mainly	 by	 putting	 efforts	 behind	 Apache	 Tez,
which	provides	a	new	back-end	for	Hive,	 through	which	queries	are	no	 longer
converted	to	a	MapReduce	pipeline	but	where	the	Tez	execution	engine	directly
works	with	operational	pipelines	expressed	as	a	directed	acyclic	graph.	In	2012,
Cloudera,	 another	 well-known	 Hadoop	 vendor,	 introduced	 their	 own	 SQL	 on
Hadoop	 technology,	 called	 “Impala”.	 Also,	 Cloudera	 opted	 to	 forego	 the
underlying	MapReduce	pipeline	completely.	Other	vendors	 such	as	Oracle	and
IBM	 also	 offer	 their	Hadoop	 platforms	 –	 including	Hive	 –	which	 often	 differ
strongly	in	terms	of	which	version	of	Hive	they	actually	ship	with,	and	custom
modifications	 or	 add-ons	 that	 have	 been	 made	 or	 implemented	 to	 speed	 up
Hive’s	 execution.	 Thinking	 carefully	 before	 committing	 to	 a	 vendor,	 or	 even
Hadoop	 altogether,	 remains	 a	 strong	 recommendation.	Meanwhile,	 the	Apache

Foundation	 continues	 to	work	 on	 new	 projects,	 such	 as	 the	 recently	 proposed
Apache	Drill	initiative,	which	offers	SQL	not	only	on	top	of	HDFS,	but	also	on
top	of	HBase,	flat	files,	NoSQL	databases	such	as	MongoDB,	and	aims	to	offer	a
unified	querying	interface	to	work	on	these	repositories	simultaneously.	Again,	a
great	 initiative	 when	working	 in	 an	 environment	 consisting	 of	many	 database
types	 and	 huge	 amounts	 of	 both	 structured	 and	 unstructured	 data,	 but	 coming
again	at	a	cost	of	extra	performance	drawbacks.

Drill	Down

Facebook	itself	was	quick	to	release	another	project,	called	Presto,	which
works	 on	 top	 of	Hive	 and	 is	 another	 “SQL	on	Hadoop”	 solution	more
suited	 toward	 interactive	 querying.	 Also	 here,	 queries	 are	 no	 longer
converted	 to	 a	 MapReduce	 pipeline,	 but	 instead	 to	 a	 directed	 acyclic
graph	consisting	of	various	subtasks.

Retention	Questions

Can	you	run	a	DBMS	on	top	of	Hadoop?	How?

What	is	Hive	and	how	does	it	enable	SQL	querying	on	Hadoop?
Explain	the	advantages	and	disadvantages.

19.4	Apache	Spark

Although	 Apache	 Hive	 made	 it	 possible	 to	 execute	 SQL	 queries	 on	 top	 of
Hadoop,	 the	 lack	of	performance	still	made	 it	 less	 suited	 for	many	operational
tasks.	End-users	were	still	on	the	lookout	for	ways	to	go	further	with	their	data
than	 performing	 queries,	 and	 wanted	 to	 perform	 analytics	 on	 top	 of	 them	 to
extract	patterns	and	drive	decisions,	something	which	is	not	an	easy	task	when
working	 with	 huge	 datasets.	 Another	 issue	 was	 the	 continuous	 underlying
presence	of	MapReduce,	which	 is	primarily	geared	 toward	 resource-	and	 time-
intensive	 batch-computing	 operations	 and	 offers	 efficiency	 in	 terms	 of	 data
throughput,	 but	 not	necessarily	 in	 terms	of	 response	 time	when	waiting	 for	 an
answer	to	come	back.

To	 work	 around	 this	 issue,	 researchers	 at	 the	 University	 of	 California
started	 working	 on	 an	 alternative	 to	 MapReduce	 in	 2014:	 Spark,	 a	 new
programming	 paradigm	 centered	 on	 a	 data	 structure	 called	 the	 resilient
distributed	 dataset,	 or	 RDD,	 which	 can	 be	 distributed	 across	 a	 cluster	 of
machines	 and	 is	maintained	 in	 a	 fault-tolerant	way.	Spark	was	developed	with
the	specific	focus	on	offering	a	response	to	the	limitations	that	MapReduce	had.
Whereas	 Spark	 still	 enforces	 a	 relatively	 linear	 and	 fixed	 data	 flow	 structure
(i.e.,	 mapping	 and	 reducing	 data),	 Spark’s	 RDDs	 allow	 you	 to	 construct
distributed	programs	in	a	way	that	a	cluster’s	memory	can	be	used	as	a	shared,
distributed	 resource,	 opening	 the	 possibility	 to	 construct	 a	 wide	 variety	 of
programs.	That	is,	RDDs	can	enable	the	construction	of	iterative	programs	that
have	to	visit	a	dataset	multiple	times,	as	well	as	more	interactive	or	exploratory
programs,	which	is	exactly	the	type	of	programs	one	would	need	to	facilitate	the
querying	 of	 data.	 The	 Spark	 team	 showed	 this	 approach	 was	 many	 orders	 of

magnitude	 faster	 than	MapReduce	 implementations,	 and	Spark	has	hence	been
extremely	rapidly	adopted	by	many	Big	Data	vendors	in	recent	years	as	the	way
forward	 for	 exploring,	 querying,	 and	 analyzing	 large	 datasets.	 Spark	 itself	 has
also	been	made	open-source	under	the	Apache	Software	Foundation.

Spark	 is	 not	 completely	 different	 from	Hadoop	 in	 terms	 of	 set-up.	 It	 still
works	with	HDFS	as	a	distributed	storage	system	(or	other	storage	systems	such
as	Amazon’s	S3),	and	still	requires	a	cluster	manager	such	as	YARN	as	well	(or
other	 alternative	 cluster	 managers	 such	 as	 Mesos	 or	 even	 its	 own	 cluster
manager).	The	MapReduce	component,	however,	is	what	Spark	aims	to	replace,
as	well	as	offering	additional	components	on	top	of	the	Spark	Core	to	facilitate	a
number	of	data	analysis	practices.	In	what	follows,	we	discuss	these	components
in	more	detail.

19.4.1	Spark	Core

Spark	 Core	 forms	 the	 heart	 of	 Spark,	 and	 is	 the	 foundation	 for	 all	 other
components.	It	provides	functionality	for	task	scheduling	and	a	set	of	basic	data
transformations	 that	 can	be	 used	 through	many	programming	 languages	 (Java,
Python,	Scala,	and	R).	To	do	so,	Spark	introduces	a	programming	model	based
around	the	concept	of	resilient	distributed	datasets,	the	primary	data	abstraction
in	Spark.	RDDs	are	specifically	designed	to	support	in-memory	data	storage	and
operations,	distributed	across	 a	 cluster	 so	 it	 is	 both	 fault-tolerant	 and	efficient.
The	 first	 is	 achieved	 by	 tracking	 the	 lineage	 of	 operations	 applied	 to	 coarse-
grained	 sets	 of	 data,	 whereas	 efficiency	 is	 achieved	 through	 parallelization	 of
tasks	 across	 multiple	 nodes	 while	 minimizing	 the	 number	 of	 times	 data	 get
replicated	or	moved	around	between	them.	Once	data	are	 loaded	into	an	RDD,
two	basic	types	of	operations	can	be	performed:	transformation,	which	creates	a
new	 RDD	 through	 changing	 the	 original	 one;	 and	 actions	 (such	 as	 counts),
which	measure	but	do	not	change	the	original	data.	The	chain	of	transformations
gets	 logged	 and	 can	 be	 repeated	 if	 a	 failure	 occurs.	 One	 might	 wonder	 what
makes	 this	 approach	 so	 much	 faster	 than	 the	 MapReduce	 pipeline.	 First,
transformations	 are	 lazily	 evaluated,	 meaning	 they	 are	 not	 executed	 until	 a
subsequent	action	has	a	need	for	the	result.	RDDs	will	also	be	kept	in	memory
for	as	long	as	possible,	greatly	increasing	the	performance	of	the	cluster.	This	is
a	big	difference	with	MapReduce,	 as	 this	 approach	writes	 and	 reads	data	 a	 lot
throughout	 its	pipeline	of	map-and-reduce	operations.	Finally,	 a	chain	of	RDD
operations	gets	compiled	by	Spark	into	a	directed	acyclic	graph	(similar	to	how
Hive	did	for	HiveQL	queries),	but	which	is	then	spread	out	and	calculated	over
the	cluster	by	splitting	up	this	computational	graph	into	a	set	of	tasks,	instead	of

converting	it	to	a	set	of	map-and-reduce	operations.	This	greatly	helps	to	speed
up	operations.	Figure	19.10	shows	Spark’s	general	approach.

Figure	19.10	Basic	overview	of	Spark’s	architecture.

A	 big	 advantage	 for	 end-users	 is	 that	 Spark’s	 RDD	 API	 is	 relatively
pleasant	 to	work	with	 compared	 to	writing	MapReduce	 programs.	 Even	map-
and-reduce	 operations	 can	 still	 be	 expressed	 through	 the	 concept	 of	 RDDs,
which	can	hold	a	 collection	of	 any	 type	of	object,	 as	 this	Python	code	 sample
shows:

#	Set	up	connection	to	the	Spark	cluster
sconf	=	SparkConf()
sc	=	SparkContext(master='',	conf=sconf)
#	Load	an	RDD	from	a	text	file,	the	RDD	will	represent	a	collection	
of
#	text	strings	(one	for	each	line)
text_file	=	sc.textFile("myfile.txt")
#	Count	the	word	occurrences:	first	split	the	lines	into	words,	then
#	apply	map-reduce	operators
counts	=	text_file.flatMap(lambda	line:	line.split("	"))	\
												.map(lambda	word:	(word,	1))	\
											.reduceByKey(lambda	a,	b:	a	+	b)
print(counts)

19.4.2	Spark	SQL

RDDs	remain	 the	primary	data	abstraction	 in	Spark.	At	 its	core,	an	RDD	is	an
immutable,	distributed	collection	of	elements,	partitioned	across	nodes	that	can
be	 operated	 upon	 in	 parallel	 using	 Spark’s	 API,	 which	 offers	 a	 number	 of
transactions	and	actions.	Since	an	RDD	imposes	no	preset	structure	in	terms	of
what	 its	 elements	 should	 look	 like,	 it	 also	 offers	 a	 great	 way	 to	 deal	 with
unstructured	forms	of	data.

Nevertheless,	Spark’s	RDD	API	can	still	be	daunting	when	coming	from	an
SQL	background	or	if	one	is	used	to	working	with	data	that	are	structured,	such
as	tabular	data.	To	allow	for	a	user-friendly	way	of	working	with	such	structured
datasets,	Spark	SQL	was	devised	as	another	Spark	component	that	runs	on	top
of	 Spark	 Core	 and	 introduces	 another	 data	 abstraction	 called	 DataFrames.
DataFrames	 can	 be	 created	 from	 RDDs	 by	 specifying	 a	 schema	 on	 how	 to
structure	the	data	elements	in	the	RDD,	or	can	be	loaded	directly	from	various
sorts	of	file	 formats	such	as	CSV	files,	JSON	files,	 from	a	JDBC	query	result,
and	even	from	Hive.	Even	though	DataFrames	continue	to	use	RDDs	behind	the
scenes,	 they	 represent	 themselves	 to	 the	 end-user	 as	 a	 collection	 of	 data
organized	 into	 named	 columns.	 This	 is	 done	 to	 make	 processing	 of	 large	 but
structured	 datasets	 easier.	 This	 code	 fragment	 shows	 Spark’s	 DataFrames	 in
action:

from	pyspark.sql	import	SparkSession
spark	=	SparkSession.builder.appName("Spark	
example").getOrCreate()
#	Create	a	DataFrame	object	by	reading	in	a	file
df	=	spark.read.json("people.json")
df.show()
#	|	age|	name|

#	+----+--------+
#	|null|	Seppe|
#	|	30|Wilfried|
#	|	19|	Bart|
#	+----+--------+
#	DataFrames	are	structured	in	columns	and	rows:
df.printSchema()
#	root
#	|--	age:	long	(nullable	=	true)
#	|--	name:	string	(nullable	=	true)
df.select("name").show()
#	+--------+
#	|	name|
#	+--------+
#	|	Seppe|
#	|Wilfried|
#	|	Bart|
#	+--------+
#	SQL-like	operations	can	now	easily	be	expressed:
df.select(df['name'],	df['age']	+	1).show()
#	+--------+---------+
#	|	name|(age	+	1)|
#	+--------+---------+
#	|	Seppe|	null|
#	|Wilfried|	31|
#	|	Bart|	20|
#	+--------+---------+
df.filter(df['age']	>	21).show()
#	+---+--------+
#	|age|	name|
#	+---+--------+
#	|	30|Wilfried|
#	+---+--------+

df.groupBy("age").count().show()
#	+----+-----+
#	|	age|count|
#	+----+-----+
#	|	19|	1|
#	|null|	1|
#	|	30|	1|
#	+----+-----+

Even	 though	 these	 statements	 resemble	 SQL,	 they	 (so	 far)	 are	 not
completely	alike.	However,	remember	that	underlying	the	DataFrame	API	which
you	can	use	 in	Python,	Java,	and	other	 languages,	 the	concept	of	RDDs	is	still
being	used	to	execute	your	operations.	To	do	so,	Spark	implements	a	full	SQL
query	 engine	 that	 can	 convert	 SQL	 statements	 to	 a	 series	 of	 RDD
transformations	 and	 actions.	 This	 is	 similar	 to	 how	 Hive	 converted	 SQL
statements	 to	 a	MapReduce	pipeline.	The	difference	 is	 that	Spark’s	“Catalyst”
query	 engine	 is	 a	 powerful	 engine	 that	 can	 convert	 SQL	 queries	 in	 a	 very
efficient	RDD	graph.	All	code	examples	we	have	just	seen	are	converted	to	an
SQL	 statement,	 which	 is	 then	 transformed	 to	 an	 RDD	 program.	 It	 is	 just	 as
possible	 to	 directly	write	 SQL	 in	 your	 programs	 to	manipulate	DataFrames	 if
you	prefer,	hence	the	name	“Spark	SQL”:

#	Register	the	DataFrame	as	an	SQL	temporary	view	
df.createOrReplaceTempView("people")
sqlDF	=	spark.sql("SELECT	*	FROM	people	WHERE	age	>	21")
sqlDF.show()
#	+---+--------+
#	|age|	name|
#	+---+--------+
#	|	30|Wilfried|
#	+---+--------+

Finally,	 besides	 integrating	 with	 Python,	 Java,	 Scala,	 and	 R	 programs,
Spark	 also	 offers	SQL	command-line	 tools	 and	 an	ODBC	and	 JDBC	 server	 if
you	wish	to	execute	queries	that	way.

Drill	Down

Recent	 versions	 of	 Spark	 also	 offer	 another	 abstraction	 other	 than
DataFrames:	 the	Dataset.	Like	DataFrames,	Datasets	 take	 advantage	of
the	Spark	Catalyst	SQL	engine,	but	extend	 this	with	compile-time	 type
safety	 checks	 when	 using	 a	 type	 safe	 programming	 language	 such	 as
Java	 or	 Scala.	 The	 main	 difference	 is	 that	 a	 DataFrame	 represents	 a
collection	 of	 Rows,	where	 a	 Row	 is	 a	 general	 structure	 of	which	 it	 is
known	that	it	will	contain	several	named	columns	with	values	that	should
be	 of	 a	 certain	 type.	 Type	 errors,	 however,	 can	 only	 be	 checked	 at
runtime	while	the	query	or	application	is	running.	A	Dataset	represents	a
collection	of	objects	 containing	 a	number	of	 strongly	 typed	 fields	 (i.e.,
attributes	 having	 a	 specific	 type	 such	 as	 integer	 or	 decimal	 value),
enabling	extra	checks	at	compile	time.	These	objects	still	need	to	be	able
to	be	 represented	as	a	 tabular	 row,	however.	To	do	so,	 the	Dataset	API
introduces	 a	 new	 concept	 called	 an	 encoder,	 which	 can	 convert	 JVM
(Java	Virtual	Machine)	objects	from	and	to	a	tabular	representation	in	a
way	 that	 is	 also	 fast	 and	 efficient.	 This	 is	 certainly	 another	 feat	 of
engineering	 in	 Spark,	 but	 one	 you	 can	 only	 encounter	 and	 use	 when
working	with	 Java	or	Scala	 (as	R	and	Python	do	not	 run	on	 top	of	 the
Java	Virtual	Machine).

19.4.3	MLlib,	Spark	Streaming,	and	GraphX

The	last	Spark	components	we	need	to	mention	are	MLlib,	Spark	Streaming,	and
GraphX.	MLlib	is	Spark’s	machine	learning	library.	Its	goal	is	to	make	practical
machine	 learning	 scalable	 and	 user-friendly,	 and	 even	 though	 there	 had	 been
earlier	 initiatives	 to	 put	machine	 learning	 algorithms	 on	 top	 of	Hadoop	 (most
notably	through	the	Apache	Mahout	project),	also	here	it	was	quickly	discovered
that	many	of	these	were	not	that	easily	ported	to	a	MapReduce	pipeline.	MLlib
can	offer	a	solid	set	of	algorithms	that	–	once	again	–	work	on	top	of	the	RDD
paradigm.

MLlib	offers	classification,	regression,	clustering,	and	recommender	system
algorithms.

Connections

In	Chapter	20,	analytics	and	machine	 learning	algorithms	are	discussed
further,	so	we	will	not	spend	too	much	time	discussing	MLlib’s	included
algorithms	here.

What	is	important	to	know	is	that	MLlib	was	originally	built	directly	on	top
of	 the	RDD	 abstraction.	 In	 Spark	 version	 2,	 the	 Spark	maintainers	 announced
that	 the	old	MLlib	component	would	be	gradually	replaced	with	a	new	version
of	this	component	that	works	directly	with	Spark	SQL’s	DataFrames-based	API,
as	 many	 machine	 learning	 algorithms	 assume	 data	 to	 be	 formatted	 in	 a
structured,	tabular	format	anyway.	The	RDD-based	MLlib	API	is	expected	to	be
removed	 in	 Spark	 3.	 This	 change	 makes	 sense,	 but	 has	 caused	 MLlib	 to	 be

somewhat	of	a	confusing	offering	today.	A	lot	of	Spark	1	code	is	still	being	used
in	production,	and	might	not	be	that	easy	to	update	with	the	newer	MLlib	API.

Spark	Streaming	 leverages	Spark	Core	 and	 its	 fast	 scheduling	 engine	 to
perform	 streaming	 analytics.	 The	 way	 it	 does	 so	 is	 relatively	 simple,	 and
although	 it	 is	 not	 as	 configurable	 or	 feature-rich	 as	 other	 Big	 Data	 real-time
streaming	 technologies	 such	 as	 Flink	 or	 Ignite	 (two	 very	 recent	 projects),	 it
offers	 a	 very	 approachable	 way	 to	 handle	 continuous	 data	 streams	 at	 high
velocity.	 Spark	 Streaming	 provides	 another	 high-level	 concept	 called	 the
DStream	 (discretized	 stream),	 which	 represents	 a	 continuous	 stream	 of	 data.
Internally,	however,	a	DStream	is	represented	as	a	sequence	of	RDD	fragments,
with	each	RDD	in	a	DStream	containing	data	from	a	certain	interval.	Similar	to
RDDs,	most	of	the	same	transformations	can	be	applied	directly	on	the	DStream,
allowing	 its	 data	 to	 be	 modified.	 DStreams	 also	 provide	 windowed
computations,	which	 allow	applying	 transformations	 over	 a	 sliding	window	of
data.	Different	DStreams	can	also	easily	be	joined.	This	Python	example	shows	a
word-counting	program	that	now	works	over	a	continuous	stream	of	data:

from	pyspark	import	SparkContext
from	pyspark.streaming	import	StreamingContext
sc	=	SparkContext("local[2]",	"StreamingWordCount")
ssc	=	StreamingContext(sc,	1)
#	Create	a	DStream	that	will	connect	to	server.mycorp.com:9999	as	a	
source
lines	=	ssc.socketTextStream("server.mycorp.com	",	9999)
#	Split	each	line	into	words
words	=	lines.flatMap(lambda	line:	line.split("	"))
#	Count	each	word	in	each	batch
pairs	=	words.map(lambda	word:	(word,	1))
wordCounts	=	pairs.reduceByKey(lambda	x,	y:	x	+	y)
#	Print	out	first	ten	elements	of	each	RDD	generated	in	the	

wordCounts	DStream	wordCounts.pprint()
#	Start	the	computation
ssc.start()
ssc.awaitTermination()

It	is	important	to	note	that	the	Spark	Streaming	component	uses	the	concept
of	RDDs.	But	what	about	allowing	for	SQL	statements	 that	work	on	a	stream?
Again,	 to	 handle	 this	 aspect,	 Spark	 is	 working	 on	 a	 Structured	 Streaming
component	which	would	 allow	 expressing	 streaming	 computation	 pipelines	 on
top	 of	DataFrames,	 and	 hence	 through	SQL.	The	 Spark	 SQL	 engine	will	 take
care	of	running	it	incrementally	and	will	continuously	update	the	final	result	as
streaming	data	 continue	 to	 arrive.	However,	Structured	Streaming	 is	 still	 in	 its
alpha	stage	in	Spark	2.1,	and	the	API	is	still	considered	experimental.	Because	of
this,	 projects	 such	 as	 Flink,	 which	 offer	 richer	 and	 more	 fluent	 streaming
capabilities,	have	seen	increased	adoption	in	the	past	year	or	so,	though	nowhere
yet	as	much	as	Spark.

Drill	Down

In	 earlier	 days,	Apache	 Storm	 (acquired	 and	 open-sourced	 by	 Twitter)
was	also	frequently	used	as	a	stream	computation	framework,	which	also
has	the	idea	of	expressing	a	computational	pipeline	as	a	directed	acyclic
graph.	 However,	 the	 framework	 is	 no	 longer	 that	 widely	 chosen	 for
newer	 projects.	 Its	 latest	 release	 dates	 from	 2016	 and,	with	 its	 version
1.0.0,	is	considered	a	completed	product.	The	fact	that	programs	on	top
of	 Storm	 are	 –	 preferably	 –	 written	 through	 the	 Clojure	 programming
language,	which	is	not	that	well	known,	also	caused	the	project	to	fall	by
the	wayside.

GraphX	is	Spark’s	component	implementing	programming	abstractions	to
deal	 with	 graph-based	 structures,	 again	 based	 on	 the	 RDD	 abstraction.	 To
support	common	graph	computations,	GraphX	comes	with	a	set	of	fundamental
operators	and	algorithms	(such	as	PageRank)	to	work	with	graphs	and	simplify
graph	analytics	tasks.	Also	here,	work	has	been	underway	for	Spark	to	provide
the	same	graph-based	abstractions	on	top	of	DataFrames	(called	GraphFrames),
although	this	is	still	very	much	a	work	in	progress.

Drill	Down

If	you	are	wondering	how	GraphX	stacks	up	to	Neo4j	(a	graph	database
seen	 in	Chapter	11)	 and	 other	 graph	 databases,	Neo4j	 and	 other	 graph
databases	 focus	 on	 providing	 end-to-end	 online	 transaction	 processing
capabilities	with	graphs	being	the	primary	structural	construct.	Graphs	in
Neo4j	are	stored	in	a	way	that	is	optimal	to	query	them,	which	might	not
be	the	case	when	trying	to	load	them	in	through	GraphX	(as	they	can	still
be	 stored	 in	various	ways	on	 the	underlying	 file	 system).	On	 the	other
hand,	Neo4j	was	not	 built	 specifically	with	 the	 intent	 to	perform	high-
intensity	 computing	 or	 analytical	 operations.	 However,	 various
developers	have	extended	Neo4j	with	plugins	to	provide	more	algorithms
that	can	work	on	top	of	it,	and	it	is	also	possible	to	export	Neo4j	graphs
to	GraphX,	where	they	can	be	further	analyzed.	If	your	focus	is	graphs,
and	you	want	to	store	and	query	your	data	in	this	form,	start	with	a	graph
database	such	as	Neo4j	first	and	then	include	GraphX	if	the	need	arises.

Retention	Questions

What	is	Spark?	Which	benefits	does	it	offer	over	Hadoop?

What	are	RDDs?	How	are	they	used	in	Spark?

Give	a	general	overview	of	the	different	components	of	Spark.

19.5	Conclusion

This	 chapter	 has	 discussed	Big	Data	 and	 the	most	 common	 technology	 stacks
supporting	it.	We	have	started	our	discussion	from	the	5	Vs	of	Big	Data:	volume,
velocity,	variety,	veracity,	and	value.	From	there,	we	have	reviewed	various	Big
Data	 technologies,	 starting	 from	Hadoop.	We	 saw	 how	Hadoop’s	 raw	 stack	 is
unable	 to	 support	 strong	 querying	 capabilities,	 leading	 to	 various	 solutions	 to
“bring	the	DBMS	to	Hadoop”,	so	to	speak.	HBase	and	Pig	were	among	the	first
efforts	in	this	space,	with	HBase	being	an	example	of	a	NoSQL	database	on	top
of	Hadoop,	but	still	offering	limited	query	capabilities,	and	Pig	trying	to	offer	a
friendlier	programming	language	on	top	of	MapReduce.	Hive	was	introduced	as
the	main	project	bringing	the	power	of	SQL	to	Hadoop,	but	still	being	limited	by
the	 MapReduce	 paradigm.	 Finally,	 Spark	 was	 introduced,	 doing	 away	 with
MapReduce	 altogether	 and	 replacing	 it	 with	 a	 directed	 acyclic	 graph-based
paradigm	with	a	strong	SQL	engine	offering	performant	query	capabilities,	and
machine	learning,	streaming,	and	graph-based	components.

The	Big	Data	ecosystem	continues	to	evolve	at	a	rapid	pace,	however,	with
new	projects	being	introduced	every	few	months	that	promise	to	turn	the	field	on
its	 head.	 The	 field	 has	 become	 hard	 to	 navigate,	 and	 one	 must	 be	 careful
regarding	vendors	and	what,	exactly,	they	provide,	as	even	different	versions	of	a
project	–	say,	Spark	–	can	differ	widely	in	terms	of	functionality.	Many	projects
within	 the	 Big	 Data	 ecosystem	 can	 also	 be	 replaced	 or	 mixed-and-matched
together.	 For	 instance,	 recent	 versions	 of	Hive	 can	 also	 convert	 their	 HiveQL
queries	to	a	Spark-directed	acyclic	graph	pipeline,	just	as	Spark	does	itself!	We
have	seen	how	Spark	can	use	YARN	to	perform	its	resource	negotiations	in	the
cluster,	but	can	also	use	Mesos	or	its	own	built-in	resource	manager,	and	so	can

many	other	Big	Data	products.	Meanwhile,	new	projects	such	as	Flink	or	Ignite
promise	richer	querying	capabilities	surpassing	those	of	Spark.	Apache	recently
also	 announced	Apache	Kylin,	 another	 “extreme	OLAP	 engine	 for	Big	Data”,
which	also	provides	an	SQL	interface	and	business	intelligence	“cubes”	on	 top
of	Hadoop	(this	time	contributed	by	eBay).	It	works	on	top	of	Hive	and	HBase	to
store	its	data,	but	comes	with	its	own	query	engine	that	is	particularly	well	suited
to	 query	 cubes,	 is	 SQL-standard	 compliant,	 and	 can	 integrate	 with	 existing
tooling	through	ODBC	and	JDBC	drivers.

Drill	Down

There’s	 also	 an	 abundance	 of	 projects	 concerning	 themselves	with	 the
“meta-management”,	 maintenance,	 and	 governance	 of	 your	 Big	 Data
cluster,	 such	 as	 Ambari	 (a	 web	 management	 portal),	 Oozie	 (an
alternative	 scheduler	 that	 can	 be	 plugged	 into	 YARN),	 Zookeeper	 (a
centralized	 service	 for	 maintaining	 configuration	 metadata),	 Atlas	 (a
system	to	govern	data	compliance),	and	Ranger	(a	platform	to	define	and
manage	security	policies	across	Hadoop	components).

There’s	also	the	aspect	of	machine	learning	and	data	analytics.	Even	though
MLlib	offers	a	solid	set	of	algorithms,	its	offering	cannot	be	compared	with	the
number	 of	 algorithms	 included	 in	 proprietary	 and	 open-source	 tooling,	 which
works	with	a	whole	dataset	 in	memory	in	a	non-distributed	set-up.	To	reiterate
our	statement	from	the	introduction:	Big	Data	first	concerns	itself	with	managing
and	 storing	 huge,	 high-speed,	 and/or	 unstructured	 datasets,	 but	 this	 does	 not
automatically	 mean	 one	 can	 analyze	 them	 or	 easily	 leverage	 them	 to	 obtain
insights.	Analytics	 (or	 “data	 science”)	 concerns	 itself	with	 analyzing	 data	 and
obtaining	insights	and	patterns	from	it,	but	does	not	have	to	be	applied	on	huge

volumes	 or	 unstructured	 datasets.	 One	 interesting	 project	 to	 mention	 here	 is
H2O,	which	also	offers	a	distributed	execution	engine	that	can	be	somewhat	less
powerful	 than	 Spark’s	 one,	 but	 offers	 a	 complete	 and	 strong	 collection	 of
techniques	to	build	descriptive	and	predictive	analytics	models	on	Big	Data,	and
hence	can	offer	a	better	alternative	to	the	less	mature	MLlib.	Recent	versions	of
H2O	also	allow	it	 to	run	on	top	of	Spark’s	execution	engine,	which	makes	it	a
very	strong	add-on	on	top	of	Spark	if	your	goal	is	to	perform	analytics,	but	other
choices	work	just	as	well	if	you	aren’t	working	with	Big	Data.	Again,	the	main
question	 to	consider	 is	whether	you	have	Big	Data.	 If	not,	one	can	continue	 to
use	 a	 relational	 DBMS,	 for	 instance,	 complete	 with	 strong	 query	 facilities,
transaction	management,	and	consistency,	while	then	still	being	able	to	analyze
it.	 What	 exactly	 is	 meant	 with	 “analytics	 algorithms”	 and	 “descriptive	 and
predictive	modeling”	will	form	the	topic	of	the	next	chapter.

Scenario	Conclusion

After	looking	at	Big	Data	stacks	such	as	Hadoop,	Sober	decides	that,	at
this	moment,	there	is	no	need	to	adopt	any	of	these	Big	Data	technology
stacks.	 Sober	 is	 happy	 with	 its	 relational	 DBMS,	 and	 its	 business
intelligence	applications	are	running	fine	on	top	of	it.	To	counteract	the
issue	of	scalability,	the	mobile	team	is	already	using	MongoDB	to	handle
the	 increased	 workload	 in	 this	 operational	 setting,	 so	 introducing
additional	 technology	 components	 cannot	 be	 justified	 at	 the	 moment.
Sober	 is	 getting	 interested,	 however,	 in	 investing	 further	 in	 analytics
capabilities	on	top	of	the	modestly	sized	amount	of	data	they	do	have	–
for	 instance,	 to	 predict	 which	 users	 will	 churn	 from	 its	 service,	 or	 to
optimize	route	planning	of	its	cab	drivers	so	there	is	always	a	cab	nearby
to	a	user.	Sober	will	hence	investigate	whether	analytics	algorithms	and

tooling	can	be	used	to	do	so	in	the	very	near	future,	to	go	one	step	further
from	 business	 intelligence	 reporting	 and	 move	 toward	 prediction	 and
optimization.

Key	Terms	List

5	Vs	of	Big	Data

GraphX

Hadoop

Hadoop	Common

Hadoop	Distributed	File	System	(HDFS)

HBase

Hive

MapReduce

MLlib

Pig

Spark

Spark	Core

Spark	SQL

Spark	Streaming

value

variety

velocity

veracity

volume

YARN	(Yet	Another	Resource	Negotiator)

Review	Questions

19.1.	What	do	the	5	Vs	of	Big	Data	stand	for?

a.	Volume,	variety,	velocity,	veracity,	value.

b.	Volume,	visualization,	velocity,	variety,	value.

c.	Volume,	variety,	velocity,	variability,	value.

d.	Volume,	versatile,	velocity,	visualization,	value.

19.2.	Which	of	the	following	statements	is	not	correct?

a.	Velocity	in	Big	Data	refers	to	data	“in	movement”.

b.	Volume	in	Big	Data	refers	to	data	“at	rest”.

c.	Veracity	in	Big	Data	refers	to	data	“in	change”.

d.	Variety	in	Big	Data	refers	to	data	“in	many	forms”.

19.3.	Which	components	does	the	base	Hadoop	stack	include?

a.	NDFS,	MapReduce,	and	YARN.

b.	HDFS,	MapReduce,	and	YARN.

c.	HDFS,	Map,	and	Reduce.

d.	HDFS,	Spark,	and	YARN.

19.4.	Which	of	the	following	statements	is	correct?

a.	DataNodes	in	HDFS	store	a	registry	of	metadata.

b.	The	HDFS	NameNode	sends	regular	heartbeat	messages	to	its
DataNodes.

c.	HDFS	is	composed	of	a	NameNode,	DataNodes,	and	an	optional
SecondaryNameNode.

d.	Both	the	SecondaryNameNode	and	primary	NameNode	can
simultaneously	handle	requests	from	clients.

19.5.	Which	of	the	following	statements	is	not	correct?

a.	A	mapper	in	Hadoop	maps	each	element	in	a	collection	to	one	or
more	output	elements.

b.	A	reducer	in	Hadoop	reduces	a	collection	of	elements	to	one	or
more	output	elements.

c.	Reducer	workers	in	Hadoop	will	start	once	all	mapper	workers	have
finished.

d.	A	MapReduce	pipeline	in	Hadoop	can	include	an	optional	Sorter	to
sort	the	final	output.

19.6.	Which	of	the	following	statements	is	not	correct?

a.	Apart	from	handling	MapReduce	programs,	YARN	can	also	be	used
to	manage	other	types	of	applications.

b.	YARN’s	JobHistoryServer	keeps	a	log	of	all	finished	jobs.

c.	NodeManagers	in	YARN	are	responsible	for	setting	up	containers
on	the	node	hosting	a	particular	(sub)task.

d.	The	YARN	ApplicationMaster	contains	a	scheduler	which	will	hold
submitted	jobs	in	a	queue	until	they	are	deemed	ready	to	start.

19.7.	Which	of	the	following	commands	are	not	a	part	of	HBase?

a.	Place.

b.	Put.

c.	Get.

d.	Describe.

19.8.	Which	of	the	following	statements	is	correct?

a.	HBase	can	be	considered	as	a	NoSQL	database.

b.	HBase	offers	an	SQL	engine	to	query	its	data.

c.	MapReduce	programs	cannot	be	used	with	HBase.	Data	are
accessed	using	simple	put	and	get	commands	instead.

d.	HBase	works	well	on	large	clusters	as	well	as	small	ones	having	a
few	nodes.

19.9.	Pig	is…

a.	a	programming	language	that	can	be	used	to	query	HDFS	data.

b.	a	project	offering	a	programming	language	to	provide	more	user-
friendliness	compared	to	MapReduce	programs.

c.	a	database	that	runs	on	Hadoop.

d.	an	SQL	engine	that	runs	on	top	of	Hadoop.

19.10.	Which	of	the	following	statements	is	not	correct?

a.	Hive	offers	an	SQL	engine	to	query	Hadoop	data.

b.	Hive’s	query	language	is	not	as	feature-complete	as	the	full	SQL
standard.

c.	Hive	offers	a	JDBC	interface.

d.	Hive	queries	run	much	faster	than	hand-written	MapReduce
programs.

19.11.	Which	of	the	following	schema-handling	methods	does	Hive
apply?

a.	Schema	on	write.

b.	Schema	on	load.

c.	Schema	on	read.

d.	Schema	on	query.

19.12.	Which	of	the	following	statements	is	not	correct?

a.	RDDs	allow	for	two	forms	of	operations:	transformations	and
actions.

b.	RDDs	represent	an	abstract,	immutable	data	structure.

c.	RDDs	are	structured	and	represent	a	collection	of	columnar	objects.

d.	RDDs	offer	failure	protection	by	tracking	the	lineage	of	operations
that	are	applied	on	them.

19.13.	Which	of	the	following	is	not	one	of	the	reasons	why	Spark
programs	are	generally	faster	than	MapReduce	operations?

a.	Because	Spark	tries	to	keep	its	RDDs	in	memory	as	long	as
possible.

b.	Because	Spark	uses	a	directed	acyclic	graph	instead	of	MapReduce.

c.	Because	RDD	transformations	are	“lazily”	applied.

d.	Because	Mesos	can	be	used	as	a	resource	manager	instead	of
YARN.

19.14.	Which	of	the	following	statements	is	not	correct?

a.	Spark	SQL	exposes	DataFrame	and	Dataset	APIs	which
underlyingly	use	RDDs	together	with	a	performant	SQL	query	engine.

b.	Spark	SQL	can	be	used	from	within	Java,	Python,	Scala,	and	R.

c.	Spark	SQL	can	be	used	through	ODBC	and	JDBC	interfaces.

d.	Spark	SQL	DataFrames	need	to	be	created	by	loading	a	file.

19.15.	Which	of	the	following	statements	is	correct?

a.	One	of	the	disadvantages	of	Spark	is	that	it	does	not	support
streaming	data.

b.	One	of	the	disadvantages	of	Spark	is	that	its	streaming	and	machine
learning	APIs	are	still	mostly	RDD-based.

c.	One	of	the	disadvantages	of	Spark	is	that	it	has	no	way	to	deal	with
graph-based	data.

d.	One	of	the	disadvantages	of	Spark	is	that	its	streaming	API	does	not
allow	joining	multiple	streams.

Problems	and	Exercises

19.1E	Discuss	some	application	areas	where	the	usage	of	streaming	analytics
(such	as	provided	by	Spark	Streaming)	might	be	valuable.	Consider	Twitter,	but
also	other	contexts.

19.2E	Think	about	some	examples	of	Big	Data	in	industry.	Try	to	focus	on	Vs
other	than	the	volume	aspect	of	Big	Data.	Why	do	you	think	these	examples
qualify	as	Big	Data?

19.3E	Both	Hortonworks	(Hortonworks	Hadoop	Sandbox)	and	Cloudera
(Cloudera	QuickStart	VM)	offer	virtual	instances	(for	Docker,	VirtualBox,	and
VMWare)	providing	a	full	Hadoop	stack	you	can	easily	run	contained	in	a	virtual
machine	on	a	beefy	computer.	Try	Googling	for	these	and	running	these
environments	if	you’re	interested	in	getting	hands-on	experience	with	the
Hadoop	ecosystem.

19.4E	Some	analysts	have	argued	that	Big	Data	is	fundamentally	about	data
“plumbing”,	and	not	about	insights	or	deriving	interesting	patterns.	It	is	argued
that	value	(the	fifth	V)	can	just	as	easily	be	found	in	“small”,	normal,	or	“weird”
datasets	(i.e.,	datasets	that	would	not	have	been	considered	before).	Do	you
agree	with	this?	Can	you	think	of	small	or	novel	datasets	that	would	provide
value	as	well,	without	requiring	a	full-fledged	Hadoop	set-up?

19.5E	If	Spark’s	GraphX	library	provides	a	number	of	interesting	algorithms	for
graph-based	analysis,	do	you	think	that	graph-based	NoSQL	databases	are	still
necessary?	Why?	If	you’re	interested,	try	searching	the	web	on	how	to	run	Neo4j
together	with	Spark	–	which	roles	do	both	serve	in	such	an	environment?

1	Ghemawat	S.,	Gobioff	H.,	Leung	S.-T.,	The	Google	file	system,	ACM
SIGOPS	Operating	Systems	Review,	2003;	37(5).

2	Dean	J.,	Ghemawat	S.,	MapReduce:	Simplified	data	processing	on	large
clusters,	Communications	of	the	ACM,	2008;	51(1):	107–113.

3	We	utilize	“MapReduce”	when	referring	to	the	specific	implementation	in
Hadoop.	“Map–reduce”	is	used	when	describing	the	general	usage	of	the	two
mathematical	functions	“map”	and	“reduce”.

4	The	reason	behind	this	is	a	bit	technical.	MapReduce’s	types	(say,	“Text”)
are	similar	to	Java’s	built-in	types	(like	“String”),	with	the	exception	that	they
also	implement	a	number	of	additional	interfaces,	like	“Comparable”,
“Writable”,	and	“WritableComparable”.	These	interfaces	are	all	necessary	for
MapReduce:	the	Comparable	interface	is	used	for	comparing	when	the
reducer	sorts	the	keys,	and	Writable	can	write	the	result	to	the	local	disk.

20

Analytics
◈

Chapter	Objectives

In	this	chapter,	you	will	learn	to:

understand	the	key	steps	of	the	analytics	process	model;

identify	the	skill	set	of	a	data	scientist;

preprocess	data	for	analytics	using	denormalization,	sampling,
exploratory	data	analysis,	and	dealing	with	missing	values	and
outliers;

build	predictive	analytical	models	using	linear	regression,	logistic
regression,	and	decision	trees;

evaluate	predictive	analytical	models	by	splitting	up	the	dataset	and
using	various	performance	metrics;

build	descriptive	analytical	models	using	association	rules,	sequence
rules,	and	clustering;

understand	the	basic	concepts	of	social	network	analytics;

Opening	Scenario

Now	 that	 Sober	 has	 made	 its	 first	 steps	 in	 business	 intelligence,	 it	 is
eager	 to	 take	 this	 to	 the	 next	 level	 and	 explore	 what	 it	 could	 do	with
analytics.	 The	 company	 has	 witnessed	 extensive	 press	 and	 media
coverage	on	predictive	and	descriptive	analytics	and	wonders	what	these
technologies	 entail	 and	 how	 they	 could	 be	 used	 to	 its	 advantage.	 It	 is
actually	thinking	about	analyzing	its	booking	behavior,	but	is	unsure	how
to	 tackle	 this.	Given	 that	 Sober	 is	 a	 startup,	 it	 also	wants	 to	 know	 the
economic	and	privacy	implications	of	leveraging	these	technologies.

In	this	chapter,	we	extensively	zoom	into	analytics.	We	kick-off	by	providing	a
bird’s	eye	overview	of	 the	analytics	process	model.	We	 then	give	examples	of

discern	the	key	activities	during	post-processing	of	analytical	models;

identify	the	critical	success	factors	of	analytical	models;

understand	the	economic	perspective	on	analytics	by	considering	the
total	cost	of	ownership	(TCO)	and	return	on	investment	(ROI)	and
how	they	are	affected	by	in-	versus	outsourcing,	on-premise	versus
cloud	solutions,	and	open	versus	commercial	software;

improve	the	ROI	of	analytics	by	exploring	new	sources	of	data,
increasing	data	quality,	securing	management	support,	optimizing
organizational	aspects,	and	fostering	cross-fertilization;

understand	the	impact	of	privacy	and	security	in	a	data	storage,
processing,	and	analytics	context.

analytics	applications	and	discuss	the	data	scientist	job	profile.	We	briefly	zoom
into	 data	 pre-processing.	 The	 next	 section	 elaborates	 on	 different	 types	 of
analytics:	 predictive	 analytics,	 descriptive	 analytics,	 and	 social	 network
analytics.	 We	 also	 discuss	 the	 post-processing	 of	 analytical	 models.	 Various
critical	 success	 factors	 for	 analytical	 models	 are	 clarified	 in	 the	 following
section.	 This	 is	 followed	 by	 a	 discussion	 on	 the	 economic	 perspective	 of
analytics.	 We	 also	 give	 recommendations	 of	 how	 to	 improve	 the	 ROI	 of
analytics.	We	conclude	by	a	discussion	on	privacy	and	security.

20.1	The	Analytics	Process	Model

Analytics	is	a	process	that	consists	of	various	steps,	as	illustrated	in	Figure	20.1.
The	 analytics	 process	 model	 starts	 with	 the	 raw	 data	 followed	 by	 pre-
processing,	analytics,	and	post-processing.	As	a	first	step,	a	thorough	definition
of	the	business	problem	is	needed.	Some	examples	are:	customer	segmentation
of	a	mortgage	portfolio;	retention	modeling	for	a	postpaid	telecom	subscription;
or	fraud	detection	for	credit	cards.	Defining	the	scope	of	the	analytical	modeling
exercise	 requires	 close	 collaboration	 between	 the	 data	 scientist	 and	 business
expert.	Both	 need	 to	 agree	 on	 a	 set	 of	 key	 concepts,	 such	 as	 how	 to	 define	 a
customer,	transaction,	churn,	fraud,	etc.

Figure	20.1	The	analytics	process	model.

Next,	all	source	data	 that	could	be	of	potential	 interest	must	be	identified.
This	 is	 a	 very	 important	 step	 as	 data	 are	 the	 key	 ingredient	 to	 any	 analytical
exercise	 and	 the	 selection	 of	 data	 has	 a	 deterministic	 impact	 on	 the	 analytical
models	built	 in	a	 later	 step.	The	golden	 rule	here	 is:	 the	more	data,	 the	better!
The	analytical	model	itself	can	later	decide	which	data	are	relevant	to	the	task	at
hand	 and	which	 are	 not.	 All	 data	will	 then	 be	 gathered	 in	 a	 staging	 area	 and
consolidated	into	a	data	warehouse,	data	mart,	or	even	a	simple	spreadsheet	file.
Some	 basic	 exploratory	 data	 analysis	 can	 be	 considered	 using,	 for	 example,

OLAP	facilities	for	multidimensional	analysis	(e.g.,	roll-up,	drill-down,	slicing,
and	dicing)	 (see	Chapter	17).	This	can	be	followed	by	a	data	cleansing	step	 to

remove	all	inconsistencies,	such	as	missing	values,	outliers,	and	duplicate	data.1

Additional	 transformations	 may	 also	 be	 considered,	 such	 as	 alphanumeric	 to
numeric	 coding,	 geographical	 aggregation,	 logarithmic	 transformation	 to
improve	symmetry,	etc.

In	the	analytics	step,	an	analytical	model	is	estimated	on	the	pre-processed
and	 transformed	 data.	 Depending	 upon	 the	 business	 problem,	 a	 particular
analytical	technique	will	be	selected	(see	Section	20.5)	and	implemented	by	the
data	scientist.

Connections

One	 of	 the	 first	 steps	 toward	 analytics	 is	 usually	 data	 warehousing,
OLAP,	and	BI,	as	discussed	in	Chapter	17.

Finally,	once	the	model	has	been	built,	it	will	be	interpreted	and	evaluated
by	the	business	experts.	Trivial	patterns	(e.g.,	spaghetti	and	spaghetti	sauce	are
often	 purchased	 together)	 that	 may	 be	 detected	 by	 the	 analytical	 model	 are
interesting	as	they	provide	a	validation	of	the	model.	But	the	key	issue	is	to	find
the	 unknown	 but	 interesting	 and	 actionable	 patterns	 that	 can	 provide	 new
insights	into	your	data	(sometimes	also	called	knowledge	diamonds,	or	nuggets).
Once	the	analytical	model	has	been	appropriately	validated	and	approved,	it	can
be	put	into	production	as	an	analytics	application	(e.g.,	decision-support	system,
scoring	 engine,	 etc.).	 It	 is	 important	 to	 consider	 how	 to	 represent	 the	 model
output	 in	 a	user-friendly	way,	how	 to	 integrate	 it	with	other	 applications	 (e.g.,
marketing	 campaign	management	 tools,	 risk	 engines,	 etc.),	 and	 how	 to	 ensure
the	analytical	model	can	be	appropriately	monitored	on	an	ongoing	basis.

The	process	model	outlined	in	Figure	20.1	is	iterative,	in	the	sense	that	one
may	have	to	go	back	to	previous	steps	during	the	exercise.	For	example,	during
the	 analytics	 step,	 the	 need	 for	 additional	 data	 may	 be	 identified,	 which	 may
necessitate	 additional	 cleansing,	 transformation,	 etc.	 Typically,	 the	 most	 time-
consuming	step	is	the	data	selection	and	pre-processing	step,	which	usually	takes
around	80%	of	the	total	efforts	needed	to	build	an	analytical	model.

The	 analytics	 process	 is	 essentially	 a	multidisciplinary	 exercise	 in	 which
many	job	profiles	must	collaborate.	First,	there	is	the	database	or	data	warehouse
administrator	(DBA).	He/she	knows	of	all	the	data	available	within	the	firm,	the
storage	details,	and	the	data	definitions.	Hence,	the	DBA	plays	a	crucial	role	in
feeding	 the	 analytical	modeling	 exercise	with	 its	 key	 ingredient	 –	 data.	 Since
analytics	 is	 an	 iterative	 exercise,	 the	DBA	may	 continue	 to	 play	 an	 important
role	as	the	modeling	exercise	proceeds.

Another	 important	 profile	 is	 the	 business	 expert.	 This	 could	 be	 a	 credit
portfolio	manager,	fraud	detection	expert,	brand	manager,	e-commerce	manager,
etc.	 He/she	 has	 extensive	 business	 experience	 and	 business	 common	 sense,
which	 is	 very	 valuable.	 It	 is	 precisely	 this	 knowledge	 that	 helps	 steer	 the
analytical	modeling	 exercise	 and	 interpret	 its	 key	 findings.	A	 key	 challenge	 is
that	much	of	the	expert	knowledge	is	tacit	and	may	be	hard	to	elicit	at	the	start	of
the	modeling	exercise.

Legal	experts	are	becoming	more	important	since	not	all	data	can	be	used	in
an	analytical	model	because	of	issues	relating	to	privacy,	discrimination,	etc.	In
credit	 risk	modeling,	 for	 example,	 one	 typically	 cannot	 discriminate	 good	 and
bad	customers	based	upon	gender,	national	origin,	or	religion.	In	web	analytics,
information	 can	 be	 gathered	 with	 cookies,	 which	 are	 stored	 on	 the	 user’s
browsing	computer.	However,	when	gathering	information	using	cookies,	users
should	be	appropriately	informed.	This	is	subject	to	regulation	at	various	levels
(both	 nationally	 and	 governing	 bodies	 like	 the	 European	Commission).	A	 key

challenge	here	is	that	privacy	and	other	regulations	vary	greatly,	depending	upon
the	 geographical	 region.	Hence,	 the	 legal	 expert	 should	 have	 good	 knowledge
about	what	 data	 can	 be	 used	 and	when,	 and	what	 regulation	 applies	 in	which
location.

Software	 tool	 vendors	 are	 also	 an	 important	 part	 of	 the	 analytics	 team.
Different	 tool	 vendors	 can	 be	 distinguished	 here.	 Some	 vendors	 only	 provide
tools	 to	 automate	 specific	 steps	 of	 the	 analytical	 modeling	 process	 (e.g.,	 data
pre-processing),	 whereas	 others	 sell	 software	 that	 covers	 the	 entire	 analytical
modeling	process.	Also,	cloud-based	approaches,	such	as	analytics-as-a-service
(AaaS)	 solutions,	 are	 possible.	 The	 idea	 here	 is	 to	 lower	 the	 entry	 barrier	 to
performing	analytics	by	providing	an	easy-to-use	web-based	interface.

The	data	 scientist,	 data	miner,	 quantitative	modeler,	 or	 data	 analyst	 is	 the
person	 responsible	 for	 doing	 the	 actual	 analytics.	 He/she	 should	 possess	 a
thorough	understanding	of	all	Big	Data	and	analytical	techniques	involved,	and
should	know	how	to	implement	them	in	a	business	setting	using	the	appropriate
technology.	We	 elaborate	more	 on	 the	 required	 skills	 of	 a	 data	 scientist	 in	 the
next	sections.

Retention	Questions

What	are	the	key	steps	of	the	analytics	process	model?	Illustrate	with
an	example.

20.2	Example	Analytics	Applications

Big	Data	can	be	leveraged	in	various	ways	using	analytics.	Before	we	zoom	in
further,	 let’s	 kick-off	with	 some	 examples	 of	 how	 analytics	 can	 help	 optimize
business	 decisions.	 In	 what	 follows,	 we	 discuss	 risk	 analytics,	 marketing
analytics,	recommender	systems,	and	text	analytics.

Two	 popular	 examples	 of	 risk	 analytics	 are	 credit	 scoring	 and	 fraud
detection.	 Financial	 institutions	 use	 analytics	 to	 build	 credit	 scoring	models	 to
gauge	 the	 creditworthiness	 of	 their	 customers	 on	 all	 their	 credit	 products
(mortgages,	 credit	 cards,	 installment	 loans,	 etc.).	 They	 use	 these	 analytical
models	 to	 do	 debt	 provisioning,	 Basel	 II/Basel	 III	 capital	 calculation,	 and
marketing	 (e.g.,	 increase/decrease	 the	 limit	 on	 a	 credit	 card	 in	 the	 case	 of	 a
good/bad	credit	score).	Credit	card	companies	use	sophisticated	analytical	fraud-
detection	models	 to	see	whether	payments	are	 legitimate	or	 fraudulent	because
of	 identity	 theft.	 The	 government	 uses	 fraud	 analytics	 to	 predict	 tax	 evasion,
VAT	fraud,	or	for	anti-money	laundering	tasks.

Three	popular	types	of	marketing	analytics	are	churn	prediction,	response
modeling,	 and	 customer	 segmentation.	 Churn	 prediction	 aims	 at	 predicting
which	 customers	 a	 firm	 is	 likely	 to	 lose.	 As	 an	 example,	 telecom	 operators
estimate	analytical	churn	prediction	models	using	all	recent	call	behavior	data,	to
see	whether	 customers	 are	 likely	 to	 churn	 or	 not	 in	 the	 next	 1–3	months.	The
resulting	 retention	 score	 can	 then	 be	 used	 to	 set	 up	 marketing	 campaigns	 to
prevent	 customers	 from	 churning	 (unless	 they	 would	 not	 be	 profitable).
Response	 modeling	 tries	 to	 develop	 an	 analytical	 model	 that	 selects	 the
customers	who	are	most	 likely	 to	 respond	 (e.g.,	buy)	 to	a	marketing	campaign
(e.g.,	banner	ad,	email,	brochure).	In	this	way,	marketing	efforts	can	be	directed

toward	these	customers	where	they	are	most	effective.	Customer	segmentation
aims	at	segmenting	a	set	of	customers	or	transactions	into	homogeneous	clusters
that	 can	 be	 used	 for	marketing	 purposes	 (e.g.,	 targeted	marketing,	 advertising,
mass	customization).

Recommender	 systems	 are	 another	 example	 of	 an	 analytics	 application.
These	systems	aim	at	providing	well-targeted	recommendations	to	a	user	and	are
extensively	 used	 by	 companies	 like	 Amazon,	 Netflix,	 TripAdvisor,	 eBay,
LinkedIn,	Tinder,	 and	Facebook.	Various	 types	of	 items	 can	be	 recommended,
such	 as	 products	 or	 services,	 restaurants,	 jobs,	 friends,	 and	 even	 romantic
partners.

Text	analytics	 aims	at	analyzing	 textual	data	such	as	 reports,	emails,	 text
messages,	 tweets,	 web	 documents,	 blogs,	 reviews,	 financial	 statements,	 etc.
Popular	applications	are	text	categorization	and	clustering.	Facebook	and	Twitter
posts	are	continuously	analyzed	using	social	media	analytics	to	study	both	their
content	 and	 sentiment	 (e.g.,	 positive,	 negative,	 or	 neutral)	 to	 better	 understand
brand	perception,	and/or	further	fine-tune	product	and/or	service	design.	As	our
book	details	 are	made	available	online,	 it	will	 be	 analyzed	 and	 categorized	by
Google	and	other	search	engines	and	(hopefully)	included	in	their	search	results.

As	 these	 examples	 illustrate,	 analytics	 is	 all	 around,	 and	 even	without	 us
explicitly	being	aware	of	 it,	 it	 is	getting	more	and	more	pervasive	and	directly
embedded	 into	our	daily	 lives.	Businesses	 (ranging	 from	 international	 firms	 to
SMEs)	 jump	 on	 the	 analytics	 bandwagon	 to	 create	 added	 value	 and	 strategic
advantage.	Without	claiming	 to	be	exhaustive	Table	20.1	presents	 examples	of
how	analytics	can	be	applied	in	various	settings.

Table	20.1	Example	analytics	applications

Marketing Risk
management

Government Web Logistics Other

Response
modeling

Credit	risk
modeling

Tax
avoidance

Web
analytics

Demand
forecasting

Text
analytics

Net	lift
modeling

Market	risk
modeling

Social
security
fraud

Social
media
analytics

Supply
chain
analytics

Business
process
analytics

Retention
modeling

Operational
risk
modeling

Money
laundering

Multivariate
testing

HR
analytics

Market	basket
analysis

Fraud
detection

Terrorism
detection

Healthcare
analytics

Recommender
systems

Learning
analytics

Customer
segmentation

Retention	Questions

Give	some	examples	of	analytics	applications.

20.3	Data	Scientist	Job	Profile

The	data	scientist	 job	 profile	 is	 relatively	 new	 and	 requires	 a	 unique	 skill	 set
consisting	 of	 a	 well-balanced	 mix	 of	 quantitative,	 programming,	 business,
communication,	 and	visualization	 skills.	Not	 surprisingly,	 these	 individuals	are
hard	to	find	in	today’s	job	market.

As	the	name	implies,	data	scientists	work	with	data.	This	involves	activities
such	 as	 sampling	 and	 pre-processing	 of	 data,	 analytical	model	 estimation,	 and
post-processing	(e.g.,	sensitivity	analysis,	model	deployment,	backtesting,	model
validation).	 Although	 many	 user-friendly	 software	 tools	 are	 on	 the	 market	 to
automate	 this,	 every	 analytical	 exercise	 requires	 tailored	 steps	 to	 tackle	 the
specificities	 of	 a	 particular	 business	 problem.	 To	 perform	 these	 steps,
programming	 must	 be	 done.	 Therefore,	 a	 good	 data	 scientist	 should	 possess
sound	 programming	 skills	 in	 such	 areas	 as	 Java,	 R,	 Python,	 SAS,	 etc.	 The
programming	language	itself	is	not	that	important,	as	long	as	the	data	scientist	is
familiar	with	the	basic	concepts	of	programming	and	knows	how	to	use	these	to
automate	repetitive	tasks	or	perform	specific	routines.

Obviously,	a	data	scientist	should	have	a	thorough	background	in	statistics,
machine	 learning,	 and/or	 quantitative	modeling.	 The	 distinction	 between	 these
various	disciplines	 is	becoming	more	blurred,	 and	 is	not	 that	 relevant	 in	many
cases	because	they	are	more	frequently	used	as	a	means	to	an	end	and	not	as	a
separate	entity.	They	all	provide	a	set	of	quantitative	techniques	to	analyze	data
and	 find	 business-relevant	 patterns	 within	 a	 particular	 context	 (e.g.,	 risk
management,	 fraud	 detection,	 marketing	 analytics).	 The	 data	 scientist	 should
know	which	techniques	can	be	applied,	when,	and	how.	He/she	should	not	focus
too	much	on	the	underlying	mathematical	(e.g.,	optimization)	details	but	have	a

good	understanding	of	what	analytical	problem	a	technique	solves,	and	how	its
results	should	be	interpreted.	Also	important	in	this	context	is	to	spend	enough
time	 validating	 the	 analytical	 results	 obtained	 to	 avoid	 situations	 often	 called
data	massage	and/or	data	torture	whereby	data	are	(intentionally)	misrepresented
and/or	too	much	focus	is	spent	discussing	spurious	correlations.

Essentially,	 analytics	 is	 a	 technical	 exercise.	 There	 is	 often	 a	 huge	 gap
between	 the	 analytical	 models	 and	 business	 users.	 To	 bridge	 this	 gap,
communication	and	visualization	facilities	are	key.	A	data	scientist	should	know
how	to	represent	analytical	models,	statistics,	and	reports	 in	user-friendly	ways
by	using	traffic-light	approaches,	OLAP	(on-line	analytical	processing)	facilities,
if–then	 business	 rules,	 etc.	 The	 data	 scientist	 should	 be	 able	 to	 communicate
information	without	getting	lost	in	complex	details	(e.g.,	statistical)	that	inhibit	a
model’s	 successful	 deployment.	 Business	 users	 can	 then	 better	 understand	 the
characteristics	and	behavior	 in	 the	(big)	data,	which	will	 improve	 their	attitude
toward,	 and	 acceptance	 of,	 the	 resulting	 analytical	 models.	 Educational
institutions	 must	 learn	 to	 balance	 between	 theory	 and	 practice,	 since	 many
academic	 degrees	 form	 students	 skewed	 to	 either	 too	 much	 analytical	 or	 too
much	practical	knowledge.

While	 this	 might	 seem	 obvious,	 many	 data	 science	 projects	 have	 failed
because	the	analyst(s)	did	not	properly	understand	the	business	problem	at	hand.
By	“business”	we	refer	to	the	respective	application	areas,	which	could	be	churn
prediction	 or	 credit	 scoring	 in	 a	 real-world	 business	 context,	 astronomy,	 or
medicine	 if	 the	 data	 to	 be	 analyzed	 stem	 from	 such	 areas.	 Knowing	 the
characteristics	of	 the	business	process,	 its	actors,	and	performance	indicators	 is
an	important	prerequisite	for	analytics	to	succeed.

A	data	scientist	needs	creativity	on	at	least	two	levels.	On	a	technical	level
it	 is	 important	 to	be	creative	 regarding	data	 selection,	data	 transformation,	and
cleansing.	The	steps	of	the	standard	analytical	process	must	be	adapted	to	each

specific	 application	 and	 the	 “right	 guess”	 could	 often	 make	 a	 big	 difference.
Second,	 analytics	 is	 a	 fast-evolving	 field.	 New	 problems,	 technologies,	 and
corresponding	challenges	pop	up	on	an	ongoing	basis.	It	is	important	that	a	data
scientist	 keeps	up	with	 these	new	evolutions	 and	 technologies	 and	has	 enough
creativity	to	see	how	they	can	yield	new	business	opportunities.

Retention	Questions

What	are	the	key	characteristics	of	a	data	scientist?

20.4	Data	Pre-Processing

Data	 are	 the	 key	 ingredient	 for	 any	 analytical	 exercise.	 It	 is	 imperative	 to
thoroughly	 consider	 and	 list	 all	 data	 sources	 that	 are	 of	 potential	 interest	 and
relevant	before	starting	the	analysis.	Large	experiments,	and	our	own	experience
in	different	fields,	indicate	that	when	it	comes	to	data,	bigger	is	better.	However,
real-life	 data	 can	 be	 (and	 typically	 are)	 dirty	 because	 of	 inconsistencies,
incompleteness,	duplication,	merging,	and	many	other	problems.	Throughout	the
analytical	 modeling	 steps,	 various	 data	 pre-processing	 checks	 are	 applied	 to
clean-up	 and	 reduce	 the	 data	 to	 a	 manageable	 and	 relevant	 size.	 Worth
mentioning	 here	 is	 the	 garbage	 in,	 garbage	 out	 (GIGO)	 principle,	 which
essentially	states	that	messy	data	yields	messy	analytical	models.	Hence,	it	is	of
critical	 importance	 that	 every	 data	 pre-processing	 step	 is	 carefully	 justified,
carried	out,	validated,	and	documented	before	proceeding	with	further	analysis.
Even	 the	slightest	mistake	can	make	 the	data	unusable	 for	 further	analysis	and
the	results	invalid	and	of	no	use.	In	what	follows,	we	briefly	zoom	into	some	of
the	most	important	data	pre-processing	activities.

20.4.1	Denormalizing	Data	for	Analysis

The	 application	 of	 analytics	 typically	 requires	 or	 presumes	 the	 data	 will	 be
presented	in	a	single	table	containing	and	representing	all	the	data	in	a	structured
way.	 A	 structured	 data	 table	 enables	 straightforward	 processing	 and	 analysis.
Typically,	 the	 rows	 of	 a	 data	 table	 represent	 the	 basic	 entities	 to	 which	 the
analysis	 applies	 (e.g.,	 customers,	 transactions,	 enterprises,	 claims,	 cases).	 The
rows	 are	 also	 called	 instances,	 observations,	 or	 lines.	The	 columns	 in	 the	data
table	contain	information	about	 the	basic	entities.	Plenty	of	synonyms	are	used
to	denote	 the	columns	of	 the	data	 table,	such	as	(explanatory)	variables,	 fields,
characteristics,	indicators,	features,	etc.

Denormalization	 refers	 to	 the	merging	of	 several	normalized	 source	data
tables	 into	 an	 aggregated,	 denormalized	 data	 table.	 Merging	 tables	 involves
selecting	 information	 from	 different	 tables	 related	 to	 an	 individual	 entity,	 and
copying	it	to	the	aggregated	data	table.	The	individual	entity	can	be	recognized
and	selected	in	these	tables	by	making	use	of	(primary)	keys,	which	have	been
included	in	the	table	to	allow	identifying	and	relating	observations	from	different
source	 tables	pertaining	 to	 the	same	entity.	Figure	20.2	 illustrates	merging	 two
tables	(i.e.,	 transaction	data	and	customer	data)	into	a	single	denormalized	data
table	 by	 using	 the	 key	 attribute	 type	 ID	 that	 connects	 observations	 in	 the
transactions	 table	with	 observations	 in	 the	 customer	 table.	The	 same	 approach
can	 be	 followed	 to	merge	 as	many	 tables	 as	 required,	 but	 the	more	 tables	 are
merged,	the	more	duplicate	data	might	be	included	in	the	resulting	table	due	to
the	 denormalization.	 It	 is	 crucial	 that	 no	 errors	 are	 introduced	 during	 this
process,	so	checks	should	be	applied	to	control	 the	resulting	table	and	to	make
sure	that	all	information	is	correctly	integrated.

Figure	20.2	Aggregating	normalized	data	tables	into	a	non-normalized	data
table.

Connections

Normalization	 and	 the	 risks	 of	 working	 with	 denormalized	 data	 are
discussed	in	Chapter	6.	Chapter	17	discussed	why	denormalization	may
be	 appropriate	 in	 a	 data	 warehousing	 context,	 and	 why	 it	 is	 less
problematic	 compared	 to	 denormalization	 in	 an	 operational	 database
setting.

20.4.2	Sampling

Sampling	takes	a	subset	of	historical	data	(e.g.,	past	transactions)	and	uses	that
to	 build	 an	 analytical	 model.	 A	 first	 obvious	 question	 that	 comes	 to	 mind
concerns	 the	 need	 for	 sampling.	 It	 is	 true	 that,	 with	 the	 availability	 of	 high-
performance	 computing	 facilities	 (e.g.,	 grid	 and	 cloud	 computing),	 one	 could
also	 try	 to	 directly	 analyze	 the	 full	 dataset.	However,	 a	 key	 requirement	 for	 a
good	sample	 is	 that	 it	 should	be	 representative	 for	 the	 future	entities	on	which
the	 analytical	 model	 will	 be	 run.	 The	 timing	 becomes	 important	 since
transactions	of	today	are	more	like	transactions	of	tomorrow	than	transactions	of
yesterday.	Choosing	the	optimal	time	window	of	the	sample	involves	a	tradeoff
between	lots	of	data	(and	hence	a	more	robust	analytical	model)	and	recent	data
(which	may	be	more	representative).	The	sample	should	also	be	 taken	from	an
average	business	period	to	get	an	accurate	picture	of	the	target	population.

20.4.3	Exploratory	Analysis

Exploratory	analysis	is	a	very	important	part	of	getting	to	know	your	data	in	an
“informal”	 way.	 It	 allows	 gaining	 initial	 insights	 into	 the	 data	 that	 can	 be
usefully	adopted	throughout	the	analytical	modeling	stage.	Different	plots/graphs
can	be	useful	here,	such	as	bar	charts,	pie	charts,	histograms,	scatter	plots,	etc.
Figure	 20.3	 shows	 an	 example	 of	 a	 pie	 chart	 for	 a	 residential	 status	 variable;
Figure	20.4	shows	an	example	histogram	for	the	age	variable.

Figure	20.3	Pie	chart	for	residential	status.

Figure	20.4	Histogram	for	age.

The	next	step	is	to	summarize	the	data	by	using	some	descriptive	statistics
that	provide	 information	 regarding	a	particular	characteristic	of	 the	data.	Basic
descriptive	 statistics	 are	 the	 mean	 and	 median	 value	 of	 continuous	 variables,

with	the	median	value	less	sensitive	to	extreme	values	but	not	providing	as	much
information	 regarding	 the	 full	 distribution.	Complementary	 to	 the	mean	 value,
the	variation	or	 the	 standard	deviation	provide	 insight	 into	how	much	 the	data
are	spread	around	the	mean	value.	Likewise,	percentile	values	such	as	the	10th,
25th,	75th,	and	90th	percentile	provide	further	information	about	the	distribution
and	 are	 complementary	 to	 the	 median	 value.	 For	 categorical	 variables,	 other
measures	need	to	be	considered,	such	as	the	mode	or	most	frequently	occurring
value.	 It	 is	 important	 to	 note	 that	 all	 these	 descriptive	 statistics	 should	 be
assessed	 together	 (i.e.,	 in	 support	and	completion	of	each	other).	For	example,
comparing	 the	 mean	 and	 median	 can	 give	 insight	 into	 the	 skewness	 of	 the
distribution	and	outliers.

20.4.4	Missing	Values

Missing	values	(see	Table	20.2)	can	occur	for	various	reasons.	The	information
can	be	 non-applicable.	 For	 example,	when	modeling	 the	 amount	 of	 fraud,	 this
information	 is	 only	 available	 for	 the	 fraudulent	 accounts	 and	 not	 for	 the	 non-
fraudulent	accounts	since	it	is	not	applicable	there.	The	information	can	also	be
undisclosed,	 such	 as	 a	 customer	 who	 has	 decided	 not	 to	 disclose	 his	 or	 her
income	for	privacy	reasons.	Missing	data	can	also	originate	from	an	error	during
merging	 (e.g.,	 typos	 in	a	name	or	 ID).	Missing	values	can	be	very	meaningful
from	 an	 analytical	 perspective	 because	 they	 may	 indicate	 a	 pattern.	 As	 an
example,	a	missing	value	for	income	could	imply	unemployment,	which	may	be
related	 to	 loan	 default.	 Some	 analytical	 techniques	 (e.g.,	 decision	 trees)	 can
directly	 deal	 with	 missing	 values.	 Other	 techniques	 need	 additional	 pre-
processing.	 Popular	 missing	 value	 handling	 schemes	 are	 removal	 of	 the
observation	 or	 variable,	 and	 replacement	 (e.g.,	 by	 the	 mean/median	 for
continuous	variables	and	by	the	mode	for	categorical	variables).

Table	20.2	Missing	values

ID Age Income Marital	status
Credit
bureau	score Fraud

1 34 1800 ? 620 Yes

2 28 1200 Single ? No

3 22 1000 Single ? No

4 60 2200 Widowed 700 Yes

5 58 2000 Married ? No

6 44 ? ? ? No

7 22 1200 Single ? No

8 26 1500 Married 350 No

9 34 ? Single ? Yes

10 50 2100 Divorced ? No

20.4.5	Outlier	Detection	and	Handling

Outliers	 are	 extreme	 observations	 that	 are	 very	 dissimilar	 to	 the	 rest	 of	 the
population.	Two	types	of	outliers	should	be	considered:	valid	observations	(e.g.,
the	CEO’s	salary	is	$1,000,000)	and	invalid	observations	(e.g.,	age	is	300	years).
Two	important	steps	in	dealing	with	outliers	are	detection	and	treatment.	A	first
check	for	outliers	is	to	calculate	the	minimum	and	maximum	values	for	each	of
the	 data	 elements.	 Various	 graphical	 tools	 can	 also	 detect	 outliers,	 such	 as
histograms,	 box	 plots,	 and	 scatter	 plots.	 Some	 analytical	 techniques,	 like
decision	trees,	are	robust	with	respect	to	outliers.	Others,	such	as	linear/logistic
regression,	 are	 more	 sensitive	 to	 them.	 Various	 schemes	 exist	 to	 deal	 with
outliers.	 It	 depends	 upon	 whether	 the	 outlier	 represents	 a	 valid	 or	 invalid
observation.	For	invalid	observations	(e.g.,	age	is	300	years),	one	could	treat	the
outlier	 as	 a	 missing	 value	 by	 using	 any	 of	 the	 schemes	 (i.e.,	 removal	 or
replacement)	 discussed	 in	 the	 previous	 section.	 For	 valid	 observations	 (e.g.,
income	 is	$1,000,000),	other	 schemes	are	needed,	 such	as	capping,	 in	which	a
lower	and	upper	limit	are	defined	for	each	data	element.

Retention	Questions

What	is	meant	by	“denormalizing	data	for	analytics”?

Why	is	sampling	needed?

Give	some	examples	of	plots	and	statistics	that	can	be	meaningful
during	exploratory	analysis.

How	can	missing	values	be	treated?

How	can	outliers	be	detected	and	handled?

20.5	Types	of	Analytics

Once	 the	 pre-processing	 step	 is	 finished,	 we	 can	 move	 on	 to	 analytics.
Synonyms	of	analytics	are	data	science,	data	mining,	knowledge	discovery,	and
predictive	or	descriptive	modeling.	The	aim	here	 is	 to	 extract	valid	 and	useful
business	patterns	or	mathematical	decision	models	from	a	pre-processed	dataset.
Depending	upon	the	aim	of	the	modeling	exercise,	various	analytical	techniques
from	 a	 variety	 of	 background	 disciplines,	 such	 as	machine	 learning,	 statistics,
etc.	 can	 be	 used.	 In	what	 follows,	we	 discuss	 predictive	 analytics,	 descriptive
analytics,	survival	analysis,	and	social	network	analytics.

20.5.1	Predictive	Analytics

In	predictive	 analytics,	 the	 goal	 is	 to	 build	 an	 analytical	 model	 predicting	 a
target	measure	of	interest.	The	target	is	then	typically	used	to	steer	the	learning
process	during	an	optimization	procedure.	Predictive	analytics	 is	 therefore	also
called	 supervised	 learning.	 Two	 types	 of	 predictive	 analytics	 can	 be
distinguished:	regression	and	classification.	In	regression,	 the	target	variable	is
continuous.	 Popular	 examples	 are	 predicting	 customer	 lifetime	 value	 (CLV),
sales,	 stock	prices,	 or	 loss	given	default	 (LGD).	 In	classification,	 the	 target	 is
categorical.	 There	 are	 two	 types	 of	 classification:	 binary	 (often	 yes/no	 or
true/false)	 and	 multiclass.	 Popular	 examples	 of	 binary	 classification	 are
predicting	 churn,	 response,	 fraud,	 and	 credit	 default,	whereas	 predicting	 credit
ratings	(AAA,	AA,	A,	BBB,	…,	D)	is	an	example	of	multiclass	classification	in
which	 the	 target	 consists	 of	 more	 than	 two	 categories.	 Different	 types	 of
predictive	 analytics	 techniques	 have	 been	 developed.	 In	 what	 follows,	 we
discuss	a	selection	of	techniques,	focusing	on	the	practitioner’s	perspective.

20.5.1.1	Linear	Regression

Linear	regression	is	the	most	commonly	used	technique	to	model	a	continuous
target	variable.	For	example,	in	a	CLV	context,	a	linear	regression	model	can	be
defined	to	model	the	CLV	in	terms	of	the	age	of	the	customer,	income,	gender,
etc.:

CLV	=	β0	+	β1Age	+	β2Income	+	β3Gender	+	…

The	general	formulation	of	the	linear	regression	model	then	becomes:

y	=	β0	+	β1x1	+	…	+	βkxk
,

where	y	represents	the	target	variable	and	x1,	…xk	are	the	explanatory	variables.
The	β	=	[β1;	β2;	….;	βk]	parameters	measure	the	impact	on	the	target	variable	y
of	each	of	the	individual	explanatory	variables.

Let	 us	 now	 assume	 we	 start	 with	 a	 dataset	 	 with	 n
observations	and	k	explanatory	variables	structured	as	depicted	in	Table	20.3.2

Table	20.3	Dataset	for	linear	regression

Observation x1 x2 … xk y

x1 x1(1) x1(2) … x1(k) y1

x2 x2(1) x2(2) x2(k) y2

… … … … … …

xn xn(1) xn(2) xn(k) yn

The	β	parameters	of	 the	 linear	 regression	model	can	 then	be	estimated	by
minimizing	the	following	squared	error	function:

where	 yi	 represents	 the	 (observed)	 target	 value	 for	 observation	 i,	 	 the
prediction	 made	 by	 the	 linear	 regression	 model	 for	 observation	 i,	 βT	 is	 the
transpose	of	β,	and	xi	the	vector	with	the	explanatory	variables.	Graphically,	this
idea	 corresponds	 to	 minimizing	 the	 sum	 of	 all	 error	 squares,	 as	 presented	 in
Figure	20.5,	for	a	regression	model	with	a	single	explanatory	variable	x.

Figure	20.5	Ordinary	least	squares	regression.

Straightforward	 mathematical	 calculus	 then	 yields	 the	 following	 closed-

form	formula	for	the	weight	parameter	vector	 :

where	X	 represents	 the	matrix	with	 the	explanatory	variable	values	augmented
with	 an	 additional	 column	 of	 1s	 to	 account	 for	 the	 intercept	 term	 β0,	 and	 y
represents	 the	 target	 value	 vector.	 This	 model	 and	 corresponding	 parameter
optimization	procedure	 are	often	 referred	 to	 as	ordinary	 least	 squares	 (OLS)
regression.

A	 key	 advantage	 of	 OLS	 regression	 is	 that	 it	 is	 simple	 and	 easy	 to
understand.	 Once	 the	 parameters	 have	 been	 estimated,	 the	 model	 can	 be
evaluated	in	a	straightforward	way,	contributing	to	its	operational	efficiency.

More	sophisticated	variants	have	been	developed,	such	as:	ridge	regression,
lasso	 regression,	 time	 series	 models	 (ARIMA,	 VAR,	 GARCH),	 multivariate
adaptive	 regression	 splines	 (MARS).	 Most	 of	 these	 relax	 the	 linearity
assumption	 by	 introducing	 additional	 transformations,	 albeit	 at	 the	 cost	 of
increased	complexity.

20.5.1.2	Logistic	Regression

Logistic	 regression	 extends	 linear	 regression	 to	 model	 a	 categorical	 target
variable.	 Consider	 a	 classification	 dataset	 in	 a	 response	 modeling	 setting	 as
depicted	in	Table	20.4.

Table	20.4	Example	classification	dataset

Customer Age Income Gender … Response y

John 30 1200 M No 0

Sarah 25 800 F Yes 1

Sophie 52 2200 F Yes 1

David 48 2000 M No 0

Peter 34 1800 M Yes 1

When	modeling	the	binary	response	target	using	linear	regression,	one	gets:

y	=	β0	+	β1Age	+	β2Income	+	β3Gender

When	estimating	this	using	OLS,	two	key	problems	arise:

Consider	the	following	bounding	function:

The	errors/target	are	not	normally	distributed	but	follow	a	Bernoulli
distribution	with	only	two	values.

There	is	no	guarantee	that	the	target	is	between	0	and	1,	which	would	be
handy	since	it	can	then	be	interpreted	as	a	probability.

which	looks	as	illustrated	in	Figure	20.6.

Figure	20.6	Bounding	function	for	logistic	regression.

For	 every	 possible	 value	 of	 z,	 the	 outcome	 is	 always	 between	 0	 and	 1.
Hence,	by	combining	 the	 linear	 regression	with	 the	bounding	 function,	we	get
the	following	logistic	regression	model:

The	outcome	of	the	above	model	is	always	bounded	between	0	and	1,	no	matter
which	values	of	Age,	 Income,	 and	Gender	 are	 being	 used,	 and	 can	 as	 such	 be
interpreted	as	a	probability.

The	general	formulation	of	the	logistic	regression	model	then	becomes:

Since	p(y	=	0|	x1,	…,	xk)	=	1	−	p(y	=	1|	x1,	…,	xk),	we	have

Hence,	both	p(y	=	1|	x1,	…,	xk)	and	p(y	=	0|	x1,	…,	xk)	are	bounded	between	0
and	1.

Reformulating	in	terms	of	the	odds,	the	model	becomes:

or	in	terms	of	the	log	odds,	also	called	the	logit:

The	β	parameters	of	a	logistic	regression	model	are	then	estimated	using	the
idea	 of	 maximum	 likelihood.	 Maximum	 likelihood	 optimization	 chooses	 the
parameters	in	such	a	way	that	it	maximizes	the	probability	of	getting	the	sample
at	hand.

Logistic	Regression	Properties

Since	logistic	regression	is	linear	in	the	log	odds	(logit),	it	basically	estimates	a
linear	decision	boundary	to	separate	both	classes.	This	 is	 illustrated	in	Figure
20.7	in	which	Y	(N)	corresponds	to	Response	=	Yes	(Response	=	No).

Figure	20.7	Linear	decision	boundary	of	logistic	regression.

To	 interpret	a	 logistic	 regression	model,	one	can	calculate	 the	odds	ratio.
Suppose	 variable	 xi	 increases	 by	 one	 unit	 with	 all	 other	 variables	 being	 kept
constant	(ceteris	paribus),	then	the	new	logit	becomes	the	old	logit	increased	by
βi.	 Likewise,	 the	 new	 odds	 become	 the	 old	 odds	multiplied	 by	 eβi.	 The	 latter
represents	 the	 odds	 ratio,	 i.e.,	 the	 multiplicative	 increase	 in	 the	 odds	 when	 xi
increases	by	1	(ceteris	paribus).	Hence:

Another	way	of	interpreting	a	logistic	regression	model	is	by	calculating	the
doubling	amount.	This	 represents	 the	amount	of	change	required	for	doubling
the	primary	outcome	odds.	It	can	be	easily	seen	that,	for	a	particular	variable	xi,
the	doubling	amount	equals	log(2)/βi.

20.5.1.3	Decision	Trees

Decision	trees	are	recursive	partitioning	algorithms	(RPAs)	that	come	up	with	a
tree-like	 structure	 representing	 patterns	 in	 an	 underlying	 dataset.	 Figure	 20.8
provides	an	example	of	a	decision	tree	in	a	response	modeling	setting.

Figure	20.8	Example	of	a	decision	tree.

The	top	node	is	 the	root	node,	specifying	a	 testing	condition	of	which	the
outcome	 corresponds	 to	 a	 branch	 leading	 to	 an	 internal	 node.	 The	 terminal
nodes,	 also	 called	 leaf	 nodes,	 assign	 the	 classifications	 (in	 our	 case	 response

βi>	0	implies	eβi>1	and	the	odds	and	probability	increase	with	xi;

βi	<	0	implies	eβi	<	1	and	the	odds	and	probability	decrease	with	xi.

labels).	 Many	 algorithms	 have	 been	 suggested	 to	 construct	 decision	 trees.
Among	 the	 most	 popular	 are	 C4.5	 (See5),3	 CART,4	 and	 CHAID.5	 These
algorithms	differ	in	the	ways	they	answer	the	key	decisions	to	build	a	tree,	which
are:

Usually,	the	assignment	decision	is	the	most	straightforward	to	make,	since
one	 typically	 looks	 at	 the	 majority	 class	 within	 the	 leaf	 node	 to	 make	 the
decision.	This	idea	is	also	called	winner-take-all	learning.	Alternatively,	one	may
estimate	 class	 membership	 probabilities	 in	 a	 leaf	 node	 equal	 to	 the	 observed
fractions	of	the	classes.	The	other	two	decisions	are	less	straightforward	and	are
elaborated	upon	in	what	follows.

Splitting	Decision

To	address	the	splitting	decision,	one	needs	to	define	the	concept	of	impurity	or
chaos.	 Consider	 the	 three	 datasets	 in	 Figure	 20.9,	 each	 containing	 good
customers	 (e.g.,	 responders,	 non-churners,	 legitimates)	 represented	 by	 the
unfilled	 circles,	 and	 bad	 customers	 (e.g.,	 non-responders,	 churners,	 fraudsters)
represented	by	 the	filled	circles.6	Minimal	 impurity	occurs	when	all	 customers
are	either	good	or	bad.	Maximal	impurity	occurs	when	one	has	the	same	number
of	good	and	bad	customers	(i.e.,	the	dataset	in	the	middle).

Splitting	decision:	which	variable	to	split	at	what	value	(e.g.,	Income	is	>
$50,000	or	not,	Age	is	<	40	or	not,	Employed	is	Yes	or	No).

Stopping	decision:	when	to	stop	adding	nodes	to	the	tree?	What	is	the
optimal	size	of	the	tree?

Assignment	decision:	what	class	(e.g.,	response	or	no	response)	to	assign
to	a	leaf	node?

Figure	20.9	Example	datasets	for	calculating	impurity.

Decision	 trees	 aim	 at	 minimizing	 the	 impurity	 in	 the	 data.	 To	 do	 so
appropriately,	one	needs	a	measure	to	quantify	impurity.	Various	measures	have
been	introduced	in	the	literature,	and	the	most	popular	are:

with	pG	(pB)	being	the	proportions	of	good	and	bad,	respectively.	Both	measures
are	 depicted	 in	 Figure	 20.10,	 where	 the	 entropy	 (gini)	 is	 minimal	 when	 all
customers	are	either	good	or	bad,	and	maximal	 if	 the	number	of	good	and	bad
customers	is	the	same.

Entropy:	E(S)	=	–pGlog2(pG)	–	pBlog2(pB)	(C4.5/See5);7

Gini:	Gini(S)	=	2pGpB	(CART);	and

Chi-squared	analysis	(CHAID),

Figure	20.10	Entropy	versus	gini.

To	address	 the	 splitting	decision,	various	candidate	 splits	 are	evaluated	 in
terms	 of	 their	 decrease	 in	 impurity.	 Consider,	 for	 example,	 a	 split	 on	 age	 as
depicted	in	Figure	20.11.

Figure	20.11	Calculating	the	entropy	for	age	split.

The	original	dataset	had	maximum	entropy	since	the	amounts	of	goods	and
bads	were	the	same.	The	entropy	calculations	now	become:

The	weighted	decrease	in	entropy,	also	known	as	the	gain,	can	then	be	calculated
as	follows:

Gain	=	1–(600/800)	×	0.91–(200/800)	×	0	=	0.32

The	gain	measures	 the	weighted	decrease	 in	entropy	due	 to	 the	split.	 It	 speaks
for	 itself	 that	a	higher	gain	 is	 to	be	preferred.	The	decision	tree	algorithm	now
considers	different	candidate	splits	for	its	root	node	and	adopts	a	greedy	strategy
by	picking	the	one	with	the	biggest	gain.	Once	the	root	node	has	been	decided
upon,	 the	procedure	continues	 in	a	 recursive	way,	each	 time	adding	splits	with

Entropy	top	node	=	–1/2	×	log2(1/2)–1/2	×	log2(1/2)	=	1

Entropy	left	node	=	–1/3	×	log2(1/3)–2/3	×	log2(2/3)	=	0.91

Entropy	right	node	=	–1	×	log2(1)–0	×	log2(0)	=	0.

the	biggest	gain.	This	can	be	perfectly	parallelized	and	both	sides	of	the	tree	can
grow	in	parallel,	increasing	the	efficiency	of	the	tree	construction	algorithm.

Stopping	Decision

The	third	decision	relates	to	the	stopping	criterion.	If	the	tree	continues	to	split	it
will	become	very	detailed,	with	leaf	nodes	containing	only	a	few	observations.
In	 the	most	extreme	case,	 the	 tree	will	have	one	 leaf	node	per	observation	and
will	 perfectly	 fit	 the	 data.	 However,	 by	 doing	 so,	 the	 tree	 will	 start	 to	 fit	 the
specificities	or	noise	in	the	data,	which	is	also	referred	to	as	overfitting.	The	tree
has	become	 too	 complex	 and	 fails	 to	 correctly	model	 the	noise-free	pattern	or
trend	in	the	data.	It	will	generalize	poorly	to	new	data.	To	avoid	this	happening,
the	data	will	be	split	into	a	training	sample	and	a	validation	sample.	The	training
sample	will	be	used	to	make	the	splitting	decision.	The	validation	sample	is	an
independent	sample,	set	aside	to	monitor	the	misclassification	error	(or	any	other
performance	 metric	 such	 as	 a	 profit-based	 measure)	 as	 the	 tree	 is	 grown.	 A
commonly	used	split	is	a	70%	training	sample	and	30%	validation	sample.	One
then	typically	observes	a	pattern,	as	depicted	in	Figure	20.12.

Figure	20.12	Using	a	validation	set	to	stop	growing	a	decision	tree.

The	error	on	the	training	sample	keeps	on	decreasing	as	the	splits	become
more	 and	more	 specific	 and	 tailored	 toward	 it.	 On	 the	 validation	 sample,	 the
error	will	 initially	decrease,	which	 indicates	 that	 the	 tree	splits	generalize	well.
However,	 at	 some	 point	 the	 error	will	 increase	 because	 the	 splits	 become	 too

specific	 for	 the	 training	 sample	 as	 the	 tree	 starts	 to	 memorize	 it.	 Where	 the
validation	 set	 curve	 reaches	 its	minimum,	 the	 procedure	 should	 be	 stopped	 as
otherwise	 overfitting	 will	 occur.	 As	 already	 mentioned,	 besides	 classification
error,	 one	might	 also	 use	 accuracy-	 or	 profit-based	measures	 on	 the	 y-axis	 to
make	 the	stopping	decision.	Sometimes	simplicity	 is	preferred	above	accuracy,
and	one	can	select	a	tree	that	does	not	necessarily	have	minimum	validation	set
error,	but	a	lower	number	of	nodes	or	levels.

Decision	Tree	Properties

In	 the	 example	 given	 in	 Figure	 20.8,	 every	 node	 had	 only	 two	 branches.	 The
advantage	of	 this	 is	 that	 the	 testing	 condition	 can	be	 implemented	 as	 a	 simple
yes/no	 question.	 Multiway	 splits	 allow	 for	 more	 than	 two	 branches	 and	 can
provide	 trees	 that	 are	 wider	 but	 less	 deep.	 In	 a	 read-once	 decision	 tree,	 a
particular	variable	can	be	used	only	once	 in	a	certain	 tree	path.	Every	 tree	can
also	be	represented	as	a	rule	set,	since	every	path	from	a	root	node	to	a	leaf	node
makes	 up	 a	 simple	 if–then	 rule.	 For	 the	 tree	 depicted	 in	 Figure	 20.8,	 the
corresponding	rules	are:

If	Income	>	$50,000	And	Age	<	40	Then	Response	=	Yes

If	Income	>	$50,000	And	Age	≥	40	Then	Response	=	No

If	Income	≤	$50,000	And	Employed=Yes	Then	Response	=	Yes

If	Income	≤	$50,000	And	Employed=No	Then	Response	=	No

These	 rules	 can	 then	 be	 easily	 implemented	 in	many	 software	 packages	 (e.g.,
Microsoft	Excel).

Decision	trees	essentially	model	decision	boundaries	orthogonal	to	the	axes.
This	is	illustrated	in	Figure	20.13	for	an	example	decision	tree.

Figure	20.13	Decision	boundary	of	a	decision	tree.

Regression	Trees

Decision	 trees	 can	 also	 be	 used	 to	 predict	 continuous	 targets.	 Consider	 the
example	of	Figure	20.14,	in	which	a	regression	tree	is	used	to	predict	the	fraud
percentage	 (FP).	 This	 percentage	 can	 be	 expressed	 as	 the	 percentage	 of	 a
predefined	limit	based	upon,	for	example,	the	maximum	transaction	amount.

Figure	20.14	Example	regression	tree	for	predicting	the	fraud	percentage.

Other	criteria	now	need	to	be	used	to	make	the	splitting	decision,	since	the
impurity	will	need	to	be	measured	in	another	way.	One	way	to	measure	impurity
in	a	node	is	by	calculating	the	mean	squared	error	(MSE)	as	follows:

where	n	represents	the	number	of	observations	in	a	leaf	node,	yi	is	the	value	of
observation	i,	and	 	is	the	average	of	all	values	in	the	leaf	node.	It	is	desirable	to
have	 a	 low	 MSE	 in	 a	 leaf	 node	 since	 this	 indicates	 that	 the	 node	 is	 more

homogeneous.
Another	 way	 to	 make	 the	 splitting	 decision	 is	 by	 conducting	 a	 simple

analysis	of	variance	(ANOVA)	test	and	then	calculating	an	F-statistic	as	follows:

where:

with	B	as	the	number	of	branches	of	the	split,	nb	the	number	of	observations	in
branch	b,	 	the	average	in	branch	b,	ybi	the	value	of	observation	i	 in	branch	b,
and	 	 the	 overall	 average.	Good	 splits	 favor	 homogeneity	within	 a	 node	 (low
SSwithin)	and	heterogeneity	between	nodes	(high	SSbetween).	In	other	words,	good
splits	 should	 have	 a	 high	F-value,	 or	 low	 corresponding	p-value,	which	 is	 the
probability	of	obtaining	 the	 same	or	a	more	extreme	value	 in	 the	case	 that	 the
null	hypothesis	of	similarity	is	true.

The	stopping	decision	can	be	made	in	a	similar	way	to	classification	trees,
but	 using	 a	 regression-based	 performance	measure	 (e.g.,	MSE,	mean	 absolute
deviation,	R-squared)	 on	 the	 y-axis.	 The	 assignment	 decision	 can	 be	made	 by
assigning	the	mean	(or	median)	to	each	leaf	node.	Note	that	standard	deviations,
and	confidence	intervals,	may	also	be	computed	for	each	of	the	leaf	nodes.

20.5.1.4	Other	Predictive	Analytics	Techniques

Linear	 regression,	 logistic	 regression,	 and	 decision	 trees	 are	 commonly	 used
predictive	 analytics	 techniques.	 Their	 success	 stems	 from	 their	 good
performance	and	high	interpretability.	Other	more	complex	predictive	analytics
techniques	have	been	developed.	Ensemble	methods	aim	at	estimating	multiple
analytical	 models	 instead	 of	 using	 only	 one.	 The	 idea	 here	 is	 that	 multiple
models	 can	cover	different	parts	of	 the	data	 input	 space	and	complement	 each
other’s	 deficiencies.	 Popular	 examples	 of	 ensemble	 techniques	 are:	 bagging,
boosting,	 and	 random	 forests.	 Neural	 networks	 and	 support	 vector	 machines
(SVMs)	 are	 also	 predictive	 analytics	 techniques.	 Both	 are	 capable	 of	 building
very	 sophisticated,	 highly	 nonlinear	 predictive	 analytics	models.	However,	 the
resulting	models	are	based	upon	complex	mathematics	and	are	often	difficult	to
understand	for	business	users.	Refer	to	the	literature	for	more	information	about
ensemble	methods,	neural	networks,	and	SVMs.8

20.5.2	Evaluating	Predictive	Models

In	 this	 section	 we	 discuss	 how	 to	 evaluate	 predictive	 models.	 We	 start	 by
reviewing	 various	 procedures	 for	 splitting	 up	 the	 dataset	 to	 get	 a	 good
performance	estimate.	This	is	followed	by	an	overview	of	performance	measures
for	 classification	 and	 regression	models.	We	 conclude	 by	 elaborating	 on	 other
performance	measures.

20.5.2.1	Splitting	Up	the	Dataset

When	 evaluating	 predictive	models,	 two	 key	 decisions	 need	 to	 be	made.	 The
first	decision	concerns	the	dataset	split,	which	specifies	on	what	part	of	the	data
the	performance	will	be	measured.	A	second	decision	concerns	the	performance
metric.	In	what	follows,	we	elaborate	on	both.

The	decision	on	how	to	split	up	 the	dataset	 for	performance	measurement
depends	upon	its	size.	In	large	datasets	(say,	more	than	1000	observations),	the
data	can	be	split	up	into	a	training	and	a	test	sample.	The	training	sample	(also
called	 development	 or	 estimation	 sample)	 will	 be	 used	 to	 build	 the	 model,
whereas	 the	 test	 sample	 (also	 called	 the	 hold-out	 sample)	 will	 be	 used	 to
calculate	its	performance	(see	Figure	20.15).	A	commonly	applied	split	up	 is	a
70%	training	sample	and	a	30%	test	sample.	There	should	be	a	strict	separation
between	 training	 sample	 and	 test	 sample.	 No	 observation	 used	 for	 model
development	can	be	used	for	independent	testing.	Note	that	with	decision	trees,
the	validation	sample	is	a	separate	sample,	since	it	is	actively	being	used	during
model	development	(i.e.,	to	make	the	stopping	decision).	A	typical	split	is	a	40%
training	sample,	30%	validation	sample,	and	30%	test	sample.

Figure	20.15	Training	versus	test	sample	set-up	for	performance	estimation.

In	small	datasets	(say,	fewer	than	1000	observations)	special	schemes	need
to	 be	 adopted.	 A	 popular	 scheme	 is	 cross-validation	 (Figure	 20.16).	 In	 cross-
validation,	the	data	are	split	into	K	folds	(e.g.,	five	or	ten).	An	analytical	model
is	 then	 trained	 on	K	 −	 1	 training	 folds	 and	 tested	 on	 the	 remaining	 validation
fold.	This	is	repeated	for	all	possible	validation	folds	resulting	in	K	performance
estimates	 that	 can	 then	 be	 averaged.	 A	 standard	 deviation	 and/or	 confidence
interval	can	be	calculated	if	desired.	In	its	most	extreme	cases,	cross-validation
becomes	leave-one-out	cross-validation	whereby	every	observation	is	left	out	in
turn	and	a	model	is	estimated	on	the	remaining	K	−	1	observations.	This	gives	K
analytical	 models	 in	 total.	 Consider	 three	 observations:	 Bart,	 Wilfried,	 and
Seppe.	A	leave-one	out	cross-validation	estimates	three	models:	one	on	Bart	and
Wilfried	which	is	evaluated	on	Seppe;	one	on	Bart	and	Seppe	which	is	evaluated
on	Wilfried;	and	one	on	Wilfried	and	Seppe	which	is	evaluated	on	Bart.

Figure	20.16	Cross-validation	for	performance	measurement.

A	 key	 question	 to	 answer	 when	 doing	 cross-validation	 is	 what	 the	 final
model	 being	 outputted	 from	 the	 procedure	 should	 be.	 Since	 cross-validation
gives	multiple	models,	this	is	not	an	obvious	question.	One	could	let	all	models
collaborate	 in	 an	 ensemble	 set-up	 by	 using	 a	 (weighted)	 voting	 procedure.	 A
more	 pragmatic	 answer	 would	 be	 to,	 for	 example,	 do	 leave-one-out	 cross-
validation	 and	 pick	 one	 model	 at	 random.	 Since	 the	 models	 differ	 up	 to	 one
observation	only,	they	will	be	similar	anyway.	Alternatively,	one	may	also	build
one	 final	model	on	all	observations,	but	 report	 the	performance	coming	out	of
the	cross-validation	procedure	as	the	best	independent	estimate.

For	 small	 samples,	 one	 may	 also	 adopt	 bootstrapping	 procedures.	 In
bootstrapping,	 one	 takes	 samples	 with	 replacement	 from	 a	 dataset	 D.	 An
example	 with	 five	 observations,	 representing	 five	 customers	 C1	 to	 C5,	 is
represented	in	Figure	20.17.

Figure	20.17	Bootstrapping.

The	probability	that	a	customer	is	sampled	equals	1/n,	with	n	the	number	of
observations	in	the	dataset.	The	probability	that	a	customer	is	not	sampled	equals
1	 −	 1/n.	 Assuming	 a	 bootstrap	 with	 n	 sampled	 observations,	 the	 fraction	 of
customers	not	sampled	equals:

We	then	have:

whereby	the	approximation	already	works	well	for	small	values	of	n.	So,	0.368
is	the	probability	that	a	customer	does	not	appear	in	the	sample	and	0.632	is	the
probability	that	a	customer	appears.	If	we	then	take	the	bootstrap	sample	as	the
training	 set	 and	 the	 test	 set	 as	 all	 samples	 in	D,	 excluding	 the	 samples	 in	 the
bootstrap	(e.g.,	for	the	first	bootstrap	of	Figure	20.17,	the	test	set	consists	of	C1
and	C4),	we	can	approximate	the	performance	as	follows:

Error	estimate	=	0.368	error(training)	+	0.632	error(test)

where	a	higher	weight	is	being	put	on	the	test	set	performance.	As	illustrated	in
Figure	20.17,	multiple	bootstraps	can	then	be	considered	to	get	 the	distribution
of	the	error	estimate.

20.5.2.2	Performance	Measures	for	Classification	Models

Consider	 this	 churn	 prediction	 example	 for	 a	 five-customer	 dataset.	 The	 first
column	in	Table	20.5	depicts	the	churn	status,	while	the	second	column	depicts
the	churn	score	as	it	comes	from	a	logistic	regression	or	decision	tree.

Table	20.5	Example	dataset	for	performance	calculation

Churn Score

John Yes 0.72

Sophie No 0.56

David Yes 0.44

Emma No 0.18

Bob No 0.36

One	can	now	map	the	scores	to	a	predicted	classification	label	by	assuming
a	default	cutoff	of	0.5,	as	shown	in	Figure	20.18.

Figure	20.18	Calculating	predictions	using	a	cutoff.

A	confusion	matrix	can	now	be	calculated,	as	shown	in	Table	20.6.

Table	20.6	The	confusion	matrix

Actual	status

Positive	(churn) Negative	(no
churn)

Predicted
status

Positive	(churn) True	positive
(John)

False	positive
(Sophie)

Negative	(no
churn)

False	negative
(David)

True	negative
(Emma,	Bob)

Based	upon	this	matrix,	one	can	now	calculate	 the	following	performance
measures:

Classification	accuracy	=	(TP	+	TN)/(TP	+	FP	+	FN	+	TN)	=	3/5

Classification	error	=	(FP	+	FN)/(TP	+	FP	+	FN	+	TN)	=	2/5

Sensitivity	=	Recall	=	Hit	rate	=	TP/(TP	+	FN)	=	1/2

Specificity	=	TN/(FP	+	TN)	=	2/3

The	 classification	 accuracy	 is	 the	 percentage	 of	 correctly	 classified
observations.	The	classification	error	is	the	complement	thereof	and	referred	to
as	 the	misclassification	rate.	The	 sensitivity,	 recall,	 or	 hit	 rate	measures	 how
many	 of	 the	 churners	 are	 correctly	 labeled	 by	 the	 model	 as	 a	 churner.	 The
specificity	 looks	at	how	many	of	 the	non-churners	are	correctly	 labeled	by	 the
model	 as	 non-churners.	 The	 precision	 indicates	 how	 many	 of	 the	 predicted
churners	are	actually	churners.

All	these	classification	measures	depend	upon	the	cutoff.	For	example,	for
a	cutoff	of	0	(1),	the	classification	accuracy	becomes	40%	(60%),	the	error	60%
(40%),	the	sensitivity	100%	(0%),	the	specificity	0%	(100%),	the	precision	40%
(0%),	and	the	F-measure	57%	(0%).	Given	this	dependence,	it	would	be	nice	to
have	a	performance	measure	independent	from	the	cutoff.	One	could	construct	a
table	 with	 the	 sensitivity,	 specificity,	 and	 1-specificity	 for	 various	 cutoffs,	 as
shown	in	Table	20.7.

Table	20.7	Table	for	ROC	analysis

Cutoff Sensitivity Specificity 1-
Specificity

0 1 0 1

0.01

0.02

….

0.99

Precision	=	TP/(TP	+	FP)	=	1/2

F-measure	=	2	×	(Precision	×	Recall)/(Precision	+	Recall)	=	1/2.

1 0 1 0

The	 receiver	 operating	 characteristic	 (ROC)	 curve	 then	 plots	 the
sensitivity	versus	1-specificity	as	illustrated	in	Figure	20.19.

Figure	20.19	The	receiver	operating	characteristic	curve.

A	perfect	model	detects	all	the	churners	and	non-churners	at	the	same	time,
resulting	 in	 a	 sensitivity	 of	 1	 and	 a	 specificity	 of	 1,	 and	 is	 represented	 by	 the
upper	 left	 corner.	 The	 closer	 the	 curve	 approaches	 this	 point,	 the	 better	 the
performance.	In	Figure	20.19,	model	A	has	a	better	performance	than	model	B.
A	problem	arises	if	the	curves	intersect.	Here,	one	can	calculate	the	area	under
the	ROC	curve	(AUC)	 as	 a	performance	metric.	The	AUC	provides	a	 simple
figure-of-merit	 for	 the	performance	of	 the	constructed	classifier;	 the	higher	 the
AUC	the	better	the	performance.	The	AUC	is	always	bounded	between	0	and	1
and	 can	 be	 interpreted	 as	 a	 probability.	 It	 represents	 the	 probability	 that	 a
randomly	 chosen	 churner	 gets	 a	 higher	 score	 than	 a	 randomly	 chosen	 non-
churner.9	 The	 diagonal	 represents	 a	 random	 scorecard,	 whereby	 sensitivity
equals	1-specificity	for	all	cutoff	points.	Hence,	a	good	classifier	should	have	an
ROC	above	the	diagonal	and	AUC	bigger	than	50%.

A	lift	curve	is	another	important	performance	evaluation	approach.	The	lift
curve	represents	the	cumulative	percentage	of	churners	per	decile,	divided	by	the
overall	 population	 percentage	 of	 churners.	 It	 starts	 by	 sorting	 the	 population

from	high	score	to	low	score.	Suppose	that	in	the	top	10%	highest	scores	there
are	60%	churners,	whereas	the	total	population	has	10%	churners.	The	lift	value
in	 the	 top	 decile	 then	 becomes	 60%/10%	 =	 6.	 Using	 no	model,	 or	 a	 random
sorting,	the	churners	would	be	equally	spread	across	the	entire	range	and	the	lift
value	 would	 always	 equal	 1.	 The	 lift	 curve	 typically	 decreases	 as	 one
cumulatively	 considers	 bigger	 deciles,	 until	 it	 reaches	 1.	 This	 is	 illustrated	 in
Figure	20.20.	A	lift	curve	can	also	be	expressed	in	a	non-cumulative	way,	and	is
also	often	summarized	by	reporting	top	decile	lift.

Figure	20.20	The	lift	curve.

The	 cumulative	 accuracy	 profile	 (CAP)	 (also	 called	 Lorenz	 or	 power
curve)	is	closely	related	to	the	lift	curve	(Figure	20.21).	It	also	starts	by	sorting
the	population	from	high	score	 to	 low	score	and	 then	measures	 the	cumulative
percentage	of	churners	for	each	decile	on	the	y-axis.	The	perfect	model	gives	a
linearly	increasing	curve	up	to	the	sample	churn	rate	and	then	flattens	out.	The
diagonal	again	represents	the	random	model.

Figure	20.21	The	cumulative	accuracy	profile.

The	CAP	curve	can	be	summarized	in	an	accuracy	ratio	(AR),	as	depicted
in	Figure	20.22.

Figure	20.22	Calculating	the	accuracy	ratio.

The	accuracy	ratio	is	then	defined:

(Area	below	CAP	curve	for	current	model–Area	below	CAP	curve
for	random	model)/(Area	below	CAP	curve	for	perfect	model–Area
below	CAP	curve	for	random	model)

A	perfect	model	will	have	an	AR	of	1	and	a	random	model	an	AR	of	0.	The	AR
is	also	often	called	 the	Gini	coefficient.	There	 is	also	a	 linear	 relation	between
the	AR	and	the	AUC:	AR	=	2	×	AUC–1.

Drill	Down

The	 following	 table	 illustrates	 some	 typical	 AUC	 performance
benchmarks	 for	 credit	 scoring,	 churn	prediction	 in	 telco,	 and	 insurance
fraud	detection.	It	also	includes	an	indication	of	the	number	of	variables
in	each	model.

Application Number	of	variables
AUC
range

Credit	scoring 10–15 70–85%

Churn	prediction	(telco) 6–10 70–90%

Fraud	detection	(insurance) 10–15 70–90%

20.5.2.3	Performance	Measures	for	Regression	Models

A	first	way	 to	evaluate	 the	predictive	performance	of	a	 regression	model	 is	by
visualizing	 the	 predicted	 target	 against	 the	 actual	 target	 using	 a	 scatter	 plot
(Figure	20.23).	The	more	the	plot	approaches	a	straight	line	through	the	origin,
the	 better	 the	 performance	 of	 the	 regression	model.	 It	 can	 be	 summarized	 by
calculating	the	Pearson	correlation	coefficient:

where	 	 represents	 the	predicted	value	 for	observation	 i,	 	 the	average	of	 the
predicted	values,	yi	 the	actual	value	for	observation	 i,	and	 	 the	average	of	 the
actual	values.	The	Pearson	correlation	always	varies	between	–1	and	+1.	Values
closer	 to	+1	 indicate	better	 agreement	and	better	 fit	between	 the	predicted	and

actual	values	of	the	target	variable.

Figure	20.23	Scatter	plot.

Another	key	performance	metric	is	the	coefficient	of	determination	or	R²,
defined	as:

The	R2	 always	 varies	 between	 0	 and	 1,	 and	 higher	 values	 are	 to	 be	 preferred.
Basically,	 this	measure	 tells	 us	 how	much	 better	 we	 can	 predict	 by	 using	 the
analytical	model	 to	 compute	 	 than	by	using	 the	mean	 	 as	 the	predictor.	To

compensate	 for	 the	 variables	 in	 the	 model,	 an	 adjusted	 R²,	 ,	 has	 been
suggested:

whereby	 k	 represents	 the	 number	 of	 variables	 in	 the	 model.	 Although	 R2	 is
usually	a	number	between	0	and	1,	it	can	also	have	negative	values	for	non-OLS

models	when	the	model	predictions	are	worse	than	always	using	the	mean	from
the	training	set	as	the	prediction.

Two	other	popular	measures	are	 the	mean	squared	error	 (MSE)	 and	mean
absolute	deviation	(MAD)	defined	as:

A	 perfect	model	would	 have	 an	MSE	 and	MAD	of	 0.	Higher	 values	 for	 both
MSE	 and	 MAD	 indicate	 lower	 performance.	 The	 MSE	 is	 sometimes	 also
reported	as	the	root	mean	squared	error	(RMSE):	 .

20.5.2.4	Other	Performance	Measures	for	Predictive	Analytical	Models

As	 already	 mentioned,	 statistical	 performance	 is	 just	 one	 aspect	 of	 model
performance.	 Other	 important	 criteria	 are	 comprehensibility,	 justifiability,	 and
operational	efficiency.	Although	comprehensibility	is	subjective	and	depends	on
the	 background	 and	 experience	 of	 the	 business	 analyst,	 linear	 and	 logistic
regression,	 as	 well	 as	 decision	 trees,	 are	 commonly	 called	 white	 box,
comprehensible	 techniques.	 Other	 techniques	 such	 as	 neural	 networks	 and
random	 forests	 methods	 are	 essentially	 opaque	 models	 and	 much	 harder	 to
understand.	However,	 in	settings	in	which	statistical	performance	is	superior	to
interpretability,	they	are	the	method	of	choice.	Justifiability	goes	one	step	further
and	 verifies	 to	 what	 extent	 the	 relationships	 modeled	 are	 in	 line	 with	 prior
business	 knowledge	 and/or	 expectations.	 In	 a	 practical	 setting,	 this	 often	 boils
down	to	verifying	the	univariate	impact	of	a	variable	on	the	model’s	output.	For
example,	 for	 a	 linear/logistic	 regression	 model,	 the	 signs	 of	 the	 regression

coefficients	will	 be	 verified.	 Finally,	 the	 operational	 efficiency	 can	 also	 be	 an
important	evaluation	criterion	to	consider	when	selecting	the	optimal	analytical
model.	 Operational	 efficiency	 represents	 the	 ease	 with	 which	 one	 can
implement,	use,	and	monitor	the	final	model.	For	example,	in	a	(near)	real-time
fraud	 environment,	 it	 is	 important	 to	 be	 able	 to	 quickly	 run	 the	 fraud	 model
using	 new	 cases.	 With	 regards	 to	 implementation,	 rule-based	 models	 excel
because	 implementing	 rules	 can	 be	 done	 easily,	 even	 in	 spreadsheet	 software.
Linear	models	are	also	easy	 to	 implement	whereas	nonlinear	models	are	much
more	difficult	 to	 implement	due	 to	 the	complex	 transformations	being	used	by
the	model.

20.5.3	Descriptive	Analytics

In	 descriptive	 analytics,	 the	 aim	 is	 to	 describe	 patterns	 of	 customer	 behavior.
Contrary	 to	predictive	 analytics,	 there	 is	 no	 real	 target	 variable	 available	 (e.g.,
churn,	response,	or	fraud	indicator).	Hence,	descriptive	analytics	is	often	called
unsupervised	 learning	 since	 there	 is	 no	 target	 variable	 to	 steer	 the	 learning
process.	The	three	most	common	descriptive	analytics	techniques	are	association
rules,	sequence	rules,	and	clustering.

20.5.3.1	Association	Rules

Association	rules	are	rules	aimed	at	detecting	frequently	occurring	associations
between	 items.	 In	 what	 follows,	 we	 first	 introduce	 the	 basic	 setting.	We	 then
define	 the	 support,	 confidence,	 and	 lift	 measures.	We	 conclude	 by	 discussing
post-processing	of	association	rules.

Basic	Setting

Association	 rules	 typically	 start	 from	 a	 database	 of	 transactions	 D.	 Each
transaction	consists	of	a	transaction	identifier	and	a	set	of	items	(e.g.,	products,
web	pages,	 courses)	{i1,	 i2,	 ..,	 }	 selected	 from	 all	 possible	 items	 I.	 Table	 20.8
gives	an	example	of	a	transactions	database	in	a	supermarket	setting.

Table	20.8	Example	transaction	dataset

Transaction	identifier Items

1 Beer,	milk,	diapers,	baby	food

2 Coke,	beer,	diapers

3 Cigarettes,	diapers,	baby	food

4 Chocolates,	diapers,	milk,
apples

5 Tomatoes,	water,	apples,	beer

6 Spaghetti,	diapers,	baby	food,
beer

7 Water,	beer,	baby	food

8 Diapers,	baby	food,	spaghetti

9 Baby	food,	beer,	diapers,	milk

10 Apples,	wine,	baby	food

An	association	rule	is	then	an	implication	of	the	form	 	whereby	X	⊂	
I,	Y	⊂	 I,	 and	X	 ∩	 	 Y	 =	 	∅	 .	X	 is	 the	 rule	 antecedent,	 whereas	 Y	 is	 the	 rule
consequent.	The	following	are	examples	of	association	rules:

It	is	important	to	note	that	association	rules	are	stochastic	in	nature;	that	means
they	 should	 not	 be	 interpreted	 as	 a	 universal	 truth	 and	 are	 characterized	 by
statistical	measures	 quantifying	 the	 strength	 of	 the	 association.	Also,	 the	 rules
measure	correlational	associations	and	should	not	be	interpreted	in	a	causal	way.

If	a	customer	buys	spaghetti,	then	the	customer	buys	red	wine	in	70%	of
cases.

If	a	customer	has	a	car	loan	and	car	insurance,	then	the	customer	has	a
checking	account	in	80%	of	cases.

If	a	customer	visits	web	page	A,	then	the	customer	will	visit	web	page	B
in	90%	of	cases.

Support,	Confidence,	and	Lift

Support	 and	 confidence	 are	 two	 key	 measures	 to	 quantify	 the	 strength	 of	 an
association	rule.	The	support	of	an	item	set	is	defined	as	the	percentage	of	total
transactions	in	the	database	that	contains	the	item	set.	Therefore,	the	rule	
has	support	s	if	100s%	of	the	transactions	in	D	contain	X	∪	Y.	It	can	be	formally
defined	as	follows:

When	 considering	 the	 transaction	 database	 in	 Table	 20.8,	 the	 association	 rule
baby	food	and	diapers	⇨	beer	has	support	3/10	or	30%.

A	 frequent	 item	 set	 is	 an	 item	 set	 for	which	 the	 support	 is	 higher	 than	 a
minimum	support	threshold	(minsup)	which	is	typically	specified	upfront	by	the
business	user	or	data	analyst.	A	lower	(higher)	minsup	will	generate	more	(less)
frequent	item	sets.	The	confidence	measures	the	strength	of	the	association	and
is	 defined	 as	 the	 conditional	 probability	 of	 the	 rule	 consequent,	 given	 the	 rule
antecedent.	The	rule	 	has	confidence	c	if	100c%	of	the	transactions	in	D
that	contain	X	also	contain	Y.	It	can	be	formally	defined	as	follows:

Again,	 the	 data	 analyst	must	 specify	 a	minimum	 confidence	 (minconf)	 for	 an
association	rule	to	be	considered	interesting.	In	Table	20.8,	 the	association	rule
baby	food	and	diapers	⇨	beer	has	confidence	3/5	or	60%.

Consider	 the	 example	 from	a	 supermarket	 transactions	database	 shown	 in
Table	20.9.

Table	20.9	The	lift	measure

Tea Not	tea Total

Coffee 150 750 900

Not	coffee 50 50 100

Total 200 800 1000

Let	us	now	evaluate	the	association	rule	Tea	⇨	Coffee.	The	support	of	this
rule	is	150/1000	or	15%.	The	confidence	of	the	rule	is	150/200	or	75%.	At	first
sight,	 this	 association	 rule	 seems	 very	 appealing,	 given	 its	 high	 confidence.
However,	 closer	 inspection	 reveals	 that	 the	 prior	 probability	 of	 buying	 coffee
equals	900/1000	or	90%.	Hence,	a	customer	who	buys	tea	 is	 less	 likely	 to	buy
coffee	 than	 a	 customer	 about	 whom	 we	 have	 no	 information.	 The	 lift,	 also
referred	 to	 as	 the	 interestingness	 measure,	 takes	 this	 into	 account	 by
incorporating	the	prior	probability	of	the	rule	consequent	as	follows:

A	lift	value	less	(greater)	than	1	indicates	a	negative	(positive)	dependence
or	 substitution	 (complementary)	 effect.	 In	 our	 example,	 the	 lift	 value	 equals
0.89,	which	clearly	indicates	the	expected	substitution	effect	between	coffee	and
tea.

Post-Processing	Association	Rules

Typically,	 an	 association	 rule	 modeling	 exercise	 will	 yield	 lots	 of	 association
rules,	so	post-processing	will	become	a	key	activity.	Example	steps	that	can	be
considered	here	are:

20.5.3.2	Sequence	Rules

Given	a	database	D	of	customer	transactions,	the	goal	of	mining	sequence	rules
is	 to	 find	 the	maximal	 sequences	 among	 all	 sequences	 that	 have	 certain	 user-
specified	 minimum	 support	 and	 confidence.	 Important	 to	 note	 here	 is	 that,
contrary	 to	 association	 rules	 that	 work	 with	 sets,	 the	 order	 of	 the	 items	 in	 a
sequence	is	important.	An	example	could	be	a	sequence	of	web	page	visits	in	a
web	analytics	setting:

A	transaction	 time	or	sequence	field	will	now	be	 included	 in	 the	analysis.
While	 association	 rules	 are	 concerned	 with	 what	 items	 appear	 together	 at	 the
same	time	(intra-transaction	patterns),	sequence	rules	are	concerned	about	what
items	appear	at	different	times	(inter-transaction	patterns).

Filter	out	the	trivial	rules	that	contain	already	known	patterns	(e.g.,
buying	spaghetti	and	spaghetti	sauce).	This	should	be	done	in
collaboration	with	a	business	expert.

Perform	a	sensitivity	analysis	by	varying	the	minsup	and	minconf	values.
Particularly	for	rare	but	profitable	items	(e.g.,	Rolex	watches),	it	could	be
interesting	to	lower	the	minsup	value	and	find	the	interesting
associations.

Use	appropriate	visualization	facilities	(e.g.,	OLAP-based)	to	find	the
unexpected	rules	that	might	represent	novel	and	actionable	behavior	in
the	data.

Measure	the	economic	impact	(e.g.,	profit,	cost)	of	the	association	rules.

Consider	 the	 example	 of	 a	 transactions	 dataset	 in	 a	web	 analytics	 setting
shown	in	Table	20.10.	The	letters	A,	B,	C,	etc.	refer	to	web	pages.

Table	20.10	Example	transactions	dataset	for	sequence	rule	mining

Session	ID Page Sequence

1 A 1

1 B 2

1 C 3

2 B 1

2 C 2

3 A 1

3 C 2

3 D 3

4 A 1

4 B 2

4 D 3

5 D 1

5 C 1

5 A 1

A	sequential	version	can	then	be	obtained:

Session	1:	A,	B,	C

Session	2:	B,	C

Session	3:	A,	C,	D

Session	4:	A,	B,	D

Session	5:	D,	C,	A

One	 can	 now	 calculate	 the	 support	 in	 two	 ways.	 Consider	 the	 sequence	 rule
A	⇨	C.	One	approach	would	be	to	calculate	the	support	whereby	the	consequent
can	appear	in	any	subsequent	stage	of	the	sequence.	Here,	the	support	becomes
2/5	 (40%).	Another	 approach	would	be	 to	 consider	only	 sessions	 in	which	 the
consequent	 appears	 right	 after	 the	 antecedent.	 Here,	 the	 support	 becomes	 1/5
(20%).	A	similar	reasoning	can	now	be	followed	for	the	confidence,	which	can
then	be	2/4	(50%)	or	1/4	(25%),	respectively.

Remember	 that	 the	 confidence	 of	 a	 rule	 	 is	 defined	 as	 the
probability		p(A2|		A1)	=	support(A1	∪	A2)/support(A1).	For	a	rule	with	multiple
items,	 ,	 the	 confidence	 is	 defined	 as
p(Ak|	A1,	A2,	…,	Ak	−	1)	=	support(A1	∪	A2	∪	…	∪	Ak	−	1	∪	Ak)/support(A1	∪	A2	
∪	…	∪	Ak	−	1).

20.5.3.3	Clustering

The	 aim	 of	 clustering,	 or	 segmentation,	 is	 to	 split	 a	 set	 of	 observations	 into
clusters	 so	 the	 homogeneity	within	 a	 cluster	 is	maximized	 (cohesive),	 and	 the
heterogeneity	between	clusters	 is	maximized	(separated).	Clustering	techniques
can	 be	 categorized	 as	 either	 hierarchical	 or	 nonhierarchical	 (Figure	 20.24).	 In
what	 follows,	 we	 elaborate	 on	 hierarchical	 and	 k-means	 clustering.	 Refer	 to
textbooks	on	analytics	for	a	discussion	of	self-organizing	maps	(SOMs).10

Figure	20.24	Hierarchical	versus	nonhierarchical	clustering	techniques.

Hierarchical	Clustering

In	what	follows,	we	first	discuss	hierarchical	clustering.	Divisive	hierarchical
clustering	 starts	 from	 the	whole	 dataset	 in	 one	 cluster	 and	 then	 breaks	 it	 up,
each	time	into	smaller	clusters	until	one	observation	per	cluster	remains	(right	to
left	 in	Figure	 20.25).	Agglomerative	 hierarchical	 clustering	 works	 the	 other
way	around,	 starting	 from	all	observations	 in	 individual	clusters,	 then	merging
the	ones	that	are	most	similar	until	all	observations	make	up	a	single	big	cluster
(left	 to	 right	 in	Figure	20.25).	 The	 optimal	 clustering	 solution	 lies	 somewhere
between	the	extremes	to	the	left	and	right,	respectively,	in	Figure	20.25.

Figure	20.25	Divisive	versus	agglomerative	hierarchical	clustering.

To	 decide	 upon	 the	 merger	 or	 splitting,	 a	 distance	 measure	 is	 needed	 to
assess	 the	 distance	 between	 two	 observations.	 Examples	 of	 popular	 distance
measures	are	the	Euclidean	distance	and	Manhattan	(city	block)	distance.	Figure

20.26	 illustrates	 two	 customers	 characterized	 by	 the	 recency	 (i.e.,	 number	 of
days	ago)	and	average	monetary	value	of	their	purchases.	The	distance	measures
can	be	calculated	as	follows:

Manhattan:	∣50	−	30	∣		+		∣	20	−	10	∣		=	30

The	Euclidean	distance	will	always	be	shorter	than	the	Manhattan	distance.

Figure	20.26	Euclidean	versus	Manhattan	distance.

Various	schemes	can	now	be	adopted	to	calculate	the	distance	between	two
clusters	 (see	 Figure	 20.27).	 The	 single	 linkage	 method	 defines	 the	 distance
between	 two	clusters	as	 the	 shortest	possible	distance,	or	 the	distance	between
the	 two	 most	 similar	 observations.	 The	 complete	 linkage	 method	 defines	 the
distance	 between	 two	 clusters	 as	 the	 biggest	 distance,	 or	 the	 distance	 between
the	 two	 most	 dissimilar	 objects.	 The	 average	 linkage	 method	 calculates	 the
average	 of	 all	 possible	 distances.	 The	 centroid	method	 calculates	 the	 distance
between	the	centroids	of	both	clusters.

Figure	20.27	Calculating	distances	between	clusters.

To	 decide	 upon	 the	 optimal	 number	 of	 clusters,	 one	 could	 use	 a
dendrogram.	A	dendrogram	is	a	tree-like	diagram	that	records	the	sequences	of
merges.	The	vertical	 (or	 horizontal)	 scale	 then	gives	 the	distance	between	 two
amalgamated	clusters.	One	can	 then	cut	 the	dendrogram	at	 the	desired	 level	 to
find	the	optimal	clustering.	This	is	illustrated	in	Figure	20.28	and	Figure	20.29
for	a	birds	clustering	example.

Figure	20.28	Example	for	clustering	birds.	The	numbers	indicate	the
clustering	steps.

Figure	20.29	Dendrogram	for	the	birds	example.	The	horizontal	line	indicates
the	optimal	clustering.

A	 key	 advantage	 of	 hierarchical	 clustering	 is	 that	 the	 number	 of	 clusters
need	not	be	specified	prior	to	the	analysis.	A	disadvantage	is	that	the	methods	do
not	scale	well	to	large	datasets.	Also,	interpreting	the	clusters	is	often	subjective
and	depends	upon	the	business	expert	and/or	data	scientist.

K-means	Clustering

K-means	 clustering	 is	 a	 non-hierarchical	 procedure	 that	 works	 along	 these
steps:

1.	Select	K	observations	as	the	initial	cluster	centroids	(seeds).

2.	Assign	each	observation	to	the	cluster	that	has	the	closest	centroid	(for
example,	in	the	Euclidean	sense).

3.	When	all	observations	have	been	assigned,	recalculate	the	positions	of
the	K	centroids.

4.	Repeat	until	the	cluster	centroids	no	longer	change.

A	key	requirement	here	is	that	the	number	of	clusters,	K,	needs	to	be	specified
before	 the	 start	 of	 the	 analysis.	 It	 is	 also	 advised	 to	 try	 out	 different	 seeds	 to
verify	 the	 stability	of	 the	clustering	 solution.	This	decision	can	be	made	using

expert-based	input	or	based	on	the	result	of	another	(e.g.,	hierarchical)	clustering
procedure.	Typically,	multiple	values	of	K	are	tried	out	and	the	resulting	clusters
are	evaluated	in	their	statistical	characteristics	and	interpretation.

20.5.4	Social	Network	Analytics

In	recent	decades,	 the	use	of	social	media	websites	 in	everybody’s	daily	life	is
booming.	People	can	continue	their	conversations	on	social	networking	sites	like
Facebook,	 Twitter,	 LinkedIn,	 Google+,	 Instagram,	 etc.,	 and	 share	 their
experiences	with	their	acquaintances,	friends,	family,	etc.	It	takes	only	one	click
to	update	your	whereabouts	to	the	rest	of	the	world.	There	are	plenty	of	options
to	broadcast	your	current	activities:	by	picture,	video,	geo-location,	links,	or	just
plain	text.

Users	of	online	social	networking	sites	explicitly	reveal	 their	relationships
with	 other	 people.	 Consequently,	 social	 networking	 sites	 are	 a	 nearly	 perfect
mapping	of	 the	 relationships	 that	 exist	 in	 the	 real	world.	They	know	who	you
are,	what	your	hobbies	and	 interests	are,	 to	whom	you	are	married,	how	many
children	you	have,	your	buddies	with	whom	you	run	every	week,	your	friends	at
the	wine	club,	etc.	This	massive	interconnected	network	of	people	knowing	each
other	 in	 some	 way	 is	 an	 interesting	 source	 of	 information	 and	 knowledge.
Marketing	 managers	 no	 longer	 need	 to	 guess	 who	 might	 influence	 whom	 to
create	 the	 appropriate	 campaign.	 It	 is	 all	 there	 –	which	 is	 the	 problem.	 Social
networking	sites	acknowledge	the	richness	of	the	data	sources	they	have,	and	are
not	 willing	 to	 share	 them	 free	 of	 charge.	 Those	 data	 are	 often	 privatized	 and
regulated,	 and	 well	 hidden	 from	 commercial	 use.	 On	 the	 other	 hand,	 social
networking	 sites	offer	many	built-in	 facilities	 to	managers	and	other	 interested
parties	to	launch	and	manage	their	marketing	campaigns	by	exploiting	the	social
network,	without	publishing	the	exact	network	representation.

However,	companies	often	forget	that	they	can	reconstruct	a	portion	of	the
social	network	using	in-house	data.	Telecommunication	providers,	for	example,
have	a	massive	transactional	database	in	which	they	record	call	behavior	of	their

customers.	Under	 the	assumption	 that	good	 friends	call	 each	other	more	often,
we	can	recreate	the	network	and	indicate	the	tie	strength	between	people	based
on	the	frequency	and/or	duration	of	calls.	Internet	infrastructure	providers	might
map	 the	 relationships	 between	 people	 using	 their	 customers’	 IP	 addresses.	 IP
addresses	 that	 frequently	 communicate	 are	 represented	 by	 a	 stronger
relationship.	 In	 the	 end,	 the	 IP	 network	 will	 envisage	 the	 relational	 structure
between	people	from	another	point	of	view,	but	to	a	certain	extent,	as	observed
in	reality.	Many	more	examples	can	be	found	in	the	banking,	retail,	and	online
gaming	 industries.	 In	 this	 section,	 we	 discuss	 how	 social	 networks	 can	 be
leveraged	for	analytics.

20.5.4.1	Social	Network	Definitions

A	 social	 network	 consists	 of	 both	 nodes	 (vertices)	 and	 edges.	 Both	 must	 be
clearly	defined	at	the	outset	of	the	analysis.	A	node	(vertex)	could	be	defined	as
a	 customer	 (private/professional),	 household/family,	 patient,	 doctor,	 paper,
author,	 terrorist,	 webpage,	 etc.	 An	 edge	 can	 be	 defined	 as	 a	 “friends”
relationship,	 a	 call,	 transmission	 of	 a	 disease,	 a	 “follows”	 relationship,	 a
reference,	etc.	The	edges	can	also	be	weighted	based	upon	interaction	frequency,
importance	 of	 information	 exchange,	 intimacy,	 emotional	 intensity,	 and	 so	 on.
For	example,	in	a	churn	prediction	setting,	the	edge	can	be	weighted	according
to	 the	 (total)	 time	 two	 customers	 called	 each	 other	 during	 a	 specific	 period.
Social	networks	can	be	represented	as	a	sociogram.	This	is	illustrated	in	Figure
20.30,	where	the	color	of	the	nodes	corresponds	to	a	specific	status	(e.g.,	churner
or	non-churner).

Figure	20.30	Example	sociogram.

Sociograms	 are	 useful	 for	 representing	 small-scale	 networks.	 For	 larger-
scale	networks,	 the	network	 is	 typically	 represented	 as	 a	matrix	 (Table	 20.11).
These	 matrices	 will	 be	 symmetrical	 and	 typically	 very	 sparse	 (with	 lots	 of
zeros).11	The	matrix	can	also	contain	the	weights	if	weighted	connections	occur.

Table	20.11	Matrix	representation	of	a	social	network

C1 C2 C3 C4

C1 – 1 1 0

C2 1 – 0 1

C3 1 0 – 0

C4 0 1 0 –

20.5.4.2	Social	Network	Metrics

A	social	network	can	be	characterized	by	various	centrality	metrics.	The	most
important	 centrality	measures	 are	 depicted	 in	 Table	 20.12.	Assume	 a	 network

with	g	nodes	Ni,	i	=	1,	…,	g.	gjk	represents	the	number	of	geodesics	from	node	Nj
to	node		Nk,	whereas	gjk(Ni)	represents	the	number	of	geodesics	from	node	Nj	to
node		Nk,	passing	through	node	Ni.	The	formulas	each	time	calculate	the	metric
for	node	Ni.

Table	20.12	Network	centrality	measures

Geodesic Shortest	path	between	two	nodes	in	the
network.

Degree Number	of	connections	of	a	node	(in-
versus	out-degree	if	the	connections	are
directed).

Closeness The	average	distance	of	a	node	to	all	other
nodes	in	the	network	(reciprocal	of
farness).

Betweenness Counts	the	number	of	times	a	node	or	edge
lies	on	the	shortest	path	between	any	two
nodes	in	the	network.

Graph
theoretic
center

The	node	with	the	smallest	maximum
distance	to	all	other	nodes	in	the	network.

These	metrics	 can	 now	 be	 illustrated	with	 the	Kite	 network	 toy	 example
depicted	in	Figure	20.31.12

Figure	20.31	The	Kite	network.

Table	20.13	reports	the	centrality	measures	for	the	Kite	network.	Based	on
degree,	Diane	is	most	central	since	she	has	the	most	connections.	She	works	as	a
connector,	 or	 hub.	 Note,	 however,	 that	 she	 only	 connects	 those	 already
connected	to	each	other.	Fernando	and	Garth	are	the	closest	 to	all	others.	They
are	the	best	positioned	to	communicate	messages	that	must	flow	quickly	through
to	all	other	nodes	in	the	network.	Heather	has	the	highest	betweenness.	She	sits
between	two	important	communities	(Ike	and	Jane	versus	the	rest).	She	plays	a
broker	role	between	both	communities,	but	is	also	a	single	point	of	failure.	Note
that	 the	 betweenness	measure	 is	 often	 used	 for	 community	mining.	A	 popular
technique	here	is	the	Girvan–Newman	algorithm,	which	works	as	follows:13

1.	The	betweenness	of	all	existing	edges	in	the	network	is	calculated	first.14

2.	The	edge	with	the	highest	betweenness	is	removed.

3.	The	betweenness	of	all	edges	affected	by	the	removal	is	recalculated.

4.	Steps	2	and	3	are	repeated	until	no	edges	remain.

The	result	 is	essentially	a	dendrogram,	which	can	 then	be	used	 to	decide	upon
the	optimal	number	of	communities.

Table	20.13	Centrality	measures	for	the	Kite	network

Degree Closeness Betweenness

6 Diane 0.64 Fernando 14 Heather

5 Fernando 0.64 Garth 8.33 Fernando

5 Garth 0.6 Diane 8.33 Garth

4 Andre 0.6 Heather 8 Ike

4 Beverly 0.53 Andre 3.67 Diane

3 Carol 0.53 Beverly 0.83 Andre

3 Ed 0.5 Carol 0.83 Beverly

3 Heather 0.5 Ed 0 Carol

2 Ike 0.43 Ike 0 Ed

1 Jane 0.31 Jane 0 Jane

20.5.4.3	Social	Network	Learning

In	 social	 network	 learning,	 the	 goal	 is	 to	 compute	 the	 class	 membership
probability	 (e.g.,	 churn	 probability)	 of	 a	 specific	 node,	 given	 the	 status	 of	 the
other	nodes	in	the	network.	Various	important	challenges	arise	when	learning	in
social	 networks.	 A	 key	 challenge	 is	 that	 the	 data	 are	 not	 independent	 and
identically	 distributed	 (IID),	 an	 assumption	 often	 made	 in	 classical	 statistical
models	(e.g.,	linear	and	logistic	regression).	The	correlational	behavior	between
nodes	 implies	 that	 the	class	membership	of	one	node	might	 influence	 the	class
membership	of	a	related	node.	Next,	it	is	not	easy	to	come	up	with	a	split	into	a
training	set	for	model	development	and	a	test	set	for	model	validation,	since	the

whole	 network	 is	 interconnected	 and	 cannot	 just	 be	 cut	 into	 two	 parts.	Many
networks	 are	 huge	 in	 scale	 (e.g.,	 a	 call	 graph	 from	 a	 telecom	 provider),	 and
efficient	 computational	 procedures	 need	 to	 be	 developed	 to	 do	 the	 learning.
Finally,	one	should	not	forget	 the	 traditional	way	of	doing	analytics	using	only
node-specific	information	(i.e.,	without	the	network	aspects),	since	this	can	still
be	very	valuable	information	for	prediction	as	well.

A	 straightforward	 way	 to	 leverage	 social	 networks	 for	 analytics	 is	 by
summarizing	 the	 network	 in	 a	 set	 of	 features	 that	 can	 then	 be	 combined	with
local	characteristics	(i.e.,	non-network	characteristics)	for	predictive	modeling.	A
popular	example	of	this	is	relational	logistic	regression	as	introduced	by	Lu	and
Getoor.15	 This	 approach	 basically	 starts	 off	 from	 a	 dataset	 with	 local	 node-
specific	characteristics	and	adds	network	features	to	it	as	follows:

This	is	illustrated	in	Figure	20.32	for	customer	Bart.

Figure	20.32	Relational	logistic	regression.

A	 logistic	 regression	model	 is	 then	 estimated	 using	 the	 dataset	with	 both
local	and	network	characteristics.	There	is	some	correlation	between	the	network

most	frequently	occurring	class	of	neighbor	(mode-link);

frequency	of	the	classes	of	the	neighbors	(frequency-link);

binary	indicators	indicating	class	presence	(binary-link).

characteristics	 added,	 which	 should	 be	 filtered	 out	 during	 an	 input	 selection
procedure.	 Creating	 network	 features	 is	 also	 called	 featurization,	 since	 the
network	 characteristics	 are	 basically	 added	 as	 special	 features	 to	 the	 dataset.
These	features	can	measure	the	behavior	of	the	neighbors	in	terms	of	the	target
variable	(e.g.,	churn	or	not)	or	in	terms	of	the	local	node-specific	characteristics
(e.g.,	 age,	 promotions,	 etc.).	 Figure	 20.33	 provides	 an	 example	 in	 which	 a
feature	 is	 added,	 describing	 the	 number	 of	 contacts	 with	 churners.	 The	 final
column	labeled	“Churn”	is	the	target	variable.	Figure	20.34	provides	an	example
in	which	features	are	added	describing	the	local	node	behavior	of	the	neighbors.

Figure	20.33	Example	of	featurization	with	features	describing	target
behavior	of	neighbors.

Figure	20.34	Example	of	featurization	with	features	describing	local	node
behavior	of	neighbors.

Retention	Questions

What	is	the	difference	between	predictive	and	descriptive	analytics?

Contrast	linear	regression	versus	logistic	regression	versus	decision
trees.

How	can	predictive	models	be	evaluated?

What	are	the	different	types	of	descriptive	analytics?

Give	some	examples	of	social	network	analytics.

20.6	Post-Processing	of	Analytical	Models

The	analytical	process	is	concluded	with	the	post-processing	step.	The	first	key
activity	of	post-processing	 is	 the	 interpretation	 and	validation	of	 the	 analytical
model	 by	 the	 business	 experts.	 Analytical	 models	 will	 detect	 both	 trivial	 or
known	patterns,	 and	unexpected,	 unknown,	 potentially	 interesting	patterns.	An
example	of	a	trivial	pattern	in	a	credit	scoring	setting	is:	customers	with	higher
debt	 are	more	 likely	 to	 default.	Although	 this	 pattern	 is	 not	 surprising,	 it	 is	 a
good	validation	of	the	exercise,	since	it	would	be	weird	–	or	even	suspicious	–	if
this	 pattern	 was	 not	 found.	 Obviously,	 the	 business	 expert	 will	 be	 especially
interested	in	the	unexpected	patterns	since	these	may	represent	new	insights	that
could	lead	to	new	strategies	or	actions.

Sensitivity	analysis	should	be	undertaken	during	post-processing.	The	idea
is	to	verify	the	robustness	of	the	analytical	model	and	see	how	sensitive	it	is	with
respect	 to	 sample	 characteristics,	 assumptions,	 data	 quality,	 and/or	 model
parameters.

Once	 approved	 by	 the	 business	 expert,	 the	 analytical	 model	 can	 be
deployed	 into	 a	 business	 setting.	 It	 is	 important	 to	 note	 here	 that	 the	 model
output	 should	 be	 represented	 in	 a	 user-friendly	 way,	 so	 it	 can	 be	 easily
interpreted	and	used.	Also,	the	output	of	the	analytical	model	should	be	directly
fed	to	the	business	applications,	such	as	marketing	campaign	management	tools
and	fraud	engines.

Finally,	 once	 the	 model	 has	 been	 brought	 into	 production	 it	 should	 be
continuously	monitored	and	backtested.	Backtesting	means	that	the	model	output
should	 be	 compared	 to	 actual	 observed	 or	 realized	 numbers	 once	 they	 are

available,	 so	 it	 can	 be	 determined	 when	 the	 model	 starts	 to	 degrade	 in
performance	and	a	new	analytical	model	needs	to	be	built.

Retention	Questions

Discuss	the	key	activities	during	post-processing	of	analytical	models.
Illustrate	with	an	example.

20.7	Critical	Success	Factors	for	Analytical
Models

To	succeed,	an	analytical	model	needs	to	satisfy	several	requirements.	A	first	key
requirement	 is	 business	 relevance.	 The	 analytical	 model	 should	 solve	 the
business	 problem	 it	 was	 developed	 for!	 It	 makes	 no	 sense	 to	 have	 a	 high-
performing	analytical	model	sidetracked	from	the	original	business	problem.	If
the	business	problem	is	detecting	insurance	fraud,	then	the	analytical	model	must
detect	 insurance	 fraud.	 Obviously,	 this	 requires	 thorough	 business	 knowledge
and	understanding	of	the	problem	before	any	analytics	can	start.

Another	important	success	factor	is	statistical	performance	and	validity.	The
analytical	 model	 should	 make	 sense	 statistically.	 It	 should	 be	 significant	 and
provide	good	predictive	or	 descriptive	performance.	Depending	on	 the	 type	of
analytics,	various	performance	metrics	can	be	used.	 In	customer	 segmentation,
statistical	 evaluation	 measures	 will	 contrast	 intra-cluster	 similarity	 with	 inter-
cluster	 dissimilarity.	 Analytical	 churn	 prediction	 models	 will	 be	 evaluated	 in
their	ability	to	assign	high	churn	scores	to	the	most	likely	churners.

Interpretability	 refers	 to	 the	 fact	 that	 the	 analytical	 model	 should	 be
comprehensible	 or	 understandable	 to	 the	 decision-maker	 (e.g.,	marketer,	 fraud
analyst,	 credit	 expert).	 Justifiability	 indicates	 that	 the	 model	 aligns	 with	 the
expectations	 and	 business	 knowledge	 of	 the	 expert.	 Both	 interpretability	 and
justifiability	are	subjective	and	depend	on	the	knowledge	and	experience	of	the
decision-maker.	 They	 often	 must	 be	 balanced	 against	 statistical	 performance,
which	implies	that	complex,	non-interpretable	models	(e.g.,	neural	networks)	are
often	better	performing	in	a	statistical	sense.	In	settings	like	credit	risk	modeling,
interpretability	 and	 justifiability	 are	 very	 important	 because	 of	 the	 societal

impact	of	these	models.	However,	in	settings	like	fraud	detection	and	marketing
response	modeling,	they	are	typically	less	of	an	issue.

Operational	 efficiency	 relates	 to	 the	 effort	 needed	 to	 evaluate,	 monitor,
backtest,	 or	 rebuild	 the	 analytical	 model.	 In	 settings	 like	 credit	 card	 fraud
detection,	operational	efficiency	is	important	because	a	decision	should	be	made
within	 a	 few	 seconds	 after	 the	 credit	 card	 transaction	 is	 initiated.	 In	 market
basket	analysis,	operational	efficiency	is	less	of	a	concern.

Economical	cost	refers	to	the	cost	incurred	to	gather	the	model	inputs,	run
the	 model	 and	 process	 its	 outcome(s).	 Also,	 the	 cost	 of	 external	 data	 and/or
analytical	 models	 should	 be	 considered	 here.	 This	 will	 allow	 calculating	 the
economic	return	on	the	analytical	model,	which	is	typically	not	a	straightforward
exercise	(see	Section	20.8).

Finally,	regulatory	compliance	is	becoming	more	and	more	important.	This
refers	to	the	extent	to	which	the	analytical	model	complies	with	regulation	and
legislation.	In	a	credit	risk	modeling	setting,	the	models	should	comply	with	the
Basel	 II	 and	 III	 regulations.	 In	 an	 analytical	 insurance	 setting,	 the	Solvency	 II
accord	must	be	respected.	Also,	privacy	is	an	important	issue	here	(see	Section
20.10).

Retention	Questions

What	are	critical	success	factors	when	building	an	analytical	model?
Illustrate	with	an	example.

20.8	Economic	Perspective	on	Analytics

In	this	section,	we	zoom	out	and	provide	an	economic	perspective	on	analytics.
We	start	by	introducing	total	cost	of	ownership	(TCO)	and	return	on	investment
(ROI).	 We	 discuss	 in-	 versus	 outsourcing	 and	 on-premises	 versus	 cloud
solutions.	We	also	contrast	the	use	of	open-source	versus	commercial	software.

20.8.1	Total	Cost	of	Ownership	(TCO)

The	total	cost	of	ownership	(TCO)	of	an	analytical	model	refers	to	the	cost	of
owning	 and	 operating	 the	 analytical	 model	 over	 its	 expected	 lifetime,	 from
inception	to	retirement.	It	should	consider	both	quantitative	and	qualitative	costs
and	is	a	key	input	to	make	strategic	decisions	about	how	to	optimally	invest	in
analytics.	 The	 costs	 involved	 can	 be	 decomposed	 into:	 acquisition	 costs,
ownership	 and	 operation	 costs,	 and	 post-ownership	 costs,	 as	 illustrated	 with
some	examples	in	Table	20.14.

Table	20.14	Example	costs	for	calculating	total	cost	of	ownership	(TCO)

Acquisition	costs Ownership	and
operation	costs

Post-
ownership
costs

Software	costs	including	initial
purchase,	upgrade,	intellectual
property	and	licensing	fees

Hardware	costs	including	initial
purchase	price	and	maintenance

Network	and	security	costs

Data	costs	including	costs	for
purchasing	external	data

Model	developer	costs	such	as
salaries	and	training

Model
migration
and	change
management
costs

Model	set-up
costs

Model
execution
costs

Model
monitoring
costs

De-
insta
llatio
n
and
disp
osal
costs

Repl
acem
ent
costs

Arch
iving

TCO	analysis	 tries	 to	 involve	a	comprehensive	view	of	all	costs.	From	an
economic	perspective,	 this	 should	 also	 include	 the	 timing	of	 the	 costs	 through
proper	 discounting	 using	 the	weighted	 average	 cost	 of	 capital	 (WACC)	 as	 the
discount	factor.	It	should	help	identify	any	potential	hidden	and/or	sunk	costs.	In
many	 analytical	 projects,	 the	 combined	 cost	 of	 hardware	 and	 software	 is
subordinate	to	the	people	cost	that	comes	with	the	development	and	usage	of	the
models,	such	as	training,	employment,	and	management	costs.16	The	high	share
of	 personnel	 cost	 can	 be	 attributed	 to	 three	 phenomena:	 an	 increase	 in	 the

Support
costs
(troubleshoot
ing,
helpdesk,
etc.)

Insurance
costs

Model
staffing	costs
such	as
salaries	and
training

Model
upgrade
costs

Model
downtime
costs

costs

number	of	data	scientists;	a	greater	use	of	open-source	tools	(see	Section	20.8.5);
and	cheaper	data	storage	and	sharing	solutions.

TCO	 analysis	 pinpoints	 cost	 problems	 before	 they	 become	 material.	 For
example,	the	change	management	costs	to	migrate	from	a	legacy	model	to	a	new
analytical	model	are	often	 largely	underestimated.	TCO	analysis	 is	a	key	 input
for	 strategic	 decisions,	 such	 as	 vendor	 selection,	 in-	 versus	 outsourcing,	 on
premises	 versus	 cloud	 solutions,	 overall	 budgeting,	 and	 capital	 calculation.
When	making	these	investment	decisions,	it	is	also	very	important	to	include	the
benefits	in	the	analysis,	since	TCO	only	considers	the	cost	perspective.

20.8.2	Return	on	Investment

Return	on	Investment	 is	defined	as	 the	 ratio	of	 the	net	benefits	or	net	profits
over	the	investment	of	resources	that	generated	this	return.	The	latter	essentially
comprises	the	TCO	(see	Section	20.8.1)	and	all	follow-up	expenses	such	as	costs
of	marketing	campaigns,	fraud	handling,	bad	debt	collection,	etc.	ROI	analysis	is
an	essential	input	to	any	financial	investment	decision.	It	offers	a	common	firm-
wide	 language	 to	compare	multiple	 investment	opportunities	and	decide	which
one(s)	to	go	for.

Companies	 like	 Facebook,	 Amazon,	 Netflix,	 Uber,	 and	 Google
continuously	invest	in	new	analytical	technologies	because	even	an	incremental
new	 insight	 can	 translate	 into	 a	 competitive	 advantage	 and	 significant	 profits.
The	 Netflix	 competition	 in	 which	 Netflix	 provided	 an	 anonymized	 dataset	 of
user	ratings	for	films,	and	awarded	$1	million	to	any	team	of	data	scientists	that
could	 beat	 its	 own	 recommender	 system	 with	 at	 least	 10%	 improvement	 in
performance,	is	a	nice	illustration	of	this.

For	 traditional	 firms	 in	 financial	 services,	 manufacturing,	 healthcare,
pharmaceutics,	 etc.,	 the	 ROI	 of	 analytics	 may	 be	 less	 clear-cut	 and	 harder	 to
determine.	 Although	 the	 cost	 component	 is	 usually	 not	 that	 difficult	 to
approximate,	 the	benefits	 are	much	harder	 to	quantify	precisely.	One	 reason	 is
that	the	benefits	may	be	spread	over	time	(short	term,	medium	term,	long	term)
and	across	the	various	business	units	of	the	organization.	Examples	of	benefits	of
analytical	models	are:

increase	of	sales	(e.g.,	because	of	a	response	modeling	or	up-/cross-
selling	campaign);

lower	fraud	losses	(e.g.,	because	of	a	fraud	detection	model);

When	it	comes	to	altering	human	behavior,	the	benefits	are	less	compelling
and	harder	to	quantify.	Many	analytical	models	yield	intangible	benefits	that	are
hard	to	include,	yet	substantial,	in	an	ROI	analysis.	Think	about	social	networks.
Analytically	 modeling	 word-of-mouth	 effects	 (e.g.,	 in	 a	 churn	 or	 response
setting)	 can	 have	 material	 economic	 impacts,	 but	 the	 precise	 value	 thereof	 is
hard	to	quantify.	The	benefits	may	also	be	spread	across	multiple	products	and
channels,	and	in	time.	Think	about	a	response	model	for	mortgages.	The	effect
of	successfully	attracting	a	mortgage	customer	could	create	cross-selling	effects
toward	 other	 bank	 products	 (e.g.,	 checking	 account,	 credit	 card,	 insurance).
Since	 a	 mortgage	 is	 a	 long-term	 engagement,	 the	 partnership	 may	 be	 further
deepened	 in	 time,	contributing	 to	 the	customer’s	 lifetime	value.	Untangling	all
these	profit	 contributions	 is	 a	 challenging	 task,	 complicating	 the	calculation	of
the	ROI	of	the	original	mortgage	response	model.

Drill	Down

A	vast	majority	of	 the	 implementations	of	Big	Data	and	analytics	have
reported	significant	returns.	A	study	by	Nucleus	Research	in	2014	found
that	organizations	from	various	industries	obtained	returns	of	$13.01	for
every	 dollar	 invested,	 which	 increased	 from	 $10.66	 in	 2011.17

fewer	credit	defaults	(e.g.,	because	of	a	credit	scoring	model);

identification	of	new	customer	needs	and	opportunities	(e.g.,	because	of	a
customer	segmentation	model);

automation	or	enhancement	of	human	decision-making	(e.g.,	because	of
a	recommender	system);

development	of	new	business	models	(e.g.,	because	of	data	poolers	that
gather	data	and	sell	the	results	of	analyses).

PredictiveanalyticsToday.com	 conducted	 a	 poll	 from	 February	 2015	 to
March	 2015	 with	 96	 valid	 responses.18	 The	 results	 are	 displayed	 in
Figure	20.35.	From	the	pie	chart,	it	can	be	concluded	that	only	a	minority
(10%)	 reported	 no	 ROI	 of	 Big	Data	 and	 analytics.	 Other	 studies	 have
also	reported	strong	positive	returns,	although	the	ranges	typically	vary.

Figure	20.35 	ROI	of	analytics.

Critical	 voices	 have	 been	 heard	 questioning	 positive	 returns	 of
investing	in	Big	Data	and	analytics.	The	reasons	often	boil	down	to	the
lack	 of	 good-quality	 data,	 management	 support,	 and	 a	 company-wide
data-driven	decision	culture	as	we	discuss	in	Section	20.9.

20.8.3	In-	versus	Outsourcing

The	 growing	 interest	 and	 need	 for	 analytics,	 combined	 with	 the	 shortage	 of
skilled	talent	and	data	scientists	 in	Western	Europe	and	the	USA,	has	triggered
the	question	of	outsourcing	 analytical	 activities.	This	need	 is	 further	 amplified
by	competitive	pressure	on	reduced	time-to-market	and	lower	costs.	Companies
need	to	choose	between	insourcing,	building	the	analytical	skillset	internally	at
the	 corporate	 or	 business-line	 level,	 outsourcing	 all	 analytical	 activities,	 or
going	for	an	intermediate	solution	in	which	only	part	of	the	analytical	activities
is	 outsourced.	 The	 dominant	 players	 in	 the	 outsourcing	 analytics	 market	 are
India,	China,	and	Eastern	Europe,	with	 some	other	countries	 (e.g.,	Philippines,
Russia,	South	Africa)	gaining	ground.

Various	 analytical	 activities	 can	 be	 considered	 for	 outsourcing,	 ranging
from	the	heavy-lifting	grunt	work	(data	collection,	cleaning,	and	pre-processing),
setting	 up	 of	 analytical	 platforms	 (hardware	 and	 software),	 training	 and
education,	 to	 the	 more	 complex	 analytical	 model	 development,	 visualization,
evaluation,	monitoring,	and	maintenance.	Companies	may	grow	conservatively
and	start	by	outsourcing	the	analytical	activities	step	by	step,	or	immediately	go
for	 the	 full	 package	 of	 analytical	 services.	 It	 speaks	 for	 itself	 that	 the	 latter
strategy	 has	 more	 risk	 associated	 with	 it	 and	 should	 be	 more	 carefully	 and
critically	evaluated.

Despite	the	benefits	of	outsourcing	analytics,	it	should	be	approached	with
a	 clear	 strategic	 vision	 and	 critical	 reflection	 with	 awareness	 of	 all	 risks
involved.	First,	the	difference	between	outsourcing	analytics	and	traditional	ICT
services	is	that	analytics	concerns	a	company’s	front-end	strategy,	whereas	many
ICT	 services	 are	 part	 of	 a	 company’s	 back-end	 operations.	Another	 important
risk	is	the	exchange	of	confidential	information.	Intellectual	property	(IP)	rights

and	data	security	issues	should	be	investigated,	addressed,	and	agreed	upon.	All
companies	 have	 access	 to	 the	 same	 analytical	 techniques,	 so	 they	 are	 only
differentiated	 by	 the	 data	 they	 provide.	 Hence,	 an	 outsource	 service	 provider
should	provide	clear	guidelines	and	guarantees	about	how	 intellectual	property
and	data	are	managed	and	protected	(e.g.,	encryption	techniques,	firewalls,	etc.),
especially	 if	 it	 also	 collaborates	 with	 other	 companies	 in	 the	 same	 industry
sector.	 Another	 important	 risk	 is	 the	 continuity	 of	 the	 partnership.	 Offshore
outsourcing	 service	 providers	 are	 often	 subject	 to	 mergers	 and	 acquisitions,
sometimes	with	other	companies	collaborating	with	the	competition,	diluting	any
competitive	advantage.	Many	of	 these	companies	 face	high	employee	 turnover
rates	due	to	intensive	work	schedules,	the	boredom	of	performing	low-level	data
pre-processing	activities	daily,	and	aggressive	headhunters	chasing	hard	 to	find
data	 science	 profiles.	 This	 attrition	 problem	 inhibits	 a	 long-term	 thorough
understanding	of	a	customer’s	analytical	business	processes	and	needs.	Another
often-cited	 complexity	 is	 a	 cultural	 mismatch	 (e.g.,	 time	 management,	 time
difference,	different	languages,	local	versus	global	issues)	between	the	buyer	and
outsource	 service	 provider.	 Exit	 strategies	 should	 be	 clearly	 agreed	 upon	 in
advance.	Many	 analytical	 outsourcing	 contracts	 have	 a	maturity	 of	 3–4	 years.
When	 these	contracts	expire,	 it	 should	be	stipulated	how	the	analytical	models
and	 knowledge	 can	 be	 transferred	 to	 the	 buyer	 to	 ensure	 business	 continuity.
Finally,	 the	 shortage	 of	 data	 scientists	 in	 the	 USA	 and	 Western	 Europe	 also
applies,	 and	 might	 even	 be	 worse,	 in	 the	 countries	 providing	 outsourcing
services.	 These	 countries	 typically	 have	 universities	 with	 good	 statistical
education	 and	 training	 programs,	 but	 their	 graduates	 lack	 the	 business	 skills,
insights,	and	experience	to	contribute	with	analytics.

Given	the	above	considerations,	many	firms	are	critical	of	outsourcing	and
prefer	to	keep	all	analytics	in-house.	Others	adopt	a	partial	outsourcing	strategy,
where	 baseline,	 operational	 analytical	 activities,	 such	 as	 query	 and	 reporting,

multidimensional	 data	 analysis,	 and	 OLAP	 are	 outsourced,	 and	 the	 advanced
descriptive	and	predictive	analytical	skills	are	developed	and	managed	internally.

20.8.4	On-Premises	versus	Cloud	Solutions

Most	 firms	 developed	 their	 first	 analytical	 models	 using	 on-premises
architectures,	platforms,	and	solutions.	However,	given	the	significant	amount	of
investment	 in	 installing,	 configuring,	 upgrading,	 and	 maintaining	 these
environments,	 many	 companies	 are	 looking	 at	 cloud-based	 solutions	 for
analytics	 as	 a	 budget-friendly	 alternative	 to	 further	 boost	 the	 ROI.	 In	 what
follows,	we	elaborate	on	the	cost	and	other	 implications	of	deploying	analytics
in	the	cloud.

Connections

A	 more	 general	 discussion	 on	 data	 in	 the	 cloud	 and	 different	 “As	 a
Service”	configurations	was	already	provided	in	Chapter	18.

An	often-cited	 advantage	of	on-premises	analytics	 is	 that	 you	 keep	 your
data	 in-house,	 giving	 you	 better	 security	 and	 full	 control.	 However,	 this	 is	 a
double-edged	sword	because	 it	 requires	 firms	 to	continually	 invest	 in	high-end
security	solutions	to	thwart	data	breach	attacks	by	hackers,	which	are	becoming
ever	 more	 sophisticated.	 It	 is	 because	 of	 this	 security	 concern	 that	 many
companies	 start	 looking	 at	 the	 cloud.	 Another	 driver	 is	 the	 scalability	 and
economies	of	 scale	offered	by	 cloud	providers	because	 they	pledge	 to	provide
customers	 with	 state-of-the-art	 platforms	 and	 software	 solutions.	 The
computation	power	needed	can	be	tailored	specifically	to	the	customer,	whether
it	is	a	Fortune	500	firm	or	an	SME.	More	capacity	(e.g.,	servers)	can	be	added	on
the	fly,	whenever	needed.	On-premises	solutions	need	to	carefully	anticipate	the
computational	 resources	 needed	 and	 invest	 accordingly;	 the	 risk	 of	 over-	 or

under-investment	 significantly	 jeopardizes	 the	 ROI	 of	 analytical	 projects.	 In
other	words,	 up-	 or	 downsizing	 on-premises	 systems	 is	much	more	 expensive
and	time-consuming.

Another	 key	 advantage	 relates	 to	 the	 maintenance	 of	 the	 analytical
environment.	 Average	 on-premises	 maintenance	 cycles	 typically	 range	 around
18	months.	These	can	get	costly	and	create	business	continuity	problems	because
of	 backward	 compatibility	 issues,	 new	 features	 added,	 old	 features	 removed,
new	 integration	 efforts	 needed,	 etc.	 When	 using	 cloud-based	 solutions,	 these
issues	 are	 taken	 care	 of,	 and	 maintenance	 or	 upgrade	 projects	 may	 even	 go
unnoticed.

The	 low-footprint	access	 to	analytical	platforms	will	also	positively	affect
the	 time	 to	 value	 and	 accessibility.	 There	 is	 no	 need	 to	 set	 up	 expensive
infrastructure	 (e.g.,	 hardware,	 operating	 systems,	 NoSQL	 databases,	 analytical
solutions),	upload	and	clean	data,	integrate	data,	etc.	Using	the	cloud,	everything
is	readily	accessible.	It	lowers	the	entry	barrier	to	experiment	with	analytics,	try
out	 new	 approaches	 and	 models,	 and	 combine	 various	 data	 sources	 in	 a
transparent	way.	This	contributes	to	 the	economic	value	of	analytical	modeling
and	facilitates	serendipitous	discovery	of	interesting	patterns.

Cloud-based	 solutions	 catalyze	 improved	 collaboration	 across	 business
departments	and	geographical	locations.	Many	on-premises	systems	are	loosely
coupled,	or	not	integrated	at	all,	inhibiting	any	firm-wide	sharing	of	experiences,
insights,	and	findings.	The	resulting	duplication	efforts	negatively	affect	the	ROI
at	the	corporate	level.

Cloud-based	solutions	have	a	substantial	impact	in	terms	of	TCO	and	ROI
of	your	analytical	projects.	However,	as	with	any	new	technology,	it	is	advised	to
approach	them	with	a	thoughtful	strategic	vision	and	the	necessary	caution.	One
risk	 to	 be	 considered	 is	 vendor	 lock-in,	 where	 a	 company	 becomes	 highly
dependent	upon	a	specific	cloud	vendor.	Some	firms	adopt	a	mixed	approach	by

gently	migrating	 some	of	 their	 analytical	models	 to	 the	 cloud	 to	 get	 their	 toes
wet	and	see	 the	potential	pros	and	cons	of	 this	 technology.	It	can,	however,	be
expected	 that	 given	 the	 many	 advantages	 offered,	 cloud-based	 analytics	 will
continue	to	grow.

Drill	Down

Amazon	Web	Services	 (Amazon	WS)	 is	 a	 popular	 example	 of	 a	 cloud
solution	for	Big	Data	and	analytics.	It	offers	hosted	relational	databases
(e.g.,	 MySQL,	 Oracle,	 SQL	 Server),	 a	 NoSQL	 database	 (Amazon
DynamoDB),	 a	 data	 warehousing	 platform	 (Amazon	 Redshift),	 a
Hadoop/MapReduce	 environment	 (Amazon	Elastic	MapReduce),	 and	 a
machine	 learning	 solution	 (Amazon	 Machine	 Learning)	 supporting
various	analytical	techniques.

20.8.5	Open-Source	versus	Commercial	Software

The	 popularity	 of	 open-source	 analytical	 software,	 such	 as	R	 and	 Python,	 has
sparked	 the	 debate	 about	 the	 added	 value	 of	 commercial	 tools	 such	 as	 SAS,
SPSS,	 MATLAB,	 etc.	 Both	 commercial	 and	 open-source	 software	 have	 their
merits,	 which	 should	 be	 evaluated	 before	 any	 software	 investment	 decision	 is
made.

First,	 the	key	advantage	of	open-source	 software	 is	 that	 it	 is	 available	 for
free,	which	lowers	 the	entry	barrier	for	use.	This	may	be	especially	relevant	 to
smaller	 firms	 who	 wish	 to	 kick-off	 with	 analytics	 without	 making	 big
investments.	However,	this	poses	a	danger	as	well,	since	anyone	can	contribute
to	open-source	software	without	any	quality	assurance	or	extensive	prior	testing.
In	 heavily	 regulated	 environments,	 such	 as	 credit	 risk	 (the	 Basel	 Accord),
insurance	 (the	 Solvency	 Accord),	 and	 pharmaceuticals	 (FDA	 regulation),	 the
analytical	 models	 are	 subject	 to	 external	 supervisory	 review	 because	 of	 their
strategic	impact	on	society,	which	is	bigger	than	ever	before.	Therefore,	in	these
settings,	 many	 firms	 prefer	 to	 rely	 on	 mature	 commercial	 solutions	 that	 have
been	 thoroughly	 engineered	 and	 extensively	 tested,	 validated,	 and	 completely
documented.	 Many	 solutions	 also	 include	 automatic	 reporting	 facilities	 to
generate	 compliant	 reports	 in	 each	 setting	 mentioned.	 Open-source	 software
solutions	 may	 come	 without	 any	 kind	 of	 quality	 control	 or	 warranty,	 which
increases	the	risk	of	using	them	in	regulated	environments.

Another	key	advantage	of	commercial	solutions	is	that	the	software	offered
is	 no	 longer	 centered	 around	 dedicated	 analytical	 workbenches	 for	 data	 pre-
processing,	data	mining,	etc.,	but	on	well-engineered	business-focused	solutions
that	 automate	 the	 end-to-end	 activities.	 As	 an	 example,	 consider	 credit	 risk
analytics,	which	start	from	framing	the	business	problem	to	data	pre-processing,

analytical	model	development,	model	monitoring,	stress	 testing,	and	regulatory
capital	calculation.	To	automate	this	entire	chain	of	activities	using	open-source
options	 would	 require	 various	 scripts,	 likely	 originating	 from	 heterogeneous
sources,	to	be	matched	and	connected,	resulting	in	a	melting	pot	of	software	in
which	the	overall	functionality	can	become	unstable	and	unclear.

Contrary	to	most	open-source	software,	commercial	software	vendors	also
offer	extensive	help	facilities	such	as	FAQs,	technical	support	lines,	newsletters,
professional	 training	 courses,	 etc.	 Another	 key	 advantage	 of	 commercial
software	 vendors	 is	 business	 continuity.	 The	 availability	 of	 centralized	 R&D
teams	(as	opposed	to	worldwide	loosely	connected	open-source	developers)	that
closely	 follow-up	 on	 new	 analytical	 and	 regulatory	 developments	 provides	 a
better	guarantee	that	new	software	upgrades	will	provide	the	facilities	required.
In	an	open-source	environment,	you	must	rely	on	the	community	to	voluntarily
contribute,	which	provides	less	of	a	guarantee.

A	 disadvantage	 of	 commercial	 software	 is	 that	 it	 usually	 comes	 in	 pre-
packaged,	 black	 box	 routines	 which,	 although	 extensively	 tested	 and
documented,	cannot	be	 inspected	by	 the	more	sophisticated	data	scientist.	This
contrasts	 with	 open-source	 solutions,	 which	 provide	 full	 access	 to	 the	 source
code	of	each	of	the	scripts	contributed.

Both	 commercial	 and	 open-source	 software	 have	 their	 strengths	 and
weaknesses.	It	is	likely	that	both	will	continue	to	coexist,	and	interfaces	should
be	provided	for	both	to	collaborate	as	is	the	case	for	SAS	and	R/Python.

Retention	Questions

What	are	the	key	components	of	TCO	and	ROI?

Contrast	the	following:

Drill	Down

In	 2016,	 the	 well-known	 analytics	 portal	 site	 KDnuggets
(www.kdnuggets.com)	conducted	a	poll	on	analytics	software,	asking	the
following	question:19

What	software	have	you	used	for	Analytics,	Data	Mining,	Data
Science,	Machine	Learning	projects	in	the	past	12	months?

The	poll	was	answered	by	2895	voters.	The	results	are	displayed	in
the	table.

Tool 2016	percentage	share percentage	change

R 49% +4.5%

Python 45.8% +51%

SQL 35.5% +15%

Excel 33.6% +47%

RapidMiner 32.6% +3.5%

Hadoop 22.1% +20%

Spark 21.6% +91%

–	in-	versus	outsourcing;

–	on-premises	versus	cloud	solutions;

–	open-source	versus	commercial	software.

http://www.kdnuggets.com

Tableau 18.5% +49%

KNIME 18.0% –10%

scikit-learn 17.2% +107%

From	the	table,	it	can	be	concluded	that	both	open-source	packages
R	and	Python	are	most	popular,	with	Python	growing	especially	quickly.
Surprisingly,	 SQL	 and	 Excel	 rank	 third	 and	 fourth,	 which	 clearly
illustrates	 their	 impact.	 About	 25%	 of	 the	 respondents	 used	 only
commercial	 software,	whereas	13%	used	only	open-source	 software.	A
majority	(61%)	used	both	free	and	commercial	software.

20.9	Improving	the	ROI	of	Analytics

20.9.1	New	Sources	of	Data

The	 ROI	 of	 an	 analytical	 model	 is	 directly	 related	 to	 its	 predictive	 and/or
statistical	 power.	 The	 better	 it	 can	 predict	 or	 describe	 customer	 behavior,	 the
better	 the	 effectiveness	 of	 the	 resulting	 actions.	 One	 way	 to	 boost	 this	 is	 by
investing	 in	 new	 sources	 of	 data	 that	 can	 help	 to	 further	 unravel	 complex
customer	 behavior	 and	 improve	 key	 analytical	 insights.	 In	 what	 follows,	 we
briefly	explore	various	types	of	data	sources	that	could	be	worthwhile	to	pursue
to	squeeze	more	economic	value	out	of	analytical	models.

One	 option	 is	 the	 exploration	 of	 network	 data	 by	 carefully	 studying
relationships	between	customers.	These	relationships	can	be	explicit	or	implicit.
Examples	 of	 explicit	 networks	 are	 calls	 between	 customers,	 shared	 board
members	 between	 firms,	 and	 social	 connections	 (e.g.,	 family,	 friends,	 etc.).
Explicit	networks	can	be	readily	distilled	from	underlying	data	sources	(e.g.,	call
logs)	 and	 their	 key	 characteristics	 can	 then	 be	 summarized	 using	 featurization
procedures	as	discussed	in	Section	20.5.4.3.	In	our	previous	research,	we	found
network	 data	 to	 be	 highly	 predictive	 for	 both	 customer	 churn	 prediction	 and
fraud	detection.20	 Implicit	networks,	or	pseudo-networks,	are	networks	 that	are
not	 based	 upon	 explicit	 ties	 and	 are	more	 challenging	 to	 define	 and	 featurize.
Martens	 and	 Provost	 built	 a	 network	 of	 customers	 where	 links	 were	 defined
based	 upon	 which	 customers	 transferred	 money	 to	 the	 same	 entities	 (e.g.,
retailers)	 using	 data	 from	 a	 major	 bank.21	When	 combined	 with	 non-network
data,	this	innovative	way	of	defining	a	network	based	upon	similarity	instead	of
explicit	social	connections	gave	a	better	 lift	and	profit	 for	almost	any	 targeting
budget.	 In	 another,	 award-winning	 study	 they	 built	 a	 geosimilarity	 network
among	users	based	upon	location-visitation	data	in	a	mobile	environment.22	Two
devices	are	considered	similar,	and	thus	connected,	when	they	share	at	least	one
visited	location.	They	are	more	similar	if	they	have	more	shared	locations	and	if

these	are	visited	by	fewer	people.	This	implicit	network	can	then	be	leveraged	to
target	 advertisements	 to	 the	 same	 user	 on	 different	 devices	 or	 to	 users	 with
similar	 tastes,	or	 to	 improve	online	 interactions	by	selecting	users	with	 similar
tastes.	Both	examples	illustrate	the	potential	of	implicit	networks	as	an	important
data	source.	A	key	challenge	here	is	to	think	creatively	about	how	to	define	these
networks	based	upon	the	goal	of	 the	analysis.	Recall	our	discussion	in	Chapter
11	 on	 various	NoSQL	 niche	 databases,	 geared	 specifically	 toward	 storing	 and
querying	 special	 types	 of	 data	 or	 structures.	 For	 network	 structured	 data,	 we
have	seen	how	graph	databases	are	becoming	increasingly	important,	since	they
do	away	with	traditional	RDBMS-based	relational	structures	and	allow	users	to
express	 densely	 connected	 structures	 directly	 as	 a	 graph.	 Such	 databases	 offer
advantages	 for	 performing	 analytics,	 since	 they	 often	 allow	 for	 fast	 and	 easy
querying	of	graphs,	with	applications	as	mentioned	above	in	marketing	analytics
and	 fraud	 analytics,	 among	 others.	 An	 interesting	 and	 eye-catching	 recent
example	of	 graph	databases	 being	 applied	 in	 analytics	 combines	 text	 analytics
(text	 is,	by	nature,	unstructured	data)	with	Neo4j	(a	popular	graph	database)	 to
analyze	 links	 between	 companies,	 documents,	 and	 persons	 contained	 in	 the
Panama	 Papers,	 the	 11	 million	 leaked	 documents	 that	 contained	 detailed
financial	information	of	offshore	entities.

Connections

Graph	databases	were	discussed	in	Chapter	11.

Data	are	often	branded	as	the	new	oil.	Data-pooling	firms	capitalize	on	this
by	gathering	various	types	of	data,	analyzing	it	in	innovative	and	creative	ways,
and	selling	the	results.	Popular	examples	are	Equifax,	Experian,	Moody’s,	S&P,
Nielsen,	Dun	&	Bradstreet,	etc.	These	firms	consolidate	publicly	available	data,

data	scraped	from	websites	or	social	media,	survey	data,	and	data	contributed	by
other	firms.	By	doing	so,	they	can	perform	a	variety	of	aggregated	analyses	(e.g.,
geographical	distribution	of	credit	default	rates	in	a	country,	average	churn	rates
across	industry	sectors),	build	generic	scores	(e.g.,	the	FICO	score	in	the	USA	–
see	below)	and	sell	these	to	interested	parties.	Because	of	the	low	entry	barrier	in
terms	 of	 investment,	 externally	 purchased	 analytical	 models	 are	 sometimes
adopted	 by	 smaller	 firms	 to	 take	 their	 first	 steps	 in	 analytics.	 In	 addition	 to
commercially	available	external	data,	open	data	can	also	be	a	valuable	source	of
external	information.	Examples	are	industry	and	government	data,	weather	data,
news	data,	and	search	data.	As	an	example	of	the	latter,	Google	Trends	data	have
been	used	 to	 predict	 unemployment	 and	 flu	 outbreaks.	 It	 has	 been	 empirically
shown	that	both	commercial	and	open	external	data	can	boost	 the	performance
and	economic	return	of	an	analytical	model.

Macroeconomic	 data	 are	 another	 valuable	 source	 of	 information.	 Many
analytical	models	are	developed	using	a	snapshot	of	data	at	a	specific	moment	in
time.	 This	 is	 conditional	 on	 the	 external	 environment	 at	 that	 moment.
Macroeconomic	 up-	 or	 down-turns	 can	 have	 a	 significant	 impact	 on	 the
performance,	and	thus	ROI,	of	the	model.	The	state	of	the	macro-economy	can
be	summarized	using	measures	such	as	gross	domestic	product	(GDP),	inflation,
and	 unemployment.	 Incorporating	 these	 effects	 will	 further	 improve	 the
performance	of	analytical	models	and	make	 them	more	 robust	against	external
influences.

Textual	data	are	also	an	interesting	type	of	data	 to	consider.	Examples	are
product	 reviews,	 Facebook	 posts,	 Twitter	 tweets,	 book	 recommendations,
complaints,	 legislation,	 etc.	 Textual	 data	 are	 difficult	 to	 process	 analytically
since	 they	 are	 unstructured	 and	 cannot	 be	 directly	 represented	 in	 a	 table	 or
matrix	format.	Moreover,	they	depend	upon	the	linguistic	structure	(e.g.,	type	of
language,	 relationship	 between	 words,	 negations,	 etc.)	 and	 are	 typically	 quite

noisy	 data	 due	 to	 grammatical	 or	 spelling	 errors,	 synonyms,	 and	 homographs.
However,	 these	 data	 can	 contain	 relevant	 information	 for	 your	 analytical
modeling	exercise.	Just	as	with	network	data,	it	will	be	important	to	find	ways	to
featurize	 text	documents	and	combine	 them	with	your	other	 structured	data.	A
popular	way	of	doing	 this	 is	by	using	a	document	 term	matrix	 indicating	what
terms	 (similar	 to	 variables)	 appear	 and	 how	 frequently	 in	 which	 documents
(similar	 to	 observations).	 This	 matrix	 will	 be	 large	 and	 sparse.	 Dimension
reduction	tries	to	make	this	matrix	more	compact	by	conducting	these	activities:

Even	 after	 the	 above	 activities	 have	 been	 performed,	 the	 number	 of
dimensions	 may	 still	 be	 too	 big	 for	 practical	 analysis.	 Singular	 value
decomposition	 (SVD)	 offers	 a	 more	 advanced	 means	 to	 do	 dimension
reduction.23	 It	 essentially	 summarizes	 the	 document	 term	matrix	 into	 a	 set	 of
singular	vectors,	also	called	latent	concepts,	 that	are	linear	combinations	of	the
original	terms.	These	reduced	dimensions	can	then	be	added	as	new	features	to
your	existing,	structured	dataset.

Besides	 textual	 data,	 other	 types	 of	 unstructured	 data,	 such	 as	 audio,
images,	 videos,	 fingerprint,	 location	 (GPS),	 geospatial,	 and	RFID	 data	 can	 be
considered	as	well.	To	leverage	these	data	in	your	analytical	models,	it	is	of	key

represent	every	term	in	lower	case	(e.g.,	PRODUCT,	Product,	and
product	become	product);

remove	terms	that	are	uninformative,	such	as	stop	words	and	articles
(e.g.,	“the	product”,	“a	product”,	and	“this	product”	become	product);

use	synonym	lists	to	map	synonym	terms	to	one	single	term	(product,
item,	and	article	become	product);

stem	all	terms	to	their	root	(products	and	product	become	product);

remove	terms	that	only	occur	in	a	single	document.

importance	to	think	carefully	about	creative	ways	of	featurizing	it.	When	doing
so,	it	is	recommended	to	consider	any	accompanying	metadata.	For	example,	not
only	 the	 image	 itself	might	 be	 relevant,	 but	 also	 who	 took	 it,	 where,	 at	 what
time,	etc.	This	information	could	be	very	useful	for	fraud	detection,	for	example.

Drill	Down

In	 the	 USA,	 three	 popular	 credit	 bureaus	 are	 Experian,	 Equifax,	 and
TransUnion,	which	each	cover	 their	own	geographical	region.	All	 three
provide	 a	 FICO	 credit	 score	 that	 ranges	 between	 300	 and	 850,	 with
higher	 scores	 reflecting	 better	 credit	 quality.	 A	 FICO	 score	 essentially
relies	on	the	following	five	data	sources	to	determine	creditworthiness:

Payment	history:	Has	the	customer	any	delinquency	history?	This
accounts	for	35%	of	the	FICO	score.

Amount	of	current	debt:	How	much	credit	does	the	customer	have
in	total?	This	accounts	for	30%	of	the	FICO	score.

Length	of	credit	history:	How	long	has	the	customer	been	using
credit?	This	accounts	for	15%	of	the	FICO	score.

Types	of	credit	in	use:	What	kind	of	loans	does	the	customer	have
(e.g.,	credit	cards,	installment	loans,	mortgage)?	This	accounts	for
10%	of	the	FICO	score.

Pursuit	of	new	credit:	How	much	new	credit	is	the	customer
applying	for?	This	accounts	for	10%	of	the	FICO	score.

These	FICO	scores	are	commonly	used	in	the	USA,	not	only	by	banks,
but	 also	 by	 insurance	 providers,	 telco	 firms,	 landlords,	 utilities
companies,	etc.

20.9.2	Data	Quality

Besides	 volume	 and	 variety,	 the	 veracity	 of	 the	 data	 is	 also	 a	 critical	 success
factor	 in	 generating	 a	 competitive	 advantage	 and	 economic	 value	 from	 data.
Quality	of	data	is	key	to	the	success	of	any	analytical	exercise	as	it	has	a	direct
and	 measurable	 impact	 on	 the	 quality	 of	 the	 analytical	 model	 and	 hence	 its
economic	value.	The	importance	of	data	quality	is	nicely	captured	by	the	well-
known	GIGO	or	garbage	 in	garbage	out	 principle	 introduced	before:	 bad	data
yield	bad	analytical	models.

Connections

In	Chapters	 4	 and	 18	we	 defined	 data	 quality	 as	 “fitness	 for	 use”	 and
discussed	the	underlying	dimensions.

Most	organizations	 are	 learning	of	 the	 importance	of	data	quality	 and	are
looking	at	ways	 to	 improve	 it.	However,	 this	often	 turns	out	 to	be	harder	 than
expected,	more	costly	than	budgeted,	and	definitely	not	a	one-off	project,	but	a
continuous	challenge.	The	causes	of	data	quality	issues	are	often	deeply	rooted
within	 the	 core	 organizational	 processes	 and	 culture,	 and	 the	 IT	 infrastructure
and	architecture.	Whereas	only	data	scientists	are	often	directly	confronted	with
the	 consequences	 of	 poor	 data	 quality,	 resolving	 these	 issues,	 and	 more
importantly	 their	 causes,	 typically	 requires	 cooperation	 and	 commitment	 from
almost	 every	 level	 and	 department	 within	 the	 organization.	 It	 most	 definitely
requires	support	and	sponsorship	from	senior	executive	management	to	increase
awareness	 and	 set	 up	 data	 governance	 programs	 that	 tackle	 data	 quality	 in	 a

sustainable	and	effective	manner,	as	well	as	to	create	incentives	for	everyone	in
the	organization	to	take	their	responsibilities	seriously.

Data	 pre-processing	 activities	 such	 as	 handling	missing	 values,	 duplicate
data,	 or	 outliers	 are	 corrective	 measures	 for	 dealing	 with	 data	 quality	 issues.
However,	these	are	short-term	remedies	with	relatively	low	costs	and	moderate
returns.	Data	scientists	must	keep	applying	these	fixes	until	the	root	causes	of	the
issues	are	resolved	in	a	structural	way.	To	avoid	this,	data	quality	programs	need
to	 be	 developed	 that	 aim	 at	 detecting	 the	 key	 problems.	 This	 will	 include	 a
thorough	investigation	of	where	the	problems	originate,	to	find	and	resolve	them
at	their	very	origin	by	introducing	preventive	actions	to	complement	corrective
measures.	 This	 obviously	 requires	 more	 substantial	 investments	 and	 a	 strong
belief	in	the	added	value	and	return	thereof.	Ideally,	a	data	governance	program
should	be	put	 in	place	 assigning	clear	 roles	 and	 responsibilities	 regarding	data
quality.	Two	roles	essential	in	rolling	out	such	a	program	are	data	stewards	and
data	owners.	Though	we	already	extensively	discussed	both	profiles	in	Chapter
4,	 we	 briefly	 refresh	 here.	 Data	 stewards	 are	 the	 data	 quality	 experts	 who
oversee	assessing	data	quality	by	performing	extensive	and	regular	data	quality
checks.	 They	 initiate	 remedial	 actions	 whenever	 needed.	 Data	 stewards,
however,	are	not	in	charge	of	correcting	the	data	themselves.	This	is	the	task	of
the	data	owner.	Every	data	field	in	every	database	of	the	organization	should	be
owned	by	 a	 data	 owner,	who	 can	 enter	 or	 update	 its	 value.	Data	 stewards	 can
request	 data	 owners	 to	 check	 or	 complete	 the	 value	 of	 a	 field,	 therefore
correcting	the	 issue.	A	transparent	and	well-defined	collaboration	between	data
stewards	 and	 data	 owners	 is	 key	 to	 improving	 data	 quality	 in	 a	 sustainable
manner,	and	as	such	to	the	long-term	ROI	in	analytics!

20.9.3	Management	Support

To	capitalize	on	Big	Data	and	analytics,	it	should	conquer	a	seat	in	the	board	of
directors.	This	 can	 be	 achieved	 in	 various	ways.	Either	 an	 existing	 chief-level
executive	 (e.g.,	 the	 CIO)	 takes	 the	 responsibility	 or	 a	 new	 CXO	 function	 is
defined,	 such	as	 chief	 analytics	officer	 (CAO)	or	 chief	data	officer	 (CDO).	To
guarantee	maximum	independence	and	organizational	impact,	it	is	important	that
the	latter	directly	reports	to	the	CEO	instead	of	another	C-level	executive.	A	top-
down,	 data-driven	 culture	 in	 which	 the	 CEO	 and	 his/her	 subordinates	 make
decisions	 inspired	 by	 data	 combined	 with	 business	 acumen	 will	 catalyze	 a
trickledown	 effect	 of	 data-based	 decision-making	 throughout	 the	 entire
organization.

Drill	Down

Given	 the	 surging	 importance	 of	 data	 to	 all	 organizations,	 not	 just
business,	many	institutions	are	hiring	chief	data	officers.	For	example,	in
the	USA	the	National	Institutes	of	Health	and	the	state	of	California	each
have	a	CDO.

The	board	of	directors	and	senior	management	should	be	actively	involved
in	the	analytical	model	building,	implementation,	and	monitoring	processes.	One
cannot	 expect	 them	 to	 understand	 all	 underlying	 technical	 details,	 but	 they
should	 be	 responsible	 for	 sound	 governance	 of	 the	 analytical	models.	Without
appropriate	management	support,	analytical	models	are	doomed	 to	 fail.	Hence,
the	 board	 and	 senior	management	 should	 have	 a	 general	 understanding	 of	 the
analytical	models.	They	should	demonstrate	active	 involvement	on	an	ongoing

basis,	assign	clear	responsibilities,	and	put	into	place	organizational	procedures
and	policies	that	will	allow	the	proper	and	sound	development,	implementation,
and	monitoring	of	the	analytical	models.	The	outcome	of	the	model	monitoring
exercise	 must	 be	 communicated	 to	 senior	 management	 and,	 if	 needed,
accompanied	 by	 appropriate	 response.	 Obviously,	 this	 requires	 a	 careful
rethinking	of	how	to	optimally	embed	Big	Data	and	analytics	in	the	organization.

20.9.4	Organizational	Aspects

In	2010,	Davenport,	Harris,	and	Morison	wrote:24

There	may	be	no	single	right	answer	to	how	to	organize	your	analysts,	but
there	are	many	wrong	ones.

Investments	in	analytics	only	bear	fruit	when	a	company-wide	data	culture	is	in
place	to	do	something	with	all	these	new	data-driven	insights.	If	you	were	to	put
a	 team	 of	 data	 scientists	 in	 a	 room	 and	 feed	 them	 with	 data	 and	 analytical
software,	then	the	chances	are	small	that	their	analytical	models	and	insights	will
add	 economic	 value	 to	 the	 firm.	One	 hurdle	 concerns	 the	 data,	which	 are	 not
always	readily	available.	A	well-articulated	data	governance	program	is	a	good
starting	point	 (see	Chapter	18).	Once	 the	 data	 are	 there,	 any	data	 scientist	 can
find	a	statistically	meaningful	analytical	model	from	it.	However,	 this	does	not
necessarily	 imply	 that	 the	model	 adds	 economic	 value,	 since	 it	may	 not	 be	 in
sync	with	the	business	objectives.	And	suppose	it	were,	how	do	we	sell	it	to	our
business	 people	 so	 that	 they	 understand	 it,	 trust	 it,	 and	 start	 using	 it	 in	 their
decision-making?	 This	 implies	 delivering	 insights	 in	 a	 way	 that	 is	 easy	 to
understand	 and	 use	 by	 representing	 them	 in	 simple	 language	 or	 intuitive
graphics.

Given	the	corporate-wide	impact	of	Big	Data	and	analytics,	it	is	important
that	 both	 gradually	 permeate	 into	 a	 company’s	 culture	 and	 decision-making
processes,	 becoming	 part	 of	 a	 company’s	 DNA.	 This	 requires	 a	 significant
investment	 in	 awareness	 and	 trust	 that	 should	 be	 initiated	 top-down	 from	 the
executive	 level,	 as	 discussed	 above.	 In	 other	 words,	 companies	 need	 to	 think
thoroughly	about	how	they	embed	Big	Data	and	analytics	in	their	organization	to
successfully	compete	using	both	technologies.

Lismont	et	al.	conducted	a	worldwide,	cross-industry	survey	of	senior-level
executives	to	investigate	modern	trends	in	the	organization	of	analytics.25	They
observed	 various	 formats	 used	 by	 companies	 to	 organize	 their	 analytics.	 Two
extreme	 approaches	 are	 centralized	 –	 where	 a	 central	 department	 of	 data
scientists	 handles	 all	 analytics	 requests	 –	 and	 decentralized	 –	 where	 all	 data
scientists	are	directly	assigned	to	the	respective	business	units.	Most	companies
choose	a	mixed	approach	combining	a	centrally	coordinated	center	of	analytical
excellence	 with	 analytics	 organized	 at	 the	 business	 unit	 level.	 The	 center	 of
excellence	 provides	 firm-wide	 analytical	 services	 and	 implements	 universal
guidelines	 in	model	development,	model	design,	model	 implementation,	model
documentation,	model	monitoring,	and	privacy.	Decentralized	teams	of	1–5	data
scientists	are	 then	added	 to	each	of	 the	business	units	 for	maximum	impact.	A
suggested	practice	is	to	rotationally	deploy	the	data	scientists	across	the	business
units	 and	center	 to	 foster	 cross-fertilization	opportunities	between	 the	different
teams	and	applications.

20.9.5	Cross-Fertilization

Analytics	 has	 matured	 differently	 across	 the	 various	 business	 units	 of	 an
organization.	Triggered	by	the	introduction	of	regulatory	guidelines	(e.g.,	Basel
II/III,	Solvency	II),	many	firms,	especially	financial	institutions,	have	invested	in
analytics	 for	 risk	 management	 for	 quite	 some	 time	 now.	 Years	 of	 analytical
experience	and	perfecting	contributed	to	very	sophisticated	models	for	insurance
risk,	credit	risk,	operational	risk,	market	risk,	and	fraud	risk.	The	most	advanced
analytical	 techniques	 such	 as	 random	 forests,	 neural	 networks,	 and	 social
network	learning	have	been	used	in	these	applications.	These	analytical	models
have	 been	 complimented	 with	 powerful	 model	 monitoring	 frameworks	 and
stress-testing	procedures	to	leverage	their	potential.

Marketing	 analytics	 is	 less	mature,	with	many	 firms	 deploying	 their	 first
models	 for	 churn	 prediction,	 response	 modeling,	 or	 customer	 segmentation.
These	 are	 typically	 based	 on	 simpler	 analytical	 techniques	 such	 as	 logistic
regression,	decision	trees,	or	k-means	clustering.	Other	application	areas,	such	as
HR	 and	 supply	 chain	 analytics,	 are	 starting	 to	 gain	 traction,	 though	 few
successful	case	studies	have	been	reported	yet.

The	 disparity	 in	 maturity	 creates	 a	 tremendous	 potential	 for	 cross-
fertilization	 of	 model	 development	 and	 monitoring	 experiences.	 After	 all,
classifying	 whether	 a	 customer	 is	 creditworthy	 or	 not	 in	 risk	 management	 is
analytically	 the	 same	 as	 classifying	 a	 customer	 as	 a	 responder	 or	 not	 in
marketing	 analytics,	 or	 classifying	 an	 employee	 as	 a	 churner	 or	 not	 in	 HR
analytics.	 The	 data	 pre-processing	 issues	 (e.g.,	 missing	 values,	 outliers),
analytical	 techniques	 (e.g.,	 decision	 trees),	 and	 evaluation	 measures	 are	 all
similar.	 Only	 the	 actual	 variables,	 interpretation,	 and	 usage	 of	 the	models	 are
different.	 The	 cross-fertilization	 also	 applies	 to	 model	 monitoring	 since	 most

challenges	and	approaches	are	essentially	the	same.	Finally,	gauging	the	effect	of
macroeconomic	 scenarios	 using	 stress	 testing	 (which	 is	 a	 common	 practice	 in
credit	 risk	 analytics)	 could	 be	 another	 example	 of	 sharing	 useful	 experiences
across	applications.

To	summarize,	less	mature	analytical	applications	(e.g.,	marketing,	HR,	and
supply	 chain	 analytics)	 can	 substantially	 benefit	 from	 many	 of	 the	 lessons
learned	by	more	mature	applications	(e.g.,	 risk	management),	as	such	avoiding
many	 rookie	mistakes	 and	expensive	beginner	 traps.	Hence,	 the	 importance	of
rotational	 deployment	 (as	 discussed	 in	 the	 previous	 section)	 to	 generate
maximum	economic	value	and	return.

Retention	Questions

Give	examples	of	new	sources	of	data	that	could	boost	the	ROI	of	an
analytical	model.

How	can	data	quality	affect	the	ROI	of	an	analytical	model?

What	is	the	impact	of	management	support	and	organizational	aspects
on	the	ROI	of	an	analytical	model?

How	can	cross-fertilization	contribute	to	the	ROI	of	analytical
models?

20.10	Privacy	and	Security

Privacy	 and	 security	 of	 data	 are	 important	 concerns	 when	 developing,
implementing,	using,	 and	maintaining	analytical	models.	There	are	 two	parties
involved:	 the	 business	 and	 the	 data	 scientists.	 The	 ownership	 of	 the	 data	 is
typically	acquired	by	the	business.	This	means	that	the	business	has	a	complete
view	of	the	data,	how	they	are	collected,	and	how	it	has	to	interpret	them.	Data
scientists	are	not	provided	with	the	full	dataset,	but	only	the	data	that	might	be
useful	 for	 the	 analytical	models.	 It	 is	 the	 business	 that	 decides	which	data	 the
data	 scientist	may	 see	 and	use,	 for	 how	 long,	 on	which	 level	 of	 detail,	 etc.	 In
what	 follows,	 we	 first	 overview	 the	 main	 points	 of	 attention	 with	 respect	 to
privacy	 and	 security	 that	 are	 pertinent	 in	 any	 data	 storage	 and	 processing
context.	 After	 that,	 we	 focus	 in	 more	 detail	 on	 tools	 and	 techniques	 that	 are
relevant	to	an	analytics	setting.

20.10.1	Overall	Considerations	Regarding	Privacy	and	Security

Privacy	and	security	are	two	related	concepts,	but	they	are	not	synonyms.	Data
security	 can	 be	 defined	 as	 the	 set	 of	 policies	 and	 techniques	 to	 ensure	 the
confidentiality,	availability,	and	integrity	of	data.	Data	privacy	refers	to	the	fact
that	the	parties	accessing	and	using	the	data	do	so	only	in	ways	that	comply	with
the	 agreed-upon	 purposes	 of	 data	 use	 in	 their	 role.	 These	 purposes	 can	 be
expressed	as	part	 of	 a	 company’s	 policy,	 but	 are	 also	 subject	 to	 legislation.	 In
this	way,	several	aspects	of	security	can	be	considered	as	necessary	instruments
to	guarantee	data	privacy.

More	concretely,	data	security	pertains	to	the	following	concerns:

Guaranteeing	data	integrity:	Preventing	data	loss	or	data	corruption	as	a
consequence	of	malicious	or	accidental	modification	or	deletion	of	data.
Here,	the	replication	and	recovery	facilities	of	the	DBMS	play	important
roles.	These	were	discussed	in	detail	in	Chapters	13,	14,	and,	for	a
distributed	setting,	Chapter	16.

Guaranteeing	data	availability:	Ensuring	that	the	data	are	accessible	to
all	authorized	users	and	applications,	even	in	the	occurrence	of	partial
system	malfunctions.	This	was	discussed	in	the	context	of	enterprise
storage	subsystems	and	business	continuity	in	Chapter	13.

Authentication	and	access	control:	Access	control	refers	to	the	tools	and
formats	to	express	which	users	and	applications	have	which	type	of
access	(read,	add,	modify,	etc.)	to	which	data.	Relevant	techniques	here
are	SQL	privileges	and	views,	both	discussed	in	Chapter	7.	We	also	deal
with	access	control	in	more	detail	in	Section	20.10.3.	An	important
condition	for	adequate	access	control	is	the	availability	of	authentication

techniques,	which	allow	for	unambiguously	identifying	the	user	or	user
category	for	which	the	access	rights	are	to	be	established.	The	most
widespread	technique	here	is	still	the	combination	of	a	user	ID	and
password,	although	several	other	approaches	are	gaining	ground,	such	as
fingerprint	readers	or	iris	scanning.

Guaranteeing	confidentiality:	This	is	the	flipside	of	access	control,
guaranteeing	that	users	and	other	parties	cannot	read	or	manipulate	data
to	which	they	have	no	appropriate	access	rights.	This	is	the	data	security
concern	most	closely	related	to	privacy.	One	possible	technique	here,
especially	in	the	context	of	analytics,	is	anonymization,	as	discussed	in
Section	20.10.3.1.	Another	important	tool	is	encryption,	rendering	data
unreadable	to	unauthorized	users	that	do	not	possess	the	appropriate	key
to	decrypt	the	data	back	into	a	readable	format.

Auditing:	Especially	in	heavily	regulated	settings	such	as	the	banking	and
insurance	sector,	it	is	key	to	keep	track	of	which	users	performed	which
actions	on	the	data	(and	at	what	time).	Most	DBMSs	automatically	track
these	actions	in	a	rudimentary	fashion	by	means	of	the	logfile	(see
Chapter	14).	Regulated	settings	require	a	much	more	advanced	form	of
auditing,	with	extensive	tracking	and	reporting	facilities,	maintaining	a
detailed	inventory	of	all	database	accesses	and	data	manipulations,
including	the	users	and	user	roles	involved.

Mitigating	vulnerabilities:	This	class	of	concerns	pertains	to	detecting
and	resolving	shortcomings	or	downright	bugs	in	applications,	DBMSs,
or	network	and	storage	infrastructure	that	yield	malicious	parties
opportunities	to	circumvent	security	measures	with	respect	to	the
aforementioned	concerns.	Examples	here	are	wrongly	configured
network	components	or	bugs	in	application	software	that	provide

Connections

Several	 tools	 and	 techniques	 regarding	 data	 security	 were	 already
discussed	 in	 previous	 chapters:	 Chapter	 1	 presented	 the	 three-layer
architecture.	Chapter	7	explained	SQL	privileges	and	views.	Chapter	13
dealt	 with	 replication	 and	 data	 availability	 in	 the	 context	 of	 enterprise
storage	 subsystems	 and	 business	 continuity.	 Chapters	 14	 and	 16
discussed	 recovery	 techniques	and	 logging.	Chapter	15	dealt	with	SQL
injection.

The	 rest	 of	 this	 chapter	 focuses	 in	 more	 detail	 on	 some	 techniques	 with
respect	to	privacy	and	security	that	are	particularly	relevant	to	the	context	of	data
analytics.

loopholes	to	hackers.	A	very	important	concept	in	the	context	of	DBMSs
is	avoiding	SQL	injection,	as	discussed	in	Chapter	15.	Finally,	the	three-
layer	database	architecture	introduced	in	Chapter	1	is	also	instrumental	to
this	purpose.	By	hiding	implementation	details	from	users	and	the
outside	world	by	means	of	logical	and	physical	data	independence,	it
becomes	much	harder	to	discover	and	exploit	potential	vulnerabilities.

20.10.2	The	RACI	Matrix

To	 understand	 the	 impact	 of	 privacy,	 we	must	 start	 by	 outlining	 the	 different
roles	 in	analytical	model	development	 into	a	RACI	matrix	 (Figure	20.36).	 The
acronym	RACI	stands	for:

Responsible:	whoever	is	responsible	for	developing	the	analytical	model.
These	are	the	data	scientists.	The	data	scientists	must	get	the	necessary
data	from	other	parties.

Accountable:	this	role	refers	to	the	people	who	delegate	the	work	and
decide	what	should	be	done.	They	approve	the	task	at	hand	and	provide
the	required	data	to	the	data	scientists.	This	part	is	especially	fulfilled	by
the	business	(e.g.,	the	management,	government,	etc.).

Consulted:	often,	a	profound	domain	expertise	is	necessary	to	tune	and
polish	analytical	models.	Experts	and	specialized	profiles	advise	the
business	and	data	scientists	with	their	valuable	expertise	and	insights.

Informed:	certain	people	should	be	kept	up-to-date	of	the	output	of	the
work	as	the	result	might	affect	their	working	process.	Customer	service,
for	example,	must	be	informed	about	the	changes	imposed	by	the	results
of	analytical	models.

Figure	20.36	RACI	matrix.

The	 roles	 of	 certain	 people	 can	 overlap	 (e.g.,	 business	 people	 that	 also
fulfill	 the	 consulting	 role)	 and	 change	 over	 time	 (e.g.,	 certain	 experts	 are
consultants	in	earlier	phases	of	model	development	and	should	only	be	informed
during	later	phases).	As	the	RACI	matrix	is	dynamic,	the	different	roles	should
be	 re-evaluated	 regularly.	The	RACI	matrix	 can	 be	 extended	 to	 the	RASCI	or
CAIRO	matrix.	The	RASCI	matrix	 includes	 the	 role	of	 support	 (S)	 to	 indicate
whoever	 helps	 to	 complete	 the	 analytical	 model.	 Out-of-the-loop	 (O)	 in	 the
CAIRO	 matrix	 explicitly	 mentions	 people	 not	 part	 of	 the	 analytical	 model
development.

20.10.3	Accessing	Internal	Data

Before	 a	 data	 scientist	 starts	 an	 analysis	 for	 the	 development	 of	 analytical
models,	 she	 or	 he	 should	 file	 a	 data	 access	 request.	 The	 data	 access	 request
specifies	which	data	are	needed	for	which	purpose	and	for	which	time	period.	A
request	to	access	internal	data	is	approved	by	the	internal	privacy	commission	of
the	company.	The	privacy	commission	 investigates	whether	 the	 request	 can	be
granted	or	not,	and	answers	these	questions

To	 answer	 the	 above	 questions,	 various	 actions	 can	 be	 undertaken	 such	 as
anonymization	of	data,	the	creation	of	SQL	views	or	using	Label	Based	Access
Control	(LBAC).	We	discuss	each	of	these	in	more	detail	below.

20.10.3.1	Anonymization

Anonymization	is	the	process	of	transforming	sensitive	data	so	the	exact	value
cannot	be	 recovered	by	other	parties,	 such	as	 the	data	 scientist.	Unique	or	key
attribute	 types	 are	 often	 converted	 into	 other	 values.	 Key	 attribute	 types	 are
needed	to	link	different	databases	to	each	other.	For	example,	a	company’s	VAT
number	uniquely	identifies	the	company	in	various	databases.	The	VAT	number
is	 public	 information	 that	 is	 available	 in	many	 other	 data	 sources,	 such	 as	 the
company’s	website,	company	registers,	etc.	Providing	the	VAT	number	enables
de-anonymization	and	 identification	of	 the	company.	The	conversion	of	a	VAT
number	 into	another	random	number	(ID)	prevents	 the	misuse	of	 the	data.	The
untransformed	key	is	the	natural	key	and	reveals	the	identity	of	the	instance.	The

Which	variables	are	sensitive?

Which	variables	(columns)	and	instances	(rows)	should	be	shared?

Which	user	or	user	group	should	be	authorized	to	access	the	data?

technical	key	is	a	conversion	of	the	natural	key	so	that	tables	can	be	joined	with
each	other,	but	protects	the	true	identity	of	the	instance.	It	is	extremely	important
to	 preserve	 consistency	 among	 the	 different	 databases.	 The	 conversion	 of	 a
natural	key	 (e.g.,	VAT	number)	 in	database	A	should	cause	 the	 same	 technical
key	as	the	conversion	of	the	natural	key	(VAT	number)	in	database	B.	Also,	the
conversion	 should	 be	 random	 and	 cannot	 follow	 the	 order	 in	 which	 the	 data
appear	 in	 the	database.	New	data	 instances	are	often	 inserted	at	 the	end	of	 the
database.	In	our	company	example,	this	means	that	the	oldest	companies	appear
at	 the	 top	of	 the	 list,	while	 the	youngest	companies	end	 the	 list.	 Incrementally
increasing	the	ID	value	is	therefore	strongly	discouraged,	as	this	can	reveal	the
sequence	in	which	companies	were	founded.

To	anonymize	other	variables,	different	techniques	can	be	used:

If	 the	 privacy	 commission	 approves	 the	 request,	 they	 decide	 whether	 to
provide	raw	or	aggregated	data.	Aggregated	data	report	summary	statistics	of	the
data	without	 compromising	data	 about	 individuals.	Summary	 statistics	 that	 are
derived	include,	among	others,	minimum,	mean,	maximum,	standard	deviation,
pth	percentile,	 and	count.	Raw	data	contain	data	of	each	 individual/instance	 in
the	 dataset.	 To	 preserve	 privacy	 of	 raw	 data	 items,	 the	 data	 should	 be	 further
anonymized.

Anonymization	 of	 numeric	 variables	 can	 be	 achieved	 by	 discretization.
Instead	of	specifying	the	exact	value	of	the	variable,	it	is	partitioned	into	a	set	of
disjoint,	mutually	exclusive	classes.	For	example,	rather	than	providing	the	exact

aggregation

discretization

value	distortion

generalization.

income	of	a	person,	the	income	can	be	discretized	by	specifying	the	interval	in
which	 the	 value	 lies.	 Those	 intervals	 (mean,	 quantiles,	 quintiles,	 deciles,	 etc.)
can	be	defined	using	an	internal	mapping	schema	or	regional,	national,	or	global
summary	statistics.26	Alternatively,	data	can	be	anonymized	by	adding	noise	to
sensitive	 variables.	 Value	 distortion	 is	 achieved	 by	 returning	 a	 value	 xi	 +	 e
instead	of	xi.	The	value	of	e	 is	 randomly	drawn	 from	a	predefined	distribution
(e.g.,	 uniform,	 Gaussian).	 Another	 approach	 is	 to	 generalize	 a	 specific	 value
description	 into	 a	 less	 specific	 but	 semantically	 consistent	 description.	 Using
address	 records,	 for	 example,	might	 positively	 affect	 an	 analytical	model,	 but
allows	 identification	 of	 a	 person/company.	 Therefore,	 the	 address	 can	 be
generalized	into	the	corresponding	city,	region,	country,	etc.

Figure	20.37	illustrates	the	anonymization	process	for	social	security	fraud
(i.e.,	tax	evasion	by	companies).	The	business	has	two	databases	at	its	disposal.
One	 contains	 the	 company’s	 demographics,	 the	 other	 reports	 the	 company’s
personnel	records.	Both	databases	are	linked	to	each	other	with	the	VAT	number.
Before	 they	 can	 be	 used	 safely	 by	 the	 data	 scientists,	 the	 databases	 must	 be
anonymized.	The	company’s	demographics	are	converted	as	follows:	the	VAT	is
converted	 into	 a	 new	 identifier	 (ID),	 randomly	 chosen.	 The	 name	 of	 the
company	 is	 excluded	 from	 the	 data	 scientists’	 view.	 The	 company	 size	 is
categorized	into	discrete	intervals	ranging	from	one	to	five.	The	creation	date	is
converted	into	three	categories:	young,	adolescent,	and	mature.	The	mapping	of
both	the	size	and	the	age	is	defined	by	the	business,	but	is	concealed	for	the	data
scientists.	 The	 value	 of	 the	 company’s	 revenue	 is	 distorted	 by	 rounding	 the
revenue	using	experts’	 domain	knowledge.	The	 address	 is	 generalized	 into	 the
province.	 The	 sector	 is	 directly	 included	 in	 the	 view	 with	 no	 changes.	 The
company’s	 personnel	 records	 are	 aggregated	 on	 the	 company	 level.	 It	 now
specifies	 quarterly	 employee	 turnover,	 and	 their	 average	 wage.	 Note	 that	 the

rows	in	the	anonymized	table	are	sorted	according	to	the	randomly	generated	ID,
and	do	not	follow	the	sequence	of	the	base	tables.

Figure	20.37	Anonymizing	a	dataset	for	analytics.

The	above-discussed	anonymization	techniques	can	create	a	k-anonymized
dataset	whereby	every	observation/record/tuple	is	indistinguishable	from	at	least
k–1	other	 observations/tuples/records	 regarding	 the	privacy-sensitive	variables.
K-anonymization	 aims	 at	 guaranteeing	 that	 subjects	 can	 no	 longer	 be	 re-
identified	 while	 making	 sure	 that	 the	 data	 remain	 useful	 for	 analytics.	 Note,
however,	that	a	k-anonymized	dataset	might	still	be	vulnerable	to	privacy	attacks
and,	depending	upon	the	application,	other	more	ambitious	anonymization	goals
might	have	to	be	set.

20.10.3.2	SQL	Views

As	 discussed	 in	 Chapter	 7,	 SQL	 views	 can	 be	 seen	 as	 virtual	 tables	 without
physical	 tuples	 (Figure	 20.38).	 A	 view	 definition	 consists	 of	 a	 formula	 that

determines	which	data	from	the	base	tables	are	to	be	shown	upon	invocation	of
the	 view.	 The	 view’s	 content	 is	 generated	 upon	 this	 invocation.	Views	 enable
extracting	 part	 of	 the	 data	 tables,	 aggregating	 values	 where	 necessary,	 and
sharing	(only)	the	data	authorized	by	the	internal	privacy	commission.

Figure	20.38	Different	SQL	views	defined	for	a	database.

Consider	this	example	of	an	SQL	view	that	combines	both	anonymized	and
not-anonymized	information:

CREATE	VIEW	FRAUD_INPUT
AS	SELECT	C.ANON_VAT,	C.PROVINCE,	C.ANON_SIZE,	
C.ANON_REVENUE,	C.SECTOR,	C.ANON_AGE,	AVG(P.WAGE),	
COUNT(*)
FROM	COMPANIES	C,	PERSONNEL	P
WHERE	C.ANON_VAT	=	P.ANON_VAT
GROUP	BY	C.ANON_VAT;

This	 view	 retrieves	 anonymized	VAT,	 size,	 revenue,	 and	 age	 information,
whereas	the	province,	sector,	and	wage	information	are	not	anonymized.	Views
contribute	 not	 only	 to	 privacy,	 but	 also	 to	 data	 security,	 by	 hiding	 the	 logical
database	 structure	 from	 internal	 or	 external	 users,	 hence	 rendering	 malicious
manipulation	of	the	database	or	the	data	more	difficult.

20.10.3.3	Label-Based	Access	Control

Label-Based	Access	Control	 (LBAC)	 is	 a	 control	mechanism	 to	protect	 your
data	 against	 unauthorized	 access	 and	 can	 differentiate	 between	 the	 level	 of
authorization	that	is	granted	to	users.	LBAC	can	grant	read	and	write	access	to
specific	 tables,	 rows,	 and	 columns.	 For	 example,	 data	 items	 (e.g.,	 individual
rows)	 that	are	 inserted	by	users	with	a	higher	 security	 level	cannot	be	seen	by
users	with	a	lower	security	level.	Using	LBAC	comes	in	as	a	handy	alternative
when	there	are	many	views	on	a	table,	and	when	specific	users	can	only	access
data	 with	 the	 same	 security	 level	 or	 lower.	 LBAC	 is	 implemented	 by	 many
governments	and	companies	that	use	strict	hierarchical	classification	labels	such
as	TOP	SECRET,	SECRET,	and	CONFIDENTIAL.

Protected	 data	 are	 assigned	 a	 security	 level	 by	 a	 security	 administrator
responsible	for:

A	 security	 label	 component	 defines	 the	 criteria	 to	 decide	 who	 can	 access	 the
data.	As	an	example,	we	can	create	this	security	label	component:

CREATE	SECURITY	LABEL	COMPONENT	
my_sec_label_comp
						ARRAY	[CONF I D ENT I A L , 	 U NCLA S S I F I E D];

The	 array	 represents	 a	 simple	 hierarchy.	 In	 this	 example,	 read	 and	 write
access	are	blocked	when	a	user’s	security	label	(e.g.,	unclassified)	is	lower	than

creating	security	label	components;

creating	security	policies;

creating	security	labels;	and

granting	security	labels	to	users.

the	 protecting	 label	 (e.g.,	 confidential).	 Note	 that	 LBAC	 also	 supports	 more
complex	tree-based	hierarchies.

A	security	policy	defines	how	a	table	is	protected	using	LBAC.	A	table	can
have	 only	 one	 security	 policy	 specifying	which	 security	 label	 components	 are
used	in	the	security	labels	that	are	part	of	the	policy	and	what	rules	are	used	to
compare	security	label	components.	The	rows	and	columns	of	the	table	can	only
be	protected	by	security	labels	that	belong	to	the	security	policy.	As	an	example,
we	 create	 this	 security	 policy	 based	 upon	 our	 earlier	 defined
“my_sec_label_comp”	security	label	component:

CREATE	SECURITY	POLICY	my_sec_policy
COMPONENTS	my_sec_label_comp
WITH	DB2LBACRULES;

Note	that	we	hereby	make	use	of	the	IBM	DB2	implementation	of	LBAC.27

The	 keyword	 DB2LBACRULES	 refers	 to	 a	 set	 of	 predefined	 DB2	 rules	 for
comparing	the	values	of	security	label	components.

A	 security	 label	 describes	 a	 set	 of	 security	 criteria	 to	 protect	 data	 against
unauthorized	access.	It	can	be	granted	to	users	or	groups.	A	user’s	security	label
will	then	be	compared	to	the	security	label	protecting	the	data	(e.g.,	a	table	row
or	column)	to	decide	whether	access	can	be	granted.	A	security	label	 is	part	of
exactly	one	security	policy	and	a	security	label	must	exist	for	each	security	label
component	 used	 by	 the	 security	 policy.	 A	 security	 label	 can	 be	 defined	 as
follows:

CREATE	SECURITY	LABEL	my_sec_policy.confidential
COMPONENT	my_sec_label_comp	CONF I D ENT I A L ;

CREATE	SECURITY	LABEL	my_sec_policy.unclassified
COMPONENT	my_sec_label_comp	UNCLA S S I F I E D ;

Security	labels	can	then	be	granted	to	users:

GRANT	SECURITY	LABEL	my_sec_policy.unclassified	TO	
USER	BartBaesens	FOR	ALL	ACCESS;
GRANT	SECURITY	LABEL	my_sec_policy.unclassified	TO	
USER	SeppevandenBroucke	FOR	READ	ACCESS;

GRANT	SECURITY	LABEL	my_sec_policy.confidential	TO	
USER	WilfriedLemahieu	FOR	ALL	ACCESS;

The	 above	 statement	 specifies	 that	 user	 BartBaesens	 has	 read	 and	 write
access	 to	 all	 data	 labeled	 as	 unclassified.	User	 SeppevandenBroucke	 has	 only
read	access	 to	all	data	 labeled	as	unclassified.	User	WilfriedLemahieu	has	read
and	write	access	to	all	data	with	an	unclassified	or	confidential	label.

Once	 the	 security	 label	 components,	 security	 policy,	 and	 security	 labels
have	 been	 defined,	 they	 can	 protect	 individual	 rows,	 individual	 columns,	 or	 a
combination	of	both.	When	a	user	tries	to	access	protected	data,	his/her	LBAC
credentials	 will	 be	 compared	 to	 the	 security	 labels	 of	 the	 security	 policy
protecting	 the	 table	 to	 determine	whether	 the	 access	 can	 be	 granted.	Consider
this	example	of	an	EMPLOYEE	table:

CREATE	TABLE	EMPLOYEE
						(SSN	CHAR(6)	NOT	NULL	PRIMARY	KEY,
						NAME	VARCHAR(40)	NOT	NULL,
						SALARY	INT	SECURED	WITH	confidential,
						…
SECURITY	POLICY	my_sec_policy)

The	salary	column	has	been	protected	using	 the	confidential	 label.	Hence,
only	user	WilfriedLemahieu	will	have	access	to	it.

Drill	Down

A	complementary	way	to	enforce	security	is	by	means	of	encryption.	The
idea	is	to	encode	(encrypt)	plain	data	using	a	secret	key	(encryption	key)
into	ciphertext	that	can	only	be	read	by	people	who	possess	the	key.	Two
popular	 types	 of	 encryption	 are	 symmetric	 and	 asymmetric	 encryption.
Symmetric	encryption	uses	the	same	key	to	encrypt	and	decrypt	the	data.
This	 implies	 that	 the	 key	 must	 be	 exchanged	 beforehand	 between	 the
parties	involved,	which	poses	a	security	risk.

Asymmetric	 encryption	 uses	 two	keys:	 a	 public	 key	 and	 a	 private
key.	 Public	 keys	 can	 be	 exchanged	 publicly	 (using,	 e.g.,	 a	 repository)
whereas	 private	 keys	 are	 only	 known	 to	 the	 owner.	 Both	 keys	 are
mathematically	 related.	 Only	 the	 holder	 of	 the	 paired	 private	 key	 can
decrypt	a	message	encrypted	with	 the	public	key,	which	solves	 the	key
distribution	problem.	RSA	 (developed	by	R.	Rivest,	A.	Shamir,	 and	L.
Adleman,	 hence	 the	 name)	 is	 a	 popular	 example	 of	 an	 asymmetric
encryption	algorithm.

20.10.4	Privacy	Regulation

In	 recent	years,	we	have	seen	a	dramatic	 increase	 in	 regulatory	attention	being
put	toward	ensuring	privacy	and	data	protection	concerns,	both	in	the	USA	and
the	EU.	The	emergence	of	Big	Data	 and	analytics	has	 stimulated	a	 lot	of	new
opportunities	 to	 understand	 patterns	 in	 customer	 behavior,	 but	 the	 ever-
increasing	 thirst	 to	 capture	 and	 store	 data	 has	 also	 uncovered	 new	 privacy
concerns	 and	 a	 call	 to	 construct	 ethical	 frameworks	 for	 data	 scientists.	 The
White	House,	 for	 instance,	 recently	 released	 a	 report,	 “Big	Data:	A	Report	 on
Algorithmic	 Systems,	 Opportunity,	 and	 Civil	 Rights”,28	 laying	 out	 a	 national
perspective	 regarding	 data	 science	 ethics.	 Other	 authors	 have	 also	 warned
against	ways	that	Big	Data	can	harm	minorities	and	the	underprivileged.	Finally,
the	 increased	 awareness	 regarding	 cyber	 security	 has	 also	 raised	 concerns
regarding	how	data	are	stored	and	analyzed.

In	the	European	Union,	these	concerns	led	to	introducing	Regulation	(EU)
2016/679	(the	General	Data	Protection	Regulation,	or	“GDPR”),	published	in
May	 2016	 with	 enforcement	 starting	 in	 May	 2018.	 The	 GDPR	 represents	 a
significant	step	in	developing	privacy,	and	law-makers	predict	that	almost	every
organization	based	 in	 the	EU	or	 that	does	business	 in	 the	EU	will	be	affected.
The	GDPR	raises	the	bar	for	compliance,	openness,	and	transparency.	Some	key
articles	 in	 the	 regulation	 include:	 the	 right	 to	 be	 informed	 about	 how	 your
personal	data	will	be	used;	the	right	to	access	and	rectify	your	personal	data;	the
right	to	erase	your	personal	data	(this	replaces	the	stricter	regulation	on	the	right
to	 be	 forgotten	 in	 the	 Directive);	 and	 the	 right	 for	 human	 intervention	 in
automated	 decision	 models,	 such	 as	 analytical	 prediction	 models.	 The	 GDPR
will	 impact	 a	huge	 range	of	 companies	 and	data	processors.	Education	 in	data

protection	 and	 privacy	 laws	will	 hence	 become	 a	 critical	 success	 factor	 in	 the
years	to	come.

In	 the	USA,	data	privacy	 is	not	highly	 regulated.	Access	 to	personal	data
contained	 in	 credit	 reports	 (provided	 by	 Experian,	 Equifax,	 TransUnion,	 etc.),
for	 example,	 may	 be	 retrieved	 by	 third	 parties	 when	 seeking	 employment	 or
medical	care,	or	making	purchases	on	credit	terms.	There	is	no	all-encompassing
law	 regulating	 the	 acquisition,	 storage,	 or	 use	 of	 personal	 data	 in	 the	 USA,
although	 partial	 regulation	 exists,	 such	 as	 the	 Privacy	 Act	 of	 1974,	 which
establishes	a	code	of	fair	practice	to	govern	the	collection	of	personal	data,	 the
Health	Insurance	Portability	and	Accountability	Act	of	1996	(HIPAA)	to	protect
health	 information	 privacy	 rights,	 and	 the	 Electronic	Communications	 Privacy
Act	 (ECPA)	 of	 1986	 that	 establishes	 sanctions	 for	 interception	 of	 electronic
communications.

Unlike	 the	 US	 approach	 to	 privacy	 protection,	 which	 relies	 on	 industry-
specific	legislation	and	self-regulation,	the	EU	relies	on	comprehensive	privacy
legislation	 (see	 the	Directive	 and	 the	GDPR	 above).	 To	 bridge	 these	 different
privacy	approaches,	 the	US	Department	of	Commerce	 in	consultation	with	 the
European	 Commission	 developed	 the	 EU–US	 Privacy	 Shield.	 The	 EU–US
Privacy	 Shield	 is	 a	 framework	 for	 transatlantic	 exchanges	 of	 personal	 data
between	the	EU	and	the	USA.	Considering	the	now-upcoming	GDPR,	however,
law-makers	 have	 raised	 the	 issue	 that	 the	 newer	 regulation	 is	 deemed
incompatible	with	the	EU–US	Privacy	Shield	legislation,	as	it	would	no	longer
permit	processing	EU	personal	data	by	US	companies.	It	remains	to	be	seen	how
the	 two	sets	of	 legal	provisions	can	be	harmonized.	To	provide	an	example,	 in
the	USA	the	right	to	erasure	is	more	limited	and	only	seen	in	case	law	(i.e.,	the
law	 as	 established	 by	 the	 outcome	 of	 former	 cases,	 also	 called	 precedents),
unlike	in	the	GDPR,	which	guarantees	that	right	to	any	EU	subject.	As	a	result,
coming	to	an	agreement	will	be	difficult.	The	current	plan	is	to	perform	a	joint

annual	review	of	the	Privacy	Shield	by	EU	and	US	authorities,	so	changes	will
likely	 be	 made.	 Although	 broad	 EU	 rules	 try	 to	 unify	 the	 privacy	 regulation
within	 the	 European	 Union,	 we	 conclude	 that	 there	 is	 still	 a	 lack	 of	 a	 clear
international	agreement	on	privacy.	There	is	a	strong	need	for	a	unified	organism
that	 regulates	 cross-border	 privacy	 and	 data	 protection,	 with	 a	 focus	 on
integration	and	transparency.

Retention	Questions

What	is	a	RACI	matrix	and	how	can	it	contribute	to	privacy	and
security?

How	can	the	following	concepts	contribute	to	privacy	and	security?

–	Anonymization

–	SQL	views

–	Label-Based	Access	Control	(LBAC)

Contrast	the	privacy	regulation	in	the	USA	versus	the	EU.

20.11	Conclusion

In	this	chapter	we	zoomed	into	analytics.	We	provided	a	bird’s	eye	overview	of
the	analytics	process	model,	 reviewed	example	applications,	and	zoomed	in	on
the	skill	set	of	a	data	scientist.	This	was	followed	by	a	discussion	on	data	pre-
processing.	 Next,	 we	 elaborated	 on	 different	 types	 of	 analytics:	 predictive
analytics,	 descriptive	 analytics,	 and	 social	 network	 analytics.	 We	 highlighted
various	activities	during	post-processing	of	analytical	models.

We	enumerated	various	critical	success	factors	for	analytical	models,	such
as	 statistical	 performance	 and	 validity,	 interpretability,	 operational	 efficiency,
economical	 cost,	 and	 regulatory	 compliance.	 Next,	 we	 elaborated	 on	 the
economical	 perspective	 and	 discussed	 total	 cost	 of	 ownership,	 return	 on
investment,	 in-	 versus	 outsourcing,	 on-premises	 versus	 cloud	 solutions,	 and
open-source	versus	commercial	software.

We	also	gave	 recommendations	 to	 improve	 the	ROI	of	 analytical	projects
by	 considering	 new	 sources	 of	 data,	 improving	 data	 quality,	 introducing
management	 support,	 adequate	 organizational	 embedding,	 and	 fostering	 cross-
fertilization	opportunities	between	business	departments.	We	concluded	with	the
very	 important	 aspects	 of	 privacy	 and	 security	 whereby	 privacy-preserving
analytical	techniques	and	the	relevant	US/EU	regulation	were	covered.

Scenario	Conclusion

Now	that	Sober	understands	the	basic	concepts	of	analytics,	the	company
is	even	more	convinced	of	the	potential	of	this	technology	in	its	business

setting.	 Sober	 sees	 various	 applications	 of	 predictive,	 descriptive,	 and
social	network	analytics.

A	 first	 example	 is	 predicting	 booking	 behavior.	 Based	 upon
customer	 characteristics	 and	 previous	 services	 booked,	 Sober	wants	 to
develop	a	predictive	analytics	model	predicting	who	is	 likely	 to	book	a
service	 in	 the	 next	 three	 months.	 Since	 the	 company	 considers
interpretability	 as	 very	 important,	 it	 will	 use	 decision	 trees	 to	 develop
these	 models.	 It	 will	 evaluate	 the	 decision	 trees	 estimated	 in	 terms	 of
their	classification	accuracy,	sensitivity,	specificity,	and	lift.

In	 terms	 of	 descriptive	 analytics,	 the	 company	 is	 thinking	 about
clustering	its	customers	based	on	their	purchasing	behavior.	It	is	thinking
about	clustering	based	upon	this	information:

Sober	will	 first	calculate	each	of	 these	RFM	features	 for	 its	entire
customer	 base.	 It	 will	 then	 run	 a	 k-means	 clustering	 exercise	 with
varying	 values	 for	 k	 (e.g.,	 k	 =	 5	 to	 k	 =	 20).	 Based	 upon	 the	 clusters
detected,	 Sober	 will	 then	 see	 how	 to	 target	 each	 cluster	 using	 the
appropriate	marketing	campaign.

Also,	 social	 network	 analytics	 is	 a	 technology	 Sober	 considers	 as
interesting.	It	is	thinking	about	using	it	to	analyze	its	sharing	services.	It
is	 planning	 to	 build	 a	 network	 of	 customers	 that	 jointly	 booked	 ride-

Recency	(R):	How	long	has	it	been	since	a	customer	booked	either	a
ride-hail	or	ride-sharing	service?

Frequency	(F):	What	is	the	average	number	of	ride-hail	or	ride-sharing
services	booked	per	month?

Monetary	(M):	What	is	the	average	amount	paid	for	a	ride-hail	or	ride-
sharing	service?

sharing	services.	It	can	then	analyze	this	network	and	see	whether	there
are	 any	 communities	 of	 customers	 that	 frequently	 book	 ride-sharing
services	 together.	 With	 this	 information,	 Sober	 can	 better	 tailor	 its
marketing	 efforts	 to	 each	 of	 these	 communities.	 In	 a	 next	 step,	 it	 can
featurize	the	network	and	add	the	features	to	its	decision	tree	predicting
booking	behavior.

Since	Sober	is	taking	its	first	steps	in	analytics,	it	prefers	to	do	it	all
in-house,	 using	 the	 data	 scientist	 it	 hired	 earlier.	 It	 will	 use	 the	 open-
source	 package	 R	 to	 do	 all	 data	 pre-processing	 and	 descriptive,
predictive,	and	social	network	analytics.	In	the	long	run,	it	also	plans	to
explore	new	sources	of	data,	especially	weather	and	 traffic	data,	which
are	 sources	 the	 company	 considers	 as	 very	 interesting,	 since	 both
undoubtedly	affect	its	customers’	behavior.

Given	 the	 relatively	 small	 size	 of	 its	 database,	 Sober	will	 enforce
privacy	 and	 security	 using	 SQL	 views.	 The	 company	will	 also	 closely
follow	up	any	new	regulation	on	the	matter.

Key	Terms	List

accuracy	ratio	(AR)

agglomerative	hierarchical	clustering

analytics

analytics	process	model

anonymization

area	under	the	roc	curve	(AUC)

association	rules

bootstrapping

centrality	metrics

churn	prediction

classification

classification	accuracy

cloud-based	solutions

coefficient	of	determination

confidence

cross-validation

cumulative	accuracy	profile	(CAP)

customer	segmentation

cutoff

data	pre-processing

data	scientist

decision	trees

dendrogram

denormalization

divisive	hierarchical	clustering

doubling	amount

edge

exploratory	analysis

featurization

gain

General	Data	Protection	Regulation	(GDPR)

hierarchical	clustering

impurity

insourcing

k-means	clustering

Label-Based	Access	Control	(LBAC)

lift

lift	curve

linear	decision	boundary

linear	regression

logistic	regression

marketing	analytics

mean	absolute	deviation	(MAD)

mean	squared	error	(MSE)

misclassification	rate

missing	values

node

odds	ratio

on-premises	analytics

ordinary	least	squares	(OLS)

outliers

outsourcing

overfitting

Pearson	correlation	coefficient

precision

predictive	analytics

RACI	matrix

receiver	operating	characteristic	curve	(ROC	curve)

recommender	systems

regression

regression	tree

response	modeling

return	on	investment	(ROI)

risk	analytics

sampling

sensitivity

sequence	rules

social	network

social	network	learning

sociogram

specificity

support

technical	key

text	analytics

total	cost	of	ownership	(TCO)

Review	Questions

20.1.	OLAP	(on-line	analytical	processing)	can	help	in	which	of	the
following	steps	of	the	analytics	process?

a.	Data	collection.

b.	Data	visualization.

c.	Data	transformation.

d.	Data	denormalization.

20.2.	The	GIGO	principle	mainly	relates	to	which	aspect	of	the	analytics
process?

a.	Data	selection.

b.	Data	transformation.

c.	Data	cleaning.

d.	All	of	the	above.

20.3.	Which	of	the	following	statements	is	correct?

a.	Missing	values	should	always	be	replaced	or	removed.

b.	Outliers	should	always	be	replaced	or	removed.

c.	Missing	values	and	outliers	can	potentially	provide	useful
information	and	should	be	analyzed	before	they	are	removed/replaced.

d.	Missing	values	and	outliers	should	both	always	be	replaced	or
removed.

20.4.	Which	of	the	following	strategies	can	be	used	to	deal	with	missing
values?

a.	Keep.

b.	Delete.

c.	Replace/impute.

d.	All	of	the	above.

20.5.	Outlying	observations	which	represent	erroneous	data	are	treated
using…

a.	missing	value	procedures.

b.	truncation	or	capping.

20.6.	Examine	the	following	decision	tree:

According	to	the	decision	tree,	an	applicant	with	Income	>	$50,000	and
High	Debt	=	Yes	is	classified	as:

a.	Good	risk.

b.	Bad	risk.

20.7.	Decision	trees	can	be	used	in	the	following	applications:

a.	Credit	risk	scoring.

b.	Credit	risk	scoring	and	churn	prediction.

c.	Credit	risk	scoring,	churn	prediction,	and	customer	profile
segmentation.

d.	Credit	risk	scoring,	churn	prediction,	customer	profile
segmentation,	and	market	basket	analysis.

20.8.	Consider	a	dataset	with	a	multiclass	target	variable	as	follows:	25%
bad	payers,	25%	poor	payers,	25%	medium	payers,	and	25%	good
payers.	In	this	case,	the	entropy	will	be…

a.	minimal.

b.	maximal.

20.9.	Which	of	the	following	measures	cannot	be	used	to	make	the
splitting	decision	in	a	regression	tree?

a.	Mean	squared	error	(MSE).

b.	ANOVA/F-test.

c.	Entropy.

20.10.	Bootstrapping	refers	to…

a.	drawing	samples	with	replacement.

b.	drawing	samples	without	replacement.

20.11.	Clustering,	association	rules,	and	sequence	rules	are	examples
of…

a.	predictive	analytics.

b.	descriptive	analytics.

20.12.	Given	the	following	five	transactions:

T1	{K,	A,	D,	B}

T2	{D,	A,	C,	E,	B}

T3	{C,	A,	B,	D}

T4	{B,	A,	E}

T5	{B,	E,	D},

consider	the	association	rule	R:	A	➔	BD.
Which	statement	is	correct?

a.	The	support	of	R	is	100%	and	the	confidence	is	75%.

b.	The	support	of	R	is	60%	and	the	confidence	is	100%.

c.	The	support	of	R	is	75%	and	the	confidence	is	60%.

d.	The	support	of	R	is	60%	and	the	confidence	is	75%.

20.13.	The	aim	of	clustering	is	to	come	up	with	clusters	such	that	the…

a.	homogeneity	within	a	cluster	is	minimized	and	the	heterogeneity
between	clusters	is	maximized.

b.	homogeneity	within	a	cluster	is	maximized	and	the	heterogeneity
between	clusters	is	minimized.

c.	homogeneity	within	a	cluster	is	minimized	and	the	heterogeneity
between	clusters	is	minimized.

d.	homogeneity	within	a	cluster	is	maximized	and	the	heterogeneity
between	clusters	is	maximized.

20.14.	Which	statement	about	the	adjacency	matrix	representing	a	social
network	is	not	correct?

a.	It	is	a	symmetric	matrix.

b.	It	is	sparse	since	it	contains	a	lot	of	non-zero	elements.

c.	It	can	include	weights.

d.	It	has	the	same	number	of	rows	and	columns.

20.15.	Which	statement	is	correct?

a.	The	geodesic	represents	the	longest	path	between	two	nodes.

b.	The	betweenness	counts	the	number	of	the	times	that	a	node	or	edge
occurs	in	the	geodesics	of	the	network.

c.	The	graph	theoretic	center	is	the	node	with	the	highest	minimum
distance	to	all	other	nodes.

d.	The	closeness	is	always	higher	than	the	betweenness.

20.16.	Featurization	refers	to…

a.	selecting	the	most	predictive	features.

b.	adding	more	local	features	to	the	dataset.

c.	making	features	(=	inputs)	out	of	the	network	characteristics.

d.	adding	more	nodes	to	the	network.

20.17.	Which	of	the	following	activities	are	part	of	the	post-processing
step?

a.	Model	interpretation	and	validation.

b.	Sensitivity	analysis.

c.	Model	representation.

d.	All	of	the	above.

20.18.	Is	the	following	statement	true	or	false?	“All	given	success	factors
of	an	analytical	model,	i.e.,	relevance,	performance,	interpretability,

efficiency,	economical	cost,	and	regulatory	compliance,	are	always
equally	important.”

a.	True.

b.	False.

20.19.	Which	role	does	a	database	designer	have	according	to	the	RACI
matrix?

a.	Responsible.

b.	Accountable.

c.	Support.

d.	Consulted.

e.	Informed.

20.20.	Which	of	the	following	costs	should	be	included	in	a	total	cost	of
ownership	(TCO)	analysis?

a.	Acquisition	costs.

b.	Ownership	and	operation	costs.

c.	Post-ownership	costs.

d.	All	of	the	above.

20.21.	Which	of	the	following	statements	is	not	correct?

a.	ROI	analysis	offers	a	common	firm-wide	language	to	compare
multiple	investment	opportunities	and	decide	which	one(s)	to	go	for.

b.	For	companies	like	Facebook,	Amazon,	Netflix,	and	Google,	a
positive	ROI	is	obvious	since	they	essentially	thrive	on	data	and
analytics.

c.	Although	the	benefit	component	is	usually	not	that	difficult	to
approximate,	the	costs	are	much	harder	to	precisely	quantify.

d.	Negative	ROI	of	analytics	often	boils	down	to	the	lack	of	good-
quality	data,	management	support,	and	a	company-wide	data-driven
decision	culture.

20.22.	Which	of	the	following	is	not	a	risk	when	outsourcing	analytics?

a.	The	fact	that	all	analytical	activities	need	to	be	outsourced.

b.	The	exchange	of	confidential	information.

c.	Continuity	of	the	partnership.

d.	Dilution	of	competitive	advantage	due	to,	e.g.,	mergers	and
acquisitions.

20.23.	Which	of	the	following	is	not	an	advantage	of	open-source
software	for	analytics?

a.	It	is	available	for	free.

b.	A	worldwide	network	of	developers	can	work	on	it.

c.	It	has	been	thoroughly	engineered	and	extensively	tested,	validated,
and	completely	documented.

d.	It	can	be	used	in	combination	with	commercial	software.

20.24.	Which	of	the	following	statements	is	correct?

a.	When	using	on-premises	solutions,	maintenance	or	upgrade	projects
may	even	go	by	unnoticed.

b.	An	important	advantage	of	cloud-based	solutions	concerns	the
scalability	and	economies	of	scale	offered.	More	capacity	(e.g.,
servers)	can	be	added	on	the	fly	whenever	needed.

c.	The	big	footprint	access	to	data	management	and	analytics
capabilities	is	a	serious	drawback	of	cloud-based	solutions.

d.	On-premises	solutions	catalyze	improved	collaboration	across
business	departments	and	geographical	locations.

20.25.	Which	of	the	following	are	interesting	data	sources	to	consider	to
boost	the	performance	of	analytical	models?

a.	Network	data.

b.	External	data.

c.	Unstructured	data	such	as	text	data	and	multimedia	data.

d.	All	of	the	above.

20.26.	Which	of	the	following	statements	is	correct?

a.	Quality	of	data	is	key	to	the	success	of	any	analytical	exercise	since
it	has	a	direct	and	measurable	impact	on	the	quality	of	the	analytical
model	and	hence	its	economic	value.

b.	Data	pre-processing	activities	such	as	handling	missing	values,
duplicate	data,	or	outliers	are	preventive	measures	for	dealing	with

data	quality	issues.

c.	Data	owners	are	the	data	quality	experts	who	are	in	charge	of
assessing	data	quality	by	performing	extensive	and	regular	data	quality
checks.

d.	Data	stewards	can	request	data	scientists	to	check	or	complete	the
value	of	a	field.

20.27.	To	guarantee	maximum	independence	and	organizational	impact
of	analytics,	it	is	important	that…

a.	the	chief	data	officer	(CDO)	or	chief	analytics	officer	(CAO)	reports
to	the	CIO	or	CFO.

b.	the	CIO	takes	care	of	all	analytical	responsibilities.

c.	a	chief	data	officer	or	chief	analytics	officer	is	added	to	the
executive	committee	who	directly	reports	to	the	CEO.

d.	analytics	is	supervised	only	locally	in	the	business	units.

20.28.	What	is	the	correct	ranking	of	the	following	analytics	applications
in	terms	of	maturity?

a.	Marketing	analytics	(most	mature),	risk	analytics	(medium	mature),
HR	analytics	(least	mature).

b.	Risk	analytics	(most	mature),	marketing	analytics	(medium	mature),
HR	analytics	(least	mature).

c.	Risk	analytics	(most	mature),	HR	analytics	(medium	mature),
marketing	analytics	(least	mature).

d.	HR	analytics	(most	mature),	marketing	analytics	(medium	mature),
risk	analytics	(least	mature).

Problems	and	Exercises

20.1E	Discuss	the	key	activities	when	pre-processing	data	for	credit	scoring.
Remember,	credit	scoring	aims	at	distinguishing	good	payers	from	bad	payers
using	application	characteristics	such	as	age,	income,	and	employment	status.
Why	is	data	pre-processing	considered	important?

20.2E	What	are	the	key	differences	between	logistic	regression	and	decision
trees?	Give	examples	of	when	to	prefer	one	above	the	other.

20.3E	Consider	the	following	dataset	of	predicted	scores	and	actual	target	values
(you	can	assume	higher	scores	should	be	assigned	to	the	goods).

Score Actual	good/bad

100 Bad

110 Bad

120 Good

130 Bad

140 Bad

150 Good

160 Bad

170 Good

180 Good

190 Bad

200 Good

210 Good

220 Bad

230 Good

240 Good

250 Bad

260 Good

270 Good

280 Good

290 Bad

300 Good

310 Bad

320 Good

330 Good

340 Good

Calculate	the	classification	accuracy,	sensitivity,	and	specificity	for	a
classification	cutoff	of	205.

20.4E	Discuss	how	association	and	sequence	rules	can	be	used	to	build
recommender	systems	such	as	the	ones	adopted	by	Amazon,	eBay,	and	Netflix.
How	would	you	evaluate	the	performance	of	a	recommender	system?

20.5E	Explain	k-means	clustering	using	a	small	(artificial)	dataset.	What	is	the
impact	of	k?	What	pre-processing	steps	are	needed?

20.6E	Discuss	an	example	of	social	network	analytics.	How	is	it	different	from
classical	predictive	or	descriptive	analytics?

20.7E	The	Internet	of	Things	(IoT)	refers	to	the	network	of	interconnected
things	such	as	electronic	devices,	sensors,	software,	and	IT	infrastructure	that
create	and	add	value	by	exchanging	data	with	various	stakeholders	such	as
manufacturers,	service	providers,	customers,	other	devices,	etc.,	hereby	using	the
World	Wide	Web	technology	stack	(e.g.,	WiFi,	IPv6).	In	terms	of	devices,	you
can	think	about	heartbeat	monitors;	motion,	noise,	or	temperature	sensors;	smart
meters	measuring	utility	(e.g.,	electricity,	water)	consumption;	and	so	on.	Some
examples	of	applications	are:

Draw	the	ROC	curve.	How	would	you	estimate	the	area	under	the	ROC
curve?

Draw	the	CAP	curve	and	estimate	the	AR.

Draw	the	lift	curve.	What	is	the	top	decile	lift?

smart	parking:	automatically	monitoring	free	parking	spaces	in	a	city;

smart	lighting:	automatically	adjusting	street	lights	to	weather	conditions;

It	speaks	for	itself	that	the	amount	of	data	generated	is	enormous	and	offers	an
unseen	potential	for	analytical	applications.
Pick	one	particular	type	of	application	of	IoT	and	discuss	the	following:

20.8E	Many	companies	nowadays	are	investing	in	analytics.	Also,	for
universities,	there	are	plenty	of	opportunities	to	use	analytics	for	streamlining
and/or	optimizing	processes.	Examples	of	applications	where	analytics	may	have
a	role	to	play	are:

smart	traffic:	optimizing	driving	and	walking	routes	based	upon	traffic
and	congestion;

smart	grid:	automatically	monitoring	energy	consumption;

smart	supply	chains:	automatically	monitoring	goods	as	they	move
through	the	supply	chain;

telematics:	automatically	monitoring	driving	behavior	and	linking	it	to
insurance	risk	and	premiums.

how	to	use	predictive,	descriptive,	and	social	network	analytics;

how	to	evaluate	the	performance	of	the	analytical	models;

key	issues	in	post-processing	and	implementing	the	analytical	models;
and

important	challenges	and	opportunities.

analyzing	student	fail	rates;

timetabling	of	courses;

finding	jobs	for	graduates;

recruiting	new	students;

Identify	some	other	possible	applications	of	analytics	in	a	university	context.
Discuss	how	analytics	could	contribute	to	these	applications.	In	your	discussion,
make	sure	you	clearly	address:

1	If	the	data	originate	from	a	data	warehouse,	then	the	cleansing	step	has
already	been	done	as	part	of	the	ETL	process	(see	Chapter	17).

2	We	use	the	notation	xi	to	refer	to	variable	i	(e.g.,	age,	income),	whereas	xi
refers	to	the	vector	with	the	values	for	all	variables	for	observation	i.	xi(j)
refers	to	the	value	of	variable	j	for	observation	i.

3	Quinlan	J.R.,	C4.5	Programs	for	Machine	Learning,	Morgan	Kauffman
Publishers,	1993.

4	Breiman	L.,	Friedman,	J.H.,	Olshen	R.A.,	Stone,	C.	J.,	Classification	and
Regression	Trees,	Wadsworth	&	Brooks/Cole	Advanced	Books	&	Software,
1984.

5	Hartigan	J.A.,	Clustering	Algorithms,	Wiley,	1975.

6	One	often	also	uses	the	term	“positives”	to	refer	to	the	minority	class	(e.g.,
churners,	defaulters,	fraudsters,	responders)	and	“negatives”	to	refer	to	the
majority	class	(e.g.,	non-churners,	non-defaulters,	non-fraudsters,	non-
responders).

meal	planning	in	the	student	restaurant.

the	added	value	of	analytics	for	analyzing	the	problems	considered;

the	analytical	techniques	to	be	used;

key	challenges;	and

new	opportunities.

7	See5	is	a	more	recent,	improved	version	of	C4.5.

8	E.g.,	Baesens	B.,	Analytics	in	a	Big	Data	World,	Wiley,	2014.

9	Hanley,	J.A.,	McNeil,	B.J.,	The	meaning	and	use	of	area	under	the	ROC
curve,	Radiology,	1982;	143:	29–36.

10	Kohonen,	T.,	Self-Organizing	Maps,	Springer,	2000.

11	This	is	only	the	case	for	undirected	networks.	For	directed	networks,
representing,	e.g.,	a	“follows”	relationship	that	is	not	necessarily	reciprocal,
the	matrix	will	not	be	symmetrical.

12	Krackhardt,	D.,	Assessing	the	political	landscape:	Structure,	cognition,	and
power	in	organizations,	Administrative	Science	Quarterly,	1990;	35:	342–369.

13	Girvan	M.,	Newman	M.E.J.,	Community	structure	in	social	and	biological
networks,	Proceedings	of	the	National	Academy	of	Sciences,	USA,	2002;	99:
821–826.

14	The	betweenness	can	be	calculated	for	both	nodes	and	edges.

15	Lu	Q.,	Getoor	L.,	Link-based	classification,	Proceeding	of	the	Twentieth
Conference	on	Machine	Learning	(ICML-2003),	Washington	DC,	2003.

16	Lismont	J.,	Vanthienen	J.,	Baesens	B.,	Lemahieu	W.,	Defining	analytics
maturity	indicators:	A	survey	approach,	International	Journal	of	Information
Management,	2017;	34(3):	114–124.

17	http://nucleusresearch.com/research/single/analytics-pays-back-13-01-for-
every-dollar-spent/

18	www.predictiveanalyticstoday.com/return-of-investment-from-predictive-
analytics/

http://nucleusresearch.com/research/single/analytics-pays-back-13-01-for-every-dollar-spent/
http://www.predictiveanalyticstoday.com/return-of-investment-from-predictive-analytics/

19	www.kdnuggets.com/2016/06/r-python-top-analytics-data-mining-data-
science-software.html

20	Verbeke	W.,	Martens	D.,	Baesens	B.,	Social	network	analysis	for	customer
churn	prediction,	Applied	Soft	Computing,	2014;	14:	341–446,	2014.	Baesens
B.,	Verbeke	W.,	Van	Vlasselaer	V.,	Fraud	Analytics	Using	Descriptive,
Predictive	and	Social	Network	Techniques:	A	Guide	to	Data	Science	for
Fraud	Detection,	Wiley,	2015.

21	Martens	D.,	Provost	F.,	Mining	massive	fine-grained	behavior	data	to
improve	predictive	analytics,	MIS	Quarterly,	2016;	40(4):	869–888.

22	Provost	F.,	Martens	D.,	Murray	A.,	Finding	similar	mobile	consumers	with
a	privacy-friendly	geosocial	design,	Information	Systems	Research,	2015;
26(2):	243–265.

23	Meyer	C.D.,	Matrix	analysis	and	applied	linear	algebra,	SIAM,
Philadelphia,	2000.

24	Davenport	T.H.,	Harris	J.G.,	Morison	R.,	Analytics	at	Work:	Smarter
Decisions,	Better	Results,	Harvard	Business	Review	Press,	2010.

25	Lismont	J.,	Vanthienen	J.,	Baesens	B.,	Lemahieu	W.,	Defining	analytics
maturity	indicators:	A	survey	approach,	International	Journal	of	Information
Management,	2017;	34(3):	114–124.

26	Summary	statistics	for	countries	in	the	EU	can	be	found	at
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ilc_di01&lang=en
and	for	the	US	at	https://dqydj.com/income-percentile-calculator.

27

www.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.ad
min.sec.doc/doc/c0021114.html.

http://www.kdnuggets.com/2016/06/r-python-top-analytics-data-mining-data-science-software.html
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ilc_di01&lang=en
https://dqydj.com/income-percentile-calculator
http://www.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0021114.html

28

https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/2016
_0504_data_discrimination.pdf.

https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/2016_0504_data_discrimination.pdf

Appendix	Using	the	Online	Environment

Here,	we	will	show	you	how	you	can	use	the	online	environment	for	this	book	to
play	 around	with	 several	 types	 of	 database	management	 systems	 and	 database
query	languages.

How	to	Access	the	Online	Environment

1.	Navigate	to	www.pdbmbook.com/playground.

2.	If	this	is	your	first	time	accessing	the	environment,	you’ll	need	to	register
first.	Click	on	the	“register”	link	and	enter	your	details.

3.	You’ll	receive	a	confirmation	email	with	a	unique	link	you	need	to	open
to	verify	your	account.

4.	Afterwards,	you	can	log-in	and	see	the	following	overview	of	interactive
environments:1

http://www.pdbmbook.com/playground

Environment:	Relational	Databases	and	SQL

In	Chapter	7	on	the	Structured	Query	Language,	a	wine	database	was	introduced.
You	can	follow	along	with	the	queries	by	navigating	the	SQL	environment.

For	 instance,	 to	 select	all	 information	 from	 the	SUPPLIER	 table,	you	can
execute:

SELECT	*	FROM	SUPPLIER

Feel	 free	 to	 execute	 INSERT,	 UPDATE,	 and	 DELETE	 queries	 as	 well.	 The
following	 example	 removes	 the	product	 tuple	with	product	 number	0119	 from
the	PRODUCT	table:

DELETE	FROM	PRODUCT	WHERE	PRODNR	=	'0119'

If	 you	 want	 to	 start	 over	 with	 a	 fresh	 database	 (helpful	 if	 you	 just	 deleted	 a
complete	table),	you	can	press	the	“reset”	link	to	reset	the	database	to	its	initial
state.

Environment:	MongoDB

In	Chapter	11	on	NoSQL	databases,	we	discussed	MongoDB	as	an	example	of	a
document	 store.	 The	 respective	 online	 environment	 contains	 a	 MongoDB
version	of	the	wine	database,	which	you	can	query	through	its	JavaScript	shell.
Some	interesting	commands	to	play	around	with	are	the	following.

Retrieve	all	documents	in	the	“products”	collection:

db.products.find();

Retrieve	all	documents	in	the	“products”	collection	where	the	id	matches	119:

db.products.find({	_id:	119	});

Retrieve	 all	 documents	 in	 the	 “products”	 collection	 where	 the	 type	 matches
“rose”:

db.products.find({	type:	'rose'	});

Retrieve	all	documents	in	the	“products”	collection	where	the	available	quantity
is	greater	than	100:

db.products.find({	available_quantity:	{	$gt:	100	}	});

Aggregate	 some	 documents	 in	 the	 “products”	 collection	 as	 follows:	 take	 all
products	with	an	available	quantity	greater	than	100,	group	these	by	their	“type”,
and	create	a	“total”	field	by	summing	“1”	per	record	in	each	group.	Finally,	sort
descending	on	“total”:

db.products.aggregate([
				{	$match:	{	available_quantity:	{$gt:	100}	}	},
				{	$group:	{	_id:	"$type",	total:	{	$sum:	1	}	}	},
				{	$sort:	{	total:	-1	}	}
]);

If	 you	 want	 to	 start	 over	 with	 a	 fresh	MongoDB	 instance,	 you	 can	 press	 the
“reset”	link	to	reset	the	database	to	its	initial	state.

Environment:	Neo4j	and	Cypher

In	Chapter	 11	 on	 NoSQL	 databases,	 we	 discussed	 Neo4j	 as	 an	 example	 of	 a
graph	database.	The	online	environment	contains	a	Neo4j	database	for	our	book-
reading	club.	You	can	use	the	same	queries	as	the	ones	in	the	chapter	to	follow
along.

For	instance:	who	likes	romance	books?

MATCH	(r:Reader)--(:Book)--(:Genre	{name:'romance'})
RETURN	r.name

Show	Bart	and	Bart’s	friends	that	liked	humor	books:

MATCH	(me:Reader)--(friend:Reader)--(b:Book)--(g:Genre)
WHERE	g.name	=	'humor'
		AND	me.name	=	'Bart	Baesens'
RETURN	me,	friend

If	you	want	to	start	over	with	a	fresh	Neo4j	instance,	you	can	press	the	“reset”
link	to	reset	the	database	to	its	initial	state.

Environment:	Tree	Structure	Visualizations

This	environment	provides	visualization	of	several	tree-based	data	structures	as
discussed	in	Chapter	12	(i.e.,	binary	search	trees,	B-trees,	and	B+-trees).

A	binary	search	tree	is	a	physical	tree	structure	in	which	each	node	has	at
most	two	children.	Each	tree	node	contains	a	search	key	value	and	(at	most)	two
pointers	 to	 children.	 Both	 children	 are	 the	 root	 nodes	 of	 subtrees,	 with	 one
subtree	 only	 containing	 key	 values	 that	 are	 lower	 than	 the	 key	 value	 in	 the
original	node,	and	the	other	subtree	only	containing	key	values	that	are	higher.

To	 see	 how	 this	 works,	 you	 can	 try	 inserting	 the	 following	 elements
individually	in	the	online	environment:

20,	8,	28,	3,	16,	24,	30,	7,	11,	17,	26,	12

You	will	obtain	a	similar	view	to	the	tree	shown	in	the	chapter:

Navigating	a	binary	search	 tree	 is	very	efficient,	as	half	of	 the	search	key
values	 can	 be	 skipped	with	 every	 step,	 rather	 than	 linearly	 navigating	 all	 key
values.	 To	 illustrate	 this,	 try	 using	 the	 “find”	 button	 to	 look	 for	 key	 11.	 An
animation	will	play	showing	how	the	tree	is	traversed:

The	 performance	 could	 be	 increased	 even	 further	 if	 each	 node	 would
contain	more	than	one	key	value	and	more	than	two	children.	In	that	case,	with
an	equal	total	number	of	key	values,	the	height	of	the	tree	would	be	reduced	and
therefore	the	average	and	maximal	number	of	steps	would	be	lower.

This	exact	 consideration	 is	 at	 the	basis	of	 the	B-tree	concept.	B-trees	and
B+-trees	 can	 be	 considered	 as	 variations	 of	 search	 trees	 that	 are	 explicitly
designed	for	hard	disk	storage.	Every	node	contains	a	set	of	search	key	values,	a
set	of	tree	pointers	that	refer	to	child	nodes,	and	a	set	of	data	pointers	that	refer
to	 data	 records	 that	 correspond	 to	 the	 search	 key	 values.	The	 data	 records	 are
stored	separately	and	are	not	part	of	the	B-tree.	You	can	play	around	with	B-trees
and	B+-trees	in	the	environment	as	well.

Environment:	HBase

In	Chapter	19	on	Big	Data,	we	discussed	HBase	as	a	first,	key–value	based	data
store	that	runs	on	top	of	Hadoop.	In	the	online	environment,	you	can	experiment
with	the	HBase	shell	and	follow	along	with	the	queries	in	the	chapter.

We	start	with	an	empty	HBase	set-up	in	this	environment,	so	let’s	create	a
simple	HBase	table	to	store	and	query	users	using	the	HBase	shell.	Let’s	start	by
creating	 our	 “users”	 table	 with	 two	 column	 families	 (note:	 the	 HBase
environment	can	take	some	time	to	parse	each	command!):

create	'users',	'name',	'email'

Describe	the	table:

describe	'users'

List	this	table	(the	table	itself,	not	its	contents):

list	'users'

We	 can	 now	 insert	 values.	 Since	 HBase	 represents	 data	 as	 a
multidimensional	map,	we	store	values	using	“put”	one	by	one	by	specifying	the
row	 key,	 column	 family:qualifier,	 and	 the	 value	 itself.	 Note	 you	 can	 enter
multiple	statements	by	just	entering	them	line-by-line:

put	'users',	'seppe',	'name:first',	'Seppe'
put	'users',	'seppe',	'name:last',	'vanden	Broucke'
put	'users',	'seppe',	'email',	'seppe.vandenbroucke@kuleuven'

Now	list	the	full	contents	of	this	table	using	the	“scan”	command:

scan	'users'

Give	the	information	for	row	key	“seppe”	only:

get	'users',	'seppe'

We	can	change	the	email	value	by	just	running	put	again:

put	'users',	'seppe',	'email',	'seppe@kuleuven.be'

Let’s	now	retrieve	this	row	again,	but	only	for	the	column	family	“email”:

get	'users',	'seppe',	'email'

We	can	delete	all	values	pertaining	to	row	key	“seppe”	in	“users”	as	follows	and
scan	the	table	to	confirm	that	the	data	are	deleted:

deleteall	'users',	'seppe'
scan	'users'

If	you	want	to	start	over	with	a	fresh	HBase	instance,	you	can	press	the	“reset”
link	to	reset	the	database	to	its	initial,	empty	state.

1	The	online	environment	may	be	further	expanded	in	the	future,	so	the	actual
overview	could	be	somewhat	different	from	the	one	depicted	here.

Glossary

5	Vs	of	Big	Data
a	description	of	Big	Data	that	defines	its	scope	by	listing	its	characteristics.
Initially	defined	as	the	3	Vs	–	volume,	velocity,	and	variety	–	researchers	have
argued	for	the	inclusion	of	two	additional	characteristics,	veracity	and	value.

aborted
when	a	transaction	completed	unsuccessfully	because	of	an	error	or	anomaly
that	occurred	during	the	transaction’s	execution	and	the	transaction	needs	to
be	canceled.

absolute	address
a	translation	of	a	relative	block	address	into	a	device	number,	cylinder
number,	track	number,	and	block	number.

abstraction
see	generalization.

access	category
a	DQ	framework	category	that	represents	the	extent	to	which	data	are
available	and	obtainable	in	a	secure	manner.

access	modifiers
specify	who	can	have	access	to	a	variable	or	method.

access	path
the	path	chosen	by	the	DBMS	to	retrieve	data	in	response	to	a	query.

access	transparency
when	the	distributed	database	can	be	accessed	and	queried	uniformly,
regardless	of	the	different	database	systems	and	APIs	that	may	be	involved.

accessibility
a	DQ	dimension	that	reflects	the	ease	of	retrieving	data	from	the	underlying
data	sources.

accessor	methods
in	object-oriented	programming,	methods	that	give	access	of	the	state	of	an
object	to	another	object.	Common	examples	are	the	getter	and	setter	methods.

accuracy
a	DQ	dimension	that	refers	to	whether	the	data	values	stored	for	an	object	are
the	correct	values.

accuracy	ratio	(AR)
the	ratio	between	the	area	below	the	CAP	curve	for	the	current	model	minus
the	area	below	the	CAP	curve	for	the	random	model	and	the	area	below	the
CAP	curve	for	the	perfect	model	minus	the	area	below	the	CAP	curve	for	the
random	model.	Can	also	be	calculated	as	2	×	AUC–1.

ACID
denotes	the	four	desirable	properties	of	database	transactions:	Atomicity,
Consistency,	Isolation,	and	Durability.

active

a	DBMS,	such	as	a	modern	RDBMS,	that	autonomously	takes	the	initiative
for	action	if	specific	situations	occur.

ActiveX	Data	Objects	(ADO)
a	set	of	components	defined	by	Microsoft	to	access	data	sources,	based	on	the
Component	Object	Model	(COM)	framework.

activity	services
perform	one	task	in	a	business	process	and	are	triggered	by	a	workflow
service	when	the	corresponding	task	is	due.

actuator
a	component	of	a	disk	that	moves	the	read/write	heads.

ADO.NET
a	set	of	components	defined	by	Microsoft	to	access	data	sources,	based	on	the
.NET	framework.

after	images
a	copy	of	the	new	values,	after	the	update	by	a	transaction;	kept	to	redo
changes	that	were	not	adequately	persisted	in	the	physical	database	files	in	the
first	place.

after	trigger
a	trigger	that	is	activated	after	the	triggering	event	took	place.

agglomerative	hierarchical	clustering
a	clustering	technique	that	begins	with	observations	in	individual	clusters	and
merges	similar	observations/clusters	until	all	observations	make	a	single
cluster.

aggregate	functions
functions	used	to	summarize	information	from	database	tuples.	Popular
examples	are	COUNT,	SUM,	AVG,	VARIANCE,	MIN/MAX,	and	STDEV.

aggregation
entity	types	related	by	a	particular	relationship	type	can	be	combined	into	a
higher-level	aggregate	entity	type.

ALL
an	operator	that	compares	a	single	value	to	a	multiset	and	returns	TRUE	only
if	all	values	in	the	subquery	match.

ALTER
an	SQL	command	that	modifies	table	column	definitions.

alternative	key
any	candidate	key	not	chosen	as	a	primary	key.

analytics
the	extraction	of	valid	and	useful	business	patterns,	or	mathematical	decision
models	from	a	preprocessed	dataset.

analytics	process	model
a	structured,	iterative	model	that	puts	analytics	in	a	three-stage	process	(pre-
processing,	analytics,	and	post-processing)	with	seven	steps	(identify	business
problem,	identify	data	sources,	select	data,	clean	data,	transform	data,	analyze,
and	interpret,	evaluate,	and	deploy	model).

anonymization

transforming	sensitive	data	so	the	exact	value	cannot	be	recovered	by	other
parties,	such	as	the	data	scientist.

ANY
an	operator	that	compares	a	single	value	to	a	multiset	and	returns	TRUE	if	any
value	in	the	subquery	matches.

application	programming	interface	(API)
exposes	an	interface	with	functions	of	an	application	or	service;	clients	can
then	access	those	functions	through	this	interface.

archiving
when	database	files	are	periodically	copied	to	other	storage	media,	such	as
tape	or	another	hard	disk.

area	under	the	ROC	curve	(AUC)
performance	metric	that	provides	a	simple	figure-of-merit	for	the	performance
of	the	constructed	classifier;	the	higher	the	AUC	the	better	the	performance.
Can	also	be	interpreted	as	the	probability	that	a	randomly	chosen	positive
(e.g.,	churner)	gets	a	higher	score	than	a	randomly	chosen	negative	(e.g.,	non-
churner).

association	class
an	association	with	variables	and/or	methods	of	its	own.

association	rules
rules	to	detect	frequently	occurring	associations	between	items.

association

UML	construct	which	corresponds	to	a	relationship	type	in	the	ER	model
whereas	a	specific	occurrence	of	an	association	is	referred	to	as	a	link	that
corresponds	to	a	relationship	in	the	ER	model.

associative	query
a	query	that	returns	a	collection	(e.g.,	a	set	or	bag)	of	objects	located	by	the
OODBMS.

Asynchronous	JavaScript	and	XML	(AJAX)
a	method	used	by	many	modern	websites	to	dynamically	update	parts	of	a
web	page	without	triggering	a	full	page	refresh.	Commonly	implemented	by
means	of	an	ActiveX	component	or	as	the	“XMLHttpRequest”	JavaScript
object.

atomic	attribute	type
an	attribute	type	that	is	indivisible;	cannot	be	further	divided	or	decomposed
further	into	other	meaningful	attribute	types.

atomic	literal
in	ODMG,	a	constant	value	of	type	short	(short	integer),	long	(long	integer),
double	(real	number),	float	(real	number),	Boolean	(true	or	false),	char,	or
string.

attribute	type
representation	of	a	specific,	defined	property	of	an	entity	type.

authorization	identifier
indicates	the	user,	or	user	account,	who	owns	the	schema.

AVG

an	SQL	operator	used	in	aggregate	functions	that	provides	the	average	of	all
values	in	the	selected	column.

B+-tree
a	tree-structured	index	in	which	only	the	leaf	nodes	contain	data	pointers	and
all	key	values	that	exist	in	the	non-leaf	nodes	are	repeated	in	the	leaf	nodes,	so
every	key	value	occurs	in	a	leaf	node	with	a	corresponding	data	pointer.	The
higher-level	nodes	only	contain	a	subset	of	the	key	values	present	in	the	leaf
nodes	and	every	leaf	node	of	a	B+-tree	has	one	tree	pointer,	pointing	to	its	next
sibling.

Bachman	diagram
a	visual	representation	of	the	CODASYL	model	using	a	network	developed	by
Charles	Bachman.

backup
a	copy	of	archived	data	kept	as	part	of	a	recovery	strategy	in	case	catastrophic
events	occur.

backup	and	recovery	utility
a	means	to	backup	and	recover	the	database	in	the	event	of	a	crash	or	failure.

BASE	principle
used	by	NoSQL	this	alternative	to	the	traditional	transactional	model	(ACID)
enforces	the	following	three	principles:	Basic	Availability,	Soft	state,	and
Eventual	consistency.

before	images
a	copy	of	the	original	values,	before	the	records	were	updated;	kept	for	the
purpose	of	undoing	unwanted	effects	of	failed	transactions.

before	trigger
trigger	that	is	activated	before	the	triggering	event	takes	place.

begin_transaction
an	instruction	that	serves	as	the	notification	of	the	first	operation	of	a	new
transaction.

BETWEEN
an	SQL	operator	used	with	the	WHERE	clause	that	specifies	a	range	of	values
from	which	to	return	results.

bidirectional	association
an	association	in	which	two	ways	of	navigating	are	indicated	by	an	arrow	in
the	UML	model.

binary	large	object	(BLOB)
data	collected	and	stored	as	a	single	large	object	in	a	DBMS;	BLOBs	are
typically	multimedia	files	(e.g.,	image,	audio,	video).

binary	search
an	efficient	algorithmic	search	for	a	record	in	an	ordered	list	performed
recursively	by	halving	the	search	interval	with	each	iteration.

binary	search	tree
a	physical	tree	structure	in	which	each	node	has	at	most	two	children.	Each
tree	node	contains	a	search	key	value	and	a	maximum	of	two	pointers	to
children.	Both	children	are	the	root	nodes	of	subtrees,	with	one	subtree	only
containing	key	values	that	are	lower	than	the	key	value	in	the	original	node,
and	the	other	subtree	only	containing	key	values	that	are	higher.

bitmap	index
contains	a	row	ID	and	a	series	of	bits	–	one	bit	for	each	possible	value	of	the
indexed	attribute	type;	mostly	efficient	for	attribute	types	with	only	a	limited
set	of	possible	values.

BLOB	(binary	large	object)
see	binary	large	object.

block	pointer
refers	to	the	physical	block	address	of	a	corresponding	record.

blocking	factor
indicates	how	many	records	are	stored	in	a	single	disk	block;	determines	how
many	records	are	retrieved	with	a	single	read	operation,	without	intermediate
seeks	and/or	rotational	delay.

blocking	factor	of	the	index	(BFI)
denotes	how	many	index	entries	fit	within	a	single	disk	block,	resulting	in	a
single	entry	for	a	higher-level	index.

block-level	I/O	protocol
the	I/O	commands	are	defined	at	the	level	of	requests	for	individual	blocks	on
the	storage	device.

bootstrapping
when	one	takes	samples	with	replacement	from	a	dataset.

Boyce–Codd	normal	form	(BCNF)
a	normal	form	such	that	for	each	of	the	non-trivial	functional	dependencies	X
→	Y,	X	is	a	superkey.

B-tree
a	tree-structured	index	in	which	each	node	corresponds	to	a	disk	block	and
nodes	are	kept	between	half-full	and	full	to	cater	for	a	certain	dynamism	of	the
index.

bucket
a	contiguous	area	of	record	addresses	that	contains	one	or	more	stored	record
slots.

buffer	manager
manages	the	buffer	memory.	Intelligently	caches	data	in	the	buffer	for	quick
access	and	monitors	the	buffer	to	determine	what	should	be	added	or	deleted.

business	continuity
an	organization’s	ability	to	guarantee	its	uninterrupted	functioning,	despite
possible	planned	or	unplanned	downtime	of	the	hardware	and	software
supporting	its	database	functionality.

business	intelligence	(BI)
the	set	of	activities,	techniques,	and	tools	aimed	at	understanding	patterns	in
past	data	and	predicting	the	future.

business	process
a	set	of	tasks	or	activities	with	a	certain	ordering	that	must	be	executed	to
reach	a	certain	organizational	goal.

call-level	API
an	API	that	allows	SQL	instructions	to	be	passed	to	the	DBMS	by	direct	calls
to	functions,	procedures,	or	methods	to	perform	necessary	actions.

candidate	key
the	attribute	type(s)	of	a	relation	that	are	unique,	such	as	a	unique	product
number.

canonical	form
a	mathematical	expression	of	a	query,	according	to	the	relational	algebra	that
provides	the	mathematical	underpinning	of	the	relational	model.

CAP	theorem
formulated	by	Eric	Brewer,	this	theorem	states	a	distributed	computer	system
cannot	guarantee	the	following	three	properties	simultaneously:	Consistency,
Availability,	and	Partition	tolerance.

Capability	Maturity	Model	Integration	(CMMI)
a	training	and	appraisal	program	developed	by	Carnegie	Mellon	University
geared	toward	the	improvement	of	business	processes.

cardinalities
specify	the	minimum	or	maximum	number	of	relationship	instances	in	which
an	individual	entity	can	participate;	the	minimum	cardinality	can	be	either	0	or
1	and	the	maximum	cardinality	can	be	either	1	or	N.

cascading	rollback
a	recursive	rollback	in	which	transactions	that	read	data	written	by
transactions	marked	for	rollback	in	the	previous	step	have	to	be	rolled	back	as
well,	and	so	on.

catalog

a	repository	for	data	definitions	generated	by	the	DDL	compiler,	integrity
rules,	metadata,	and	other	information	such	as	users,	user	groups,	and
statistics	about	data	and	storage.

categorization
representing	a	collection	of	entities	that	is	a	subset	of	the	union	of	the
superclasses;	represented	in	the	EER	model	by	a	circle	with	a	letter	“u”	(from
union)	in	it.

central	storage
part	of	the	storage	hierarchy;	consists	of	memory	chips	(also	called	random
access	memory,	or	RAM)	of	which	each	individual	byte	has	its	own	address,
which	is	directly	referable	by	the	operating	system.	Also	called	internal
memory	or	main	memory.

centrality	metrics
characterize	how	central	a	node	is	in	a	network	from	different	perspectives.
Examples	are	degree,	closeness,	and	betweenness.

centralized	DBMS	architecture
data	are	maintained	on	a	centralized	host	(e.g.,	a	mainframe)	system.	All
queries	then	have	to	be	processed	by	this	single	host.

centralized	system	architecture
a	database	architecture	in	which	all	responsibilities	of	the	DBMSs	are	handled
by	a	single	centralized	entity;	a	system	in	which	the	DBMS	logic,	the	data
themselves,	and	the	application	logic	and	presentation	logic	(also	called	the
user	interface),	are	all	handled	by	the	same	system.

chaining

an	overflow-handling	technique	in	which	overflow	records	are	stored	in	a
separate	overflow	area,	with	subsequent	records	that	overflow	from	the	same
bucket	being	chained	together	by	pointers.

changeability	property
specifies	the	type	of	operations	allowed	on	either	variable	values	or	links.

changed	data	capture	(CDC)
data	integration	technology	that	can	detect	update	events	in	the	source	data
store,	and	trigger	the	ETL	process	based	on	these	updates.

CHECK	constraint
used	to	define	a	constraint	on	the	column	values	of	a	relational	table.

checkpoint
synchronization	point	denoting	the	moment	when	buffered	updates	by	active
transactions,	as	present	in	the	database	buffer,	are	written	to	disk	at	once.

choreography
a	decentralized	sequence	and	data	dependency	management	pattern	that	relies
on	the	participants	themselves	to	coordinate	their	collaboration	in	the	context
of	a	business	process.

churn	prediction
predicting	which	customers	a	firm	is	likely	to	lose.

class
a	blueprint	definition	for	a	set	of	objects.

class	invariant

a	constraint	that	holds	for	all	objects	of	a	class.

classification
a	type	of	predictive	analytics	in	which	the	target	variable	is	categorical.
Classification	can	be	binary	or	multiclass.

classification	accuracy
the	percentage	of	correctly	classified	observations.

cleansing
removing	some	inconsistencies	or	irregularities	in	the	data	(e.g.,	missing	or
impossible	values).

client–server	DBMS	architecture
active	clients	request	services	from	passive	servers.	A	fat	client	variant	stores
more	processing	functionality	on	the	client,	whereas	a	fat	server	variant	puts
more	on	the	server.

client-side	scripting
scripts	are	embedded	inside	HTML	documents	then	interpreted	and	run
directly	inside	the	browser	on	the	user’s	computer.

CLOB	(character	large	object)
variable-length	character	string	made	up	of	single-byte	characters.

cloud	DBMS	architecture
both	the	DBMS	and	database	are	hosted	by	a	third-party	cloud	provider.	The
data	themselves	can	then	be	distributed	across	multiple	nodes	in	a	cluster.

cloud-based	solution

a	solution	in	which	a	requested	service	is	offered	via	the	internet	by	a	cloud
computing	provider.

clustered	index
similar	to	a	primary	index	but	where	the	ordering	criterion,	and	therefore	the
search	key,	is	a	non-key	attribute	type	or	set	of	attribute	types,	instead	of	a
primary	or	candidate	key.

clustering
(1)	In	analytics:	splitting	up	a	set	of	observations	into	clusters	so	the
homogeneity	within	a	cluster	is	maximized	(cohesive),	and	the	heterogeneity
between	clusters	is	maximized	(separated).	(2)	In	failover:	multiple
interconnected	computer	systems	working	together	to	be	perceived,	in	certain
aspects,	as	a	unity	for	improved	performance	by	means	of	parallelism	and/or
availability	through	redundancy	in	hardware,	software,	and	data.

CODASYL	model
an	early	data	model	developed	by	the	Data	Base	Task	Group	of	the
COnference	on	DAta	SYstem	Languages	in	1969.	The	CODASYL	model
only	includes	record	types,	set	types,	and	1:N	relationship	types.

coefficient	of	determination
performance	measure	of	a	regression	model	specifying	how	much	better	the
model	predicts	than	the	average;	varies	between	0	and	+1.

collection	literal
in	ODMG,	a	collection	of	elements	such	as	a	set,	bag,	list,	array,	or	dictionary.

collision

happens	when	several	records	are	assigned	to	the	same	bucket	in	random	file
organization.

column-oriented	DBMS
a	database	management	system	that	stores	data	tables	as	sections	of	columns,
rather	than	as	rows	of	data.

combined	approach
in	the	context	of	XML	storage;	a	storage	technique	that	combines	both	the
document-	and	data-oriented	approach	for	storing	XML	documents.	Some
parts	of	the	XML	document	will	be	stored	as	BLOBs,	CLOBs,	or	XML
objects,	whereas	other	parts	will	be	shredded	and	stored	in	relational	tables.

committed
when	a	transaction	completed	successfully	and	all	changes	made	by	the
individual	operations	belonging	to	that	transaction	can	be	made	permanent.

common	gateway	interface	(CGI)
a	standard	protocol	that	allows	web	servers	to	construct	dynamic	pages	by
executing	a	program	at	the	server	level	responsible	for	generating	the	content
and	sending	it	to	the	user.

compatibility	matrix
in	transaction	management,	a	matrix	which	indicates	which	request	will	be
granted	for	a	particular	database	object	based	on	the	locks	currently	in	place
on	that	same	object.

compensation-based	transaction	model
transaction	model	that	allows	for	undoing	local	effects	of	a	transaction	if	the
global	long-running	transaction	is	unsuccessful;	defines	compensating

operations	for	each	transaction-sensitive	operation.

completeness
a	DQ	dimension	that	refers	to	the	extent	to	which	data	are	not	missing	and
cover	the	needs	of	and	are	of	sufficient	breadth	and	depth	for	the	task	being
performed.

completeness	constraint
indicates	whether	all	entities	of	the	superclass	should	belong	to	one	of	the
subclasses.

complex	event	processing	(CEP)
analytics	techniques	that	do	not	focus	on	individual	events,	but	rather	on	the
interrelationships	between	events	and	patterns	within	so-called	event	clouds.

composite	attribute	type
an	attribute	type	that	is	divisible;	can	be	decomposed	into	other	meaningful
attribute	types.

conceptual	data	model
a	high-level	description	of	data	items,	characteristics,	and	relationships.	Used
for	communication	between	information	architect	and	business	user	to	ensure
data	requirements	are	properly	captured	and	modeled.

concurrency	control
the	coordination	of	transactions	that	execute	simultaneously	on	the	same	data
so	they	do	not	cause	inconsistencies	in	the	data	because	of	mutual
interference.

confidence

measures	the	strength	of	the	association;	the	conditional	probability	of	the	rule
consequent,	given	the	rule	antecedent.

conformed	dimensions
a	dimension	that	has	the	same	meaning	and	content	across	different	fact	tables
and/or	data	marts.

connection	manager
provides	the	facilities	to	set	up	a	connection	to	a	database	by	verifying
credentials	and	returning	a	connection	handle.	Connections	can	be	set	up
locally	or	through	a	network.

connectivity
the	way	in	which	storage	devices	are	connected	to	processors	and/or	servers.

conservative	2PL
see	static	2PL.

consistency
a	DQ	dimension	that	refers	to	the	extent	to	which	data	are	continuously
presented	in	the	same	format.

consistent	hashing
hashing	schema	that	avoids	having	to	remap	each	key	to	a	new	node	when
nodes	are	added	or	removed.

constructor
in	object-oriented	programming,	a	method	that	creates	and	returns	a	new
object	of	a	class.

contextual	category
a	DQ	framework	category	that	measures	the	extent	to	which	data	are
appropriate	to	the	task	of	the	data	consumer.

contingency	plan
a	formal	plan	outlining	recovery	objectives	and	strategic	priorities	if	a
calamity	occurs,	jeopardizing	business	continuity.

Control	Objectives	for	Information	and	Related	Technologies	(COBIT)
a	framework	created	by	the	international	professional	association	ISACA	for
information	technology	(IT)	management,	and	IT	governance.

correlated	nested	queries
a	condition	in	which	the	WHERE	clause	of	a	nested	query	references	a
column	of	a	table	declared	in	the	outer	query;	the	nested	query	is	evaluated
once	for	each	tuple,	or	combination	of	tuples,	in	the	outer	query.

cost-based	optimizer
a	query	optimizer	that	calculates	the	optimal	access	plan	according	to	a	set	of
built-in	cost	formulas.

COUNT
an	SQL	operator	used	in	aggregate	functions	to	count	the	number	of	tuples.

cross-validation
performance	estimation	method	where	the	data	are	split	into	K	folds	(e.g.,	five
or	ten).	An	analytical	model	is	then	trained	on	K–1	training	folds	and	tested	on
the	remaining	validation	fold.	This	is	repeated	for	all	possible	validation	folds,
resulting	in	K	performance	estimates	that	can	then	be	averaged.

CRUDS	functionality
data	manipulation	activities	that	will	Create,	Read,	Update,	Delete,	or	Search
on	data	stored	in	the	underlying	data	stores.

CUBE
an	SQL	operator	that	computes	a	union	of	GROUP	BYs	on	every	subset	of	the
specified	attribute	types,	with	results	representing	a	multidimensional	cube
based	upon	the	source	table.

cumulative	accuracy	profile	(CAP)
sorts	the	population	from	high	score	to	low	score	and	then	measures	the
cumulative	percentage	of	positives	(e.g.,	churners)	for	each	decile	on	the	x-
axis.

cursor	mechanism
similar	to	a	textual	cursor,	a	database	cursor	keeps	track	of	where	we	are	in	the
result	set,	so	that	the	tuples	that	result	from	an	SQL	query	can	be	traversed	and
are	presented	to	the	application	code	one	by	one.

customer	segmentation
the	segmentation	of	a	set	of	customers	or	transactions	into	homogeneous
clusters	that	can	be	used	for	marketing	purposes.

cutoff
number	used	to	map	class	probabilities	to	class	labels.

cylinder
a	set	of	tracks	with	the	same	diameter	(distance	from	the	center)	on	different
platters	of	a	hard	disk.

Cypher
a	graph-based	query	language	introduced	by	Neo4j,	one	of	the	most	popular
graph	databases.

DAS	(directly	attached	storage)
storage	devices	directly	connected	to	individual	servers.

Data	as	a	Service	(DaaS)
data	services	are	offered	as	part	of	an	overall	service	oriented	architecture
(SOA)	or	cloud	architecture.

data	accessibility
see	accessibility.

data	accuracy
see	accuracy.

data	auditing	services
report	on	data	lineage	and	when/how/by	whom	data	were	changed.

data	cleansing	services
ensure	the	validity	and	consistency	of	data	using	name-and-address	cleansing
by	resolving	missing	fields,	poor	formatting,	and	conflicting	data,	and
standardization	to	various	industry	formats.

data	completeness
see	completeness.

data	consistency
see	consistency.

data	consolidation
a	data	integration	pattern	that	captures	the	data	from	multiple,	heterogeneous
source	systems	and	integrates	them	into	a	single,	persistent	data	store	(e.g.,	a
data	warehouse	or	data	mart).

data	definition	language	(DDL)
language	used	by	the	database	administrator	to	express	the	database’s
external,	logical,	and	internal	data	models.

data	dependency
specifies	that	the	execution	of	a	service	B	depends	on	data	provided	by	a
service	A.

data	enrichment	services
enhance	the	data	by	exploiting	external	data	sources.

data	event	services
monitor	data	for	state	changes	and	rules,	raising	events	that	can	be	acted	upon
by	other	services.

data	federation
a	data	integration	pattern	to	provide	a	unified	view	over	one	or	more	data
sources	through	a	pull	approach	in	which	data	are	pulled	from	the	underlying
source	systems	on	an	on-demand	basis.

data	flow
specifies	the	path	of	the	data	between	business	activities	or	tasks	in	a	business
process.

data	governance

the	proactive	management	of	data	as	an	asset;	a	company-wide	controlled	and
supported	approach	toward	data	quality	accompanied	by	a	data	quality
management	process.

data	independence
when	changes	in	data	definitions	in	one	layer	of	the	database	architecture	have
minimal	to	no	impact	on	the	other	layers.

data	integration
a	process	with	the	purpose	of	providing	a	unified	view	and/or	unified	access
over	heterogeneous,	and	possibly	distributed,	data	sources.

data	integration	pattern
method	to	provide	a	single	unified	view	on	a	set	of	underlying	data	sources.

data	item
a	collection	of	bits	or	characters	that	represent	a	specific	value	on	a	physical
storage	medium.	Also	called	a	field.

data	lake
a	large	data	repository	that	holds	data	in	their	raw	format,	which	can	be
structured,	unstructured,	or	semi-structured.

data	lineage
the	whole	trajectory	followed	by	a	data	item,	from	its	origin	(data	entry),
possibly	over	respective	transformations	and	aggregations,	until	it	is
ultimately	used	or	processed.

data	localization

a	step	in	distributed	query	processing	in	which	the	query	is	transformed	into	a
fragment	query.

data	management
proper	management	of	data	and	corresponding	data	definitions	or	metadata	to
ensure	good	quality	for	effective	and	efficient	decision-making.

Data	Management	Body	of	Knowledge	(DMBOK)
overseen	by	DAMA	International	(the	Data	Management	Association),	this
collection	of	processes	lists	best	practices	toward	data	quality	management,
metadata	management,	data	warehousing,	data	integration,	and	data
governance.

Data	Management	Maturity	Model
a	model	that	applies	five	levels	of	maturity	to	the	governance	of	data,	their
quality,	and	their	supporting	infrastructure.

data	manipulation	language	(DML)
used	to	retrieve,	insert,	delete,	and	modify	data	in	a	database.	DML	statements
can	be	embedded	in	a	general-purpose	programming	language,	or	entered
through	a	front-end	querying	tool.

data	mart
a	scaled-down	version	of	a	data	warehouse	aimed	at	meeting	the	information
needs	of	a	small	homogeneous	group	of	end-users	such	as	a	department	or
business	unit.

data	owner
person	with	the	authority	to	ultimately	decide	on	the	access	to,	and	usage	of,
the	data;	can	be	the	original	producer	of	the	data,	one	of	its	consumers,	or	a

third	party.

data	pointers
pointers	that	refer	to	data	records,	or	blocks	with	data	records,	that	correspond
to	the	search	key	values.

data	pre-processing
set	of	activities	to	prepare	data	for	analysis,	including	sampling	and	data
cleaning.

data	profiling	services
provide	automated	support	for	assessing	and	understanding	content,	quality,
and	structure	of	enterprise	data	and	relate	data	from	various	sources	to	one
another	based	on	the	patterns	and	values	in	the	data.

data	propagation
a	data	integration	pattern	corresponding	to	the	synchronous	or	asynchronous
propagation	of	updates,	or	events	in	a	source	system	to	a	target	system.

data	quality	(DQ)
a	set	of	contextual	rules	that	determine	the	fitness	of	data	for	use	in	a	business
application;	determines	the	intrinsic	value	of	the	data	to	a	business.

data	redundancy
when	additional	(redundant)	copies	of	the	files	or	data	are	stored	on	offline
media	(e.g.,	a	tape	vault)	or	online	media	(e.g.,	on	an	online	backup	hard	disk
drive,	or	even	in	a	full-blown	redundant	database	node),	e.g.,	for	recovery
purposes	in	case	of	failures	or	crashes;	see	also	replication.

data	replication

the	act	of	propagating	data	written	to	one	device	over	a	network	onto	another
device.	This	can	be	done	synchronously	or	semi-synchronously,	or
asynchronously.

data	scientist
a	relatively	new	profession	in	which	a	person	uses	quantitative,	programming,
business,	communication,	and	visualization	skills	to	analyze	complex	data
using	activities	such	as	sampling	and	preprocessing	of	data,	analytical	model
development,	and	post-processing.

data	service	composition
when	data	from	different	services	can	be	combined	and	aggregated	into	a	new,
composite,	service.

data	services
provide	access	to	the	business	data.

data	silo
a	set	of	data	specific	to	a	business	domain	not	integrated	with	an
organization’s	global	data	infrastructure.

data	steward
DQ	expert	in	charge	of	ensuring	the	quality	of	both	the	actual	business	data
and	the	corresponding	metadata	by	performing	extensive	and	regular	data
quality	checks.

data	striping
technique	applied	in	RAID	in	which	subsections	of	a	data	file	(called	strips,
consisting	of	individual	bits	or	entire	disk	blocks)	are	distributed	over	multiple
disks	to	be	read	and	written	in	parallel.

data	transformation	services
transform	data	to	match	the	target	application’s	requirements	or	reconcile	data
items	residing	in	different	data	sources.

data	virtualization
a	data	integration	technique	that	uses	basic	data	integration	patterns	and
isolation	of	applications	and	users	from	the	actual	(combinations	of)
integration	patterns	used	to	produce	a	unified	data	view	for	applications	to
retrieve	and	manipulate	data	without	knowing	where	the	data	are	stored
physically	or	how	they	are	structured	and	formatted	at	the	sources.

data	warehouse
As	defined	by	Bill	Inmon:	“A	data	warehouse	is	a	subject-oriented,
integrated,	time-variant,	and	nonvolatile	collection	of	data	in	support	of
management’s	decision-making	process.”

database
a	collection	of	related	data	items	within	a	specific	business	process	or	problem
setting	stored	on	a	computer	system	through	the	organization	and	management
of	a	database	management	system.

database	administrator	(DBA)
responsible	for	the	implementation	and	monitoring	of	the	database;	closely
collaborates	with	network	and	system	managers.

database	approach
a	data	management	approach	in	which	all	data	are	stored	centrally	and
managed	by	a	DBMS.	Each	application	has	access	to	the	data	it	needs	through
the	DBMS,	resulting	in	fewer	instances	of	duplicate	data	or	data	with	errors.

database	designer
translates	the	conceptual	data	model	into	a	logical	and	internal	data	model.

Database	Management	System	(DBMS)
a	software	package	consisting	of	several	software	modules	used	to	define,
create,	use,	and	maintain	a	database.

database	management	system	architecture
a	conceptual	specification	of	the	various	modules	that	interact	with	one
another	to	make	up	a	DBMS.

database	model
the	description	of	the	database	data	at	different	levels	of	detail,	specifying	the
data	items,	their	characteristics	and	relationships,	constraints,	storage	details,
etc.

database	schema
see	database	model.

database	state
a	representation	of	the	data	in	a	database	at	a	given	moment	that	changes	on
an	ongoing	basis	with	data	manipulation,	such	as	adding,	updating,	or
removing	data.

database	system
the	combination	of	a	database	and	database	management	system.

data-oriented	approach
a	storage	technique	in	which	an	XML	document	is	decomposed	into	its
constituting	data	parts,	which	are	spread	across	a	set	of	connected	(object-

)relational	tables.

DBCLOB	(double	byte	character	large	object)
variable-length	character	string	made	up	of	double-byte	characters.

DDL	compiler
compiles	and	processes	the	data	definitions	and	commands	specified	by	the
data	definition	language.

DDL	statements
also	called	data	definition	language	statements.	Create	data	definitions	stored
in	the	catalog	that	define	or	alter	the	database	model.

deadlock
occurs	if	two	or	more	transactions	are	waiting	for	one	another’s	locks	to	be
released.	Each	transaction	holds	one	or	more	locks	required	by	another
transaction	to	continue,	resulting	in	all	transactions	remaining	in	an	endless
wait	state.

deadlock	detection	and	resolution
strategy	adopted	to	first	find	out	if	a	deadlock	occurred	and	then	resolve	it
afterwards.

deadlock	prevention
strategy	adopted	to	prevent	deadlocks	from	occurring.

decision	phase
the	second	phase	of	the	2PC	Protocol	in	which	the	transaction	coordinator
makes	the	final	decision	about	the	outcome.

decision	support	systems	(DSS)
the	information	systems	needed	at	both	the	tactical	and	strategic	level	to
provide	information	supporting	decisions	in	either	the	mid-	or	long-term
range.

decision	trees
recursive	partitioning	algorithms	(RPAs)	that	come	up	with	a	tree-like
structure	representing	patterns	in	an	underlying	dataset.

declarative	DML
type	of	DML	that	improved	upon	procedural	DML.	Specifies	which	data
should	be	retrieved	or	what	changes	should	be	made	without	the	need	to
specify	the	how.

deduplication
aggregating	and	merging	different	attribute	types	(e.g.,	CustomerID,	CustID,
ClientID,	ID)	or	attribute	values	(e.g.,	Bart	Baesens	versus	Bart	Baessens)	into
one	attribute	type	or	value.

deep	equality
implies	that	objects	have	the	same	values	for	their	variables	and	all	their
referred	objects	have	the	same	values	for	their	variables.

DEFAULT	constraint
can	be	used	in	SQL	to	set	a	default	value	for	a	column.

deferred	update
database	buffer	flushing	policy	in	which	only	pending	updates	from	already
committed	transactions	are	written	to	disk;	there	will	never	be	a	need	for

UNDO	operations,	but	REDO	operations	may	still	be	required.	Also	called
NO-UNDO/REDO	policy.

degree
corresponds	to	the	number	of	entity	types	participating	in	the	relationship	type
(e.g.,	a	binary	relationship	type	has	a	degree	of	two).

DELETE
an	SQL	statement	that	removes	data	from	a	relational	database.

deletion	anomaly
an	issue	encountered	when	a	tuple	in	an	unnormalized	table	is	deleted,
resulting	in	the	deletion	of	all	corresponding	data.

delimiters
one	or	more	characters	to	mark	the	beginning	or	end	of	a	unit	of	data.

delineate
to	specify	the	transaction	boundaries.

dendrogram
a	tree-like	diagram	that	records	the	sequences	of	merges	in	hierarchical
clustering.

denormalization
the	merging	of	several	normalized	source	data	tables	into	an	aggregated,
denormalized	data	table.

dense	index

an	index	with	an	index	entry	for	every	possible	value	of	the	search	key	it
indexes.

dependency
defines	a	“using”	relationship	that	states	that	a	change	in	the	specification	of	a
UML	modeling	concept	may	affect	another	modeling	concept	that	uses	it;
denoted	by	a	dashed	line	in	the	UML	diagram.

dependent	data	marts
data	marts	that	pull	their	data	from	a	central	data	warehouse.

derived	attribute	type
an	attribute	type	that	can	be	derived	from	another	attribute	type.

derived	fragmentation
when	the	fragmentation	criteria	belong	to	another	table.

dicing
an	OLAP	operation	corresponding	to	a	range	selection	on	one	or	more
dimensions.

direct	attach
storage	devices	with	a	one-to-one	connection	between	server	and	storage
device.

directly	accessible	storage	device	(DASD)
storage	device	on	which	every	location	should	be	individually	addressable	and
directly	reachable	to	access	its	content.

directory

a	file	that	defines	the	relationships	between	the	records	in	another	file.

disaster	tolerance
refers	to	an	organization’s	endurance	against	human-	or	nature-induced
disasters.

disjoint	specialization
a	specialization	whereby	an	entity	can	be	a	member	of	at	most	one	of	the
subclasses.

disjointness	constraint
specifies	what	subclasses	an	entity	of	the	superclass	can	belong	to.

disk	block
a	single	sector	or	multiple	physically	adjacent	sectors	which	a	disk	reads	as	a
single	unit,	increasing	read	speed	and	efficiency;	also	called	cluster,	page,	or
allocation	unit.

disk	mirroring
a	(near)	real-time	approach	that	writes	the	same	data	simultaneously	to	two	or
more	physical	disks	(e.g.,	in	a	RAID	set-up).

dissemination
mechanism	used	to	specify	how	information	flows	between	nodes	in	a
network.

DISTINCT
an	SQL	operator	used	in	aggregate	functions	that	filters	out	duplicates.

distinct	data	type

a	user-defined	data	type	that	specializes	a	standard,	built-in	SQL	data	type,
inheriting	all	the	properties	of	the	SQL	data	type	used	for	its	definition.

distributed	2PL
a	distributed	version	of	2PL	in	which	every	site	has	its	own	lock	manager,
which	manages	all	locking	data	pertaining	to	the	fragments	stored	on	that	site.

distributed	database	system
a	database	system	in	which	data	and	data	retrieval	functionality	are	distributed
over	multiple	data	sources	and/or	locations.

divisive	hierarchical	clustering
a	clustering	technique	that	starts	with	one	cluster	and	splits	recursively	until
one	observation	per	cluster	remains.

DML	compiler
compiles	the	data	manipulation	statements	specified	in	the	DML.	Translates
the	DML	statements	into	a	set	of	simple	constructs	to	select,	insert,	update,
and	delete	data.

document	metadata
metadata	that	refer	to	the	properties	of	the	document	itself:	file	name,	creator
of	the	file,	creation,	and	last	modification	date	of	the	file,	file	type	(text,
image,	audio,	etc.).

document	store
type	of	NoSQL	database	that	stores	a	collection	of	attributes	labeled	and
unordered,	representing	items	that	are	semi-structured.

Document	Type	Definition	(DTD)

a	formal	specification	of	the	structure	of	an	XML	document	that	defines	the
tag	set,	the	location	of	each	tag,	and	how	they	are	nested.	See	also	XML
Schema	Definition.

document-oriented	approach
a	storage	technique	in	which	an	XML	document	is	stored	as	either	a	BLOB
(binary	large	object)	or	a	CLOB	(character	large	object)	in	a	table	cell.

DOM	API
a	tree-based	API	that	represents	the	XML	document	as	a	tree	in	internal
memory.

domain
specifies	and	organizes	the	range	of	admissible	values	for	an	attribute	type.

doubling	amount
the	amount	of	change	required	for	doubling	the	primary	outcome	odds	in	a
logistic	regression.

DQ	framework
categorizes	the	dimensions	of	data	quality;	a	methodology	developed	to
determine	the	measures	of	data	quality.

drill-across
an	OLAP	operation	where	information	from	two	or	more	connected	fact	tables
is	accessed.

DROP
an	SQL	command	that	removes	database	objects.

dummy	record	type
record	type	needed	in	the	CODASYL	model	to	model	N:M	or	recursive
relationship	types.

dynamic	binding
in	object-oriented	programming,	the	binding	of	a	method	to	its
implementation	at	runtime,	based	on	the	object	and	its	class.	Also	known	as
virtual	method	invocation.

dynamic	hashing
a	hashing	procedure	that	allows	for	a	file	to	shrink	or	grow	without	the	need
for	it	to	be	completely	rearranged.

early	binding
queries	are	translated	into	an	executable	format	(“bound”)	before	compiling
the	host	language.	In	this	way,	the	queries	can	be	checked	for	correctness,	but
they	have	the	disadvantage	that	they	cannot	be	constructed	dynamically
during	runtime.

edge
one	of	the	primary	components	of	graphs,	consisting	of	arcs	or	lines	that
connect	nodes.

electronic	vaulting
backup	method	in	which	backup	data	are	transmitted	over	a	network	to	hard
disk	or	tape	devices	at	a	secure	vaulting	facility	or	at	an	alternate	data	center.

embedded	API

an	API	with	SQL	statements	embedded	in	the	host	programming	language	so
the	SQL	statement(s)	will	be	an	integral	part	of	the	source	code	of	a	program.

embedded	DBMSs
a	DBMS	containing	a	single	library	embedded,	or	tightly	integrated,	with	an
application	so	it	becomes	an	integral	part	of	the	application.

embedded	DML	statements
also	called	embedded	data	manipulation	language	statements,	this	is	how
applications	are	able	to	interact	with	the	DBMS.

embedded	documents
used	in	MongoDB	to	embed	related	data	as	subdocuments	in	a	document.

embedded	identification
a	record	organization	technique	in	which	data	items	representing	attributes	are
always	preceded	explicitly	by	the	attribute	type;	only	non-empty	attributes	of
the	records	are	included.

encapsulation
see	information	hiding.

end_transaction
an	instruction	that	indicates	the	end	of	a	transaction.

Enhanced	Entity	Relationship	Model	(EER)
an	extension	of	the	ER	model	that	includes	all	the	modeling	concepts	of	the
ER	model,	plus	additional	semantic	data	modeling	concepts:
specialization/generalization,	categorization,	and	aggregation.

enterprise	application	integration	(EAI)
the	set	of	activities	aimed	at	integrating	applications	within	a	specific
enterprise	environment.	It	often	applies	a	data	propagation	pattern	in	the
interaction	between	two	applications	(e.g.,	when	an	event	in	a	source
application	requires	processing	within	a	target	application).

enterprise	data	replication	(EDR)
data	propagation	pattern	applied	in	the	synchronization	between	two	data
stores	where	updates	in	a	source	system	are	copied	in	(near)	real-time	to	a
target	data	store	which	serves	as	an	exact	replica.

enterprise	information	integration	(EII)
a	data	federation	technology	implemented	by	realizing	a	virtual	business	view
on	the	dispersed	underlying	data	sources.

Enterprise	JavaBeans	(EJB)
business	components	that	run	within	the	Java	Enterprise	Edition	(Java	EE)
platform.	Each	EJB	defines	a	modular	piece	of	business	logic	which	can	be
used	and	re-used	in	business	applications.

enterprise	search
the	practice	of	making	content	stemming	from	various	distributed	data	sources
(databases,	but	also	plain	files)	in	an	organization	searchable.

Entity	Relationship	(ER)	model
a	data	model	that	shows	the	relationship	among	data	items	through	entity
types,	attribute	types,	and	relationship	types.	Visualized	through	an	attractive
and	user-friendly	graphical	notation.

entity	type
representation	of	a	business	concept	with	an	unambiguous	meaning	to	a
specific	set	of	users.

Ethernet
the	long-standing	standard	medium	for	local	area	networks	(LANs)	and
sometimes	wide	area	networks	(WANs),	mostly	in	combination	with	the
internet	protocol	stack	TCP/IP.

ETL	(extract,	transform,	load)
step	of	a	data	warehouse	development	process	in	which	data	are	extracted	(E)
from	the	source	systems,	transformed	(T)	to	fit	the	data	warehouse	schema,
and	then	loaded	(L)	into	the	data	warehouse.

eventual	consistency
data	and	respective	replicas	of	the	same	data	item	become	consistent	over	time
after	each	transaction,	but	continuous	consistency	is	not	guaranteed.

EXCEPT
an	SQL	set	operation	that	returns	a	table	that	includes	all	tuples	that	are	in	the
first	SELECT	block	but	not	in	the	second.

exclusive	lock
a	lock	in	which	a	single	transaction	acquires	the	sole	privilege	to	interact	with
the	locked	database	object;	no	other	transactions	may	read	from	it	or	write	to
it	until	the	lock	is	released.

existence	dependency
see	total	participation.

EXISTS
an	SQL	function	that	checks	whether	the	result	of	a	correlated	nested	query	is
empty	or	not,	returning	TRUE	or	FALSE.

exploratory	analysis
data	analysis	activities	that	summarize	and	visualize	characteristics	of	a
dataset	to	provide	initial	insights	into	the	data	that	can	be	usefully	adopted
throughout	the	analytical	modeling	stage.

extended	relational	DBMS	(ERDBMS)
see	object-relational	DBMS	(ORDBMS).

Extensible	Markup	Language	(XML)
a	markup	language	for	the	storage	and	exchange	of	complex,	structured,	and
semi-structured	documents;	designed	to	be	both	human	and	machine	readable.
It	was	introduced	by	the	World	Wide	Web	Consortium	(W3C)	in	1997.

Extensible	Stylesheet	Language	(XSL)
collection	of	languages	that	can	be	used	to	transform	XML	documents.

external	data	model
the	subsets	of	the	data	items	in	the	logical	model,	also	called	views,	tailored
toward	the	needs	of	specific	applications	or	groups	of	users.

external	scalar	function
function	written	in	an	external	host	language	(e.g.,	Java,	C,	Python)	that
returns	a	single	value	or	scalar.

external	table	function

function	written	in	an	external	host	language	(e.g.,	Java,	C,	Python)	that
returns	a	table	of	values.

extraction	strategy
strategy	adopted	to	extract	data	from	the	source	systems	and	load	them	into
the	data	warehouse;	can	be	either	full	or	incremental.

fact	constellation
a	conceptual	data	model	of	a	data	warehouse	that	has	more	than	one	fact	table,
and	which	share	some	dimension	tables.

factless	fact	table
a	fact	table	that	contains	only	foreign	keys	and	no	measurement	data.

failover	time
time	needed	to	have	a	backup	system	up	and	running,	with	up-to-date	data,
after,	e.g.,	a	media	malfunction.

failure	detection
mechanism	used	to	find	out	if	a	node	in	a	network	has	gone	down.

featurization
mapping	of	network	characteristics	into	explanatory	variables	(also	called
features)	for	each	node.

federated	database
see	federated	DBMS.

federated	DBMS

provides	a	uniform	interface	to	underlying	data	sources	such	as	other	DBMSs,
file	systems,	and	document	management	systems.	Hides	the	underlying
storage	details	to	facilitate	data	access.

Fibre	Channel	(FC)
medium	developed	specifically	to	connect	high-end	storage	systems	to
servers.	Originally,	it	was	based	on	fiber-optic	cable	(hence	the	name),	but
nowadays	it	also	supports	other	cabling	such	as	copper	wire.

file-based	approach
a	data	management	approach	common	in	the	early	days	of	computing,	in
which	every	application	stored	its	data	in	its	own	dedicated	files,	which
resulted	in	multiple	instances	of	duplicate	data	or	data	with	errors.

file-level	I/O	protocol
the	I/O	commands	are	defined	at	the	level	of	requests	for	entire	files	on	the
storage	device.

filter	factor	(FF)
the	fraction	of	the	total	number	of	rows	that	is	expected	to	satisfy	the	predicate
associated	with	an	attribute	type.

first	normal	form	(1	NF)
states	that	every	attribute	type	of	a	relation	must	be	atomic	and	single-valued.
Hence,	no	composite	or	multi-valued	attribute	types	are	tolerated.

FLWOR
the	formulation	of	an	XQuery	statement	that	represents	For,	Let,	Where,
Order	By,	and	Return.

foreign	key
an	attribute	type	or	attribute	types	of	one	relation	that	is/are	referring	to	the
primary	key	of	another.

formatting	rules
specify	how	data	should	be	consistently	and	uniformly	encoded	in	the	data
warehouse.

fourth	normal	form	(4	NF)
when	Boyce–Codd	normal	form	is	satisfied	and	for	every	non-trivial	multi-
valued	dependency	X	→→	Y,	X	is	a	superkey.

fragment	query
the	transformation	of	a	query	to	a	query	on	physical	fragments	based	on	the
data	distribution;	the	result	of	the	data	localization	step	in	distributed	query
processing.

fragmentation
the	act	of	partitioning	the	global	dataset	into	fragments.

fragmentation	transparency
when	users	can	execute	global	queries,	without	being	concerned	with	the	fact
that	distributed	fragments	will	be	involved,	and	need	to	be	combined,	to
perform	the	query.

fragments
data	that	have	been	partitioned	into	subsets	in	a	distributed	database.

free-form	language

a	language	in	which	no	special	indentation	is	required,	in	contrast	to
languages	such	as	Python	or	COBOL.

FROM
part	of	an	SQL	statement	that	specifies	which	table(s)	are	used	for	data
retrieval.

full	backup
a	backup	of	the	entire	database,	including	data	and	all	changes	from
transactions.

full	functional	dependency
exists	if	there	is	a	dependency	between	two	sets	of	attribute	types	X	and	Y	and
when	the	removal	of	any	attribute	type	A	from	X	means	that	the	dependency
does	not	hold	anymore.

full	outer	join
an	SQL	join	query	in	which	each	row	of	both	tables	is	kept	in	the	result,	if
necessary	completed	with	NULL	values.

full-text	search
a	technique	for	searching	XML	data	that	treats	the	XML	document	as	textual
data,	ignoring	tag	structure	and	information.

functional	dependency
a	constraint	in	which	one	value	of	an	attribute	type	determines	the	value	of
another.

gain

the	weighted	decrease	in	entropy.	Used	to	decide	on	node	splits	when	growing
a	decision	tree.

garbage	in,	garbage	out	(GIGO)
a	principle	that	states	that	bad	data	give	bad	insights,	which	lead	to	bad
decisions.

General	Data	Protection	Regulation	(GDPR)
regulation	in	the	European	Union	with	rules	for	compliance,	openness,	and
transparency	regarding	the	use	of	an	individual’s	personal	data.

generalization
the	reverse	process	of	specialization;	a	bottom-up	process	of	conceptual
synthesis.

global	deadlock
a	deadlock	spanning	several	locations	that	cannot	be	detected	by	individual
local	lock	managers.

global	query	optimization
a	step	in	distributed	query	processing	in	which	a	cost	model,	based	on
statistical	evidence,	is	used	to	evaluate	different	global	strategies	for	query
execution.

granularity
the	level	of	depth	of	the	data	represented	in	a	fact	table.	High	granularity
means	deep	depth	and	low	granularity	means	shallow	depth.

graph	theory

a	theory	that	uses	the	mathematical	structures	of	graphs	to	model	pairwise
relations	between	objects.

graph-based	database
type	of	NoSQL	database	that	applies	the	mathematical	graph	theory	to	the
storage	of	records.	Data	are	stored	in	graph	structures	using	the	elements	of
nodes	and	edges.

GraphX
Spark’s	component	implementing	programming	abstractions	to	deal	with
graph-based	structures.	It	comes	with	a	set	of	fundamental	operators	and
algorithms	to	work	with	graphs	and	simplify	graph	analytics	tasks.

GROUP	BY
an	SQL	clause	in	which	rows	are	grouped	when	they	have	the	same	value	for
one	or	more	columns	and	the	aggregation	is	applied	to	each	group	separately.

GROUPING	SETS
an	SQL	operator	that	generates	a	result	set	equivalent	to	one	created	by	a
UNION	ALL	of	several	simple	GROUP	BY	clauses.

Hadoop
a	popular	open-source	software	framework	used	for	distributed	storage	and
processing	of	big	datasets	that	can	be	set	up	over	a	cluster	of	computers	built
from	normal,	commodity	hardware,	instead	of	requiring	specialized,
expensive	machines.

Hadoop	Common
a	set	of	shared	programming	libraries	used	by	the	other	Hadoop	modules;	the
first	module	of	the	Hadoop	stack.

Hadoop	Distributed	File	System	(HDFS)
a	Java-based	file	system	to	store	data	across	multiple	machines;	the	second
module	of	the	Hadoop	stack.

hard	disk	backup
backup	method	in	which	database	files	are	copied	periodically	to	a	hard	disk
for	safekeeping.

hard	disk	controller
circuitry	that	oversees	a	drive’s	functioning	and	interfaces	between	the	disk
drive	and	the	rest	of	the	system.

hash	function
a	function	that	takes	an	arbitrary	value	of	arbitrary	size	and	maps	it	to	a	key
with	a	fixed	size,	which	is	called	the	hash	value,	hash	code,	hash	sum,	or
simply	the	hash.

hash	index
a	secondary	file	organization	method	that	combines	hashing	with	indexed
retrieval;	index	entries	have	the	same	format	as	with	a	normal	secondary
index,	but	the	index	is	organized	as	a	hash	file.

hash	join
technique	to	physically	implement	a	join,	in	which	a	hashing	algorithm	is
applied	to	the	values	of	the	attribute	types	involved	in	the	join	condition	for	a
table	R.	Based	on	the	resulting	hash	values,	the	corresponding	rows	are
assigned	to	buckets	in	a	hash	file.	The	same	hashing	algorithm	is	then	applied
to	the	join	attribute	types	of	the	second	table	S.	If	a	hash	value	for	S	refers	to	a

non-empty	bucket	in	the	hash	file,	the	corresponding	rows	of	R	and	S	are
compared	according	to	the	join	condition.

hashing
a	key-to-address	transformation,	such	that	a	record’s	physical	address	can	be
calculated	from	its	key	value.

HBase
the	first	Hadoop	database	inspired	by	Google’s	Bigtable,	offering	a	DBMS
that	can	be	run	on	top	of	HDFS,	handling	very	large	relational	tables.

heap	file
a	primary	file	organization	method	in	which	new	records	are	inserted	at	the
end	of	the	file.	There	is	no	relationship	between	a	record’s	attributes	and	its
physical	location,	which	is	not	efficient	for	record	retrieval.

Hibernate
a	framework	for	the	Java	programming	language	that	handles	object
persistence	through	object-relational	mapping.

hierarchical	clustering
a	clustering	technique	that	builds	a	hierarchy	of	clusters;	can	work	in	a
divisive	or	agglomerative	way.

hierarchical	DBMS
one	of	the	earliest	DBMS	types.	It	is	record	oriented,	using	a	tree-style	model
with	procedural	DML	and	no	query	processor.	Examples	include	IMS	and	the
Windows	Registry.

hierarchical	model

one	of	the	earliest	data	models	developed,	originating	during	the	Apollo
missions.	As	a	tree-structured	model	it	must	have	1:N	relationship	types.
Parent	records	can	have	multiple	child	records,	but	a	child	record	can	have
only	one	parent.

Hive
a	data	warehouse	solution	which	–	like	HBase	–	runs	on	top	of	Hadoop,	but
allows	for	richer	data	summarization,	and	querying	facilities	by	providing	an
SQL-like	interface.

horizontal	fragmentation
when	each	fragment	in	a	distributed	database	consists	of	rows	that	satisfy	a
certain	query	predicate.

horizontal	scaling
a	way	to	increase	capacity	by	arranging	multiple	database	servers	in	a	cluster.

hybrid	OLAP	(HOLAP)
combines	elements	of	both	MOLAP	and	ROLAP,	allowing	an	RDBMS	to
store	the	detailed	data	in	a	relational	data	warehouse,	whereas	the	pre-
computed	aggregated	data	can	be	kept	as	a	multidimensional	array	managed
by	a	MDBMS.

I/O
input/output;	the	exchange	of	data	between	secondary	and	primary	storage
supervised	by	the	operating	system.

I/O	boundary
boundary	between	primary	(volatile)	and	secondary	(persistent)	storage.

immediate	update	policy
database	buffer	flushing	policy	in	which	the	database	may	be	updated	before	a
transaction	is	committed.

implementation
in	object-oriented	programming,	the	implementation	of	methods’	signatures.

impurity
the	distribution	of	classes	in	a	classification	context.	Maximum	impurity
means	balanced	class	distribution,	whereas	minimum	impurity	means	one
class	dominates	the	other(s).

IN
an	SQL	operator	used	with	the	WHERE	clause	that	can	specify	multiple
values,	creating	a	set.

inconsistent	analysis	problem
when	a	transaction	reads	partial	results	of	another	transaction	that
simultaneously	interacts	with	(and	updates)	the	same	data	items.

incremental	backup
a	backup	of	only	the	data	changed	since	the	last	backup.

independent	data	mart
standalone	system	that	draws	data	directly	from	the	operational	systems,
external	sources,	or	a	combination	of	both,	and	not	from	a	central	data
warehouse.

index

a	stored,	ordered	list	of	key	values	that	is	part	of	the	internal	data	model	and
that	provides	a	fast	access	path	to	the	physical	data	to	speed	up	the	execution
time	of	a	query.

index	entry
a	representation	of	an	interval	that	contains	the	search	key	value	of	the	first
record	in	the	interval,	and	a	pointer	to	the	physical	position	of	the	first	record
in	the	interval.

index	space
a	space	in	the	storage	structure	separate	from	the	tablespace	in	which	indexes
are	stored.

indexed	sequential	file	organization
primary	file	organization	method	in	which	a	sequential	file	is	combined	with
one	or	more	indexes.

indexer
a	web	search	component	that	extracts	all	relevant	terms	from	the	page	and
updates	the	inverted	index	structure.

indexing
primary	or	secondary	file	organization	method	that	makes	use	of	an	index	to
specify	a	relationship	between	a	record’s	search	key	and	its	physical	location.

information	analyst
see	information	architect.

information	architect

designs	the	conceptual	data	model;	bridge	between	business	process	and	IT
environment;	collaborates	closely	with	the	database	designer.

information	hiding
states	that	the	variables	of	an	object	can	only	be	accessed	through	either	getter
or	setter	methods;	also	called	encapsulation.

Information	Technology	Infrastructure	Library	(ITIL)
a	set	of	detailed	practices	for	IT	service	management	that	focuses	on	aligning
IT	services	with	the	needs	and	requirements	of	business.

Infrastructure	as	a	Service	(IaaS)
hardware	infrastructure	(servers,	storage,	etc.)	are	offered	as	virtual	machines
in	the	cloud,	e.g.,	cloud-hosted	storage	hardware.

inheritance
in	the	case	of	categorization	corresponds	to	an	entity	inheriting	only	the
attributes	and	relationships	of	that	superclass	of	which	it	is	a	member.	In	the
case	of	object-oriented	programming,	represents	an	IS-A	relationship	in	which
a	subclass	inherits	variables	and	methods	from	a	superclass.

in-memory	DBMS
stores	all	data	in	internal	memory	instead	of	slower	external	storage	such	as
disk.	Often	used	for	real-time	purposes,	such	as	in	telecom	or	defense
applications.

inner	join
an	SQL	join	query	in	which	matching	tuples	from	two	different	tables	are
joined.	An	exact	match	is	a	requirement;	tuples	that	do	not	match	any	other
tuple	are	not	included.

INSERT
an	SQL	statement	that	adds	data	to	a	relational	database.

insertion	anomaly
an	issue	encountered	when	a	tuple	is	inserted	into	an	unnormalized	table
resulting	in	data	needing	to	be	reentered	repeatedly.

insourcing
building	a	skill	set	internally	at	the	corporate	or	business-line	level.

intention	exclusive	lock	(ix-lock)
lock	introduced	by	the	MGL	protocol	that	conflicts	with	both	x-locks	and	s-
locks.

intention	lock
lock	placed	on	all	coarser-grained	database	objects	that	encompass	an	object
to	be	locked	in	the	MGL	protocol.

intention	shared	lock	(is-lock)
lock	introduced	by	the	MGL	protocol	that	only	conflicts	with	x-locks.

inter-query	parallelism
when	many	simple	queries	are	executed	in	parallel.

interactive	queries
the	manner	in	which	a	user	can	ask	to	retrieve	or	update	data	from	the	DBMS.
Usually	executed	from	a	front-end	tool,	such	as	a	GUI	or	command	line.

interface

in	object-oriented	programming,	refers	to	the	signatures	of	the	methods	of	an
object.

internal	data	model
a	representation	of	a	database’s	physical	storage	details.

internal	layer
specifies	how	the	data	are	stored	or	organized	physically.

INTERSECT
an	SQL	set	operation	that	returns	a	table	that	includes	all	tuples	that	are	in
both	SELECT	blocks.

interval
part	of	a	file	that	is	represented	as	an	index	entry	in	the	indexed	sequential	file
organization	method;	also	called	partition.

intra-query	parallelism
when	different	subsets	of	the	data	are	searched	in	parallel	in	the	context	of	a
single,	complex	query.

intrinsic	category
a	DQ	framework	category	that	represents	the	degree	of	conformance	between
the	data	values	and	the	actual	or	true	values.

inverted	file
defines	an	index	over	a	non-unique,	non-ordering	search	key	of	a	dataset.	The
index	entries	refer	to	the	address	of	a	block	containing	pointers	to	all	records
with	that	particular	key	value.	The	same	approach	is	used	for	indexing

unstructured	text	documents,	with	one	index	entry	per	search	term,	referring
to	a	block	with	pointers	to	all	documents	that	contain	the	search	term.

iSCSI
network	for	storage-related	data	transfer	using	Ethernet	as	a	medium.

Java	applet
a	Java	program	that	runs	in	a	special	sandbox	in	a	web	browser,	stripping
many	permissions	a	normal	Java	program	would	have.

Java	Bean
Java’s	term	to	refer	to	re-usable,	modular,	object-oriented	software
components.

Java	Data	Objects	(JDO)
a	set	of	standardized	Java	components	to	access	data	sources.

Java	DataBase	Connectivity	(JDBC)
a	universal	database	API	written	in	Java	to	access	a	variety	of	SQL	databases.

Java	Persistence	API
the	replacement	for	the	entity	Beans	in	Enterprise	JavaBeans	3.0.	A	standard
that	can	be	implemented	by	vendors	to	facilitate	access	to	data	sources.

JavaScript
a	programming	language	originally	meant	to	be	embedded	in	web	pages	and
executed	by	the	web	browser	to	enhance	the	user	experience	on	a	particular
web	page.

JavaScript	Object	Notation	(JSON)

a	simple,	human-readable,	data	description	language	based	on	Java	in	which
objects	are	described	as	name–value	pairs	and	which	is	optimized	for	data
interchange	and	serialization.

join	index
a	multicolumn	index	that	combines	attribute	types	from	two	or	more	tables	so
it	contains	the	pre-calculated	result	of	a	join	between	these	tables.

join	query
allows	the	user	to	combine,	or	join,	data	from	multiple	tables.

JSONB
one	of	the	two	JSON	data	types,	in	which	data	are	stored	in	a	decomposed
binary	format	which	is	slower	to	store	but	significantly	faster	to	process	in
subsequent	calls,	as	no	reparsing	is	needed.

junk	dimension
a	dimension	that	simply	enumerates	all	feasible	combinations	of	values	of	the
low	cardinality	attribute	types.

key	attribute	type
an	attribute	type	with	distinct	values	for	each	individual	entity;	a	key	attribute
type	can	uniquely	identify	each	entity.

key-to-address	transformation
a	transformation	defined	by	a	hashing	algorithm	to	determine	a	record’s
physical	address	from	its	key	value.

key–value	store
a	database	storing	data	as	(key,	value)	pairs.

keyword-based	search
a	technique	for	searching	XML	data	that	assumes	the	XML	document	is
complemented	with	a	set	of	keywords	describing	the	document	metadata,	such
as	file	name,	author	name,	date	of	last	modification,	keywords	summarizing
document	content,	etc.

K-means	clustering
popular	non-hierarchical	clustering	method	that	estimates	K	clusters	using	an
iterative	procedure.

Label-Based	Access	Control	(LBAC)
a	control	mechanism	to	protect	data	against	unauthorized	access;	can
differentiate	between	the	level	of	authorization	granted	to	users.

language-integrated	querying
a	way	to	write	queries	using	a	programming	language’s	native	facilities
instead	of,	e.g.,	writing	them	using	SQL.

language-native	query	expression
query	expression	based	on	programming	language-specific	syntax.

large	objects	(LOBs)
data	structures	created	in	an	ORDBMS	to	deal	with	large	objects	such	as
multimedia;	stored	in	a	separate	table	and	tablespace	to	improve	physical
storage	efficiency.

late	binding
queries	are	only	translated	into	an	executable	format	(“bound”)	at	runtime.
When	compiling	the	programming	code,	the	queries	are	treated	as	text	strings

and	therefore	cannot	be	checked	for	correctness,	but	they	have	the	benefit	that
they	can	still	be	constructed	dynamically	during	runtime.

latency
see	rotational	delay.

left	outer	join
an	SQL	join	query	in	which	each	row	from	the	left	table	is	kept	in	the	result;	if
no	match	is	found	in	the	other	table	it	will	return	NULL	values	for	these
columns.

legacy
anything	hardware,	software,	or	system	left	over	from	a	previous	iteration	or
technology,	often	with	little	or	no	documentation	or	support	from	the	creator.

lift
indicates	a	negative	(lift	smaller	than	1)	or	positive	(lift	bigger	than	1)
dependence	between	the	antecedent	and	consequent	of	an	association	rule.

lift	curve
represents	the	cumulative	percentage	of	positives	(e.g.,	churners)	per	decile,
divided	by	the	overall	population	percentage	of	positives.

LIKE
an	SQL	operator	used	with	the	WHERE	clause	that	uses	wildcards	to	find
patterns.

linear	decision	boundary
linear	separating	line	(or	plane)	between	the	classes	of	a	classification
problem.

linear	list
a	list	in	which	each	element	has	exactly	one	successor,	except	for	the	last
element.

linear	regression
the	most	commonly	used	technique	to	model	a	continuous	target	variable.
Assumes	a	linear	relationship	between	the	target	variable	and	the	explanatory
variables.

linear	search
a	search	that	sequentially	retrieves	and	assesses	each	record	in	a	file	against	a
search	key.

linked	data
a	mechanism	to	mash	distributed	and	heterogeneous	data	into	one	overall
semantic	model	using	a	simple	representation	to	connect	existing	information
via	the	re-use	of	URIs.

linked	list
a	structure	in	which	items	(e.g.,	records)	are	connected	sequentially	by
pointers,	representing	some	logical	ordering.

list
an	ordered	set	of	elements.

literal
in	an	OODBMS,	a	constant	value,	typically	embedded	in	an	object,	with	no
OID	and	which	cannot	exist	on	its	own.

loading	factor

the	average	number	of	records	in	a	bucket	divided	by	the	bucket	size;
indicates	how	“full”	every	bucket	is	on	average.

loading	utility
supports	the	loading	of	the	database	with	information	from	a	variety	of
sources,	such	as	another	DBMS,	text	fields,	Excel	files,	etc.

local	query	optimization
a	step	in	distributed	query	processing	that	determines	the	optimal	strategy	for
local	query	execution.

location	transparency
when	database	users	do	not	need	to	know	on	which	node	the	required	data
reside.

lock	manager
provides	concurrency	control	to	ensure	data	integrity	at	all	times	by	assigning
and	releasing	locks	that	specify	what	types	of	data	operations	a	transaction	can
perform	on	a	certain	database	object.

lock	table
contains	information	about	which	locks	are	currently	held	by	which
transaction;	which	transactions	are	waiting	to	acquire	certain	locks,	etc.

locking
mechanism	used	to	manage	simultaneous	access	to	data	by	granting	and
releasing	locks	that	specify	access	rights	(e.g.,	read	or	write	access).

locking	protocol

a	mechanism	used	by	the	lock	manager	that	specifies	the	rules	and	conditions
of	when	to	lock	and	unlock	database	objects.

log	record
a	record	of	a	transaction	or	operation	in	a	database;	stored	in	a	logfile.

logfile
a	sequential	file,	consisting	of	log	records	that	contain	information	such	as
before	and	after	images	of	all	records	involved	in	a	transaction,	which	is	vital
to	transaction	management	and	recovery.

logical	data	independence
the	ability	to	make	changes	to	the	conceptual/logical	layer	with	minimal
impact	on	the	external	layer.

logical	data	model
the	translation	or	mapping	of	the	conceptual	data	model	toward	a	specific
implementation	environment.

logistic	regression
an	extension	of	linear	regression	used	to	model	a	categorical	target	variable.

long-running	transactions
transactions	of	which	the	duration	can	be	extensive	as	it,	e.g.,	depends	on	the
asynchronous	interactions	between	participants	in	a	business	process	(e.g.,	a
WS-BPEL	process),	also	referred	to	as	long-lived	transactions.

long-term	lock
lock	granted	and	released	according	to	a	protocol,	and	held	for	a	longer	time,
until	the	transaction	is	committed.

loosely	coupled
with	only	limited	interdependence.

lost	update	problem
when	an	otherwise	successful	update	of	a	data	item	by	a	transaction	is
overwritten	by	another	transaction	that	wasn’t	“aware”	of	the	first	update.

manual	failover
a	failure	safeguarding	technique	in	which	a	backup	server	with	DBMS
software	is	on	standby,	possibly	with	shared	access	to	the	same	storage
devices	as	the	primary	server.	If	a	calamity	occurs,	the	spare	server	is
manually	started	up	and	the	workload	transferred	from	the	primary	to	the
backup.

MapReduce
a	programming	model,	primarily	seen	in	Hadoop,	that	is	a	highly	scalable
implementation	of	both	a	map	function	(the	conversion	of	a	dataset	broken
down	into	tuples	of	key–value	pairs),	and	a	reduce	function,	which	reduces	the
output	of	the	map	into	a	smaller	set	of	tuples.	The	third	module	of	the	Hadoop
stack.

marketing	analytics
using	analytics	for	marketing	purposes	such	as	churn	prediction,	response
modeling,	and	customer	segmentation.

master	data	management	(MDM)
series	of	processes,	policies,	standards,	and	tools	to	help	organizations	to
define	and	provide	a	single	point	of	reference	for	all	data	that	are	“mastered”.

The	focus	is	on	unifying	company-wide	reference	data	types	such	as
customers	and	products.

mean	absolute	deviation	(MAD)
mean	absolute	deviation	between	the	predictions	and	actual	values	of	a	target
variable.

mean	squared	error	(MSE)
mean	squared	deviation	between	the	predictions	and	actual	values	of	a	target
variable.

media	failure
failure	that	occurs	when	the	secondary	storage	that	contains	the	database	files,
and	possibly	the	logfile,	is	damaged	or	inaccessible	due	to	a	disk	crash,	a
malfunction	in	the	storage	network,	or	other	catastrophic	event.

member	record	type
record	type	at	the	N-side	of	a	1:N	relationship	type	in	the	CODASYL	model.

membership	protocol
set	of	rules	to	specify	how	nodes	remain	informed	at	all	times	of	the	other
nodes	in	the	network.

Memcached
a	NoSQL	database	that	implements	a	distributed	memory-driven	hash	table
that	is	placed	in	front	of	a	traditional	database	to	speed	up	queries	by	caching
recently	accessed	objects	in	internal	memory.

message-oriented	middleware	(MOM)

an	alternative	to	RPC	that	is	more	suitable	in	a	heterogeneous	environment;
integration	is	established	by	exchanging	XML	messages	between	involved
parties.

metadata
the	data	definitions	stored	in	the	catalog	of	the	DBMS.

metadata	services
support	the	storage,	integration,	and	exploitation	of	diverse	types	of	metadata.

metamodel
a	data	model	for	metadata	that	determines	the	type	of	metadata	that	can	be
stored.

method	overloading
in	object-oriented	programming,	using	the	same	name	for	more	than	one
method	in	the	same	class.	The	OO	language	environment	can	then	determine
which	method	you’re	calling,	provided	the	number	or	type	of	parameters	is
different	in	each	method.

method	overriding
in	object-oriented	programming,	a	process	that	allows	subclasses	or	child
classes	to	provide	a	specialized	implementation	of	a	method	that	is	previously
present	in	one	of	its	superclasses	or	parent	classes.

mini-dimension	table
a	separate	dimension	table	with	a	new	surrogate	key,	often	used	to	store
rapidly	changing	information.

mirroring

the	act	of	performing	the	same	write	operations	on	two	or	more	identical	disks
simultaneously.	This	is	always	done	synchronously.

misclassification	rate
the	share	of	misclassified	observations.

missing	values
when	some	values	are	not	included	in	a	dataset.	Missing	values	can	occur	for
many	reasons,	such	as	they	were	undisclosed,	or	due	to	a	merging	error.

mixed	file
a	file	that	combines	stored	records	representing	different	real-world	concepts.

mixed	fragmentation
the	combination	of	both	vertical	and	horizontal	fragmentation	in	a	distributed
database.

MLlib
Spark’s	machine	learning	library.	It	makes	practical	machine	learning	scalable
and	user-friendly	and	includes	algorithms	for	classification,	regression,
clustering,	and	recommender	systems.

mobile	DBMS
database	that	runs	on	smartphones.	Must	have	a	small	footprint,	always	be
online,	and	have	limited	processing	power,	storage,	and	impact	on	battery	life.
Often	connects	and	synchronizes	with	a	central	DBMS.

multicolumn	index
index	based	on	the	values	of	multiple	columns	in	a	table.

multidimensional	DBMS	(MDBMS)
a	DBMS	that	supports	multidimensional	OLAP.

multidimensional	OLAP	(MOLAP)
stores	the	multidimensional	data	in	a	multidimensional	array-based	data
structure	optimized	for	efficient	storage	and	quick	access.

multilevel	index
an	index-to-an-index	for	an	index	that	has	grown	too	large	to	be	searched
efficiently.

multimedia	DBMS
stores	multimedia	data	such	as	text,	images,	audio,	video,	3D	games,	CAD
designs,	etc.,	and	provides	content-based	query	facilities.

Multiple	Granularity	Locking	Protocol	(MGL)
locking	protocol	that	ensures	that	the	respective	transactions	that	acquired
locks	on	database	objects	interrelated	hierarchically	(e.g.,	tablespace	–	table	–
disk	block	–	tuple)	cannot	conflict	with	one	another.

multiset
a	collection	type	that	can	have	duplicate	elements	without	order.

multi-user	database
a	database	that	many	applications	and	users	can	access	in	parallel.

multi-user	system
see	multi-user	database.

multi-valued	attribute	type

an	attribute	type	that	can	have	multiple	values	at	any	given	time.

multi-valued	dependency
a	dependency	X	→→	Y,	such	that	each	X	value	exactly	determines	a	set	of	Y
values,	independently	of	the	other	attribute	types.

named	row	type
a	user-defined	data	type	that	groups	a	coherent	set	of	data	types	into	a	new
composite	data	type	and	assigns	a	meaningful	name	to	it.

namespace
prefixes	to	XML	elements	that	provide	a	unique,	unambiguous	identification
of	their	meaning.

NAS	(network	attached	storage)
a	specialized	device	for	file	storage	that	can	be	“plugged”	straightforwardly
into	a	TCP/IP-based	LAN	or	WAN	via	Ethernet.

NAS	gateway
similar	to	a	NAS	device,	but	without	the	hard	disk	drives;	it	consists	of	only	a
processor	and	a	stripped-down	operating	system.	The	gateway	is	plugged	into
a	TCP/IP-based	LAN	or	WAN	and	connected	to	external	disk	drives	by	either
DAS	or	SAN.

navigational	query
a	query	that	navigates	from	one	object	to	another	in	an	OODBMS.

nested	query
a	query	that	appears	within,	or	“nested”	inside,	a	different	query.	Also	called	a
subquery	or	inner	query.

nested-loop	join
technique	to	physically	implement	a	join	in	which	one	of	the	tables	is	denoted
as	the	inner	table	and	the	other	becomes	the	outer	table.	For	every	row	in	the
outer	table,	all	rows	of	the	inner	table	are	retrieved	and	compared	to	the
current	row	of	the	outer	table.	If	the	join	condition	is	satisfied,	both	rows	are
joined	and	put	in	an	output	buffer.

network	attach
storage	devices	in	a	many-to-many	connection	with	the	corresponding	servers
through	network	technology.

network	DBMS
a	record-oriented	DBMS	with	a	procedural	DML	and	no	query	processor.
Uses	a	network	data	model	to	link	records	within	the	database.	More	flexible
than	a	hierarchical	DBMS	because	it	can	make	connections	in	more	than	one
direction.

node
key	component	of	a	network	which	is	connected	to	other	nodes	using	edges	or
vertices.

nonlinear	list
any	list	that	does	not	fit	the	criteria	of	a	linear	list.

nonrepeatable	read
when	a	transaction	T1	reads	the	same	row	multiple	times,	but	obtains	different
subsequent	values,	because	another	transaction	T2	updated	this	row	in	the
meantime.

non-volatile

a	property	of	a	data	warehouse	that	implies	that	the	data	are	primarily	read-
only,	and	will	not	be	frequently	updated	or	deleted.

normalization
the	process	of	analyzing	the	relations	to	ensure	that	they	contain	no	redundant
data	in	order	to	avoid	anomalies	that	can	occur	during	data	insertion,	deletion,
or	update.

NOT	EXISTS
an	SQL	function	that	returns	TRUE	if	there	are	no	tuples	in	the	result	of	the
nested	query,	or	otherwise	returns	FALSE.

NOT	NULL	constraint
prohibits	null	values	for	a	column.

Not-only	SQL	(NoSQL)
databases	that	store	and	manipulate	data	in	other	formats	than	tabular	relations
(i.e.,	non-relational	databases).	Can	be	classified	according	to	data	model	into
key–value	stores,	tuple	or	document	stores,	column-oriented	databases,	and
graph	databases.	Very	popular	for	Big	Data.

n-tier	architecture
a	database	system	architecture	in	which	the	applications	on	an	application
server	or	the	functionality	of	other	tiers	are	spread	out	over	multiple	tiers.
Also	known	as	multi-tier	architecture.

object
an	instance	of	a	class.	An	object	encapsulates	both	data	and	functionality.

object	constraint	language	(OCL)

used	to	specify	various	types	of	constraints,	defined	in	a	declarative	way;
specify	what	must	be	true,	but	not	how	this	should	be	accomplished.

Object	Data	Management	Group	(ODMG)
A	group	of	OODBMS	vendors	formed	in	1991	to	define	standards	for	working
with	OODBMSs.	Originally	called	Object	Database	Management	Group,	the
consortium	changed	its	name	to	The	Object	Data	Management	Group	with	the
release	of	the	ODMG	3.0	standard,	to	emphasize	the	shift	from	object
database	standard	toward	object	storage	API	standard.

object	definition	language	(ODL)
a	data	definition	language	(DDL)	independent	of	any	programming	language,
that	defines	the	object	types	that	conform	to	the	ODMG	Object	Model	for	an
OODBMS.

object	equality
in	an	OODBMS,	when	the	values	of	two	objects’	variables	are	the	same.

object	identifier	(OID)
a	unique	and	immutable	identifier	for	an	object	in	an	OODBMS.

object	identity
in	object-oriented	programming,	refers	to	the	fact	that	every	object	can	be
identified	in	a	unique	way.

Object	Management	Group	(OMG)
an	international	open	membership	consortium	to	develop	and	advance
standards	with	respect	to	object	orientation	and	model-based	development.
One	of	the	most	important	standards	under	OMG	governance	is	the	Unified
Modeling	Language	(UML).

object	model
consisting	of	objects	and	literals,	provides	a	common	model	to	define	classes,
variables	or	attributes,	behavior,	and	object	persistence	in	an	OODBMS.

object	persistence
a	general	term	referring	to	saving	objects	on	a	persistent	medium	where	they
can	be	retrieved	from	later	on.

object	query	language	(OQL)
a	declarative,	non-procedural	query	language	for	OODBMSs.

object-relational	mapping	(ORM)
a	technique	to	map	and	convert	objects	(the	core	concepts	in	object-oriented
programming	languages)	and	queries	on	such	objects	to	a	relational	structure
as	found	in	an	RDBMS.

object-oriented	(OO)
a	programming	paradigm	in	which	an	application	consists	of	a	series	of
objects	that	request	services	from	each	other.

object-oriented	DBMS	(OODBMS)
DBMS	based	on	the	object-oriented	data	model.	An	object	encapsulates	both
data	and	functionality.

object-relational	DBMS	(ORDBMS)
uses	a	relational	model	extended	with	object-oriented	concepts,	such	as	user-
defined	types,	user-defined	functions,	collections,	inheritance,	and	behavior.
Shares	characteristics	with	both	an	RDBMS	and	an	OODBMS.

odds	ratio

multiplicative	increase	in	the	odds	when	an	explanatory	variable	increases
with	one	unit,	ceteris	paribus.

OLE	DB
a	follow-up	specification	to	ODBC	that	allows	uniform	access	to	a	variety	of
data	sources	using	Microsoft’s	Component	Object	Model	(COM).

ON	DELETE	CASCADE
a	referential	integrity	constraint	that	says	a	removal	should	be	cascaded	to	all
referring	tuples.

ON	UPDATE	CASCADE
a	referential	integrity	constraint	that	says	an	update	should	be	cascaded	to	all
referring	tuples.

one-way	linked	list
a	linked	list	in	which	records	are	physically	stored	in	an	arbitrary	order,	or
sorted	according	to	another	search	key.	A	logical	sequential	ordering	is	then
represented	by	means	of	pointers,	with	each	record	containing	a	“next”	pointer
to	the	physical	location	of	its	logical	successor.

on-line	analytical	processing	(OLAP)
refers	to	an	advanced	set	of	techniques	to	interactively	analyze	data,
summarize	it,	and	visualize	it	in	various	ways.

on-line	analytical	processing	(OLAP)	DBMS
DBMS	containing	data	in	support	of	tactical	or	strategical	decision-making.	A
limited	number	of	users	formulate	complex	queries	to	analyze	huge	amounts
of	data	along	different	dimensions.

on-line	transaction	processing	(OLTP)
the	processing	of	lots	of	simple,	online	transactions	in	an	efficient	way.

On-Line	Transaction	Processing	(OLTP)	DBMS
manages	operational	or	transactional	data;	queries	are	initiated	in	real-time,
simultaneously,	by	many	users	and	applications,	such	as	a	point-of-sale
system.

on-premises	analytics
keeping	data	and	analytical	activities	in-house	for	security	and	full	control.

opaque	data	type
an	entirely	new,	user-defined	data	type	in	an	ORDBMS	that	is	not	based	upon
any	existing	SQL	data	type.

open	addressing
overflow-handling	technique	in	which	overflow	records	are	stored	in	the	next
free	slot	in	the	primary	area,	after	the	full	bucket	where	the	record	would
normally	have	been	stored	according	to	the	key-to-address	transformation.

Open	Database	Connectivity	(ODBC)
a	Microsoft	universal	database	API	that	allows	access	to	SQL	databases.

open-source	DBMS
a	DBMS	for	which	the	source	code	is	publicly	available	and	can	be	extended
and	redistributed	by	anyone.

operational	BI
term	with	a	twofold	meaning:	analytics	used	at	the	operational	level	(e.g.,	by
front-line	employees)	or	analytics	for	tactical/strategic	decision-making	based

on	real-time	operational	data	combined	with	the	aggregated	and	historical	data
in	traditional	data	warehouses.

operational	data	store	(ODS)
a	staging	area	that	provides	direct	querying	facilities.

operational	level
the	business	decision-making	level	where	day-to-day	business	decisions	are
made	–	typically	in	real-time,	or	within	a	short	time	frame.

optimistic	protocol
a	scheduling	protocol	managed	by	a	scheduler	that	assumes	conflicts	between
simultaneous	transactions	are	exceptions.

orchestration	pattern
a	sequence	and	data	dependency	management	pattern	that	assumes	a	single
centralized	executable	business	process	(the	orchestrator)	coordinates	the
interaction	among	different	services	and	subprocesses.

ORDER	BY
an	SQL	statement	that	orders	the	tuples	in	the	result	of	a	query	by	the	values
of	one	or	more	columns.

ordinary	least	squares	(OLS)
an	optimization	method	for	estimating	the	parameters	of	a	linear	regression
model	by	minimizing	the	sum	of	squared	errors.

outliers
extreme	observations,	very	dissimilar	to	the	rest	of	the	population.

outrigger	table
stores	a	set	of	attribute	types	of	a	dimension	table	which	are	highly	correlated,
low	in	cardinality,	and	updated	simultaneously.

outsourcing
hiring	an	outside	company	to	build	a	skill	set.

overfitting
when	an	analytical	model	(e.g.,	a	decision	tree)	fits	the	specificities	or	noise	in
the	data.

overflow
happens	when	there	are	more	synonyms	than	slots	for	a	certain	bucket	in
random	file	organization.

overflow	area
the	address	space	that	only	contains	overflow	records	in	random	file
organization.

overflow-handling	technique
the	way	in	which	overflow	records	are	stored	and	retrieved	in	random	file
organization.

overlap	specialization
a	specialization	whereby	an	entity	can	be	a	member	of	more	than	one
subclass.

owner	entity	type
an	entity	type	from	which	an	attribute	type	is	borrowed	by	a	weak	entity	type.

owner	record	type
record	type	at	the	1-side	of	a	1:N	relationship	type	in	the	CODASYL	model.

parallel	database
data	distribution	with	only	one	purpose:	performance.	The	performance	gain
is	achieved	through	parallel	access	to	the	distributed	data.

partial	categorization
only	some	entities	of	the	superclasses	belong	to	the	subclass.

partial	participation
a	situation	in	which	some	entities	may	not	participate	in	the	relationship.

partial	shredding
another	term	for	the	combined	approach	to	storage	of	an	XML	document.

partial	specialization
allows	an	entity	to	only	belong	to	the	superclass	and	to	none	of	the	subclasses.

participants
participate	in	transactions	in	a	distributed	setting.

partition
see	interval.

PARTITION	BY
an	SQL	operator	that	subdivides	the	rows	into	partitions,	similar	to	a	GROUP
BY	clause.

passive

a	DBMS,	such	as	a	traditional	RDBMS,	that	only	executes	transactions
explicitly	invoked	by	users	and/or	applications.

Pearson	correlation	coefficient
measures	the	linear	relationship	between	two	variables;	varies	between	–1	and
+1.

performance	monitoring	utilities
monitor	and	report	key	performance	indicators	(KPIs)	of	the	DBMS,	such	as
storage	space	used/available,	query	response	times,	and	transaction	throughput
rates.

persistence	by	class
in	object-oriented	programming,	implies	that	all	objects	of	a	particular	class
will	be	made	persistent.

persistence	by	creation
in	object-oriented	programming,	the	extension	of	the	syntax	for	creating
objects	to	indicate	at	compile	time	that	an	object	should	be	made	persistent.

persistence	by	inheritance
in	object-oriented	programming,	indicates	that	the	persistence	capabilities	are
inherited	from	a	predefined	persistent	class.

persistence	by	marking
in	object-oriented	programming,	implies	that	all	objects	will	be	created	as
transient	and	may	be	marked	as	persistent	during	program	execution.

persistence	by	reachability

in	object-oriented	programming,	implies	that	all	objects	referred	to	(either
directly	or	indirectly)	by	predefined	persistent	root	object(s)	will	be	made
persistent	as	well.

persistence	independence
the	persistence	of	an	object	is	independent	of	how	a	program	manipulates	it;
the	same	code	fragment	or	function	can	be	used	with	both	persistent	and
transient	objects.

persistence	orthogonality
in	object-oriented	programming,	implies	these	properties:	persistence
independence,	type	orthogonality,	and	transitive	persistence.

persistent	object
in	object-oriented	programming,	an	object	that	should	survive	program
execution.

persistent	storage	media
memory	that	retains	its	content	even	without	being	powered.

pessimistic	protocol
a	scheduling	protocol	managed	by	a	scheduler	that	assumes	it	is	likely	that
transactions	will	interfere	and	cause	conflicts.

phantom	reads
when	a	transaction	T2	is	executing	insert	or	delete	operations	on	a	set	of	rows
being	read	by	a	transaction	T1.	If	T1	reads	the	same	set	of	rows	a	second	time,
additional	rows	may	turn	up,	or	previously	existing	rows	may	have
disappeared,	because	they	have	been	inserted	or	deleted	by	T2	in	the
meantime.

physical	data	independence
the	ability	to	physically	reorganize	the	data	with	minimal	impact	on	the
conceptual/logical	or	external	layer.

physical	database
an	integrated	collection	of	stored	files	consisting	of	data	items	and	stored
records	describing	different	real-world	entities	and	their	interrelationships.
Also	called	a	stored	database.

physical	file
a	collection	of	stored	records	that	represent	similar	real-world	entities	(e.g.,
students,	wines,	or	purchase	orders);	also	called	a	dataset.

Pig
a	high-level	platform	for	creating	programs	that	run	on	Hadoop	(in	a	language
called	Pig	Latin),	which	uses	MapReduce	underneath	to	execute	the	program.
It	enables	users	to	more	easily	construct	programs	that	work	on	top	of	HDFS
and	MapReduce,	and	can	somewhat	resemble	querying	facilities	offered	by
SQL.

pivot	or	cross-table
a	data	summarization	tool	that	cross-tabulates	a	set	of	dimensions	in	such	a
way	that	multidimensional	data	can	be	represented	in	a	two-dimensional
tabular	format.

Platform	as	a	Service	(PaaS)
computing	platform	elements	hosted	in	the	cloud,	which	can	run	and	integrate
with	one’s	own	applications.

pointer
reference	to	a	storage	location.

point-of-sale	(POS)
a	system	that	collects	and	stores	information	about	who	buys	what	products	in
what	store	at	what	time.

polymorphism
the	ability	of	objects	to	respond	differently	to	the	same	method;	closely	related
to	inheritance	in	object-oriented	programming.

precedence	graph
a	graph	in	which	nodes	represent	transactions	and	edges	are	based	on
read/write	operations;	can	be	used	to	test	a	schedule	for	serializability.

precision
measures	how	many	of	the	predicted	positives	(e.g.,	churners)	are	actually
positives.

predictive	analytics
building	an	analytical	model	predicting	a	target	measure	of	interest.

primary	area
the	address	space	that	contains	the	non-overflow	records	in	random	file
organization.

primary	copy	2PL
extension	of	primary	site	2PL,	which	aims	at	further	reducing	the
disadvantages	of	the	latter.	Uses	lock	managers	implemented	at	different

locations	that	maintain	locking	information	pertaining	to	a	predefined	subset
of	the	data.

primary	file	organization	methods
the	methods	that	determine	the	physical	positioning	of	stored	records	on	a
storage	medium.	Examples	are	heap	files,	random	file	organization,	and
indexed	sequential	file	organization.

primary	index
when	a	data	file	is	ordered	on	a	unique	key	and	an	index	is	defined	over	this
unique	search	key.

primary	key
a	selected	candidate	key	that	identifies	tuples	in	the	relation	and	is	used	to
establish	connections	to	other	relations;	must	be	unique	within	the	relation.

primary	site	2PL
concurrency	control	technique	which	applies	the	centralized	Two-Phase
Locking	protocol	in	a	distributed	environment.

primary	storage
the	top	of	the	storage	hierarchy,	consisting	of	the	CPU,	cache,	and	central
storage.

prime	attribute	type
an	attribute	type	that	is	part	of	a	candidate	key.

privilege
defines	a	user’s	right	to	use	certain	SQL	statements	such	as	SELECT,
INSERT,	etc.	on	one	or	more	database	objects.

procedural	DML
early	type	of	DML	that	explicitly	specifies	how	to	navigate	in	the	database	to
locate	and	modify	the	data.	Focuses	on	the	procedure	of	interaction.

process	engine
a	software	service	that	executes	a	business	process	and	ensures	all	steps	in	the
process	are	performed	correctly.

process	integration
a	process	that	deals	with	the	sequencing	of	tasks	in	a	business	process	and
governs	the	data	flows	in	these	processes.

proprietary	API
vendor-specific	API;	developed	for,	and	particular	to,	a	specific	type	of
DBMS.

qualified	association
a	special	type	of	association	that	uses	a	qualifier	to	further	refine	the
association.

query	and	reporting
a	business	intelligence	tool	that	provides	a	GUI	in	which	the	business	user	can
graphically	and	interactively	design	a	report.

query	by	example	(QBE)
a	facility	that	sits	between	the	database	and	the	business	concepts,	in	which	a
query	is	composed	in	a	user-friendly	way	by	visualizing	database	tables	so	the
business	user	can	enter	conditions	for	each	field	that	needs	to	be	included	in
the	query.

query	cardinality	(QC)
the	number	of	rows	selected	by	the	query.

query	decomposition
a	step	in	distributed	query	processing	in	which	the	query	is	first	analyzed	for
correctness.	The	query	is	then	represented	in	relational	algebra	and
transformed	into	a	canonical	form,	which	is	most	appropriate	for	further
processing.

query	executor
executes	the	query	by	calling	on	the	storage	manager	to	retrieve	or	update	the
requested	data.

query	optimizer
optimizes	the	queries	based	upon	current	database	state	and	metadata.	Can	use
predefined	indexes	that	are	part	of	the	internal	data	model	to	provide	quick
access	to	data.

query	parser
checks	the	query	for	syntactical	and	semantical	correctness	and	decomposes
the	query	into	an	internal	representation	format	that	can	then	be	further
evaluated	by	the	system.

query	predicate
specifies	the	selection	condition	with	respect	to	a	particular	attribute	type	in	a
query.

query	processor

assists	in	the	execution	of	database	queries.	Consists	of	multiple	components,
such	as	the	DML	compiler,	query	parser,	query	rewriter,	query	optimizer,	and
query	executor.

query	rewriter
using	predefined	rules	and	heuristics	specific	to	the	DBMS,	optimizes	the
query	independent	of	the	current	database	state.

RACI	Matrix
RACI	stands	for	Responsible,	Accountable,	Consulted,	and	Informed.	It	is	a
matrix	used	to	determine	roles	and	responsibilities	of	a	project	or	job.

RAID	controller
either	hardware	or	software	that	manages	an	array	of	hard	drives	to	appear	as
a	single	logical	drive.

RAID	levels
different	possible	RAID	configurations	using	different	combinations	of	data
striping,	redundancy,	and	data	mirroring,	each	resulting	in	different
performance	and	reliability.

random	file	organization
primary	file	organization	method	in	which	a	record’s	physical	location	is
directly	related	to	the	value	of	a	search	key	using	a	hashing	procedure;	also
called	direct	file	organization	or	hash	file	organization.

ranking
the	ordering	of	values,	either	ascending	or	descending.

ranking	module

a	web	search	component	that	sorts	the	result	set	according	to	relevance.

rapidly	changing	dimension
a	dimension	that	contains	information	that	changes	rapidly	and	regularly	over
a	period	of	time.

RDF	Schema
an	extension	of	RDF	through	more	robust	vocabulary	with	classes	and
subclasses,	properties	and	subproperties,	and	typing	of	properties.

read	committed
isolation	level	that	uses	long-term	write	locks,	but	short-term	read	locks;
resolves	the	lost	update	as	well	as	the	uncommitted	dependency	problem.

read	lock
allows	a	transaction	to	read	a	database	object.	Assigned	by	the	lock	manager.

read	uncommitted
lowest	isolation	level	in	which	long-term	locks	are	not	taken	into	account;
assumes	that	concurrency	conflicts	do	not	occur.

read/write	heads
components	of	a	hard	disk	drive	that	sit	on	actuators	and	move	in	and	out
from	the	center	of	the	disk	to	each	readable	or	writeable	surface	on	the	platter.

receiver	operating	characteristic	curve	(ROC	curve)
plots	the	sensitivity	versus	1-specificity	for	various	cutoffs.	The	closer	the
curve	approaches	to	a	sensitivity	of	1	and	a	specificity	of	1,	the	better	the
performance.

recommender	system
application	that	provides	well-targeted	recommendations	based	on	customer
behavior,	input,	or	past	purchases.

record	organization
the	organization	of	data	items	into	stored	records.

record	pointer
the	combination	of	a	block	address	and	a	record	ID	or	offset	within	this	block
referring	to	an	actual	record.

record	type
a	set	of	records	describing	similar	entities.

record-at-a-time	DML
see	procedural	DML.

recovery
the	activity	of	ensuring	that,	whichever	problem	occurs	during	transaction
execution,	the	database	is	returned	to	a	consistent	state	without	any	data	loss
afterwards.

recovery	manager
supervises	the	correct	execution	of	database	transactions	by	keeping	a	logfile
of	all	database	operations.	Will	be	called	upon	to	undo	actions	of	aborted
transactions	or	during	crash	recovery.

redundancy
see	data	redundancy.

Redundant	Array	of	Independent	Disks	(RAID)
technology	in	which	standard	HDDs	are	coupled	to	a	dedicated	hard	disk
controller	(the	RAID	controller)	to	make	them	appear	as	a	single	logical	drive.

regression
a	type	of	predictive	analytics	in	which	the	target	variable	is	continuous.

regression	tree
decision	tree	in	which	the	target	variable	is	continuous	(e.g.,	sales,	CLV,
LGD).

relation
a	set	of	tuples	that	each	represent	a	similar	real-world	entity.

relational	database	management	system	(RDBMS)
a	DBMS	based	on	the	relational	data	model.

relational	model
a	formal	data	model	with	a	sound	mathematical	foundation,	based	on	set
theory	and	first	order	predicate	logic	in	which	a	database	is	represented	as	a
collection	of	relations.

relational	OLAP	(ROLAP)
stores	data	in	a	relational	data	warehouse,	which	can	be	implemented	using	a
star,	snowflake,	or	fact	constellation	schema.

relationship
an	association	between	two	or	more	entities.

relationship	type

a	set	of	relationships	among	instances	of	one,	two,	or	more	record	or	entity
types;	indicated	using	a	rhombus	symbol	in	the	ER	model.

relative	block	address
an	address	that	is	relative	to	the	first	block	of	a	file.

relative	location
a	record	organization	technique	in	which	only	attributes	are	stored;	attribute
types	are	not	stored	and	are	determined	implicitly	by	the	relative	ordering	in
which	the	data	items	occur,	based	on	metadata	about	record	structure	in	the
catalog.

Remote	Procedure	Call	(RPC)
technology	in	which	communication	between	applications	is	established
through	procedure	calls;	an	object	invokes	a	method	from	a	remote	object	on
another	server.

reorganization	utility
improves	performance	through	automatic	data	reorganization	for	efficiency.

repeatable	read
isolation	level	that	uses	both	long-term	read	locks	and	write	locks;	phantom
reads	can	still	occur	with	this	isolation	level.

repeated	group
a	composite	data	item	for	which	a	record	can	have	multiple	values	or	a
composite	multi-valued	attribute	type.	Common	to	the	CODASYL	model.

replicas

the	different	virtual	nodes	that	correspond	to	the	same	physical	node	in	a
consistent	hashing	ring.

replication
see	data	replication.

replication	transparency
when	different	replicas	of	the	same	data	item	will	be	automatically	kept
consistent	by	the	database	system	and	updates	to	one	replica	will	be
propagated	transparently	(be	it	synchronously	or	asynchronously)	to	the	other
copies	of	the	same	data	item.

representation	category
a	DQ	framework	category	that	indicates	the	extent	to	which	data	are	presented
in	a	consistent	and	interpretable	way.

representational	state	transfer	(REST)
a	web	service	API	architecture	that	bases	itself	on	HTTP	to	handle	requests
between	the	service	and	its	clients.

request	coordinator
the	responsible	party	that	routes	requests	to	the	appropriate	destination	node
and	relays	back	the	result	status	of	the	operation	in	a	distributed	system.

requirement	collection	and	analysis
the	identification	and	determination	of	needs,	conditions,	and	stakeholders
required	to	understand	the	data	needs	and	functionalities	of	the	process	and/or
application	under	development.

Resource	Description	Framework	(RDF)

provides	the	data	model	for	the	semantic	web	through	encoding	graph-
structured	data	by	attaching	a	semantic	meaning	to	the	relationships.

response	modeling
the	development	of	an	analytical	model	that	selects	the	customers	who	are
most	likely	to	exhibit	the	desired	response	to	a	marketing	campaign.

REST	(representational	state	transfer)
see	representational	state	transfer.

RESTRICT
a	referential	integrity	constraint	in	which	the	update	or	removal	is	halted	if
referring	tuples	exist.

return	on	investment	(ROI)
the	ratio	of	the	net	benefits	or	net	profits	over	the	investment	of	resources	that
generated	this	return.

right	outer	join
an	SQL	join	query	in	which	each	row	from	the	right	table	is	kept	in	the	result;
if	no	match	is	found	in	the	other	table	it	will	return	NULL	values	for	these
columns.

rigorous	2PL
a	2PL	variant	that	specifies	that	a	transaction	holds	all	its	locks	until	it	is
committed.

ring	topology
network	topology	in	which	each	node	occupies	a	position	in	a	closed	range	of
numbers.

risk	analytics
using	analytics	techniques	to	measure,	predict,	and	mitigate	risk.

roles
indicate	the	various	directions	that	can	be	used	to	interpret	a	relationship	type.

rollback
when	all	changes	made	by	the	transaction’s	respective	operations	should	be
undone	in	such	a	way	that,	after	completion	of	the	rollback,	it	appears	as	if	the
faulty	transaction	never	happened.

roll-down
an	OLAP	operation	that	is	the	de-aggregation	of	the	current	set	of	fact	values
by	navigating	from	a	lower	level	of	detail	to	a	higher	level	of	detail.

rollforward	recovery
when	the	archived	data	from	the	backup	copy	is	restored	and	then
complemented	with	(a	redo	of)	the	more	recent	transactions	as	recorded	in	the
mirrored	logfile.

roll-up
an	OLAP	operation	that	is	the	aggregation	of	the	current	set	of	fact	values
within	or	across	one	or	more	dimensions.

ROLLUP
an	SQL	operator	that	computes	the	union	on	every	prefix	of	the	list	of
specified	attribute	types,	from	the	most	detailed	up	to	the	grand	total.

rotational	delay

once	read/write	heads	are	in	place	above	the	specified	track,	the	time	to	rotate
the	platter	surface	until	the	desired	sector	on	the	platter	surface	is	located.
Also	known	as	latency.

sampling
taking	a	relevant	subset	of	historical	data	to	build	an	analytical	model.

SAN	(storage	area	network)
dedicated	network	for	storage	related	data	transfer.

SAX	API	(simple	API	for	XML)
an	event-based	API	that	represents	an	XML	document	as	a	stream	of	events.

schedule
a	set	of	n	transactions,	and	a	sequential	ordering	over	the	statements	of	these
transactions,	for	which	the	following	property	holds:	for	each	transaction	T
that	participates	in	a	schedule	S	and	for	all	statements	si	and	sj	that	belong	to
the	same	transaction	T:	if	statement	si	precedes	statement	sj	in	T,	then	si	is
scheduled	to	be	executed	before	sj	in	S.

scheduler
a	component	of	the	transaction	manager	that	plans	the	start	of	the	transactions
and	the	execution	of	their	respective	operations,	aiming	at	optimizing	KPIs
such	as	query	response	times	and	transaction	throughput	rates.

schema-aware	mapping
transforms	an	XML	document	into	a	relational	structure	based	on	an	already
existing	DTD	or	XSD.

schema-level	triggers

also	called	DDL	triggers,	RDBMS	triggers	that	are	fired	after	changes	are
made	to	the	DBMS	schema	(such	as	creating,	dropping,	or	altering	tables,
views,	etc.).

schema-oblivious	mapping/shredding
transforms	an	XML	document	into	a	relational	structure	without	the
availability	of	a	DTD	or	XSD.

search	key
a	single	attribute	type,	or	set	of	attribute	types,	whose	values	determine	the
criteria	according	to	which	records	are	retrieved.	These	criteria	are	generally
formulated	with	a	query	language,	such	as	SQL.

search	key	values
values	of	a	search	key.

search	tree
a	tree	structure	used	for	locating	a	record	in	which	each	navigation
downwards	in	the	tree	reduces	the	search	interval.

second	normal	form	(2	NF)
when	1	NF	is	satisfied	and	every	non-prime	attribute	type	A	in	R	is	fully
functionally	dependent	on	any	key	of	R.

secondary	file	organization	methods
the	methods	that	provide	constructs	to	efficiently	retrieve	records	according	to
a	search	key	not	used	for	the	primary	file	organization.

secondary	index

an	index	created	for	secondary	file	organization	methods	and	therefore	with
no	impact	on	a	record’s	physical	location.

secondary	storage
the	bottom	half	of	the	storage	hierarchy,	consisting	of	persistent	storage
media,	such	as	a	hard	disk	drive,	solid	state	drive,	and	tape	or	optical	media.

sector
the	smallest	addressable	individual	unit	on	a	hard	disk	drive	on	which	data	can
be	written	or	read;	multiple	sectors	make	up	tracks.

seek	time
the	time	to	locate	and	position	the	actuator	of	a	disk	drive	over	a	specific
track.

SELECT
an	SQL	statement	that	retrieves	data	from	a	relational	database.

selective	inheritance
see	inheritance	in	categorization.

self-service	BI
business	intelligence	in	which	a	business	user,	not	an	IT	expert,	can	do	the
query	and	reporting,	often	through	a	graphical	user	interface.

semantic	metadata
metadata	about	the	data’s	meaning.

semantic	search
methods	that	allow	formulating	semantically	complicated	queries.

semi-structured	data
data	which	have	a	certain	structure,	but	the	structure	may	be	very	irregular	or
highly	volatile.	Examples	are	individual	users’	web	pages	on	a	large	social
media	platform,	or	resumé	documents.

sensitivity
measures	how	many	of	the	positives	(e.g.,	churners)	are	correctly	labeled	by
the	analytical	model	as	a	positive.

sensor	DBMS
manages	sensor	data	such	as	biometric	data	obtained	from	wearables,	or
telematics	data	which	continuously	records	driving	behavior.

sequence	rule
a	rule	specifying	a	sequence	of	events	(e.g.,	item	purchases,	web	page	visits).

sequential	file	organization
a	primary	file	organization	method	in	which	records	are	stored	in	ascending	or
descending	order	of	a	search	key.

serializable
when	a	non-serial	schedule	is	equivalent	to	(i.e.,	yields	the	same	outcome	as)	a
serial	schedule.

serialization
in	object-oriented	programming,	the	translation	of	an	object’s	state	into	a
format	that	can	be	stored	(for	example,	in	a	file)	and	reconstructed	later.

serially
when	actions,	such	as	transactions,	are	executed	in	a	sequence.

service	oriented	architecture	(SOA)
software	architecture	in	which	business	processes	are	supported	by	a	set	of
loosely	coupled	software	services.

SET	DEFAULT
a	referential	integrity	constraint	in	which	the	foreign	keys	in	the	referring
tuples	should	be	set	to	their	default	value.

SET	NULL
a	referential	integrity	constraint	in	which	all	foreign	keys	in	the	referring
tuples	are	set	to	NULL.

set	type
models	a	1:N	relationship	type	between	an	owner	record	type	and	a	member
record	type.

set-at-a-time	DML
see	declarative	DML.

shallow	equality
implies	that	two	objects	have	the	same	values	for	their	variables.

shard
an	individual	partition.

sharding
also	known	as	horizontal	fragmentation	or	partitioning,	where	data	are
partitioned	into	separate	sets,	each	of	which	are	attributed	to	a	different	node
in	a	distributed	DBMS.

shared	and	intention	exclusive	lock	(six-lock)
lock	introduced	by	the	MGL	protocol	that	conflicts	with	all	other	MGL	lock
types,	except	for	an	is-lock.

shared-disk	architecture
distributed	database	system	architecture	in	which	each	processor	has	its	own
central	storage	but	shares	secondary	storage	with	the	other	processors.

shared	lock
a	lock	in	which	a	transaction	gets	the	guarantee	that	no	other	transactions	will
update	the	locked	object	for	as	long	as	the	lock	is	held.	The	transaction	can
then	read	from	the	locked	object	without	the	risk	of	conflicts	with	other
transactions	that	write	to	it.

shared-memory	architecture
distributed	database	system	architecture	in	which	multiple	interconnected
processors	that	run	the	DBMS	software	share	the	same	central	storage	and
secondary	storage.

shared-nothing	architecture
distributed	database	system	architecture	in	which	each	processor	has	its	own
central	storage	and	hard	disk	units.	Data	sharing	occurs	through	the	processors
communicating	with	one	another	over	the	network,	not	by	the	processors
directly	accessing	one	another’s	central	storage	or	secondary	storage.

short-term	lock
lock	only	held	during	the	time	interval	needed	to	complete	the	associated
operation.

shredding
another	term	for	a	data-oriented	approach	to	storage	of	an	XML	document.

Simple	Object	Access	Protocol	(SOAP)
see	SOAP.

simple	attribute	type
see	atomic	attribute	type.

simultaneous	access
also	known	as	concurrent	access.	Allowing	more	than	one	user	access	to	a
DBMS	at	a	time.

single	point	of	failure
a	single	component	failure	that	can	cause	an	entire	system	failure.	Single
points	of	failure	in	database	management	include	availability	and	accessibility
of	storage	devices,	availability	of	database	functionality	and	availability	of	the
data.

single-user	system
allows	only	one	user	at	a	time	to	work	with	a	DBMS.

single-valued	attribute
an	attribute	type	with	only	one	value	for	a	particular	entity	at	any	given	time.

slicing
an	OLAP	operation	in	which	one	dimension	is	set	at	a	particular	value.

slowly	changing	dimension
a	dimension	that	changes	slowly	and	irregularly	over	a	period	of	time.

Small	Computer	Systems	Interface	(SCSI)
popularly	pronounced	“scuzzy”,	SCSI	is	a	standard	parallel	connection
between	devices	such	as	peripheral	hard	drives	and	high-capacity
workstations	and	servers.	The	SCSI	specification	involves	two	elements:	on
the	one	hand	a	command	set	to	communicate	with	storage	devices,	and	on	the
other	hand	specifications	for	a	low-level	protocol	and	cabling	to	transfer	SCSI
commands	and	data	between	servers	and	storage	devices.

snowflake	schema
a	conceptual	data	model	of	a	data	warehouse	that	normalizes	the	dimension
tables.

SOAP
originally	“Simple	Object	Access	Protocol”;	a	web	service	interaction
protocol	that	uses	XML-based	messages	to	exchange	requests	between	the
service	and	its	clients.

social	network
consists	of	a	network	of	nodes	(vertices)	and	edges.	Examples	are	a	friends
network,	a	family	network,	or	a	call	network.

social	network	learning
inferencing	in	a	social	network.	An	example	is	computing	class	membership
probability	(e.g.,	churn	probability)	of	a	specific	node,	given	the	status	of	the
other	nodes	in	the	network.

sociogram
a	visual	representation	of	an	entity’s	(person,	business,	etc.)	social	network,
showing	links	and	relationships	between	individuals	and	groups.

Software	as	a	Service	(SaaS)
full	applications	hosted	in	the	cloud	(e.g.,	applications	for	analytics,	data
cleansing,	or	data	quality	reporting).

sort-merge	join
technique	to	physically	implement	a	join	in	which	the	tuples	in	both	tables	are
first	sorted	according	to	the	attribute	types	involved	in	the	join	condition.	Both
tables	are	then	traversed	in	this	order,	with	the	rows	that	satisfy	the	join
condition	being	combined	and	put	in	an	output	buffer.

sourced	function
a	user-defined	function	in	an	ORDBMS	that	is	based	on	an	existing,	built-in
function.

Spark
a	new	programming	paradigm	centered	on	a	data	structure	called	the	resilient
distributed	dataset,	or	RDD,	which	can	be	distributed	across	a	cluster	of
machines	and	is	maintained	in	a	fault-tolerant	way.

Spark	Core
the	heart	of	Spark,	it	forms	the	foundation	for	all	other	components.	It
provides	functionality	for	task	scheduling	and	a	set	of	basic	data
transformations	that	can	be	used	through	many	programming	languages	(Java,
Python,	Scala,	and	R).

Spark	SQL
Spark	component	that	runs	on	top	of	Spark	Core	and	introduces	another	data
abstraction	called	DataFrames,	which	represent	themselves	to	the	end-user	as
a	collection	of	data	organized	into	named	columns.

Spark	Streaming
leverages	Spark	Core	and	its	fast	scheduling	engine	to	perform	streaming
analytics.

SPARQL
a	recursive	acronym	for	“SPARQL	Protocol	and	RDF	Query	Language”;	it	is
a	query	language	based	on	matching	graph	patterns	against	RDF	graphs.

sparse	index
an	index	with	an	index	entry	for	only	some	of	the	search	key	values;	each
entry	refers	to	a	group	of	records.	Contains	fewer	index	entries	than	a	dense
index.

spatial	DBMS
supports	the	storage	and	querying	of	spatial	data,	including	both	2D	objects
(e.g.,	points,	lines,	and	polygons)	and	3D	objects.	Spatial	operations	like
calculating	distances	or	relationships	between	objects	are	provided.	Key
building	block	of	geographical	information	systems	(GIS).

specialization
the	process	of	defining	a	set	of	subclasses	of	an	entity	type;	a	top-down
process	of	conceptual	refinement.

specificity
measures	how	many	of	the	negatives	(e.g.,	non-churners)	are	correctly	labeled
by	the	analytical	model	as	a	negative.

spindle
the	component	of	a	hard	disk	drive	on	which	the	platter	is	secured,	and	which
rotates	at	a	constant	speed.

SQL
see	Structured	Query	Language.

SQL	injection
an	attack	in	which	malicious	fragments	are	injected	into	normal-looking	SQL
statements,	which	can	cause	a	wide	range	of	harm.	Many	websites	and
applications	are	vulnerable	to	SQL	injections.

SQL	schema
a	grouping	of	tables	and	other	database	objects	such	as	views,	constraints,	and
indexes	that	logically	belong	together.

SQL/XML
an	extension	of	SQL	that	introduces	an	XML	data	type	and	constructor	to	treat
XML	documents	as	cell	values	in	a	common	relational	table,	a	set	of	operators
for	the	XML	data	type,	and	a	set	of	functions	to	map	relational	data	to	XML.

SQLJ
Java’s	embedded,	static	database	API.

stabilization
an	operation	that	repartitions	hashes	over	nodes	if	nodes	are	added	or
removed.

star	schema
a	conceptual	data	model	of	a	data	warehouse	with	one	large	central	fact	table
that	is	connected	to	various	smaller	dimension	tables.

starvation

a	situation	in	which	some	transactions	wait	endlessly	for	the	required
exclusive	locks,	whereas	the	other	transactions	continue	normally.

static	2PL
a	2PL	variant	that	specifies	that	a	transaction	acquires	all	its	locks	right	at	the
start	of	the	transaction;	also	called	conservative	2PL.

static	binding
in	object-oriented	programming,	that	the	binding	of	methods	to	the
appropriate	implementation	is	resolved	at	compile	time.

StAX	(streaming	API	for	XML)
XML	API	defined	as	a	compromise	between	DOM	and	SAX	and	originated
from	the	Java	programming	community.

storage	manager
governs	physical	file	access	and	supervises	correct	and	efficient	data	storage.
Consists	of	a	transaction	manager,	buffer	manager,	lock	manager,	and
recovery	manager.

stored	data	manager
coordinates	the	I/O	instructions	and	the	physical	interactions	with	the	database
files.

stored	procedure
a	piece	of	SQL	code	consisting	of	declarative	and/or	procedural	instructions
and	stored	in	the	catalog	of	the	RDBMS.	It	must	be	invoked	explicitly	by
calling	it	from	an	application	or	command	prompt.

stored	record

a	collection	of	data	items	related	to	the	same	real-world	entity	that	represents
all	attributes	of	the	entity;	physical	representation	of	a	tuple	in	a	relational
table.

stored	table
a	physical	representation	of	a	logical	table	that	occupies	one	or	more	disk
blocks	or	pages	in	a	tablespace.

strategic	level
the	business	decision-making	level	at	which	decisions	are	made	by	senior
management,	with	long-term	implications	(e.g.,	1,	2,	5	years,	or	more).

streaming	data
continuous,	high-velocity	data	generated	by	multiple	sources.

stretched	cluster
a	clustering	technique	in	which	both	the	primary	and	the	backup	DBMS	are
conceived	as	nodes	in	a	cluster	that	spans	both	the	primary	and	remote	data
centers.

strong	entity	type
an	entity	type	with	its	own	key	attribute	type(s).

structural	metadata
metadata	about	the	data’s	structure	(e.g.,	column	definitions	in	a	relational
database	or	tags	in	an	XML	document).

structured	data
data	in	which	the	individual	characteristics	of	data	items	(such	as	the	number,
name,	address,	and	email	of	a	student)	can	be	identified	and	formally

specified.

structured	literal
in	ODMG,	consists	of	a	fixed	number	of	named	elements	which	can	be
predefined	(e.g.,	Date,	Interval,	Time,	and	TimeStamp)	or	user-defined.

Structured	Query	Language	(SQL)
the	language	used	for	both	data	definition	and	data	manipulation	in	a
relational	database	management	system.

structured	search
refers	to	query	methods	that	make	use	of	structural	metadata,	which	relates	to
the	actual	document	content.

subject-oriented
a	property	of	a	data	warehouse	that	implies	that	the	data	are	organized	around
subjects	such	as	customers,	products,	sales,	etc.

SUM
an	SQL	operator	used	in	aggregate	functions	that	provides	the	sum	of	all
values	in	the	selected	column.

superkey
a	subset	of	attribute	types	of	a	relation	R	with	the	property	that	no	two	tuples
in	any	relation	state	should	have	the	same	combination	of	values	for	these
attribute	types.	Specifies	a	uniqueness	constraint	in	the	sense	that	no	two
distinct	tuples	in	a	state	can	have	the	same	value	for	the	superkey.

support

support	of	an	item	set	is	the	percentage	of	total	transactions	in	the	database
that	contains	the	item	set.

surrogate	key
meaningless	integer	used	to	connect	facts	to	the	dimension	table.

synonyms
records	that	are	assigned	to	the	same	bucket	in	random	file	organization.

system	failure
failure	that	occurs	when	an	operating	system	or	database	system	crashes	due
to	a	bug,	power	outage,	or	similar	event,	that	may	cause	loss	of	the	primary
storage’s	content	and,	therefore,	the	database	buffer.

table	cardinality	(TC)
the	number	of	rows	in	the	table.

table	data	type
defines	the	type	of	a	table	in	an	ORDBMS,	much	like	a	class	in	OO.

table-based	mapping
transforms	an	XML	document	into	a	relational	structure,	specifying	strict
requirements	to	the	structure	of	the	XML	document:	it	should	be	a	perfect
reflection	of	the	database	structure.

tablespace
a	physical	container	of	database	objects	consisting	of	one	or	more	physical
files,	often	with	the	option	of	distributing	the	files	over	multiple	storage
devices.

tactical	level
the	business	decision-making	level	at	which	decisions	are	made	by	middle
management	with	a	medium-term	focus	(e.g.,	a	month,	a	quarter,	a	year).

tape	backup
backup	method	in	which	database	files	are	copied	periodically	to	a	tape
storage	medium	for	safekeeping.

technical	key
a	conversion	of	the	natural	key	so	tables	can	be	joined	with	each	other	while
protecting	the	true	identity	of	the	instance.

template-based	mapping
an	XML	mapping	technique	in	which	SQL	statements	can	be	directly
embedded	in	XML	documents	using	a	tool-specific	delimiter.

temporal	constraint
constraint	spanning	a	particular	time	interval.

ternary	relationship	type
relationship	type	with	three	participating	entity	types.

text	analytics
the	analysis	of	textual	data	such	as	reports,	emails,	text	messages,	tweets,	web
documents,	blogs,	reviews,	or	financial	statements.

third	normal	form	(3	NF)
when	2	NF	is	satisfied	and	no	non-prime	attribute	type	of	R	is	transitively
dependent	on	the	primary	key.

three-layer	architecture
a	description	of	how	the	underlying	data	models	of	a	database	are	related.	The
three	layers	are	external,	conceptual/logical,	and	internal.

three-tier	architecture
a	database	system	architecture	in	which	a	client	connects	to	an	application
server	that	then	queries	a	database	server	hosting	the	DBMS.

tiered	system	architecture
a	decentralized	approach	to	database	system	architecture	in	which	the
computing	capabilities	of	powerful	central	computers	acting	as	a	passive
server	are	combined	with	the	flexibilities	of	PCs	that	act	as	active	clients.

tightly	coupled
based	on	a	strong	interdependence.

time	variant
a	property	of	a	data	warehouse	that	refers	to	the	fact	that	the	data	warehouse
essentially	stores	a	time	series	of	periodic	snapshots.

timeliness
a	DQ	dimension	that	refers	to	the	extent	to	which	data	are	sufficiently	up-to-
date	for	the	task	being	performed.

timestamping
a	concurrency	control	technique	in	which	database	objects	have	attributes	that
indicate	the	last	time	the	object	was	read	and/or	the	last	time	it	was	written.

total	categorization
all	entities	of	the	superclasses	belong	to	the	subclass.

total	cost	of	ownership	(TCO)
the	cost	of	owning	and	operating	a	system	during	its	expected	lifetime,	from
inception	to	retirement	–	including	development,	operating,	change
management,	data	governance,	and	quality	costs.

Total	Data	Quality	Management	(TDQM)
a	data	governance	framework	that	presents	a	cycle	consisting	of	four	steps
related	to	the	management	of	data	quality	–	Define,	Measure,	Analyze,	and
Improve	–	which	are	performed	iteratively.

total	participation
a	situation	in	which	all	entities	need	to	participate	in	the	relationship;	the
existence	of	an	entity	depends	upon	the	existence	of	another.

total	specialization
a	specialization	whereby	every	entity	in	the	superclass	must	be	a	member	of
some	subclass.

track
one	of	multiple	concentric	circles	on	the	platter	of	a	hard	disk	consisting	of
individual	sectors	on	which	data	are	written	and	read.

transaction
a	set	of	database	operations	induced	by	a	single	user	or	application,	that
should	be	considered	as	one	undividable	unit	of	work.	An	example	is	a
sequence	of	SQL	statements	in	a	relational	database	setting.

transaction	coordinator
coordinates	transactions	in	a	distributed	setting.

transaction	failure
failure	that	results	from	an	error	in	the	logic	that	drives	a	transaction’s
operations	(e.g.,	wrong	input,	uninitialized	variables,	incorrect	statements,
etc.)	and/or	in	the	application	logic.

transaction	management
the	management	of	transactions	typically	in	a	database	application.

transaction	manager
supervises	execution	of	database	transactions.	Creates	a	schedule	with
interleaved	read/write	operations	to	improve	efficiency	and	execution
performance;	guarantees	atomicity,	consistency,	isolation,	and	durability
(ACID)	properties	in	a	multi-user	environment.

transaction	recovery
to	restore	the	context	of	transactions	that	were	ongoing	in	the	event	of
calamities.

transaction	transparency
a	type	of	transparency	in	which	a	DBMS	transparently	performs	distributed
transactions	involving	multiple	nodes	as	if	they	were	transactions	in	a
standalone	system.

transfer	time
the	time	to	transfer	the	data	from	the	disk	drive	to	the	host	system.	Transfer
time	is	dependent	on	block	size,	density	of	magnetic	particles,	and	rotational
speed	of	the	disks.

transient	object

in	object-oriented	programming,	an	object	only	needed	during	program
execution	and	discarded	upon	program	termination.

transitive	dependency
when	the	dependency	concerns	a	set	of	attribute	types	Z	that	is	neither	a
candidate	key	nor	a	subset	of	any	key	of	R,	and	both	X	→	Z	and	Z	→	Y	hold.

transitive	persistence
see	persistence	by	reachability.

transparency
in	distributed	databases,	refers	to	the	property	that	the	user	is	insulated	from
one	or	more	aspects	of	the	distribution.

tree	pointer
pointer	that	refers	to	a	node	in	a	tree.

trigger
a	piece	of	SQL	code	consisting	of	declarative	and/or	procedural	instructions
and	stored	in	the	catalog	of	the	RDBMS.	It	is	automatically	activated	and	run
(fired)	by	the	RDBMS	whenever	a	specified	event	(e.g.,	insert,	update,	delete)
occurs	and	a	specific	condition	is	evaluated	as	true.

trivial	functional	dependency
a	functional	dependency	X	→	Y	where	Y	is	a	subset	of	X.

tuple
an	ordered	list	of	attributes	that	each	describe	an	aspect	of	a	relation.

tuple	store

similar	to	a	key–value	store,	a	tuple	store	stores	a	unique	key	with	a	vector	of
data	instead	of	a	pairwise	combination	of	a	key	and	a	value.

Two-Phase	Commit	Protocol	(2PC	Protocol)
developed	for	transaction	recovery	in	a	distributed	environment,	derives	its
name	from	the	fact	that	global	transaction	completion	involves	two	phases:	a
voting	phase	in	which	all	transaction	participants	“vote”	about	transaction
outcome;	and	a	decision	phase	in	which	the	transaction	coordinator	makes	the
final	decision	about	the	outcome.

Two-Phase	Locking	Protocol	(2PL	Protocol)
a	popular	locking	protocol	that	applies	a	compatibility	matrix	and	determines
when	lock	and	unlock	instructions	are	allowed	in	a	transaction’s	lifecycle;
specifies	that	acquiring	and	releasing	locks	occurs	in	two	phases	for	each
transaction.

two-tier	architecture
also	known	as	client–server	architecture,	where	a	PC	acts	as	a	client	making
requests	of	a	database	server	where	the	DBMS	sits.

type	orthogonality
in	object-oriented	programming,	ensuring	that	all	objects	can	be	made
persistent,	despite	their	type	or	size.

uncommitted	dependency	problem
when	one	transaction	is	ultimately	aborted	and	rolled	back,	so	another
transaction	ends	up	in	a	situation	in	which	it	has	read	tentative	values	it	never
should	have	“seen”.

unidirectional	association

an	association	in	which	only	a	single	way	of	navigating	is	indicated	by	an
arrow	in	the	UML	model.

Unified	Modeling	Language	(UML)
a	modeling	language	that	assists	in	the	specification,	visualization,
construction,	and	documentation	of	artifacts	of	a	software	system;	an	OO
system	modeling	notation	which	focuses	not	only	on	data	requirements,	but
also	on	behavioral	modeling,	process,	and	application	architecture.

uniform	distribution
equal	spreading	of	data	(e.g.,	records)	over	a	range	(e.g.,	set	of	buckets).

UNION
an	SQL	set	operation	that	returns	a	table	that	includes	all	tuples	that	are	in	one
of	the	SELECT	blocks,	or	both.

UNIQUE	constraint
defines	an	alternative	key	of	a	table.

universal	API
a	vendor	agnostic	API	that	hides	vendor-specific	details	to	allow	applications
to	be	easily	ported	between	multiple	database	systems.

unnamed	row	type
type	which	allows	to	use	unnamed	tuples	as	composite	values	in	a	table.

unrepeatable	read
see	nonrepeatable	read.

unstructured	data

data	with	no	finer-grained	components	that	have	been	formally	specified.	A
long	text	document	is	an	example.

UPDATE
an	SQL	statement	that	modifies	data	to	a	relational	database.

update	anomaly
an	issue	encountered	when	a	tuple	in	an	unnormalized	table	is	updated,
causing	the	need	to	make	multiple	updates	with	the	risk	of	inconsistency.

user	interface
the	front-facing	means	in	which	a	user	interacts	with	an	application	or	a
DBMS.

user	management	utilities
tools	that	support	the	creation	and	assignment	of	privileges	to	user	groups	and
accounts.

user-defined	function	(UDF)
allows	users	to	extend	built-in	ORDBMS	functions	by	explicitly	defining	their
own	functions	to	enrich	the	functional	capability	of	the	ORDBMS,	similar	to
methods	in	OODBMSs.

user-defined	type	(UDT)
defines	a	customized	data	type	with	specific	properties.

valid
a	designation	of	an	XML	document	that	complies	with	the	structural
prescriptions	of	a	specific	document	type	as	expressed	in	a	DTD	of	XML
Schema;	a	higher	certification	than	well-formed.

value
the	fifth	of	the	5	Vs	of	Big	Data;	the	economic	value	of	Big	Data	as	quantified
using	the	total	cost	of	ownership	(TCO)	and	return	on	investment	(ROI).

variable	length	record
a	situation	in	record	organization	in	which	a	record	has	no	fixed	length;	can	be
due	to	data	types	with	variable	length	(e.g.,	VARCHAR),	multi-valued
attribute	types,	optional	attribute	types,	or	a	mixed	file.

VARIANCE
an	SQL	operator	used	in	aggregate	functions	that	provides	the	variance	of	all
values	in	the	selected	column.

variety
the	third	of	the	5	Vs	of	Big	Data;	the	range	of	data	types	and	sources	that	are
used,	data	in	its	“many	forms”.

vector
a	multi-valued	attribute	type;	part	of	the	CODASYL	model.

velocity
the	second	of	the	5	Vs	of	Big	Data;	the	speed	at	which	data	comes	in	and	goes
out,	data	“in	motion”.

veracity
the	fourth	of	the	5	Vs	of	Big	Data;	data	“in	doubt”.	Describes	the	uncertainty
due	to	data	inconsistency	and	incompleteness,	ambiguities	present	in	the	data,
and	latency	or	certain	data	points	that	might	be	derived	from	estimates	or
approximations.

vertical	fragmentation
when	every	fragment	in	a	distributed	database	consists	of	a	subset	of	the
columns	of	the	global	dataset.

vertical	scaling
a	way	to	increase	data	capacity	by	the	extension	of	storage	capacity	and/or
CPU	power	of	a	database	server;	also	called	scaling	up.

victim	selection
choosing	and	aborting	one	transaction	involved	in	a	deadlock.

view
a	subset	of	the	data	items	in	the	logical	model	tailored	toward	the	needs	of	a
specific	application	or	group	of	users.	Often	called	a	virtual	table	in	a
relational	setting.

virtual	child	record	type
child	record	type	needed	to	model	an	N:M	relationship	type	in	the	hierarchical
model.

virtual	data	mart
data	mart	that	has	no	physical	data	but	provides	a	uniform	and	consolidated
single	point	of	access	to	a	set	of	underlying	physical	data	stores.

virtual	data	warehouse
data	warehouse	that	has	no	physical	data	but	provides	a	uniform	and
consolidated	single	point	of	access	to	a	set	of	underlying	physical	data	stores.

virtual	nodes
see	replicas.

virtual	parent	record	type
parent	record	type	needed	to	model	an	N:M	relationship	type	in	the
hierarchical	model.

virtual	parent–child	relationship	type
relationship	type	needed	to	model	an	N:M	relationship	type	in	the	hierarchical
model.

volatile	memory
memory	of	which	the	content	is	cleared	when	the	power	is	turned	off.

volume
the	first	of	the	5	Vs	of	Big	Data;	the	amount	of	data,	also	referred	to	the	data
“at	rest”.

voting	phase
the	first	phase	of	the	2PC	Protocol	in	which	all	transaction	participants	“vote”
about	transaction	outcome.

wait-for	graph
graph	in	which	nodes	represent	active	transactions	and	a	directed	edge	from	Ti
→	Tj	indicates	that	transaction	Ti	is	waiting	to	acquire	a	lock	currently	held	by
transaction	Tj.	Can	be	used	to	detect	deadlocks	if	the	wait-for	graph	contains	a
cycle.

weak	entity	type
an	entity	type	without	a	key	attribute	type	of	its	own.

web	crawler

a	web	search	component	that	continuously	retrieves	web	pages,	extracts	their
links	(URLs)	to	other	pages,	and	adds	these	URLs	to	a	buffer	that	contains	the
links	to	pages	yet	to	be	visited.

Web	Ontology	Language	(OWL)
an	expressive	ontology	language	that	implements	various	sophisticated
semantic	modeling	concepts.

web	service
self-describing	software	component	that	can	be	published,	discovered,	and
invoked	through	the	web.

Web	Services	Description	Language	(WSDL)
an	XML-based	language	used	to	describe	the	interface	or	functionalities
offered	by	a	web	service.

well-formed
an	XML	document	that	satisfies	the	proper	XML	formatting	rules;	a
certification	lower	than	valid.

WHERE
an	SQL	clause	that	when	added	to	a	statement	specifies	selection	conditions	to
indicate	which	table	rows	should	be	selected.

windowing
refers	to	calculating	the	cumulative	totals	or	running	averages	based	on	a
specified	window	of	values.

workflow	service

coordinates	the	control	flow	and	data	flow	of	a	business	process	by	triggering
its	respective	tasks	in	line	with	the	sequence	constraints	in	the	process	model,
and	according	to	an	orchestration	or	choreography	pattern.

wrappers
an	additional	layer	of	an	API	that	forms	a	shell	around	the	respective	data
sources,	insulating	the	users	and	applications	from	their	heterogeneity	to
provide	a	virtual	unified	database	model	over	the	distributed	data	sources.

write	ahead	log	strategy
registering	updates	on	the	logfile	before	they	are	written	to	disk.

write	lock
allows	a	transaction	to	update	a	database	object.	Assigned	by	the	lock
manager.

WS-BPEL
Web	Services	Business	Process	Execution	Language;	an	execution	language
that	allows	converting	a	process	model	into	an	executable	process	definition
based	on	web	services	that	can	then	be	understood	and	used	by	a	process
engine.

XML	DBMS
Uses	the	XML	data	model	to	store	data;	represents	data	in	a	hierarchical,
nested,	way.

XML	element
the	combination	of	a	start	tag,	content,	and	end	tag,	such	as
<term>content</term>.

XML	Schema	Definition	(XSD)
a	formal	specification	of	the	structure	of	an	XML	document	that	defines	the
tag	set,	the	location	of	each	tag,	and	how	the	tags	are	nested.	See	also
Document	Type	Definition	(DTD).

XML-enabled	DBMS
DBMS	with	facilities	to	store	XML	data	using	a	document-oriented,	data-
oriented,	or	combined	approach.

XPath
a	simple,	declarative	language	that	uses	path	expressions	to	refer	to	parts	of	an
XML	document.

XQuery
a	language	that	formulates	structured	queries	for	XML	documents.

XSL	Formatting	Objects	(XSL-FO)
a	component	of	XSL	that	specifies	formatting	semantics	(e.g.,	to	transform
XML	documents	to	PDFs).

XSL	Transformations	(XSLT)
a	component	of	XSL	that	transforms	XML	documents	into	other	XML
documents,	HTML	web	pages,	or	plain	text.

YAML	Ain’t	a	Markup	Language	(YAML)
a	superset	of	JSON	with	additional	capabilities	such	as	support	for	relational
trees,	user-defined	types,	explicit	data	typing,	lists,	and	casting;	designed	for
better	object	serialization.

YARN	(Yet	Another	Resource	Negotiator)

handles	the	management	and	scheduling	of	resource	requests	in	a	distributed
environment;	the	fourth	module	of	the	Hadoop	stack.

Index

aborted	transaction,	432
absolute	address,	366
abstraction.	See	generalization
access	category,	82
access	modifiers,	59
access	paths,	397
access	transparency,	525
accessibility	dimension,	617
accessor	methods,	208
accuracy	dimension,	617
accuracy	ratio	(AR),	687
ACID	properties	
defined,	15,	452–453
in	loosely	coupled	systems,	535–538
in	NoSQL,	538

active	DBMS,	232–236
ActiveX	Data	Objects	(ADO),	468,	502
activity	services,	607–608
actuator,	353
ADO.NET,	468–471,	502,	533–534
after	images,	435
after	trigger,	233
agglomerative	hierarchical	clustering,	693

aggregate	functions,	157
aggregated	data,	717
aggregation	
in	EER	model,	55
mapping	EER	to	relational,	137
in	UML,	62–63

AJAX	(Asynchronous	JavaScript	and	XML),	508–509
ALL,	178–181
allocation,	519,	523
ALTER,	155–156
alternative	keys,	109
Amazon,	593
Amazon	Redshift,	572,	621
Amazon	Relational	Database	Service	(RDS),	621
Amazon	Web	Services,	706
Amsterdam,	8
analytics	
applications,	667
data	pre-processing,	669–672
economic	perspectives	
in-	versus	outsourcing,	664–704
on-premises	versus	cloud	solutions,	705–706
open-source	versus	commercial	software,	706–708
return	on	investment,	702–704
total	cost	of	ownership,	702

improving	ROI	of	
cross-fertilization,	713–714
data	quality,	711–712
management	support,	712
new	data	sources,	708–711

organizational	aspects,	712–713
post-processing,	700–701
predictive	model	evaluation,	689–696
privacy	and	security	
accessing	internal	data,	717
anonymization,	717–718
definitions	and	considerations	for,	714–715
encryption,	721
importance	of,	714
label-based	access	control,	719–721
RACI	matrix,	715–716
regulations,	721–723
SQL	views,	719

process	model,	665–666
success	factors	for,	701
types	of	
descriptive,	689–695
predictive,	673–682
social	network,	695–700

analytics	process	model,	665–666
anonymization	(data),	717–718
ANY,	178–181
Apache	Flume,	621
Apache	Hadoop,	631
Apache	Kylin,	621
Apache	Lucene,	616
Apache	Spark	
background	of,	652–653
GraphX,	658
MLlib,	656–657

Spark	Core,	653–654
Spark	SQL,	654–656
Spark	Streaming,	657–658

Apache	Sqoop,	621
Apache	Storm,	658
Apollo	program,	97
application	developer,	12
application	programming	interface	(API)	
classification	
background,	462–463
early	binding	versus	late	binding,	465–466
embedded	versus	call-level,	464
proprietary	versus	universal,	463–464

object	persistence	
Enterprise	JavaBeans,	484–488
Entity	Framework,	498–499
Java	Data	Objects,	495–498
Java	Persistence	API,	488–494
object-relational	mapping,	483–484,	498
SQLAlchemy,	499–502

universal	database	
ADO.NET,	468–471
embedded	API	versus	embedded	DBMS,	480–482
JDBC,	471–477
language-integrated	querying,	482–483
ODBC,	466–467
OLE	DB	and	ADO,	467–468
SQL	injection,	477–479
SQLJ,	479–480

architecture	categorization,	30–31

architecture	components	
connection	and	security	manager,	21–22
DDL	compiler,	22
interacting	with	
DDL	statements,	21
embedded	DML	statements,	21
interactive	queries,	21

interfaces,	27
query	processor,	22–25
storage	manager,	25–26
utilities,	26

archiving,	438
arcs,	333
area	under	the	ROC	curve	(AUC),	685
ASP	(Active	Server	Pages),	506
association	class,	60
association	rules	
basic	setting,	689–690
defined,	689
post-processing,	691
support,	confidence,	and	lift,	690–691

associations,	59–61,	See	also	relationship	type
associative	query,	221
Asynchronous	JavaScript	and	XML	(AJAX),	508–509
atomic	attribute	type,	42
atomic	literal,	217
atomic	search	key,	402–404
atomicity	property,	15,	452,	530–532
attribute	type	
defined,	40

in	ER	model,	42–43
in	file	organization,	362
in	index	creation,	400
relationship,	46

attributes,	57
authorization	identifier,	150
availability,	539
AVG,	162
Axibase,	342

B+-trees,	378,	388–389,	402–404
Bachman	diagram,	98
backup,	438
backup	and	recovery	utility	
and	data	availability,	423–425
as	database	advantage,	15
defined,	27

Baesens,	B.,	82,	85
bag.	See	multiset
BASE	principle,	312
BASE	transactions,	540
Bayer,	Rudolf,	388
BayesDB,	342
Bean-Managed	Persistence	(BMP),	488
before	image,	435
before	trigger,	233
begin_transaction	instruction,	432
behavior	(OO),	244
BETWEEN,	159
BFI,	384

bidirectional	association,	61
Big	Data	
Apache	Spark	
background	of,	652–653
GraphX,	658
MLlib,	656–657
Spark	Core,	653–654
Spark	SQL,	654–656
Spark	Streaming,	657–658

data	integration	outlook,	621
defined,	627
Hadoop	
definition	and	design,	630
history	of,	630–631
SQL,	643–652
stack,	631–643

scope	of	
value,	627–629
variety,	627–629
velocity,	627–629
veracity,	627–629
volume,	627–629

BigQuery	ETL,	621
binary	large	object	(BLOB),	155–156,	247,	360–361
binary	relationship	type	
cardinalities,	45
defined,	44–45
mapped	to	a	relational	model,	122–127
and	ternary	types,	48–50

binary	search,	364

binary	search	trees,	385–386
biometric	data,	3
bitmap	index,	383
BLOB	(binary	large	object),	155–156,	247,	360–361
block,	397
block-level	I/O	protocols,	415
block	pointer,	371
blockchains,	524
blocking	factor	(BF),	361
bootstrapping,	683–684
Boyce,	Raymond,	120
Boyce–Codd	normal	form	(BCNF),	119–120
Brewer,	Eric,	312–313,	539
B-tree,	378,	386–388
bucket,	365,	368–369
buffer	manager,	26
business	activity	monitoring	(BAM),	593
business	continuity	
contingency	planning,	recovery	point	and	recovery	time,	398–421
defined,	421

business	intelligence	(BI).	See	also	decision-making
defined,	572
hybrid	OLAP,	575
multidimensional	OLAP,	574–587
on-line	analytical	processing,	574
operational	BI,	592
pivot	tables,	573
query	and	reporting,	573–587
relational	OLAP,	575

business	process	

defined,	601
in	database	design,	38

business	process	integration	
data	and	process	integration	in,	606–610
defined	and	modeling,	601–602
managing	dependencies,	604–606
manual	processes,	602–604

CallableStatement,	475–476
call-level	APIs,	464
candidate	key	
defined,	108
in	file	organization,	362
in	index	creation,	400

canonical	form,	526
CAP	theorem,	312–313,	539
Capability	Maturity	Model	Integration	(CMMI),	619–620
cardinalities.	See	also	multiplicities
CODASYL	model,	101
ER	model,	45

Cartesian	product,	108
cascading	rollback,	447–448
catalog	
and	metadata	role,	80
data	types	in,	401
defined,	10–11

categorization	
based	on	architecture,	30–31
based	on	data	model,	28–30
based	on	degree	of	simultaneous	access,	30

based	on	usage,	31–32
in	EER	model,	54–55
mapping	EER	to	relational,	136–137

central	processing	unit	(CPU),	352
central	storage,	352
centrality	metrics,	696–698
centralized	DBMS	architecture,	459–460
centralized	system	architecture,	30
chaining,	370
changeability	property,	65
changed	data	capture	(CDC),	598
character	large	object	(CLOB),	247,	360–361,	610
CHECK	constraint,	151
checkpoints,	435
Chen,	Peter	Pin-Shan,	40
choreography,	604–606
churn	prediction,	667
class,	57
class	diagram,	58
class	invariant,	65
classification	
defined,	673
performance	measures	for,	684–687

classification	accuracy,	685
cleansing,	566
client–server	DBMS	architecture,	31,	459–460
client-side	scripting,	507–508
CLOB	(character	large	object),	247,	360–361,	610
cloud	DBMS	architecture	
analytics,	705–706

data	in	the,	600–601
data	warehousing	in,	572
defined,	31
tiered	system	architectures,	462

cloud	storage,	421
cloud-based	solutions,	705–706
CLUSTER,	398
clustered	index,	373–374,	398
clustering	
defined,	423,	692–693
hierarchical	clustering,	693–695
K-means,	695

CODASYL	model	
defined,	97
key	building	blocks,	97–101

Codd,	Edgar	F.,	104–105,	120
coefficient	of	determination,	688
collection	literal,	218
collection	types	(OO),	245–247
collision,	366
column	constraints,	151
column	value,	399
column-oriented	DBMS,	331–332
combination	notation,	404
combined	approach,	270–271
commercial	analytical	software,	706–708
committed,	432
common	gateway	interface	(CGI),	504–507
Common	Language	Runtime	(CLR),	468–471
compatibility	matrix,	445

compensation-based	transaction	models,	535–538
completeness	constraint,	53
completeness	dimension,	82–84
composite	aggregation,	62–63
composite	attribute	type,	42
composite	key,	362
comprehensibility,	689
conceptual	data	model	
advantages	of,	13
defined,	9
in	design	phase,	39
EER,	52–57
ER,	40–52,	121–133
not	stored	in	catalog,	10
physical	design	architecture,	357–358
UML	class	diagram,	57–66

conceptual/logical	layer,	10
concurrency	control	
defined,	6,	14–15
in	distributed	databases,	528–534
locking	protocol,	444–452
multi-version,	541–542
optimistic	and	pessimistic	schedulers,	443–444
problems,	439–442
schedule	and	serial	schedule,	442
serializable	schedules,	442–443
in	transactions,	431

confidence,	690
conformed	dimensions,	568–569
connection	manager,	21–22

Connection	object,	477
connectivity,	414
conservative	2PL,	446
consistency	
in	CAP	theorem,	539
eventual,	312–313,	540
quorum-based,	542–544

consistency	dimension,	82–84
consistency	in	databases,	300–301
consistency	property,	15,	452
consistent	hashing,	309–310,	538
constructor,	210
container	managed	relationships	(CMR),	488
container-managed	persistence	(CMP),	488
contextual	category,	82
contingency	plan,	398–421
Control	Objectives	for	Information	and	Related	Technology	(COBIT),	620
correlated	nested	queries,	175–178
cost-based	optimizer,	400
COUNT,	161,	222–223
credit	scoring	models,	667
cross-table,	573
cross-validation,	682–683
CRUDS	functionality,	608
CUBE,	577–578
cube	(three-dimensional),	575
cumulative	accuracy	profile	(CAP),	686–687
cursor	mechanism,	474
customer	relationship	management	system	(CRM),	5,	628
customer	segmentation,	667

cutoff,	685
Cutting,	Doug,	630
cylinder,	354
Cypher	
in	graph-based	database,	334
overview	of,	335–341

data	access	request,	717
data	accessibility,	84
data	accuracy,	82
Data	as	a	Service	(DaaS),	599–601
data	auditing	services,	610
data	availability,	423–425
data	cleansing	services,	609
data	completeness,	617
data	consistency,	617
data	consolidation,	593–595
data	definition	language	(DDL),	12
data	definitions,	21
and	DDL	compiler,	22
versus	actual	data,	8–9

data	dependency	
defined,	604
managing,	604–610

data	enrichment	services,	609
data	event	services,	610
data	federation,	595–596
data	flow,	607
data	governance,	85–86,	712–713
data	in	the	cloud,	600–601

data	independence,	12
data	integration	
in	business	process	integration,	606–610
defined,	591
outlook,	621
searching	unstructured	documents	
enterprise	search,	616–617
full-text,	610–611
indexing,	611–613
web	search	engines,	613–616

data	integration	pattern,	593
data	integrity	rules,	14
data	item,	357
data	lake,	571–572
data	lineage,	608
data	localization,	526
data	management	
in	catalogs,	401
data	quality,	81–85
defined,	79
governance,	85–86
and	metadata	catalogs,	80–81
roles	in,	86–88

Data	Management	Body	of	Knowledge	(DMBOK),	620
Data	Management	Maturity	Model,	619–620
data	manipulation	language	(DML)	
declarative,	22–25
defined,	12
procedural,	22–23

data	mart	

as	smaller	data	warehouse,	567–569
virtual,	569–570

data	model	
categorization	
extended	relational,	29
hierarchical,	28
network,	28
not-only	SQL,	30
object-oriented,	28
object-relational,	29
relational,	28
XML,	29

defined,	9–10
data	needs	convergence,	591–593
data	owner,	87
data	pointers,	386
data	pooling	firms,	709
data	pre-processing	
defined,	669
denormalization,	669–670
exploratory	analysis,	671
missing	values,	671–672
outlier	detection	and	handling,	672
sampling,	670

data	profiling	services,	609
data	projections,	626
data	propagation	
enterprise	application	integration,	596–597
enterprise	data	replication,	597

data	providers,	469

data	quality	(DQ)	
in	analytics,	711–712
and	data	governance	
Capability	Maturity	Model	Integration,	619–620
Control	Objectives	for	Information	and	Related	Technology,	620
Data	Management	Body	of	Knowledge,	620
Information	Technology	Infrastructure	Library,	621
Total	Data	Quality	Management,	619

defined,	80–81
dimensions,	81–84
master	data	management,	617–618
problems,	84–85

data	redundancy,	14,	311,	438
data	replication,	311
data	scientist	
and	analytics	processing,	666
defined,	88
job	profile,	668–669

data	security,	15
data	service	composition,	599
data	services,	608
data	silo,	591
data	stewards,	87
data	striping,	411–412
data	transformation	services,	610
data	type,	359
data	virtualization,	598–599
data	warehouse	
data	marts,	567–569
definition,	553–554

ETL	process,	565–567
Hive,	649–652
largest,	554
most	popular	vendors,	565
operational	data	store,	571
schemas	
fact	constellation,	557
snowflake,	556
star,	555–556

traditional	set-up,	592
versus	data	lakes,	571–572
virtual,	569–570

data	adapter	method,	470–471
database,	4
database	access	in	the	World	Wide	Web	
client-side	scripting,	507–508
common	gateway	interface,	504–507
JavaScript,	508–509
JSP,	ASP,	and	ASP.NET,	506
original	web	server,	504
REST-based	web	services,	509–511
Simple	Object	Access	Protocol,	509–511

database	access	methods	
atomic	key	index	searches,	402–404
full	table	scan,	408
index-only	access,	408
multiple	index	and	multicolumn	index	search,	403–407
query	optimizer	functioning,	400–402

database	administrator	(DBA)	
and	analytics	processing,	666

data	management	role,	87
defined,	11
interaction	tools,	21
privileges,	191–192

database	approach,	6–8
database	design	phases,	38–39
database	designer,	11,	87
database	functionality,	422–423
database	languages,	12
database	management,	12–15
database	management	system	(DBMS)	
architecture	of,	20–27
categorization	of	
based	on	architecture,	30–31
based	on	data	model,	28–30
based	on	degree	of	simultaneous	access,	30
based	on	usage,	31–32

definition,	5
market	value	of,	5
object-oriented,	207–226

database	management	system	architecture,	20–27
database	model	
advantages	of,	13
versus	instances,	8–9

database	schema,	8–9
database	schema	issues	in	data	warehousing	
dimension	table	optimization,	559–560
fact	table	granularity,	558–559
factless	fact	table,	559
junk	dimensions,	560

outrigger	table,	561
rapidly	changing	dimension,	563–565
slowly	changing	dimensions,	561–563
surrogate	keys,	557–558

database	state,	8
database	system,	12–15
definition,	5
elements,	8–10

database	system	architecture,	459–461
database	system	types	
extended	relational,	231–249
legacy,	93–101
object-oriented,	207–226
relational,	104–137
SQL,	147–194
XML,	255–293

database	technology	applications,	3–4
database	user	types,	12
DataNodes,	632–634
data-oriented	approach,	270
dataset,	357
Davenport,	T.H.,	712
DBCLOB	(double	byte	character	large	object),	247
DDL	compiler,	22
DDL	statements,	21
deadlock,	448
detection	and	resolution,	448–449
prevention,	449

decision	making,	552–553,	See	also	business	intelligence
decision	phase,	531

decision	support	systems	(DSS),	552
decision	trees	
defined,	677
properties	of,	680
regression	trees,	680–681
splitting	decision,	677–679
stopping	decision,	679–680

declarative	DML,	22–25
deduplication,	567
deep	equality,	217
deferred	update,	437
degree	(of	relationship	type),	44
Dejaeger,	K.,	82
DELETE,	185–186,	474
deletion	anomaly,	113
delimiters,	360
delineation,	432
Delta	Airlines,	225
dendrogram,	694
denormalization,	669–670
dense	indexes,	371
dependency	
existence,	45,	47
full	functional,	117
managing,	604–606
multi-valued,	120
transitive,	118
trivial	functional,	119
in	UML,	66

dependent	data	marts,	568

derived	attribute	type,	43
derived	fragmentation,	523
descriptive	analytics	
association	rules	
basic	setting,	689–690
defined,	689
post-processing,	691
support,	confidence	and	lift,	690–691

clustering,	692–695
goal	of,	689
sequence	rules,	691–692

detection	(deadlock),	449
dicing,	577
dimension	reduction,	710
dimension	table	optimization,	559–560
dimensions	
accessibility,	84
completeness,	82–84
conformed,	568–569
consistency,	82–84
junk,	560
mini,	563
rapidly	changing,	563–565
slowly	changing,	561–563
table	optimization,	559–560

direct	attach,	414
direct	file	organization,	365–370
directly	accessible	storage	devices	(DASDs),	353
directly	attached	storage	(DAS),	416,	419
directory,	376

dirty	read	problem,	440–441
disaster	tolerance,	421,	424–425
discretization,	717
disjoint	specialization,	52
disjointness	constraint,	52
disk	arrays,	411–413
disk	blocks,	354,	361
disk	mirroring,	412,	438
dissemination,	308
DISTINCT,	170
distinct	data	type,	238–252
distributed	2PL,	529–530
distributed	database	systems	
architectural	implications,	518–519
blockchains,	524
defined,	517–518
fragmentation,	520–523
metadata	allocation,	524
replication,	523–524

distributed	query	processing,	525–528
divisive	hierarchical	clustering,	693
DML	compiler	
in	database	access,	401
defined,	22–25

document	metadata,	613
document	stores,	315
Document	Type	Definition	(DTD),	260
document-oriented	approach,	270
DOM	API,	267
domain	

defined,	41
relational	database,	106–108
in	SQL,	150–151
in	UML,	59

double	byte	character	large	object	(DBCLOB),	247
doubling	amount,	677
DQ	frameworks,	82
drill-across,	576
drill-down	operator,	576
drill-up	operator,	575
Driver	Manager,	471–473,	479
DROP,	155–156
dumb	client	architecture,	460
dummy	record	type,	99–100
durability	property,	15,	453
dynamic	binding,	212
dynamic	hashing,	370
dynamic	random	access	memory	(DRAM),	356
dynamic	SQL,	466

early	binding	API,	465,	502
eBay,	629
edge,	333,	696
efficiency,	399
Elasticsearch,	616
electronic	vaulting,	424
ELK	stack,	616
embedded	API,	464,	502
embedded	DBMSs,	480–482
embedded	DML	statements,	21
embedded	documents,	320
embedded	identification,	359
encapsulation,	208
encryption,	721
end_transaction,	432
Enhanced	Entity	Relationship	Model	(EER)	
aggregation	in,	55
categorization	in,	54–55
designing	a,	56–57
examples	of,	56
foreign	keys,	109
mapped	to	a	relational	model,	133–137
metadata	modeling,	81
and	relational	model,	106
specialization	and	generalization	in,	52–54
SQL	for	metadata	management,	192
versus	UML,	66

ensemble	methods,	681–682
Enterprise	Application	Integration	(EAI),	284,	596–597

Enterprise	Data	Replication	(EDR),	597
Enterprise	Information	Integration	(EII),	595–596
Enterprise	JavaBeans	(EJB),	484–488,	502
enterprise	resource	planning	(ERP),	628
enterprise	search,	616–617
enterprise	storage	subsystems	
directly	attached	storage	(DAS),	416
iSCSI/Storage	over	IP,	419–421
NAS	gateway,	418–419
network	attached	storage	(NAS),	417–418
overview,	414–416
storage	area	network	(SAN),	416–417

Entity	Relationship	model	(ER)	
attribute	types,	40–41
domains,	41
entity	type,	40
examples	of,	50–51
history	of,	40
mapped	to	a	relational	model,	121–133
relationship	types,	43–46
temporal	constraints	of,	51–52
ternary	relationship	types,	48–50
weak	entity	types,	46–47

entity	type	
defined,	40
mapped	to	a	relational	model,	121–122

Entity	Manager,	492–493
Ethernet	
defined,	415
iSCSI	(internet	SCSI),	419–420

NAS,	417–418,	420
ETL	(extract,	transform,	load),	565–566,	593–595,	See	also	near	real-time	ETL
Event	Store,	342
eventual	consistency,	312–313,	318–319,	540
EXCEPT,	183–184
exclusive	lock,	445
ExecuteReader	method,	470
ExecuteScalar	method,	470
existence	dependency	
cardinality,	45
and	weak	entity	type,	47

EXISTS,	181–182
experts,	666
explicit	networks,	708–709
exploratory	analysis,	671
extended	relational	DBMS	(ERDBMS)	
active	RDBMS	extensions,	232–236
defined,	29

Extensible	Markup	Language	(XML),	256–259
Extensible	Stylesheet	Language	(XSL),	263–266
external	data	model	
defined,	10
SQL	having,	150
SQL	views,	188–190

external	scalar	function,	241
external	table	function,	241
extraction	strategy,	566
extraction	transformation	and	loading	process	(ETL),	565–567

Facebook	

API,	463
as	Big	Data,	628
Hive,	649
Presto,	652

fact	constellation,	557
fact	table	granularity,	558–559
factless	fact	table,	559
failover,	416
failover	time,	438
failure	detection,	308
failure	types,	436
fat	client	variant,	31
fat	server	variant,	31
featurization,	699–700
federated	database,	519,	525
federated	DBMS,	31
Fibre	Channel	(FC),	415
field,	357
file-level	I/O	protocols,	415
file	system,	418
file-based	approach	
definition,	5–6
record	organization,	359

fill	factor,	389
filter	factor,	401
filters,	316–320
first	normal	form	(1	NF),	115–117
5	Vs	of	Big	Data,	627–629
FlockDB,	334
FLWOR,	280–282

foreign	key	
defined,	109–110
mapped	to	a	relational	model,	129–130
and	SQL	referential	integrity	constraints,	154–155

formatting	rules,	566
fourth	normal	form	(4	NF),	120
fragment	query,	526
fragmentation,	520–523
fragmentation	transparency,	524
fragments,	519
fraud	detection,	667
free-form	language,	148
FROM,	157
full	backup,	439
full	functional	dependency,	117
full	outer	join,	170–172
full	table	scan,	408
full-text	
indexing,	611–613
searching,	610–611

full-text	search	(XML),	280
functional	dependency,	114–115
fuzzy	logic,	612

gain,	678
galaxy	schema,	557
garbage	collection,	541
garbage	in,	garbage	out	(GIGO),	81,	572,	711
General	Data	Protection	Regulation	(GDPR),	722
generalization	

defined,	52
in	UML,	62

geographical	information	systems	(GIS)	
applications,	4
as	file-based	approach,	5

global	deadlock,	530
global	query	optimization,	526
Google	
consistency,	314

Google	Cloud	Dataflow,	621
Google	File	System,	630
Google	Trends,	616
grain.	See	granularity
granularity,	558–559
graph	theory,	333
graph-based	databases,	333,	709
GraphX,	658
GROUP	BY,	163–164,	170
GROUPING	SETS,	579–580

Hadoop	
and	Big	Data,	621
definition	and	initial	design,	630
history	of,	630–631
stack	
distributed	file	system,	631–635
MapReduce,	635–641
pure	form,	631
YARN,	641–643

Hadoop	Common,	631

Hadoop	Distributed	File	System	(HDFS),	631–635
hard	disk	backup,	424
hard	disk	controller,	353
hard	disk	drive	(HDD)	
failures	of,	631
internals	of,	353–355
as	secondary	storage	device,	352

Harris,	J.G.,	712
hash	file	organization,	365–370
hash	function,	304–305
hash	indexes,	383
hash	join,	410
hashing,	362
HAVING	clause	(SQL	DML),	163–164
HBase,	644–648
heap	file,	363
Hibernate,	489
hierarchical	clustering,	693–695
hierarchical	DBMS,	28
hierarchical	model,	93–97
Hive,	649–652
horizontal	fragmentation,	521,	538
horizontal	scaling	
defined,	301
in	distributed	databases,	519
and	NoSQL	databases,	305–308

HTML	
client-side	scripting	languages,	507
as	original	web	server	language,	504
and	XML,	263–266

versus	XML,	256–257
web	search	engines	and,	615

HTTP,	506
definition,	285
and	REST,	288–289

hybrid	OLAP	(HOLAP),	575

I/O,	353,	414–416
I/O	boundary,	353
immediate	update	policy,	438
immutable	object	identifier	(OID),	58
impedance	mismatch	problem,	24
implementation,	209
implicit	networks,	708–709
impurity,	677–679
IN,	159
inconsistent	analysis	problem,	441–442
incremental	backups,	439
independent	data	marts,	586
index,	190–191
index	design,	398–400
index	entry,	371
index-only	access,	408
index	search,	402–404
index	spaces,	397
indexed	sequential	file	organization	
clustered	indexes,	373–374
defined,	370
multilevel	indexes,	374–375
primary	indexes,	373

terminology	of,	370–385
indexer,	613
indexing,	362,	611–613
information	analyst,	86
information	architect	
data	management	role,	86
defined,	11

information	hiding,	58,	209
Information	Technology	Infrastructure	Library	(ITIL),	621
Infrastructure	as	a	Service	(IaaS),	600–601
inheritance	
at	data	type	level,	242–243
defined,	210
in	EER	model,	54
at	table	type	level,	243–244
in	UML,	58

in-memory	DBMS,	31
Inmon,	Bill,	553,	569
inner	join,	166–171
inner	table,	409–410
INSERT,	185,	474
insertion	anomaly,	112
insourcing,	664–704
integrator	standard,	620
integrity	constraints,	314–315
integrity	rules,	14
intention	exclusive	lock	(ix-lock),	451–452
intention	lock,	451
intention	shared	lock	(is-lock),	451–452
inter-query	parallelism,	397,	519

interactive	queries,	21
interface,	27,	209
internal	data	model	
defined,	10
in	design	phase,	40
physical	database	design	facilitates,	356–358
and	physical	database	organization,	396
and	SQL,	149
SQL	indexes,	190–191

internal	layer,	10
internal	representation	format,	25
Internet	of	Things	(IoT),	4,	627–628
INTERSECT,	183–184
intersection,	405
intervals,	370
intra-query	parallelism,	397,	519
intrinsic	category,	82
inverted	file	
characteristics,	382
and	database	access,	370
defined,	380

iSCSI	(internet	SCSI),	419–420
isolation	levels	(locking	protocol),	449–450
isolation	property,	15,	452

Java	(programming	language)	
hash	map,	304
HDFS,	631,	634
and	MapReduce,	636–641
MongoDB,	321–330

NoSQL	databases,	316–320
object-oriented	paradigm,	223–225
popularity	of,	148
and	SQL,	148

Java	applets,	507
JavaBean,	484–488
Java	Data	Objects	(JDO),	495–498,	502
Java	DataBase	Connectivity	(JDBC),	471–477,	511
Java	Persistence	API,	489–494,	502
JavaScript,	507–510
JavaScript	Object	Notation	(JSON),	290–292
JavaServer	Pages	(JSP),	486,	506
join	condition,	408–409
join	index,	384
join	queries	
defined,	166
in	index	creation,	399
in	physical	database	organization,	408–410
OQL,	222

jOOQ,	482
JSON	standard,	316
JSONB,	331
junk	dimension,	560

key	attribute	type,	42
key	performance	indicators	(KPIs)	
in	business	intelligence,	592
defined,	12–16
monitoring	of,	27

keys,	108–110

key-to-address	transformation,	365–368
key–value	stores,	304
keyword-based	search	(XML),	280
Kibana,	617
Kimball,	Ralph,	569
K-means	clustering,	695

Label-Based	Access	Control	(LBAC),	719–721
LAN-free	backup,	416–417
language-integrated	querying,	482–483
large	objects	(LOBs),	247
late	binding,	465–466,	502
latency,	354,	591–593
left	outer	join,	170–172
legacy,	93
legacy	databases	
CODASYL	model,	98–101
hierarchical	model,	93–97

legacy	file-based	system,	6
Lemahieu,	W.,	82
lift,	690
lift	curve,	686
LIKE,	159
linear	decision	boundary,	676
linear	list,	375–377
linear	regression,	673–675
linear	search,	362
Linear	Tape-Open	(LTO),	424
linked	data,	283
linked	list	
defined,	370
represented	as	tree	structure,	378

LinkedIn,	628
LINQ,	483
Lismont,	J.,	713
list	data	organization,	375–378

lists,	360,	375
literal,	217
loading	factor,	368
loading	utility,	26
local	area	network	(LAN),	519
local	query	optimization,	526
location	transparency,	524
lock	manager,	26
lock	table,	445
locking,	444–446
locking	protocol	
cascading	rollbacks,	447–448
in	concurrency	control,	444
deadlocks,	448–449
defined,	26
isolation	levels,	449–450
lock	granularity,	450–452
purposes	of,	444–446
Two-Phase	Locking	Protocol,	446–448

log	records,	435
logfile,	435
logical	data	independence,	12
logical	data	model	
defined,	9–10
in	design	phase,	39–40
physical	design	architecture,	357–358
SQL	having,	150
transparency	in,	524

logistic	regression,	675–677
Logstash,	616

long-running	transactions,	534–535
long-term	locks,	449
loosely	coupled	systems,	535
Lorenz	curve,	686
lost	update	problem,	440,	447,	450

macroeconomic	data,	709
mainframe	architecture,	460
manual	failover,	422
MapReduce	
and	Hadoop,	631,	635–641
and	Hive,	651–652
innovative	aspects	of,	321–330
parallelization	in,	630

marketing	analytics,	667
master	data	management	(MDM),	617–618
MATCH,	335–341
mathematical	notation,	404
maturity	(analytics	applications),	713–714
McCreight,	Edward,	388
mean	absolute	deviation	(MAD),	688
mean	squared	error	(MSE),	688
media	failure,	436
media	recovery,	438–439
member	record	type,	98
membership	protocol,	308
Memcached,	306–308,	353
message-oriented	middleware	(MOM),	284–285
metadata	
and	catalogs,	80

in	database	approach,	6
distribution	and	replication	of,	524
document,	613
modeling,	80–81
NameNode,	632
semantic,	567
SQL	for,	192–193
structural,	567

metadata	services,	610
metamodel,	80–81
method	overloading,	209
method	overriding,	211–212
metrics	(social	network),	696–698
Microsoft	
ADO.NET,	468–471,	502,	533–534
AJAX,	508–509
ASP.NET,	506
LINQ,	483
ODBC,	466–467
OLE	DB,	467–468,	502
purchase	of	LinkedIn,	629

mini-dimension	table,	563
mirroring,	424
misclassification	rate,	685
missing	values,	671–672
mixed	file,	357
mixed	fragmentation,	521–522
MLlib,	656–657
mobile	DBMSs,	32
modulo	(mod),	366–367

Moges,	H.T.,	82
MongoDB	
complex	queries	and	aggregations,	320–330
eventual	consistency,	318–319
filters	and	queries,	316–318
items	with	keys,	316

Monsanto,	334
Morison,	R.,	712
multi-user	database,	430
multicolumn	index,	382–383,	403–407
multidimensional	DBMS	(MDBMS),	574–587
multidimensional	OLAP	(MOLAP),	574–587
multilevel	indexes,	374–375,	384–385
multimedia	data	
applications,	3–4
technology	for,	32

multimedia	DBMSs,	32
Multiple	Granularity	Locking	Protocol	(MGL	protocol),	451–452
multiple	indexes,	403–407
multiplicities,	60,	See	also	cardinalities
multiset,	157
multi-user	system,	30
multi-valued	attribute	type	
defined,	43
mapped	to	a	relational	model,	130–131

multi-valued	dependency,	120
multi-version	concurrency	control,	541–542
MySQL	(interactive	environment),	147–148

named	row	type,	239

NameNode	server,	631–634
namespace,	266–267
n-ary	relationship,	129–130
NAS	gateway,	418–419
natural	key,	717
navigational	query,	221
near	real-time	ETL,	598,	See	also	ETL
Neo4j	(graph-based	database),	334,	658
nested	queries,	172–175
nested-loop	join,	409–410
Netflix,	593
network	attach,	414
network	attached	storage	(NAS),	417–418,	518
network	DBMSs,	28
network	sockets,	462
neural	networks,	681–682
NewSQL,	343
nodes,	696
defined,	333
tree	data	structures,	386–389

nonlinear	list,	375
nonrepeatable	read,	442
non-volatile,	553–554
normalization	
anomalies	in	unnormalized	relational	model,	113–114
defined,	111–112
functional	dependencies,	114–115
informal	guidelines,	114
prime	attribute	type,	115

normalization	form	tests	

Boyce–Codd	normal	form,	119–120
first	normal	form,	115–117
fourth	normal	form,	120
second	normal	form,	117–118
third	normal	form,	118–119

NoSQL	databases	
and	Big	Data,	31
blended	systems,	343
column-oriented	databases,	331–332
and	consistency,	301–302
data	distribution/transaction	management	
BASE	transactions,	540
CAP	theorem,	539
horizontal	fragmentation	and	consistent	hashing,	538
multi-version	concurrency	control	and	vector	clocks,	541–542
quorum-based	consistency,	542–544

defined,	30
graph-based	databases	
and	Hbase,	644
Cypher	query	language,	335–341
defined,	333–335
fragmentation,	520–521
inconsistency,	440

key-value	stores	304
consistent	hashing,	309–310
eventual	consistency,	312–313
hash	function,	304–305
horizontal	scaling,	305–308
integrity	constraints	and	querying,	314–315
replication	and	redundancy,	311–312

request	coordination,	308–309
stabilization,	314

modern	background,	302–304
movement	emergence,	302
REST-based	web	services,	509–511
tuple	and	document	stores	
complex	queries	and	aggregations,	320–330
defined,	315–316
filters	and	queries,	316–320
items	with	keys,	316
SQL	interface,	330–331

NOT	EXISTS,	182
NOT	NULL,	151
n-tier	DBMS	architecture,	31,	461
Nutch	project,	630

object,	57
object	constraint	language	(OCL),	64–66
Object	Data	Management	Group	(ODMG),	217
object	definition	language	(ODL),	218–221
object	equality,	217
object	identifier	(OID),	216–217
object	identity,	217
Object	Management	Group	(OMG),	57
object	manipulation	language	(OML),	223
object	model,	217–218
object	persistence,	483–484
basic	principles	of,	214
serialization	in,	214–215

object	query	language	(OQL),	221–223

object-relational	mapping	(ORM),	226–227,	484,	501–502
object	storage,	420
object-oriented	database	management	systems	(OODBMS),	208–227
defined,	216
evaluation	of,	225–227
identifiers,	216–217
as	NoSQL	niche	database,	303
standard	
defined,	217
language	bindings,	223–225
object	definition	language,	218–221
object	model,	217–218
object	query	language,	221–223

object-oriented	DBMS	(OODBMS).	See	object-oriented	database	management
systems

object-oriented	paradigm	(OO)	
advanced	concepts	of,	209–213
basic	concepts	of,	208–209
defined,	207
object	persistence	in,	214–215

object-relational	DBMS	(ORDBMS)	
behavior,	244
collection	types,	245–247
defined,	29,	236
inheritance,	242–244
large	objects,	247
polymorphism,	245
recursive	SQL	queries,	249–253
user-defined	functions,	240–241
user-defined	types,	236–240

odds	ratio,	676
OLE	DB,	467–468,	502
ON	DELETE	CASCADE,	154
ON	UPDATE	CASCADE,	154
one-way	linked	list,	375–376
on-line	analytical	processing	(OLAP),	31
on-line	transaction	processing	DBMS	(OLTP)	31
in	business	intelligence,	574
in	decision-making,	552
operators,	575–577
SQL	queries,	577–583

on-premises	analytics,	705–706
opaque	data	type,	238
open	addressing,	369
open	API,	463
Open	Database	Connectivity	(ODBC),	464,	466–467
open-source	analytical	software,	706–708
open-source	DBMS	
defined,	32
and	Hadoop,	630–631
Spark,	652

operational	BI,	592
operational	data	store	(ODS),	571
operational	efficiency,	689
operational	level,	552
operations,	57
optimistic	protocol,	443–444,	534–536
orchestration	pattern,	604–606
ORDER	BY,	163–164
ordinary	least	squares	(OLS),	674

outer	joins	(SQL	DML),	170–172
outer	table,	409–410
outliers,	672
outrigger	table,	561
outsourcing,	664–704
overfitting,	679
overflow	
and	database	access,	408
defined,	366
retrieval	of,	368

overflow	area,	369
overflow	handling	technique,	369–370
overlap	specialization,	53
owner	entity	type,	46
owner	record	type,	98

page,	397
parallel	databases,	519
parent–child	relationship	
defined,	94–95
foreign	keys,	110

Parquet,	332
partial	categorization,	55
partial	participation,	45
partial	shredding,	270–271
partial	specialization,	53
participants,	528
PARTITION	BY,	582
partition	tolerance,	539
partitions,	370

passive,	232
Pearson	correlation	coefficient,	687
performance	measures	
classification	models,	684–687
comprehensibility,	688
operational	efficiency,	689
regression	models,	687–688

performance	monitoring	utilities	
and	CAP	theorem,	539
defined,	27
in	modern	DBMSs,	397

performance	utilities	
defined,	16
in	modern	DBMSs,	397

persistence	
by	class,	214
by	creation,	214
by	inheritance,	214
by	marking,	214
by	reachability,	214
independence,	214
orthogonality,	214

persistent	object,	214
persistent	storage	media,	352
personal	computer	(PC),	459
pessimistic	protocol,	444,	533
phantom	reads,	442
PHP,	505
physical	data	independence,	12
physical	database,	357

physical	database	design,	356–358
physical	database	organization	
business	continuity,	421–425
database	access	methods,	400–408
disk	arrays	and	RAID,	411–413
enterprise	storage	subsystems,	413–421
join	implementations,	408–410
physical	design	architecture,	356–358
record	organization,	359–361
records	and	files,	396–400
storage	hierarchy,	352–353

physical	file,	357
physical	file	organization	
bitmap	index,	383
hash	index,	383
heap	file,	363
indexed	sequential	file,	370–375
join	index,	384
list	data	organization,	375–378
random	file/hashing,	365–370
secondary	indexes	and	inverted	files,	379–384
sequential	file,	363–365
terminology,	362–363

Pig	platform,	648–649
pivot	or	cross-table,	573
Platform	as	a	Service	(PaaS),	600
pointers	
block,	371
data,	386
defined,	357–358,	360

record,	371
tree,	386

point-of-sale	(POS)	
application	(POS),	552
defined,	4
as	on-line	transactional	processing,	31

polymorphism,	212,	245
PostgreSQL,	330
power	curve,	686
precedence	graph,	443
precision,	685
predictive	analytics	
decision	trees,	677–681
evaluating,	689–696
goal	and	types	of,	673
linear	regression,	673–675
logistic	regression,	675–677

PreparedStatement	interface,	475
Presto,	652
primary	area,	369
primary	copy	2PL,	529
primary	file	organization	methods,	362
primary	index	
defined,	373,	398
range	query,	404

primary	key	
defined,	109
in	file	organization,	362
in	index	creation,	400
NoSQL	databases,	316

primary	site	2PL,	529
primary	storage,	352
prime	attribute	type,	115
privacy	(in	analytics)	
anonymization	(data),	717–718
defined,	714
encryption,	721
internal	data	access,	717
LBAC,	719–721
RACI	matrix,	715–716
regulations,	721–723
SQL	views,	719

privilege,	191–192
procedural	DML,	22
process	engine,	602
process	integration	
and	data	integration,	606–610
defined,	591

product	notation,	404
projection,	527
proprietary	API,	463–464
proximity,	612

qualified	association,	61
query	and	reporting,	573–587
query	by	example	(QBE),	573
query	cardinality	(QC),	401
query	decomposition,	526
query	executor,	25
query	optimizer	

in	database	access,	400–402
defined,	25
and	index	design,	398

query	parser,	25,	401
query	predicate,	401
query	processor	
in	database	access,	401
defined,	22
in	a	distributed	database,	525–528
DML	compiler,	22–25
function	of,	25
optimization	of,	25
query	executor,	25

query	rewriter,	24,	401
QueryDSL,	483
querying,	314–320
quorum-based	consistency,	542–544

RACI	matrix,	715–716
RAID	controller,	411
RAID	levels,	412–413
RAIN	(redundant	array	of	independent	nodes),	420
random	file	organization	
defined,	365
efficiency	factors,	368–370
key-to-address	transformation,	365–368

ranking,	580
ranking	module,	613
rapidly	changing	dimension,	563–565
raw	data,	6

RDF	Schema,	283,	341
read	committed,	450
read	lock,	26
read	uncommitted,	450
read/write	heads,	353
receiver	operating	characteristic	curve	(ROC	curve),	685
recommender	systems,	667
record	organization,	359–361
record	pointer,	371
record	type	
CODASYL	model,	98–101
defined,	94
variable	length,	360–361

record-at-a	time	DML,	22–23
recovery,	431
recovery	facilities,	15
recovery	manager,	26
recovery	point	objective	(RPO),	422
recovery	time	objective	(RTO),	421–422
recovery	utilities,	27
REDO,	436–438
redundancy	
and	clustering,	311
defined,	95
in	disk	arrays,	412

Redundant	Array	of	Independent	Disks	(RAID),	411–413,	422
referential	integrity	constraints	
ALTER	command,	155–156
DROP	command,	155–156
SQL	having,	154–155

regression,	673
regression	tree	
defined,	680–681
performance	measures,	687–688

relation,	105,	See	also	set	type
relational	DBMS	(RDMS)	
active	extensions,	232–236
and	SQL,	147–149
defined,	28,	147
relational	model,	105–112
SQL,	147–149

relational	databases	
basic	concepts,	105–106
compared	to	NoSQL,	303
constraints,	111
examples	of,	111–112
formal	definitions,	106–108
history	of,	104–105
mapping	conceptual	EER	model	to,	133–137
mapping	conceptual	ER	model	to,	121–133
mathematical	underpinning,	105
normalization,	111–120
types	of	keys,	108–110
versus	XML	databases,	271–272

relational	model,	231–232
Relational	OLAP	(ROLAP),	575
relationship,	43
relationship	type.	See	also	associations
with	attribute	type,	46
defined,	44

dependency,	66
in	ER	model,	43–46
legacy	databases,	94
mapped	to	a	relational	model,	122–132

relative	block	address,	366
relative	location,	359
remote	procedure	call	(RPC),	284
reorganization	utility,	27
repeatable	read,	450
repeated	group,	98
replicas,	311
replication	
and	data	availability,	424
and	distributed	2PL,	529–530
in	distributed	databases,	520,	523–524

replication	transparency,	524
representation	category,	82
representational	state	transfer	(REST),	288–289,	509–511
request	coordinator,	308
requirement	collection	and	analysis,	38
resilient	distributed	datasets	(RDDs),	653–654
resolution	(deadlock),	449
Resource	Description	Framework	(RDF),	282–284
response	modeling,	667
response	time	
defined,	354
as	KPI,	16

REST	(representational	state	transfer),	288–289,	509–511
RESTRICT,	154–155
ResultsSets,	474,	476

return	on	investment	(ROI)	
in	analytics,	708–714
defined,	702–704

right	outer	join,	170–172
rigorous	2PL,	446
ring	topology,	309
risk	analytics,	667
Roesch,	D.,	85
roles,	44
rollback,	432
roll-down,	576
rollforward	recovery,	439
roll-up,	575
ROLLUP,	578–579
rotational	delay,	354
row,	See	tuple

sampling,	670
SAX	API	(simple	API	for	XML),	268
scaling	out,	301
scaling	up,	301
schedule,	432,	442
scheduler,	433,	439–440
schema-aware	mapping	(XML),	275–276
schema-level	triggers,	234
schema-oblivious	mapping/shredding,	273–275
Scheule,	H.,	85
SCSI	(Small	Computer	Systems	Interface),	414–415
search	key,	362
search	key	values,	386
search	tree,	385
second	normal	form	(2	NF),	117–118
secondary	file	organization	methods,	363
secondary	index,	363,	380–381,	398,	404
secondary	storage,	352
sectors,	354
security	(in	analytics)	
anonymization	(data),	717–718
defined,	714–715
encryption,	721
internal	data	access,	717
LBAC,	719–721
RACI	matrix,	715–716
regulations,	721–723
SQL	views,	719

security	manager,	22

seek	time,	354
SELECT	
correlated	queries,	175–178
full	syntax	of,	156–157
GROUP	BY/HAVING	clause,	163–164
join	queries	
defined,	166
inner	joins,	166–171
outer	joins,	170–172

nested	queries,	172–175
queries	with	aggregate	functions,	161–163
queries	with	ALL/ANY,	178–181
queries	with	EXISTS,	181–182
queries	with	ORDER	BY,	165
queries	with	set	operators,	183–184
SELECT/FROM	subqueries,	182–183
simple	queries,	157–160

selective	inheritance,	55
self-service	BI,	573
semantic	metadata,	567
semantic	search,	282–284
semantical	rules	
defined,	14
in	UML,	59

semi-structured	data	
defined,	13
and	document	stores,	315–318

sensitivity,	685
sensor	DBMS,	32
sequence	rules,	691–692

sequential	file	organization,	363–365
sequentially	accessible	storage	device	(SASD),	353
serial	schedule,	442
serial	transactions,	431
serializable,	442–443
serializable	level,	450
serialization,	214–215
server-free	backups,	416–417
service	oriented	architecture	(SOA),	599
service	time,	354
SET	DEFAULT,	154
SET	NULL,	154
set	operators	(SQL	DML),	183–184
set	type,	97–101,	See	also	relation
set-at-a-time	DML,	22–25,	147
shallow	equality,	217
shard,	306
sharding,	306,	538
shared	aggregation,	62–63
shared	and	intention	exclusive	lock	(six-lock),	451–452
shared-disk	architecture,	518
shared	lock,	445
shared-memory	architecture,	518
shared-nothing	architecture,	518
short-term	locks,	449
shredding,	270,	273–275
similarity	measures,	612
simple	attribute	type,	42
Simple	Object	Access	Protocol	(SOAP),	285–288,	509–511
simultaneous	access,	30

single	points	of	failure,	422
single-user	system,	30
single-valued	attribute,	43
singular	value	decomposition	(SVD),	710
slicing,	587
slowly	changing	dimensions,	561–563
Small	Computer	Systems	Interface	(SCSI),	414–415
snowflake	schema,	556
SOAP	(Simple	Object	Access	Protocol),	285–288,	509–511
Sober	(fictional	taxi	company)	
analytics,	723–724
background	of,	xxiiii
Big	Data,	660
data	management,	88
data	quality	and	governance,	622
data	warehousing	and	business	intelligence,	583–584
database	access	methods,	426
database	architecture	and	categorization,	33
distributed	transaction	management,	545
EER	model	for,	67–68
file	organization	methods,	390
legacy	databases,	102
mapping	relational	models,	138–139
NoSQL	databases,	300
SQL,	194–195
transaction	management,	453
UML	model	for,	69–70
XML,	294–296
web-based	access,	512–513

social	network,	696

social	network	analytics	
definitions,	696–697
learning,	699–700
metrics,	696–698
popularity	of,	695–696

sociogram,	696–697
Software	as	a	Service	(SaaS),	600
solid	state	drive	(SSD)	
integrated	circuitry	of,	355–356
as	secondary	storage	device,	352

sort-merge	join,	410
sourced	function,	241
space	utilization,	16
Spark,	652
Spark	Core,	653–654
Spark	SQL,	654–656
Spark	Streaming,	657–658
SPARQL,	284,	341
sparse	indexes,	371,	380
spatial	DBMS,	32
specialization	
defined,	52
mapping	EER	to	relational,	133–136
in	UML,	62

specialization	hierarchy,	54
specificity,	685
spindle,	353
splitting	decision,	677–679
splitting	up	the	dataset	techniques,	682–684
Spotify,	32,	463

SQL	data	types,	150–151
SQL	injection,	477–479
SQL	schema,	150
SQL	table,	150–151
SQL	views,	719
SQL/XML,	276–279
SQL/XML	mapping,	276–279
SQLite,	480–482
SQLJ,	479–480
stabilization,	314
star	schema,	555–556
starvation,	446
static	2PL,	446
static	binding,	212
static	SQL,	466
StAX	(Streaming	API	for	XML),	269
stopping	decision,	679–680
storage	area	network	(SAN),	416–417,	419,	518
storage	devices,	352–353,	422
storage	manager	
and	buffer	manager,	26
defined,	25
and	lock	manager,	26
and	recovery	manager,	26
and	transaction	manager,	26

stored	data	manager,	434
stored	database,	357
stored	procedure,	234–236,	465
stored	record,	357
stored	table,	397

strategic	level	of	decision-making,	552
streaming	data,	593
stretched	cluster,	425
strong	entity	type,	46
Strong,	D.M.,	82
structural	metadata,	567
structured	data	
defined,	13
versus	unstructured	data,	613

structured	literal,	218
Structured	Query	Language	(SQL)	
binding	in,	465–466
data	definition	language,	149–156
data	manipulation	language,	156–188
for	metadata	management,	192–193
in	index	creation,	398–400
indexes,	190–191
and	JPA,	494
key	characteristics	of,	147–148
in	NoSQL	queries,	330–331
OLAP	queries,	577–583
and	ORDBMSs,	249–253
popularity	of,	148
privileges,	191–192
in	relational	databases,	147
search	keys,	362
three-layer	architecture,	149
views,	188–190

Structured	Query	Language	(SQL)	on	Hadoop	
background	for	using,	643–644

HBase,	644–648
Hive,	649–652
Pig,	648–649

Structured	Query	Language	data	definition	language	(SQL	DDL)	
example	of,	151–154
key	concepts	of,	150–151
referential	integrity	constraints,	154–155

Structured	Query	Language	data	manipulation	language	(SQL	DML)	
DELETE	statement,	185–186
INSERT	statement,	185
purpose	of,	156
SELECT	statement,	156–184
UPDATE	statement,	186–188

structured	search,	280–282
subject-oriented,	553
SUM,	162
summation	notation,	404
superkey,	108
supply	chain	management	systems	(SCM),	628
support,	690
support	vector	machines	(SVM),	681–682
surrogate	keys,	557–558
synonyms,	366
syntactical	rules,	14
system	database,	396
system	failure,	436
system	recovery,	436–438

table	cardinality	(TC),	401
table	data	type,	240

table-based	mapping,	272–273
tablespace,	396–397
tactical	level,	552
tape	backup,	423
technical	key,	717
template-based	mapping,	278
temporal	constraints	
of	EER	model,	56–57
of	ER	model,	51–52
relational	database,	111

ternary	relationship	types	
defined,	48
in	ER	model,	48–50

text	analytics,	667
text	mining,	612
textual	data,	710
thesaurus,	612
third	normal	form	(3	NF),	118–119
thread,	22
three-layer	architecture	
defined,	10
SQL	having,	149

three-schema	architecture,	10
three-tier	architecture,	460
throughput	rate,	12–16
tiered	system	architecture,	460–462
tightly	coupled	
in	distributed	databases,	528
in	Hadoop,	631
primary	site	2PL	and	primary	copy	2PL,	529

time	variant,	554
timeliness,	82
timestamping,	444,	533
total	categorization,	55
total	cost	of	ownership	(TCO),	569,	702
Total	Data	Quality	Management	(TDQM),	85–86,	619
total	participation,	45
total	specialization,	53
tracks,	354
transaction,	430–431
transaction	coordinator,	528
transaction	failure,	436
transaction	management	
ACID	properties	of,	452–453
compensation-based	models,	534–538
concurrency	control,	528–534
DBMS	components,	433–435
delineating,	432–433
distributed	and	concurrency	control,	528–534
distributed	query	processing,	525–528
logfile,	435
transparency,	524–525

transaction	manager,	26,	433
transaction	recovery	
defined,	425
failure	types,	436
media	recovery,	438–439
system	recovery,	436–438

transaction	transparency,	525
transfer	time,	354

transient	object,	214
transitive	dependency,	118
transitive	persistence,	214
transparency	
defined,	517
in	distributed	databases,	524–525
in	transaction	management,	524–525

tree	data	structures	
B+-tree,	388–389
binary	search,	385–386
B-tree,	386–388
defined,	377–379

tree	pointers,	386
trigger,	232–236
trivial	functional	dependency,	119
tuple	
defined,	105
in	relationships,	106–108
SQL	DML,	161–164

tuple	stores,	315
Twitter	
API,	463
as	Big	Data,	628
as	social	network,	334

Two-Phase	Commit	Protocol	(2PC),	530–532
Two-Phase	Locking	Protocol	(2PL),	446–448,	529
two-tier	architecture,	460
two-way	linked	list,	377
type	orthogonality,	214

unary	relationship	type,	44–45,	127–128
uncommitted	dependency	problem,	440–441,	448,	537
UNDO,	436–438
unidirectional	association,	60
Unified	Modeling	Language	(UML)	
access	modifiers,	59
aggregation	in,	62–63
associations,	59–61
changeability	property,	65
classes,	58
defined,	57
dependency	relationships	in,	66
examples	of,	64
OCL	in,	64–66
specialization	and	generalization	in,	62
variables,	59
versus	EER,	66

uniform	distribution,	368
UNION,	183–184
UNIQUE	constraint	
defined,	151
in	index	creation,	398

unique	index,	399
universal	API,	463–464,	525
universal	data	access,	468
universal	data	storage,	468
unnamed	row	type,	238
unrepeatable	read,	442
unstructured	data	
in	analytics	ROI,	710

defined,	13
versus	structured	data,	613

UPDATE,	186–188,	474
update	anomaly,	113
usage	categorization,	31–32
user	database,	396
user	interface,	27
user	management	utilities,	27
user-defined	functions	(UDF),	240–241
user-defined	types	(UDT)	
defined,	236–237
distinct	data	type,	238–252
named	row	type,	239
opaque	data	type,	238
table	data	types,	240
unnamed	row	type,	238

utilities,	26–27

valid,	260
value,	629
value	distortion,	717
variable	length	records,	360
variables,	59
VARIANCE,	162
variety,	628
vector,	98
vector	clocks,	541–542
velocity,	628
veracity,	629
vertical	fragmentation,	520

vertical	scaling,	301
vertices,	333
victim	selection,	449
view	
defined,	10
SQL,	188–190

virtual	child	record	type,	95
virtual	data	mart,	569–570
virtual	data	warehouse,	569–570
virtual	nodes,	311
virtual	parent	record	type,	95
virtual	parent–child	relationship	type,	95–97
volatile	data,	4
volatile	memory,	352
volume,	628
voting	phase,	531

wait-for	graph,	449
Wang,	R.Y.,	82,	88
weak	entity	type	
defined,	46
mapped	to	a	relational	model,	131–132
qualified	associations	for,	62

web	crawler	
and	Big	Data,	630
defined,	613

Web	Ontology	Language	(OWL),	283
web	search	engines,	613–616
web	services,	285–288
Web	Services	Description	Language	(WSDL),	286

WeChat,	628
Weibo,	628
well-formed,	259
WHERE,	159,	221–223
wide	area	network	(WAN),	519
windowing,	582
workflow	service,	607
wrappers,	525,	569,	595
write	ahead	log	strategy,	435
write	lock,	26
WS-BPEL,	602–604

XML	and	XML	DBMS	
AJAX,	508–509
and	JPA,	489
and	relational	databases,	271–272
as	NoSQL	niche	database,	303
basic	concepts	of,	256–259
defined,	29
document	storage,	269–271
document	stores,	316
Document	Type	and	Schema	Definitions,	260–263
Extensible	Stylesheet	Language,	263–266
for	information	exchange	
JavaScript	Object	Notation,	290–292
message-oriented	middleware,	284–285
REST-based	web	services,	288–289
SOAP-based	web	services,	285–288
web	services	and	databases,	289–290
YAML	Ain’t	a	Markup	Language,	292–293

mapping	between	object-relational	databases	
schema-aware,	275–276
schema-oblivious,	273–275
SQL/XML,	276–279
table-based,	272–273

namespaces,	266–267
processing	documents,	267–269
searching	
full-text,	280
keyword-based,	280
semantic	search	with	RDF	and	SPARQL,	282–284
structured	search	with	XQuery,	280–282

XML	element,	256
XML	Schema	Definition	(XSD),	260
XML-enabled	DBMS,	271
XPath,	256
XQuery,	280–282
XSL	Formatting	Objects	(XSL-FO),	263–266
XSL	Transformations	(XSLT),	263–266

YAML	Ain’t	a	Markup	Language,	292–293,	316
YARN	(Yet	Another	Resource	Negotiator),	631,	641–643

Endorsements

“As	we	are	entering	a	new	technological	era	of	intelligent	machines	powered	by
data-driven	algorithms,	understanding	fundamental	concepts	of	data
management	and	their	most	current	practical	applications	has	become	more
important	than	ever.	This	book	is	a	timely	guide	for	anyone	interested	in	getting
up	to	speed	with	the	state	of	the	art	in	database	systems,	Big	Data	technologies
and	data	science.	It	is	full	of	insightful	examples	and	case	studies	with	direct
industrial	relevance.”

–	Nesime	Tatbul,	Intel	Labs	and	MIT

“It	is	a	pleasure	to	study	this	new	book	on	database	systems.	The	book	offers	a
fantastically	fresh	approach	to	database	teaching.	The	mix	of	theoretical	and
practical	contents	is	almost	perfect,	the	content	is	up	to	date	and	covers	the
recent	databases,	the	examples	are	nice,	and	the	database	testbed	provides	an
excellent	way	of	understanding	the	concepts.	Coupled	with	the	authors’
expertise,	this	book	is	an	important	addition	to	the	database	field.”

–	Arnab	Bhattacharya,	Indian	Institute	of	Technology,	Kanpur

“Principles	of	Database	Management	is	my	favorite	textbook	for	teaching	a
course	on	database	management.	Written	in	a	well-illustrated	style,	this
comprehensive	book	covers	essential	topics	in	established	data	management
technologies	and	recent	discoveries	in	data	science.	With	a	nice	balance	between
theory	and	practice,	it	is	not	only	an	excellent	teaching	medium	for	students

taking	information	management	and/or	data	analytics	courses,	but	also	a	quick
and	valuable	reference	for	scientists	and	engineers	working	in	this	area.”

–	Chuan	Xiao,	Graduate	School	of	Informatics,	Nagoya	University

“Data	science	success	stories	and	Big	Data	applications	are	only	possible
because	of	advances	in	database	technology.	This	book	provides	both	a	broad
and	deep	introduction	to	databases.	It	covers	the	different	types	of	database
systems	(from	relational	to	NoSQL)	and	manages	to	bridge	the	gap	between	data
modeling	and	the	underlying	basic	principles.	The	book	is	highly	recommended
for	anyone	who	wants	to	understand	how	modern	information	systems	deal	with
ever-growing	volumes	of	data.”

–	Wil	van	der	Aalst,	RWTH	Aachen	University

“The	database	field	has	been	evolving	for	several	decades	and	the	need	for
updated	textbooks	is	continuous.	Now,	this	need	is	covered	by	this	fresh	book	by
Lemahieu,	vanden	Broucke	and	Baesens.	It	spans	from	traditional	topics	–	such
as	the	relational	model	and	SQL	–	to	more	recent	topics	–	such	as	distributed
computing	with	Hadoop	and	Spark,	as	well	as	data	analytics.	The	book	can	be
used	as	an	introductory	text	and	for	graduate	courses.”

–	Yannis	Manolopoulos,	Data	Science	&	Engineering	Lab.,	Aristotle
University	of	Thessaloniki

“I	like	the	way	the	book	covers	both	traditional	database	topics	and	newer
material	such	as	Big	Data,	NoSQL	databases	and	data	quality.	The	coverage	is
just	right	for	my	course	and	the	level	of	the	material	is	very	appropriate	for	my
students.	The	book	also	has	clear	explanations	and	good	examples.”

–	Barbara	Klein,	University	of	Michigan

“This	book	provides	a	unique	perspective	on	database	management	and	how	to
store,	manage	and	analyze	small	and	big	data.	The	accompanying	exercises	and

solutions,	cases,	slides	and	YouTube	lectures	turn	it	into	an	indispensable
resource	for	anyone	teaching	an	undergraduate	or	postgraduate	course	on	the
topic.”

–	Wolfgang	Ketter,	Erasmus	University	Rotterdam

“This	is	a	very	modern	textbook	that	fills	the	needs	of	current	trends	without
sacrificing	the	need	to	cover	the	required	database	management	systems
fundamentals.”

–	George	Dimitoglou,	Hood	College

“This	book	is	a	much-needed	foundational	piece	on	data	management	and	data
science.	The	authors	successfully	integrate	the	fields	of	database	technology,
operations	research	and	Big	Data	analytics,	which	have	often	been	covered
independently	in	the	past.	A	key	asset	is	its	didactical	approach	that	builds	on	a
rich	set	of	industry	examples	and	exercises.	The	book	is	a	must-read	for	all
scholars	and	practitioners	interested	in	database	management,	Big	Data	analytics
and	its	applications.”

–	Jan	Mendling,	Institute	for	Information	Business,	Vienna

“Principles	of	Database	Management	creates	a	precious	resource	for
researchers,	industry	practitioners,	and	students	of	databases	and	Big	Data	alike.
This	easy-to-read,	well-organized	book	provides	coverage	of	a	number	of
important	topics	and	techniques	about	storing,	managing	and	analyzing	big	and
small	data	that	are	specifically	not	covered	in	most	database	or	data-analytics
books.	If	you	work	in	the	area	of	scalable	data	management	and	analysis,	you
owe	it	to	yourself	to	read	this	book.”

–	Kunpeng	Zhang,	University	of	Maryland

“Database	and	Big	Data	analytics	are	transforming	our	daily	lives,	businesses
and	society	at	large.	To	achieve	competitive	advantage	in	this	new	environment,

we	should	be	able	to	collect,	manage	and	analyze	a	variety	of	datasets	using
database	systems.	This	book,	written	by	database	and	analytics	experts,	provides
a	comprehensive	view	of	database	technologies	from	fundamental	principles	to
cutting-edge	applications	in	business	intelligence	and	Big	Data	analytics.”

–	Gene	Moo	Lee,	University	of	British	Columbia

“The	book	will	provide	readers	with	relevant	concepts	for	today’s	databases	at	a
perfect	reading	and	technical	level.”

–	Douglas	Hawley,	Northwest	Missouri	State	University

“Here	is	a	book	with	a	strong	practical	orientation,	which	covers	the	recent
database	management	topics	relevant	to	industry.	It	is	a	good	book	with	a	logical
structure,	to	use	in	an	undergraduate	database	management	course.”

–	Faruk	Arslan,	University	of	Houston–Clear	Lake

“Lemahieu	et	al.’s	Principles	of	Database	Management	is	a	wonderful,	and	the
most	comprehensive,	database	book	covering	both	the	technical	and
organizational	aspects	of	data	management.	It	shows	technical	details	and
practical	examples	of	how	to	implement	databases.	This	book	also	addresses	in	a
timely	manner	new	Big	Data	and	analytics	technologies	such	as	NoSQL	and
Hadoop.	I	strongly	recommend	it	to	anyone	who	wants	to	study	database
technology.”

–	Bin	Zhang,	Eller	College	of	Management,	University	of	Arizona

	Half title
	Reviews
	Title page
	Imprints page
	Brief Contents
	Contents
	About the Authors
	Preface
	Who This Book is For
	Topics Covered in this Book
	How to Read this Book
	Cross-Chapter Case Study: Sober
	Additional Material
	Acknowledgments

	Part I Databases and Database Design
	Contents
	1 Fundamental Concepts of Database Management
	1.1 Applications of Database Technology
	1.2 Key Definitions
	1.3 File versus Database Approach to Data Management
	1.3.1 The File-Based Approach
	1.3.2 The Database Approach

	1.4 Elements of a Database System
	1.4.1 Database Model versus Instances
	1.4.2 Data Model
	1.4.3 The Three-Layer Architecture
	1.4.4 Catalog
	1.4.5 Database Users
	1.4.6 Database Languages

	1.5 Advantages of Database Systems and Database Management
	1.5.1 Data Independence
	1.5.2 Database Modeling
	1.5.3 Managing Structured, Semi-Structured, and Unstructured Data
	1.5.4 Managing Data Redundancy
	1.5.5 Specifying Integrity Rules
	1.5.6 Concurrency Control
	1.5.7 Backup and Recovery Facilities
	1.5.8 Data Security
	1.5.9 Performance Utilities

	Summary
	Problems and Exercises

	2 Architecture and Categorization of DBMSs
	2.1 Architecture of a DBMS
	2.1.1 Connection and Security Manager
	2.1.2 DDL Compiler
	2.1.3 Query Processor
	2.1.3.1 DML Compiler
	2.1.3.2 Query Parser and Query Rewriter
	2.1.3.3 Query Optimizer
	2.1.3.4 Query Executor

	2.1.4 Storage Manager
	2.1.4.1 Transaction Manager
	2.1.4.2 Buffer Manager
	2.1.4.3 Lock Manager
	2.1.4.4 Recovery Manager

	2.1.5 DBMS Utilities
	2.1.6 DBMS Interfaces

	2.2 Categorization of DBMSs
	2.2.1 Categorization Based on Data Model
	2.2.1.1 Hierarchical DBMSs
	2.2.1.2 Network DBMSs
	2.2.1.3 Relational DBMSs
	2.2.1.4 Object-Oriented DBMSs
	2.2.1.5 Object-Relational/Extended Relational DBMSs
	2.2.1.6 XML DBMSs
	2.2.1.7 NoSQL DBMSs

	2.2.2 Categorization Based on Degree of Simultaneous Access
	2.2.3 Categorization Based on Architecture
	2.2.4 Categorization Based on Usage

	Summary
	Problems and Exercises

	3 Conceptual Data Modeling Using the (E)ER Model and UML Class Diagram
	3.1 Phases of Database Design
	3.2 The Entity Relationship Model
	3.2.1 Entity Types
	3.2.2 Attribute Types
	3.2.3.1 Domains
	3.2.3.2 Key Attribute Types
	3.2.3.3 Simple versus Composite Attribute Types
	3.2.3.4 Single-Valued versus Multi-Valued Attribute Types
	3.2.3.5 Derived Attribute Type

	3.2.4 Relationship Types
	3.2.4.1 Degree and Roles
	3.2.4.2 Cardinalities
	3.2.4.3 Relationship Attribute Types

	3.2.5 Weak Entity Types
	3.2.6 Ternary Relationship Types
	3.2.7 Examples of the ER Model
	3.2.8 Limitations of the ER Model

	3.3 The Enhanced Entity Relationship (EER) Model
	3.3.1 Specialization/Generalization
	3.3.2 Categorization
	3.3.3 Aggregation
	3.3.4 Examples of the EER Model
	3.3.5 Designing an EER Model

	3.4 The UML Class Diagram
	3.4.1 Recap of Object Orientation
	3.4.2 Classes
	3.4.3 Variables
	3.4.4 Access Modifiers
	3.4.5 Associations
	3.4.5.1 Association Class
	3.4.5.2 Unidirectional versus Bidirectional Association
	3.4.5.3 Qualified Association

	3.4.6 Specialization/Generalization
	3.4.7 Aggregation
	3.4.8 UML Example
	3.4.9 Advanced UML Modeling Concepts
	3.4.9.1 Changeability Property
	3.4.9.2 Object Constraint Language (OCL)
	3.4.9.3 Dependency Relationship

	3.4.10 UML versus EER

	Summary
	Problems and Exercises

	4 Organizational Aspects of Data Management
	4.1 Data Management
	4.1.1 Catalogs and the Role of Metadata
	4.1.2 Metadata Modeling
	4.1.3 Data Quality
	4.1.3.1 Data Quality Dimensions
	Accuracy
	Completeness
	Consistency
	Accessibility

	4.1.3.2 Data Quality Problems

	4.1.4 Data Governance

	4.2 Roles in Data Management
	4.2.1 Information Architect
	4.2.2 Database Designer
	4.2.3 Data Owner
	4.2.4 Data Steward
	4.2.5 Database Administrator
	4.2.6 Data Scientist

	Summary
	Problems and Exercises

	Part II Types of Database Systems
	Contents
	5 Legacy Databases
	5.1 The Hierarchical Model
	5.2 The CODASYL Model
	Summary
	Problems and Exercises

	6 Relational Databases
	6.1 The Relational Model
	6.1.1 Basic Concepts
	6.1.2 Formal Definitions
	6.1.3 Types of Keys
	6.1.3.1 Superkeys and Keys
	6.1.3.2 Candidate Keys, Primary Keys, and Alternative Keys
	6.1.3.3 Foreign Keys

	6.1.4 Relational Constraints
	6.1.5 Example Relational Data Model

	6.2 Normalization
	6.2.1 Insertion, Deletion, and Update Anomalies in an Unnormalized Relational Model
	6.2.2 Informal Normalization Guidelines
	6.2.3 Functional Dependencies and Prime Attribute Types
	6.2.4 Normalization Forms
	6.2.4.1 First Normal Form (1 NF)
	6.2.4.2 Second Normal Form (2 NF)
	6.2.4.3 Third Normal Form (3 NF)
	6.2.4.4 Boyce–Codd Normal Form (BCNF)
	6.2.4.5 Fourth Normal Form (4 NF)

	6.3 Mapping a Conceptual ER Model to a Relational Model
	6.3.1 Mapping Entity Types
	6.3.2 Mapping Relationship Types
	6.3.2.1 Mapping a Binary 1:1 Relationship type
	6.3.2.2 Mapping a Binary 1:N Relationship Type
	6.3.2.3 Mapping a Binary M:N Relationship Type
	6.3.2.4 Mapping Unary Relationship Types
	6.3.2.5 Mapping n-ary Relationship Types

	6.3.3 Mapping Multi-Valued Attribute Types
	6.3.4 Mapping Weak Entity Types
	6.3.5 Putting it All Together

	6.4 Mapping a Conceptual EER Model to a Relational Model
	6.4.1 Mapping an EER Specialization
	6.4.2 Mapping an EER Categorization
	6.4.3 Mapping an EER Aggregation

	Summary
	Problems and Exercises

	7 Relational Databases
	7.1 Relational Database Management Systems and SQL
	7.1.1 Key Characteristics of SQL
	7.1.2 Three-Layer Database Architecture

	7.2 SQL Data Definition Language
	7.2.1 Key DDL Concepts
	7.2.2 DDL Example
	7.2.3 Referential Integrity Constraints
	7.2.4 DROP and ALTER Command

	7.3 SQL Data Manipulation Language
	7.3.1 SQL SELECT Statement
	7.3.1.1 Simple Queries
	7.3.1.2 Queries with Aggregate Functions
	7.3.1.3 Queries with GROUP BY/HAVING
	7.3.1.4 Queries with ORDER BY
	7.3.1.5 Join Queries
	Inner Joins
	Outer Joins

	7.3.1.6 Nested Queries
	7.3.1.7 Correlated Queries
	7.3.1.8 Queries with ALL/ANY
	7.3.1.9 Queries with EXISTS
	7.3.1.10 Queries with Subqueries in SELECT/FROM
	7.3.1.11 Queries with Set Operations

	7.3.2 SQL INSERT Statement
	7.3.3 SQL DELETE Statement
	7.3.4 SQL UPDATE Statement

	7.4 SQL Views
	7.5 SQL Indexes
	7.6 SQL Privileges
	7.7 SQL for Metadata Management
	Summary
	Problems and Exercises

	8 Object-Oriented Databases and Object Persistence
	8.1 Recap: Basic Concepts of OO
	8.2 Advanced Concepts of OO
	8.2.1 Method Overloading
	8.2.2 Inheritance
	8.2.3 Method Overriding
	8.2.4 Polymorphism and Dynamic Binding

	8.3 Basic Principles of Object Persistence
	8.3.1 Serialization

	8.4 OODBMS
	8.4.1 Object Identifiers
	8.4.2 ODMG Standard
	8.4.3 Object Model
	8.4.4 Object Definition Language (ODL)
	8.4.5 Object Query Language (OQL)
	8.4.5.1 Simple OQL Queries
	8.4.5.2 SELECT FROM WHERE OQL Queries
	8.4.5.3 Join OQL Queries
	8.4.5.4 Other OQL Queries

	8.4.6 Language Bindings

	8.5 Evaluating OODBMSs
	Summary
	Problems and Exercises

	9 Extended Relational Databases
	9.1 Limitations of the Relational Model
	9.2 Active RDBMS Extensions
	9.2.1 Triggers
	9.2.2 Stored Procedures

	9.3 Object-Relational RDBMS Extensions
	9.3.1 User-Defined Types
	9.3.1.1 Distinct Data Types
	9.3.1.2 Opaque Data Types
	9.3.1.3 Unnamed Row Types
	9.3.1.4 Named Row Types
	9.3.1.5 Table Data Types

	9.3.2 User-Defined Functions
	9.3.3 Inheritance
	9.3.3.1 Inheritance at Data Type Level
	9.3.3.2 Inheritance at Table Type Level

	9.3.4 Behavior
	9.3.5 Polymorphism
	9.3.6 Collection Types
	9.3.7 Large Objects

	9.4 Recursive SQL Queries
	Summary
	Problems and Exercises

	10 XML Databases
	10.1 Extensible Markup Language
	10.1.1 Basic Concepts
	10.1.2 Document Type Definition and XML Schema Definition
	10.1.3 Extensible Stylesheet Language
	10.1.4 Namespaces
	10.1.5 XPath

	10.2 Processing XML Documents
	10.3 Storage of XML Documents
	10.3.1 The Document-Oriented Approach for Storing XML Documents
	10.3.2 The Data-Oriented Approach for Storing XML Documents
	10.3.3 The Combined Approach for Storing XML Documents

	10.4 Differences Between XML Data and Relational Data
	10.5 Mappings Between XML Documents and (Object-) Relational Data
	10.5.1 Table-Based Mapping
	10.5.2 Schema-Oblivious Mapping
	10.5.3 Schema-Aware Mapping
	10.5.4 SQL/XML

	10.6 Searching XML Data
	10.6.1 Full-Text Search
	10.6.2 Keyword-Based Search
	10.6.3 Structured Search With XQuery
	10.6.4 Semantic Search With RDF and SPARQL

	10.7 XML for Information Exchange
	10.7.1 Message-Oriented Middleware
	10.7.2 SOAP-Based Web Services
	10.7.3 REST-Based Web Services
	10.7.4 Web Services and Databases

	10.8 Other Data Representation Formats
	Summary
	Problems and Exercises

	11 NoSQL Databases
	11.1 The NoSQL Movement
	11.1.1 The End of the “One Size Fits All” Era?
	11.1.2 The Emergence of the NoSQL Movement

	11.2 Key–Value Stores
	11.2.1 From Keys to Hashes
	11.2.2 Horizontal Scaling
	11.2.3 An Example: Memcached
	11.2.4 Request Coordination
	11.2.5 Consistent Hashing
	11.2.6 Replication and Redundancy
	11.2.7 Eventual Consistency
	11.2.8 Stabilization
	11.2.9 Integrity Constraints and Querying

	11.3 Tuple and Document Stores
	11.3.1 Items with Keys
	11.3.2 Filters and Queries
	11.3.3 Complex Queries and Aggregation with MapReduce
	11.3.4 SQL After All…

	11.4 Column-Oriented Databases
	11.5 Graph-Based Databases
	11.5.1 Cypher Overview
	11.5.2 Exploring a Social Graph

	11.6 Other NoSQL Categories
	Summary
	Problems and Exercises

	Part III Physical Data Storage, Transaction Management, and Database Access
	Contents
	12 Physical File Organization and Indexing
	12.1 Storage Hardware and Physical Database Design
	12.1.1 The Storage Hierarchy
	12.1.2 Internals of Hard Disk Drives
	12.1.3 From Logical Concepts to Physical Constructs

	12.2 Record Organization
	12.3 File Organization
	12.3.1 Introductory Concepts: Search Keys, Primary, and Secondary File Organization
	12.3.2 Heap File Organization
	12.3.3 Sequential File Organization
	12.3.4 Random File Organization (Hashing)
	12.3.4.1 Key-to-Address Transformation
	12.3.4.2 Factors that Determine the Efficiency of Random File Organization

	12.3.5 Indexed Sequential File Organization
	12.3.5.1 Basic Terminology of Indexes
	12.3.5.2 Primary Indexes
	12.3.5.3 Clustered Indexes
	12.3.5.4 Multilevel Indexes

	12.3.6 List Data Organization (Linear and Nonlinear Lists)
	12.3.6.1 Linear Lists
	12.3.6.2 Tree Data Structures

	12.3.7 Secondary Indexes and Inverted Files
	12.3.7.1 Characteristics of Secondary Indexes
	12.3.7.2 Inverted Files
	12.3.7.3 Multicolumn Indexes
	12.3.7.4 Other Index Types

	12.3.8 B-Trees and B+-Trees
	12.3.8.1 Multilevel Indexes Revisited
	12.3.8.2 Binary Search Trees
	12.3.8.3 B-Trees
	12.3.8.4 B+-Trees

	Summary
	Problems and Exercises

	13 Physical Database Organization
	13.1 Physical Database Organization and Database Access Methods
	13.1.1 From Database to Tablespace
	13.1.2 Index Design
	13.1.3 Database Access Methods
	13.1.3.1 Functioning of the Query Optimizer
	13.1.3.2 Index Search (with Atomic Search Key)
	13.1.3.3 Multiple Index and Multicolumn Index Search
	13.1.3.4 Index-Only Access
	13.1.3.5 Full Table Scan

	13.1.4 Join Implementations
	13.1.4.1 Nested-Loop Join
	13.1.4.2 Sort-Merge Join
	13.1.4.3 Hash Join

	13.2 Enterprise Storage Subsystems and Business Continuity
	13.2.1 Disk Arrays and RAID
	13.2.2 Enterprise Storage Subsystems
	13.2.2.1 Overview and Classification
	13.2.2.2 DAS (Directly Attached Storage)
	13.2.2.3 SAN (Storage Area Network)
	13.2.2.4 NAS (Network Attached Storage)
	13.2.2.5 NAS Gateway
	13.2.2.6 iSCSI/Storage Over IP

	13.2.3 Business Continuity
	13.2.3.1 Contingency Planning, Recovery Point, and Recovery Time
	13.2.3.2 Availability and Accessibility of Storage Devices
	13.2.3.3 Availability of Database Functionality
	13.2.3.4 Data Availability

	Summary
	Problems and Exercises

	14 Basics of Transaction Management
	14.1 Transactions, Recovery, and Concurrency Control
	14.2 Transactions and Transaction Management
	14.2.1 Delineating Transactions and the Transaction Lifecycle
	14.2.2 DBMS Components Involved in Transaction Management
	14.2.3 The Logfile

	14.3 Recovery
	14.3.1 Types of Failures
	14.3.2 System Recovery
	14.3.3 Media Recovery

	14.4 Concurrency Control
	14.4.1 Typical Concurrency Problems
	14.4.1.1 Lost Update Problem
	14.4.1.2 Uncommitted Dependency Problem (aka Dirty Read Problem)
	14.4.1.3 Inconsistent Analysis Problem
	14.4.1.4 Other Concurrency-Related Problems

	14.4.2 Schedules and Serial Schedules
	14.4.3 Serializable Schedules
	14.4.4 Optimistic and Pessimistic Schedulers
	14.4.5 Locking and Locking Protocols
	14.4.5.1 Purposes of Locking
	14.4.5.2 The Two-Phase Locking Protocol (2PL)
	14.4.5.3 Cascading Rollbacks
	14.4.5.4 Dealing with Deadlocks
	14.4.5.5 Isolation Levels
	14.4.5.6 Lock Granularity

	14.5 The ACID Properties of Transactions
	Summary
	Problems and Exercises

	15 Accessing Databases and Database APIs
	15.1 Database System Architectures
	15.1.1 Centralized System Architectures
	15.1.2 Tiered System Architectures

	15.2 Classification of Database APIs
	15.2.1 Proprietary versus Universal APIs
	15.2.2 Embedded versus Call-Level APIs
	15.2.3 Early Binding versus Late Binding

	15.3 Universal Database APIs
	15.3.1 ODBC
	15.3.2 OLE DB and ADO
	15.3.3 ADO.NET
	15.3.4 Java DataBase Connectivity (JDBC)
	15.3.5 Intermezzo: SQL Injection and Access Security
	15.3.6 SQLJ
	15.3.7 Intermezzo: Embedded APIs versus Embedded DBMSs
	15.3.8 Language-Integrated Querying

	15.4 Object Persistence and Object-Relational Mapping APIs
	15.4.1 Object Persistence with Enterprise JavaBeans
	15.4.2 Object Persistence with the Java Persistence API
	15.4.3 Object Persistence with Java Data Objects
	15.4.4 Object Persistence in Other Host Languages

	15.5 Database API Summary
	15.6 Database Access in the World Wide Web
	15.6.1 Introduction: the Original Web Server
	15.6.2 The Common Gateway Interface: Toward Dynamic Web Pages
	15.6.3 Client-Side Scripting: The Desire for a Richer Web
	15.6.4 JavaScript as a Platform
	15.6.5 DBMSs Adapt: REST, Other Web Services, and a Look Ahead

	Summary
	Problems and Exercises

	16 Data Distribution and Distributed Transaction Management
	16.1 Distributed Systems and Distributed Databases
	16.2 Architectural Implications of Distributed Databases
	16.3 Fragmentation, Allocation, and Replication
	16.3.1 Vertical Fragmentation
	16.3.2 Horizontal Fragmentation (Sharding)
	16.3.3 Mixed Fragmentation
	16.3.4 Replication
	16.3.5 Distribution and Replication of Metadata

	16.4 Transparency
	16.5 Distributed Query Processing
	16.6 Distributed Transaction Management and Concurrency Control
	16.6.1 Primary Site and Primary Copy 2PL
	16.6.2 Distributed 2PL
	16.6.3 The Two-Phase Commit Protocol (2PC)
	16.6.4 Optimistic Concurrency and Loosely Coupled Systems
	16.6.5 Compensation-Based Transaction Models

	16.7 Eventual Consistency and BASE Transactions
	16.7.1 Horizontal Fragmentation and Consistent Hashing
	16.7.2 The CAP Theorem
	16.7.3 BASE Transactions
	16.7.4 Multi-Version Concurrency Control and Vector Clocks
	16.7.5 Quorum-Based Consistency

	Summary
	Problems and Exercises

	Part IV Data Warehousing, Data Governance, and (Big) Data Analytics
	Contents
	17 Data Warehousing and Business Intelligence
	17.1 Operational versus Tactical/Strategic Decision-Making
	17.2 Data Warehouse Definition
	17.3 Data Warehouse Schemas
	17.3.1 Star Schema
	17.3.2 Snowflake Schema
	17.3.3 Fact Constellation
	17.3.4 Specific Schema Issues
	17.3.4.1 Surrogate Keys
	17.3.4.2 Granularity of the Fact Table
	17.3.4.3 Factless Fact Tables
	17.3.4.4 Optimizing the Dimension Tables
	17.3.4.5 Defining Junk Dimensions
	17.3.4.6 Defining Outrigger Tables
	17.3.4.7 Slowly Changing Dimensions
	17.3.4.8 Rapidly Changing Dimensions

	17.4 The Extraction, Transformation, and Loading (ETL) Process
	17.5 Data Marts
	17.6 Virtual Data Warehouses and Virtual Data Marts
	17.7 Operational Data Store
	17.8 Data Warehouses versus Data Lakes
	17.9 Business Intelligence
	17.9.1 Query and Reporting
	17.9.2 Pivot Tables
	17.9.3 On-Line Analytical Processing (OLAP)
	17.9.3.1 MOLAP
	17.9.3.2 ROLAP
	17.9.3.3 HOLAP
	17.9.3.4 OLAP Operators
	17.9.3.5 OLAP Queries in SQL

	Summary
	Problems and Exercises

	18 Data Integration, Data Quality, and Data Governance
	18.1 Data and Process Integration
	18.1.1 Convergence of Analytical and Operational Data Needs
	18.1.2 Data Integration and Data Integration Patterns
	18.1.2.1 Data Consolidation: Extract, Transform, Load (ETL)
	18.1.2.2 Data Federation: Enterprise Information Integration (EII)
	18.1.2.3 Data Propagation: Enterprise Application Integration (EAI)
	18.1.2.4 Data Propagation: Enterprise Data Replication (EDR)
	18.1.2.5 Changed Data Capture (CDC), Near-Real-Time ETL, and Event Processing
	18.1.2.6 Data Virtualization
	18.1.2.7 Data as a Service and Data in the Cloud

	18.1.3 Data Services and Data Flows in the Context of Data and Process Integration
	18.1.3.1 Business Process Integration
	18.1.3.2 Patterns for Managing Sequence Dependencies and Data Dependencies in Processes
	18.1.3.3 A Unified View on Data and Process Integration

	18.2 Searching Unstructured Data and Enterprise Search
	18.2.1 Principles of Full-Text Search
	18.2.2 Indexing Full-Text Documents
	18.2.3 Web Search Engines
	18.2.4 Enterprise Search

	18.3 Data Quality and Master Data Management
	18.4 Data Governance
	18.4.1 Total Data Quality Management (TDQM)
	18.4.2 Capability Maturity Model Integration (CMMI)
	18.4.3 Data Management Body of Knowledge (DMBOK)
	18.4.4 Control Objectives for Information and Related Technology (COBIT)
	18.4.5 Information Technology Infrastructure Library

	18.5 Outlook
	18.6 Conclusion
	Problems and Exercises

	19 Big Data
	19.1 The 5 Vs of Big Data
	19.2 Hadoop
	19.2.1 History of Hadoop
	19.2.2 The Hadoop Stack
	19.2.2.1 The Hadoop Distributed File System
	19.2.2.2 MapReduce
	19.2.2.3 Yet Another Resource Negotiator

	19.3 SQL on Hadoop
	19.3.1 HBase: The First Database on Hadoop
	19.3.2 Pig
	19.3.3 Hive

	19.4 Apache Spark
	19.4.1 Spark Core
	19.4.2 Spark SQL
	19.4.3 MLlib, Spark Streaming, and GraphX

	19.5 Conclusion
	Problems and Exercises

	20 Analytics
	20.1 The Analytics Process Model
	20.2 Example Analytics Applications
	20.3 Data Scientist Job Profile
	20.4 Data Pre-Processing
	20.4.1 Denormalizing Data for Analysis
	20.4.2 Sampling
	20.4.3 Exploratory Analysis
	20.4.4 Missing Values
	20.4.5 Outlier Detection and Handling

	20.5 Types of Analytics
	20.5.1 Predictive Analytics
	20.5.1.1 Linear Regression
	20.5.1.2 Logistic Regression
	Logistic Regression Properties

	20.5.1.3 Decision Trees
	Splitting Decision
	Stopping Decision
	Decision Tree Properties
	Regression Trees

	20.5.1.4 Other Predictive Analytics Techniques

	20.5.2 Evaluating Predictive Models
	20.5.2.1 Splitting Up the Dataset
	20.5.2.2 Performance Measures for Classification Models
	20.5.2.3 Performance Measures for Regression Models
	20.5.2.4 Other Performance Measures for Predictive Analytical Models

	20.5.3 Descriptive Analytics
	20.5.3.1 Association Rules
	Basic Setting
	Support, Confidence, and Lift
	Post-Processing Association Rules

	20.5.3.2 Sequence Rules
	20.5.3.3 Clustering
	Hierarchical Clustering
	K-means Clustering

	20.5.4 Social Network Analytics
	20.5.4.1 Social Network Definitions
	20.5.4.2 Social Network Metrics
	20.5.4.3 Social Network Learning

	20.6 Post-Processing of Analytical Models
	20.7 Critical Success Factors for Analytical Models
	20.8 Economic Perspective on Analytics
	20.8.1 Total Cost of Ownership (TCO)
	20.8.2 Return on Investment
	20.8.3 In- versus Outsourcing
	20.8.4 On-Premises versus Cloud Solutions
	20.8.5 Open-Source versus Commercial Software

	20.9 Improving the ROI of Analytics
	20.9.1 New Sources of Data
	20.9.2 Data Quality
	20.9.3 Management Support
	20.9.4 Organizational Aspects
	20.9.5 Cross-Fertilization

	20.10 Privacy and Security
	20.10.1 Overall Considerations Regarding Privacy and Security
	20.10.2 The RACI Matrix
	20.10.3 Accessing Internal Data
	20.10.3.1 Anonymization
	20.10.3.2 SQL Views
	20.10.3.3 Label-Based Access Control

	20.10.4 Privacy Regulation

	20.11 Conclusion
	Problems and Exercises

	Appendix Using the Online Environment
	How to Access the Online Environment
	Environment: Relational Databases and SQL
	Environment: MongoDB
	Environment: Neo4j and Cypher
	Environment: Tree Structure Visualizations
	Environment: HBase

	Glossary
	Index
	Endorsements

