s R
] :-'i-r
L]

WILFRIED LEMAHIEU

SEPPE VANDEN BROUCKE
- BART BAESENS

PRINCIPLES OF
DATABASE:.

THE PRACTICAL GUIDE T"rrqﬁ' MANAGING
AND ANALYZING BIG A__. by Mt.

k

1,]ﬂ {(
f

ﬂ
¥
Ll f,

PRINCIPLES OF DATABASE MANAGEMENT

The Practical Guide to Storing, Managing and Analyzing Big and Small Data

Principles of Database Management provides students with the comprehensive
database management information to understand and apply the fundamental
concepts of database design and modeling, database systems, data storage and
the evolving world of data warehousing, governance and more. Designed for
those studying database management for information management or computer
science, this illustrated textbook has a well-balanced theory—practice focus and
covers the essential topics, from established database technologies up to recent
trends like Big Data, NoSQL and analytics. On-going case studies, drill-down
boxes that reveal deeper insights on key topics, retention questions at the end of
every section of a chapter, and connections boxes that show the relationship
between concepts throughout the text are included to provide the practical tools
to get started in database management.

Key features include:
e Full-color illustrations throughout the text.

e Extensive coverage of important trending topics, including data
warehousing, business intelligence, data integration, data quality, data

governance, Big Data and analytics.

¢ An online playground with diverse environments, including MySQL for
querying; MongoDB; Neo4j Cypher; and a tree structure visualization

environment.

e Hundreds of examples to illustrate and clarify the concepts discussed that

can be reproduced on the book’s companion online playground.

e Case studies, review questions, problems and exercises in every chapter.

e Additional cases, problems and exercises in the appendix.

“Although there have been a series of classical textbooks on database systems,
the new dramatic advances call for an updated text covering the latest significant
topics, such as Big Data analytics, NoSQL and much more. Fortunately, this is
exactly what this book has to offer. It is highly desirable for training the next

generation of data management professionals.”

— Jian Pei, Simon Fraser University

“I haven’t seen an as up-to-date and comprehensive textbook for database
management as this one in many years. Principles of Database Management
combines a number of classical and recent topics concerning data modeling,
relational databases, object-oriented databases, XML, distributed data
management, NoSQL and Big Data in an unprecedented manner. The authors did
a great job in stitching these topics into one coherent and compelling story that
will serve as an ideal basis for teaching both introductory and advanced

courses.”

— Martin Theobald, University of Luxembourg

“This is a very timely book with outstanding coverage of database topics and
excellent treatment of database details. It not only gives very solid discussions of
traditional topics such as data modeling and relational databases, but also
contains refreshing contents on frontier topics such as XML databases, NoSQL
databases, Big Data and analytics. For those reasons, this will be a good book for
database professionals, who will keep using it for all stages of database studies

and works.”
—J. Leon Zhao, City University of Hong Kong
“This accessible, authoritative book introduces the reader the most important

fundamental concepts of data management, while providing a practical view of

recent advances. Both are essential for data professionals today.”

— Foster Provost, New York University, Stern School of Business

“This guide to big and small data management addresses both fundamental
principles and practical deployment. It reviews a range of databases and their
relevance for analytics. The book is useful to practitioners because it contains
many case studies, links to open-source software, and a very useful abstraction
of analytics that will help them choose solutions better. It is important to
academics because it promotes database principles which are key to successful

and sustainable data science.”

— Sihem Amer-Yahia, Laboratoire d’Informatique de Grenoble; Editor-in-

Chief, The VLDB Journal (International Journal on Very Large DataBases)

“This book covers everything you will need to teach in a database
implementation and design class. With some chapters covering Big Data,
analytic models/methods and NoSQL, it can keep our students up to date with

these new technologies in data management-related topics.”

— Han-fen Hu, University of Nevada, Las Vegas

PRINCIPLES OF DATABASE
MANAGEMENT

The Practical Guide to Storing,
Managing and Analyzing Big and Small
Data

Wilfried Lemahieu
KU Leuven, Belgium

Seppe vanden Broucke
KU Leuven, Belgium

Bart Baesens
KU Leuven, Belgium; University of Southampton, United Kingdom

B CAMBRIDGE

e M TTAT YA S TTVWV D Qg
{189y UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi — 110025, India

79 Anson Road, #06—04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of education,

learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107186125

DOI: 10.1017/9781316888773

© Wilfried Lemahieu, Seppe vanden Broucke, and Bart Baesens 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant
collective licensing agreements, no reproduction of any part may take place without the written

permission of Cambridge University Press.
First published 2018

Printed and bound in Great Britain by Clays Ltd, Elcograf S.p.A.

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Lemahieu, Wilfried, 1970- author. | Broucke, Seppe vanden, 1986— author. | Baesens,

Bart, author.

Title: Principles of database management : the practical guide to storing, managing and analyzing
big and small data / Wilfried Lemahieu, Katholieke Universiteit Leuven, Belgium, Seppe vanden
Broucke, Katholieke Universiteit Leuven, Belgium, Bart Baesens, Katholieke Universiteit

Leuven, Belgium.

http://www.cambridge.org
http://www.cambridge.org/9781107186125
http://dx.doi.org/10.1017/9781316888773

Description: First edition. | New York, NY : Cambridge University Press, 2018. | Includes

bibliographical references and index.
Identifiers: LCCN 2018023251 | ISBN 9781107186125 (hardback : alk. paper)
Subjects: LCSH: Database management.
Classification: LCC QA76.9.D3 L454 2018 | DDC 005.74—dc23

LC record available at https://lccn.loc.gov/2018023251

ISBN 978-1-107-18612-5 Hardback

Additional resources for this publication at www.cambridge.org/Lemahieu

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external
or third-party internet websites referred to in this publication and does not guarantee that any content

on such websites is, or will remain, accurate or appropriate.

https://lccn.loc.gov/2018023251
http://www.cambridge.org/Lemahieu

Brief Contents

About the Authors

Preface
Sober: 1000%q_Driven by Technology

Part I Databases and Database Design

1 Fundamental Concepts of Database Management

2 Architecture and Categorization of DBMSs

3 Conceptual Data Modeling Using the (E)ER Model and UML
Class Diagram

4 Organizational Aspects of Data Management

Part II Types of Database Systems

5 Legacy Databases

6 Relational Databases: The Relational Model

7 Relational Databases: Structured Query Language (SQL)

8 Object-Oriented Databases and Object Persistence

9 Extended Relational Databases

10 XML Databases

11 NoSQL Databases

Part III Physical Data Storage, Transaction
Management, and Database Access

12 Physical File Organization and Indexing

13 Physical Database Organization

14 Basics of Transaction Management

15 Accessing Databases and Database APIs

16 Data Distribution and Distributed Transaction Management

Part IV Data Warehousing, Data Governance,

and (Big) Data Analytics

17 Data Warehousing and Business Intelligence

18 Data Integration, Data Quality, and Data Governance

19 Big Data

20 Analytics

Appendix Using the Online Environment

Glossary
Index

Contents

About the Authors

Preface
Sober: 1000%q_Driven by Technology

Part I Databases and Database Design

1 Fundamental Concepts of Database Management
1.1 Applications of Database Technology

1.2 Key Definitions
1.3 File versus Database Approach to Data Management

1.3.1 The File-Based Approach

1.3.2 The Database Approach
1.4 Elements of a Database System

1.4.1 Database Model versus Instances
1.4.2 Data Model

1.4.3 The Three-Layer Architecture
1.4.4 Catalog

1.4.5 Database Users

1.4.6 Database L.anguages

1.5 Advantages of Database Systems and Database
Management

1.5.1 Data Independence
1.5.2 Database Modeling

1.5.3 Managing Structured, Semi-Structured, and
Unstructured Data

1.5.4 Managing Data Redundancy

1.5.5 Specifying Integrity Rules
1.5.6 Concurrency Control

1.5.7 Backup and Recovery Facilities
1.5.8 Data Security

1.5.9 Performance Utilities

Summary

Key Terms List

Review Questions

Problems and Exercises

2 Architecture and Categorization of DBMSs
2.1 Architecture of a DBMS
2.1.1 Connection and Security Manager

2.1.2 DDL Compiler
2.1.3 Query Processor

2.1.3.1 DML Compiler
2.1.3.2 Query Parser and Query Rewriter

2.1.3.3 Query Optimizer
2.1.3.4 Query Executor

2.1.4 Storage Manager
2.1.4.1 Transaction Manager

2.1.4.2 Buffer Manager
2.1.4.3 Lock Manager
2.1.4.4 Recovery Manager
2.1.5 DBMS Utilities
2.1.6 DBMS Interfaces
2.2 Categorization of DBMSs

2.2.1 Categorization Based on Data Model
2.2.1.1 Hierarchical DBMSs
2.2.1.2 Network DBMSs
2.2.1.3 Relational DBMSs
2.2.1.4 Object-Oriented DBMSs
2.2.1.5 Object-Relational/Extended Relational DBMSs
2.2.1.6 XML DBMSs
2.2.1.7 NoSQL DBMSs

2.2.2 Categorization Based on Degree of Simultaneous
Access

2.2.3 Categorization Based on Architecture

2.2.4 Categorization Based on Usage
Summary

Key Terms List

Review Questions

Problems and Exercises

3 Conceptual Data Modeling Using the (E)ER Model and UML

Class Diagram
3.1 Phases of Database Design

3.2 The Entity Relationship Model

3.2.1 Entity Types

3.2.2 Attribute Types
3.2.3.1 Domains

3.2.3.2 Key Attribute Types

3.2.3.3 Simple versus Composite Attribute Types
3.2.3.4 Single-Valued versus Multi-Valued Attribute
Iypes

3.2.3.5 Derived Attribute Type

3.2.4 Relationship Types
3.2.4.1 Degree and Roles

3.2.4.2 Cardinalities

3.2.4.3 Relationship Attribute Types
3.2.5 Weak Entity Types
3.2.6 Ternary Relationship Types

3.2.7 Examples of the ER Model
3.2.8 Limitations of the ER Model

3.3 The Enhanced Entity Relationship (EER) Model

3.3.1 Specialization/Generalization
3.3.2 Categorization
3.3.3 Aggregation

3.3.4 Examples of the EER Model
3.3.5 Designing an EER Model

3.4 The UML Class Diagram
3.4.1 Recap of Object Orientation

3.4.4 Access Modifiers
3.4.5 Associations
3.4.5.1 Association Class

3.4.5.2 Unidirectional versus Bidirectional Association
3.4.5.3 Qualified Association

3.4.6 Specialization/Generalization

3.4.7 Aggregation

3.4.8 UML Example

3.4.9 Advanced UML Modeling Concepts

3.4.9.1 Changeability Property
3.4.9.2 Object Constraint L.anguage (OCL)

3.4.9.3 Dependency Relationship
3.4.10 UML versus EER

Summary

Key Terms List

Review Questions

Problems and Exercises

4 Organizational Aspects of Data Management
4.1 Data Management
4.1.1 Catalogs and the Role of Metadata
4.1.2 Metadata Modeling
4.1.3 Data Quality

4.1.3.1 Data Quality Dimensions
4.1.3.2 Data Quality Problems
4.1.4 Data Governance

4.2 Roles in Data Management
4.2.1 Information Architect

4.2.2 Database Designer
4.2.3 Data Owner

4.2.4 Data Steward

4.2.5 Database Administrator
4.2.6 Data Scientist

Summary

Key Terms List

Review Questions

Problems and Exercises

Part II Types of Database Systems

5 Legacy Databases
5.1 The Hierarchical Model

5.2 The CODASYL Model
Summary

Key Terms List

Review Questions

Problems and Exercises

6 Relational Databases: The Relational Model
6.1 The Relational Model
6.1.1 Basic Concepts
6.1.2 Formal Definitions
6.1.3 Types of Keys

6.1.3.1 Superkeys and Keys
6.1.3.2 Candidate Keys, Primary Keys, and Alternative

Keys
6.1.3.3 Foreign Keys

6.1.4 Relational Constraints

6.1.5 Example Relational Data Model
6.2 Normalization

6.2.1 Insertion, Deletion, and Update Anomalies in an
Unnormalized Relational Model

6.2.2 Informal Normalization Guidelines

6.2.3 Functional Dependencies and Prime Attribute Type

6.2.4 Normalization Forms
6.2.4.1 First Normal Form (1 NF)

6.2.4.2 Second Normal Form (2 NF)

6.2.4.3 Third Normal Form (3 NF)
6.2.4.4 Boyce—Codd Normal Form (BCNF)
6.2.4.5 Fourth Normal Form (4 NF)
6.3 Mapping a Conceptual ER Model to a Relational Model

6.3.1 Mapping Entity Types

6.3.2 Mapping Relationship Types
6.3.2.1 Mapping a Binary 1:1 Relationship type
6.3.2.2 Mapping a Binary 1:N Relationship Type
6.3.2.3 Mapping a Binary M:IN Relationship Type
6.3.2.4 Mapping Unary Relationship Types
6.3.2.5 Mapping n-ary Relationship Types

6.3.3 Mapping Multi-Valued Attribute Types

6.3.4 Mapping Weak Entity Types
6.3.5 Putting it All Together

6.4 Mapping a Conceptual EER Model to a Relational
Model

6.4.1 Mapping an EER Specialization
6.4.2 Mapping an EER Categorization

6.4.3 Mapping an EER Aggregation
Summary

Key Terms List

Review Questions

Problems and Exercises

7 Relational Databases: Structured Query Language (SQL)
7.1 Relational Database Management Systems and SQL
7.1.1 Key Characteristics of SQL
7.1.2 Three-Layer Database Architecture

7.2 SQL Data Definition L.anguage

7.2.1 Key DDL Concepts

7.2.2 DDL Example

7.2.3 Referential Integrity Constraints

7.2.4 DROP and ALTER Command

7.3 SQL Data Manipulation L.anguage

7.3.1 SQL SELECT Statement
7.3.1.1 Simple Queries
7.3.1.2 Queries with Aggregate Functions
7.3.1.3 Queries with GROUP BY/HAVING
7.3.1.4 Queries with ORDER BY
7.3.1.5 Join Queries
7.3.1.6 Nested Queries
7.3.1.7 Correlated Queries
7.3.1.8 Queries with ALTL/ANY
7.3.1.9 Queries with EXISTS
7.3.1.10 Queries with Subqueries in SELECT/FROM
7.3.1.11 Queries with Set Operations

7.3.2 SQL INSERT Statement

7.3.3 SQL DELETE Statement

7.3.4 SQL UPDATE Statement

7.4 SQL Views

7.5 SQL Indexes
7.6 SQL Privileges

7.7 SQL for Metadata Management

Summary
Key Terms List

Review Questions

Problems and Exercises

8 Object-Oriented Databases and Object Persistence
8.1 Recap: Basic Concepts of OO
8.2 Advanced Concepts of OO
8.2.1 Method Overloading
8.2.2 Inheritance
8.2.3 Method Overriding

8.2.4 Polymorphism and Dynamic Binding
8.3 Basic Principles of Object Persistence

8.3.1 Serialization

8.4 OODBMS
8.4.1 Object Identifiers
8.4.2 ODMG Standard
8.4.3 Object Model

8.4.4 Object Definition Language (ODL)

8.4.5 Object Query Language (OQL)
8.4.5.1 Simple OQL Queries

8.4.5.2 SELECT FROM WHERE OQL Queries
8.4.5.3 Join OQL Queries
8.4.5.4 Other OQL Queries
8.4.6 Language Bindings
8.5 Evaluating OODBMSs
Summary

Key Terms List

Review Questions

Problems and Exercises

9 Extended Relational Databases
9.1 Limitations of the Relational Model

9.2 Active RDBMS Extensions

9.2.1 Triggers
9.2.2 Stored Procedures

9.3 Object-Relational RDBMS Extensions
9.3.1 User-Defined Types

9.3.1.1 Distinct Data Types

9.3.1.2 Opaque Data Types
9.3.1.3 Unnamed Row Types

9.3.1.4 Named Row Types
9.3.1.5 Table Data Types
9.3.2 User-Defined Functions

9.3.3 Inheritance

9.3.3.1 Inheritance at Data Type Level

9.3.3.2 Inheritance at Table Type Level
9.3.4 Behavior

9.3.5 Polymorphism
9.3.6 Collection Types

9.3.7 Large Objects
9.4 Recursive SQL Queries

Summary

Key Terms List

Review Questions

Problems and Exercises

10 XML Databases

10.1 Extensible Markup Language
10.1.1 Basic Concepts

10.1.2 Document Type Definition and XML Schema
Definition

10.1.3 Extensible Stylesheet L.anguage
10.1.4 Namespaces
10.1.5 XPath

10.2 Processing XML Documents

10.3 Storage of XML Documents

10.3.1 The Document-Oriented Approach for Storing XML
Documents
10.3.2 The Data-Oriented Approach for Storing XML
Documents
10.3.3 The Combined Approach for Storing XML
Documents

10.4 Differences Between XML Data and Relational Data

10.5 Mappings Between XML Documents and (Object-)
Relational Data

10.5.1 Table-Based Mapping
10.5.2 Schema-Oblivious Mapping

10.5.3 Schema-Aware Mapping
10.5.4 SQL/XML
10.6 Searching XML Data
10.6.1 Full-Text Search
10.6.2 Keyword-Based Search
10.6.3 Structured Search With XQuery
10.6.4 Semantic Search With RDF and SPARQL
10.7 XML for Information Exchange
10.7.1 Message-Oriented Middleware
10.7.2 SOAP-Based Web Services
10.7.3 REST-Based Web Services
10.7.4 Web Services and Databases

10.8 Other Data Representation Formats

Summary

Key Terms List

Review Questions

Problems and Exercises

11 NoSQL Databases
11.1 The NoSQL Movement
11.1.1 The End of the “One Size Fits All” Era?
11.1.2 The Emergence of the NoSQL Movement
11.2 Key—Value Stores
11.2.1 From Keys to Hashes

11.2.2 Horizontal Scaling

11.2.3 An Example: Memcached
11.2.4 Request Coordination
11.2.5 Consistent Hashing

11.2.6 Replication and Redundancy
11.2.7 Eventual Consistency

11.2.8 Stabilization
11.2.9 Integrity Constraints and Querying
11.3 Tuple and Document Stores
11.3.1 Items with Keys
11.3.2 Filters and Queries
11.3.3 Complex Queries and Aggregation with MapReduce
11.3.4 SQL After All...
11.4 Column-Oriented Databases
11.5 Graph-Based Databases
11.5.1 Cypher Overview

11.5.2 Exploring a Social Graph

11.6 Other NoSQL Categories
Summary
Key Terms

Review Questions

Problems and Exercises

Part III Physical Data Storage, Transaction
Management, and Database Access

12 Physical File Organization and Indexing
12.1 Storage Hardware and Physical Database Design

12.1.1 The Storage Hierarchy
12.1.2 Internals of Hard Disk Drives
12.1.3 From Logical Concepts to Physical Constructs

12.2 Record Organization

12.3 File Organization
12.3.1 Introductory Concepts: Search Keys, Primary, and
Secondary File Organization

12.3.2 Heap File Organization
12.3.3 Sequential File Organization
12.3.4 Random File Organization (Hashing)

12.3.4.1 Key-to-Address Transformation

12.3.4.2 Factors that Determine the Efficiency of Random
File Organization
12.3.5 Indexed Sequential File Organization
12.3.5.1 Basic Terminology of Indexes
12.3.5.2 Primary Indexes

12.3.5.3 Clustered Indexes
12.3.5.4 Multilevel Indexes
12.3.6 List Data Organization (Linear and Nonlinear Lists)
12.3.6.1 Linear Lists
12.3.6.2 Tree Data Structures

12.3.7 Secondary Indexes and Inverted Files

12.3.7.1 Characteristics of Secondary Indexes
12.3.7.2 Inverted Files
12.3.7.3 Multicolumn Indexes
12.3.7.4 Other Index Types
12.3.8 B-Trees and B*-Trees
12.3.8.1 Multilevel Indexes Revisited

12.3.8.2 Binary Search Trees
12.3.8.3 B-Trees

12.3.8.4 B*-Trees
Summary

Key Terms List

Review Questions

Problems and Exercises

13 Physical Database Organization

13.1 Physical Database Organization and Database Access
Methods

13.1.1 From Database to Tablespace

13.1.2 Index Design
13.1.3 Database Access Methods
13.1.3.1 Functioning of the Queryv Optimizer

13.1.3.2 Index Search (with Atomic Search Key)
13.1.3.3 Multiple Index and Multicolumn Index Search

13.1.3.4 Index-Only Access
13.1.3.5 Full Table Scan

13.1.4 Join Implementations
13.1.4.1 Nested-L.oop Join
13.1.4.2 Sort-Merge Join
13.1.4.3 Hash Join

13.2 Enterprise Storage Subsystems and Business Continuity

13.2.1 Disk Arrays and RAID

13.2.2 Enterprise Storage Subsystems
13.2.2.1 Overview and Classification
13.2.2.2 DAS (Directly Attached Storage)
13.2.2.3 SAN (Storage Area Network)
13.2.2.4 NAS (Network Attached Storage)
13.2.2.5 NAS Gateway
13.2.2.6 iSCSI/Storage Over IP

13.2.3 Business Continuity

13.2.3.1 Contingency Planning, Recovery Point, and
Recovery Time

13.2.3.2 Availability and Accessibility of Storage Devices
13.2.3.3 Availability of Database Functionality
13.2.3.4 Data Availability

Summary

Key Terms List

Review Questions

Problems and Exercises

14 Basics of Transaction Management
14.1 Transactions, Recovery, and Concurrency Control

14.2 Transactions and Transaction Management

14.2.1 Delineating Transactions and the Transaction

Lifecycle
14.2.2 DBMS Components Involved in Transaction

Management
14.2.3 The Logfile

14.3 Recovery
14.3.1 Types of Failures
14.3.2 System Recovery
14.3.3 Media Recovery

14.4 Concurrency Control

14.4.1 Typical Concurrency Problems
14.4.1.1 Lost Update Problem

14.4.1.2 Uncommitted Dependency Problem (aka Dirty

Read Problem)
14.4.1.3 Inconsistent Analysis Problem
14.4.1.4 Other Concurrency-Related Problems
14.4.2 Schedules and Serial Schedules
14.4.3 Serializable Schedules

14.4.4 Optimistic and Pessimistic Schedulers

14.4.5 Locking and Locking Protocols
14.4.5.1 Purposes of Locking

14.4.5.2 The Two-Phase Locking Protocol (2PL)
14.4.5.3 Cascading Rollbacks
14.4.5.4 Dealing with Deadlocks
14.4.5.5 Isolation Levels
14.4.5.6 Lock Granularity
14.5 The ACID Properties of Transactions

Summary
Key Terms List

Review Questions

Problems and Exercises

15 Accessing Databases and Database APIs

15.1 Database System Architectures
15.1.1 Centralized System Architectures
15.1.2 Tiered System Architectures
15.2 Classification of Database APIs
15.2.1 Proprietary versus Universal APIs
15.2.2 Embedded versus Call-Level APIs
15.2.3 Early Binding versus Late Binding
15.3 Universal Database APIs
15.3.1 ODBC
15.3.2 OLE DB and ADO
15.3.3 ADO.NET
15.3.4 Java DataBase Connectivity (JDBC)
15.3.5 Intermezzo: SQL Injection and Access Security
15.3.6 SQLJ

15.3.7 Intermezzo: Embedded APIs versus Embedded
DBMSs

15.3.8 Language-Integrated Querying
15.4 Object Persistence and Object-Relational Mapping APIs

15.4.1 Object Persistence with Enterprise JavaBeans
15.4.2 Object Persistence with the Java Persistence API
15.4.3 Object Persistence with Java Data Objects

15.4.4 Object Persistence in Other Host L.anguages

15.5 Database API Summary
15.6 Database Access in the World Wide Web

15.6.1 Introduction: the Original Web Server

15.6.2 The Common Gateway Interface: Toward Dynamic
Web Pages
15.6.3 Client-Side Scripting: The Desire for a Richer Web

15.6.4 JavaScript as a Platform

15.6.5 DBMSs Adapt: REST, Other Web Services, and a
Look Ahead

Summary

Key Terms List

Review Questions

Problems and Exercises

16 Data Distribution and Distributed Transaction Management
16.1 Distributed Systems and Distributed Databases

16.2 Architectural Implications of Distributed Databases

16.3 Fragmentation, Allocation, and Replication
16.3.1 Vertical Fragmentation

16.3.2 Horizontal Fragmentation (Sharding)
16.3.3 Mixed Fragmentation

16.3.4 Replication
16.3.5 Distribution and Replication of Metadata

16.4 Transparency
16.5 Distributed Query Processing

16.6 Distributed Transaction Management and Concurrency
Control

16.6.1 Primary Site and Primary Copy 2PL
16.6.2 Distributed 2PL
16.6.3 The Two-Phase Commit Protocol (2PC)

16.6.4 Optimistic Concurrency and Loosely Coupled
Systems

16.6.5 Compensation-Based Transaction Models

16.7 Eventual Consistency and BASE Transactions
16.7.1 Horizontal Fragmentation and Consistent Hashing
16.7.2 The CAP Theorem
16.7.3 BASE Transactions

16.7.4 Multi-Version Concurrency Control and Vector
Clocks

16.7.5 Quorum-Based Consistency
Summary
Key Terms

Review Questions

Problems and Exercises

Part IV Data Warehousing, Data Governance,

and (Big) Data Analytics

17 Data Warehousing and Business Intelligence

17.1 Operational versus Tactical/Strategic Decision-Making
17.2 Data Warehouse Definition
17.3 Data Warehouse Schemas

17.3.1 Star Schema

17.3.2 Snowflake Schema

17.3.3 Fact Constellation

17.3.4 Specific Schema Issues
17.3.4.1 Surrogate keys
17.3.4.2 Granularity of the Fact Table
17.3.4.3 Factless Fact Tables

17.3.4.4 Optimizing the Dimension Tables

17.3.4.5 Defining Junk Dimensions

17.3.4.6 Defining Outrigger Tables
17.3.4.7 Slowly Changing Dimensions

17.3.4.8 Rapidly Changing Dimensions

17.4 The Extraction, Transformation, and L.oading (ETL)
Process

17.5 Data Marts
17.6 Virtual Data Warehouses and Virtual Data Marts
17.7 Operational Data Store

17.8 Data Warehouses versus Data [.akes

17.9 Business Intelligence

17.9.1 Query and Reporting
17.9.2 Pivot Tables

17.9.3 On-Line Analytical Processing (OLAP)
17.9.3.1 MOLAP
17.9.3.2 ROLAP
17.9.3.3 HOLAP
17.9.3.4 OLAP Operators
17.9.3.5 OLAP Queries in SQL

Summary

Key Terms List

Review Questions

Problems and Exercises

18 Data Integration, Data Quality, and Data Governance

18.1 Data and Process Integration

18.1.1 Convergence of Analytical and Operational Data
Needs

18.1.2 Data Integration and Data Integration Patterns

18.1.2.1 Data Consolidation: Extract, Transform, I.oad
ETL

18.1.2.2 Data Federation: Enterprise Information
Integration (EII

18.1.2.3 Data Propagation: Enterprise Application
Integration (EAI

18.1.2.4 Data Propagation: Enterprise Data Replication
EDR

18.1.2.5 Changed Data Capture (CDC), Near-Real-Time
ETL, and Event Processing

18.1.2.6 Data Virtualization
18.1.2.7 Data as a Service and Data in the Cloud

18.1.3 Data Services and Data Flows in the Context of Data
and Process Integration

18.1.3.1 Business Process Integration

18.1.3.2 Patterns for Managing Sequence Dependencies
and Data Dependencies in Processes

18.1.3.3 A Unified View on Data and Process Integration
18.2 Searching Unstructured Data and Enterprise Search
18.2.1 Principles of Full-Text Search
18.2.2 Indexing Full-Text Documents

18.2.3 Web Search Engines

18.2.4 Enterprise Search
18.3 Data Quality and Master Data Management

18.4 Data Governance
18.4.1 Total Data Quality Management (TDQM)
18.4.2 Capability Maturity Model Integration (CMMI)
18.4.3 Data Management Body of Knowledge (DMBOK)
18.4.4 Control Objectives for Information and Related

Technology (COBIT)

18.4.5 Information Technology Infrastructure Library
18.5 Outlook

18.6 Conclusion

Key Terms List

Review Questions

Problems and Exercises

19 Big Data
19.1 The 5 Vs of Big Data
19.2 Hadoop

19.2.1 History of Hadoop
19.2.2 The Hadoop Stack
19.2.2.1 The Hadoop Distributed File System

19.2.2.2 MapReduce
19.2.2.3 Yet Another Resource Negotiator

19.3 SQL on Hadoop
19.3.1 HBase: The First Database on Hadoop
19.3.3 Hive
19.4 Apache Spark
19.4.1 Spark Core
19.4.2 Spark SQL
19.4.3 MLlib, Spark Streaming, and GraphX

19.5 Conclusion

Key Terms List

Review Questions

Problems and Exercises

20 Analytics
20.1 The Analytics Process Model

20.2 Example Analytics Applications
20.3 Data Scientist Job Profile

20.4 Data Pre-Processing

20.4.1 Denormalizing Data for Analysis

20.4.2 Sampling
20.4.3 Exploratory Analysis
20.4.4 Missing Values
20.4.5 Outlier Detection and Handling
20.5 Types of Analytics
20.5.1 Predictive Analytics
20.5.1.1 Linear Regression

20.5.1.2 Logistic Regression
20.5.1.3 Decision Trees

20.5.1.4 Other Predictive Analytics Techniques
20.5.2 Evaluating Predictive Models

20.5.2.1 Splitting Up the Dataset

20.5.2.2 Performance Measures for Classification Models

20.5.2.3 Performance Measures for Regression Models

20.5.2.4 Other Performance Measures for Predictive
Analytical Models

20.5.3 Descriptive Analytics
20.5.3.1 Association Rules
20.5.3.2 Sequence Rules
20.5.3.3 Clustering

20.5.4 Social Network Analytics
20.5.4.1 Social Network Definitions

20.5.4.2 Social Network Metrics

20.5.4.3 Social Network Learning
20.6 Post-Processing of Analytical Models

20.7 Critical Success Factors for Analytical Models
20.8 Economic Perspective on Analytics
20.8.1 Total Cost of Ownership (TCO)

20.8.2 Return on Investment

20.8.3 In- versus Outsourcing

20.8.4 On-Premises versus Cloud Solutions

20.8.5 Open-Source versus Commercial Software
20.9 Improving the ROI of Analytics

20.9.1 New Sources of Data

20.9.2 Data Quality
20.9.3 Management Support

20.9.4 Organizational Aspects
20.9.5 Cross-Fertilization

20.10 Privacy and Security

20.10.1 Overall Considerations Regarding Privacy and

Security
20.10.2 The RACI Matrix

20.10.3 Accessing Internal Data

20.10.3.1 Anonymization
20.10.3.2 SQL Views
20.10.3.3 Label-Based Access Control
20.10.4 Privacy Regulation
20.11 Conclusion

Key Terms List

Review Questions

Problems and Exercises

Appendix Using the Online Environment

Glossary
Index

About the Authors

Bart was born in Bruges (Belgium). He speaks West-Flemish, Dutch,
French, a bit of German, some English, and can order a beer in Chinese. Besides
enjoying time with his family, he is also a diehard Club Brugge soccer fan. Bart
is a foodie and amateur cook and loves a good glass of wine overlooking the
authentic red English phone booth in his garden. Bart loves traveling; his

favorite cities are San Francisco, Sydney, and Barcelona. He is fascinated by

World War I and reads many books on the topic. He is not a big fan of being
called “Professor Baesens”, shopping, vacuuming, long meetings, phone calls,
admin, or students chewing gum during their oral exam on database
management. He is often praised for his sense of humor, although he is usually
more modest about this.

Bart is a professor of Big Data and analytics at KU Leuven (Belgium) and a
lecturer at the University of Southampton (United Kingdom). He has done
extensive research on Big Data and analytics, credit risk modeling, fraud
detection, and marketing analytics. He has written more than 200 scientific
papers and six books. He has received various best paper and best speaker

awards. His research is summarized at www.dataminingapps.com.

Seppe was born in Jette (Brussels, Belgium), but has lived most of his life
in Leuven. Seppe speaks Dutch, some French, English, understands German, and
can order a beer in Chinese (and unlike Bart he can do so in the right intonation,
having studied Mandarin for three years). He is married to Xinwei Zhu (which

explains the three years of Mandarin). Besides spending time with family, Seppe

http://www.dataminingapps.com

enjoys traveling, reading (Murakami to Bukowski to Asimov), listening to music
(Booka Shade to Miles Davis to Claude Debussy), watching movies and series,
gaming, and keeping up with the news. He is not a fan of any physical activity
other than walking way too fast through Leuven. Seppe does not like vacuuming
(this seems to be common with database book authors), bureaucracy, meetings,
public transportation (even though he has no car) or Windows updates that start
when he is teaching or writing a book chapter.

Seppe is an assistant professor at the Faculty of Economics and Business,
KU Leuven, Belgium. His research interests include business data mining and
analytics, machine learning, process management, and process mining. His work
has been published in well-known international journals and presented at top
conferences. Seppe’s teaching includes advanced analytics, Big Data, and

information management courses. He also frequently teaches for industry and

business audiences. See www.seppe.net for further details.

http://www.seppe.net

Wilfried was born in Turnhout, Belgium. He speaks Dutch, English, and
French, and can decipher some German, Latin, and West-Flemish. Unable to
order a beer in Chinese, he has perfected a “looking thirsty” facial expression
that works in any language. He is married to Els Mennes, and together they
produced three sons — Janis, Hannes, and Arne — before running out of boys’
names. Apart from family time, one of Wilfried’s most cherished pastimes is
music. Some would say he is stuck in the eighties, but his taste ranges from
Beethoven to Hendrix and from Cohen to The Cure. He also likes traveling, with
fond memories of Alaska, Bali, Cuba, Beijing, the Swiss Alps, Rome, and
Istanbul. He enjoys many different genres of movies, but is somewhat
constrained by his wife’s bias toward tearful-kiss-and-make-up-at-the-airport
scenes. His sports watch contains data (certainly no Big Data!) on erratic
attempts at running, swimming, biking, and skiing. Wilfried has no immediate
aversion to vacuuming, although his fellow household members would claim
that his experience with the matter is mainly theoretical.

Wilfried is a full professor at the Faculty of Economics and Business (FEB)
of KU Leuven, Belgium. He conducts research on (big) data storage, integration,
and analytics; data quality; business process management and service
orchestration, often in collaboration with industry partners. Following his
position of Vice Dean for Education at FEB, he was elected as Dean in 2017.

See www.feb.kuleuven.be/wilfried.lemahieu for further details.

http://www.feb.kuleuven.be/wilfried.lemahieu

Preface

Congratulations! By picking up this book, you have made the first step in your
journey through the wonderful world of databases. As you will see in this book,
databases come in many different forms — from simple spreadsheets or other file-
based attempts and hierarchical structures, to relational, object-oriented, and
even graph-oriented ones — and are used across the world throughout a variety of
industry sectors to manage, store, and analyze data.

This book is the result of having taught an undergraduate database
management class and a postgraduate advanced database management class for
more than ten years. Throughout the years we have found no textbook that
covers the material in a comprehensive way without becoming flooded by
theoretical detail and losing focus. Hence, after we teamed up together, we
decided to start writing a book ourselves. This work aims to offer a complete and
practical guide covering all the governing principles of database management,

including:

¢ end-to-end coverage, starting with legacy technologies to emerging
trends such as Big Data, NoSQL databases, analytics, data governance,

etc.;

¢ a unique perspective on how lessons learned from past data management
could be relevant in today’s technology setting (e.g., navigational access
and its perils in CODASYL and XML/OO databases);

e a critical reflection and accompanying risk management considerations
when implementing the technologies considered, based on our own
experiences participating in data and analytics-related projects with
industry partners in a variety of sectors, from banking to retail and from

government to the cultural sector;

¢ asolid balance between theory and practice, including various exercises,
industry examples and case studies originating from diverse and
complementary business practices, scientific research, and academic

teaching experience.

The book also includes an appendix explaining our “online playground”
environment, where you can try out many concepts discussed in the book.
Additional appendices, including an exam bank containing several cross-chapter
questions and references to our YouTube lectures, are provided online as well.

We hope you enjoy this book and that you, the reader, will find it a useful
reference and trusted companion in your work, studies, or research when storing,

managing, and analyzing small or Big Data!

Who This Book is For

We have tried to make this book complete and useful for both novice and
advanced database practitioners and students alike. No matter whether you’re a
novice just beginning to work with database management systems, a versed SQL
user aiming to brush up your knowledge of underlying concepts or theory, or
someone looking to get an update on newer, more modern database approaches,
this book aims to familiarize you with all the necessary concepts. Hence, this

book is well suited for:

¢ under- or postgraduate students taking courses on database management
in BSc and MSc programs in information management and/or computer

science;

¢ business professionals who would like to refresh or update their

knowledge on database management; and

¢ information architects, database designers, data owners, data stewards,
database administrators, or data scientists interested in new developments

in the area.

Thanks to the exercises and industry examples throughout the chapters, the

book can also be used by tutors in courses such as:
e principles of database management;
e database modeling;
¢ database design;

e database systems;

e data management;
e data modeling;
e data science.

It can also be useful to universities working out degrees in, for example, Big

Data and analytics.

Topics Covered in this Book

This book is organized in four main parts. Chapters 1-4 address preliminary and
introductory topics regarding databases and database design, starting with an
introduction to basic concepts in Chapter 1, followed by a description of
common database management system types and their architecture in Chapter 2.
Chapter 3 discusses conceptual data modeling, and Chapter 4 provides a
management overview of the different roles involved in data management and
their responsibilities.

Part Il (Chapters 5—11) then takes a dive into the various types of databases,

from legacy pre-relational and relational database management systems into
more recent approaches such as object-oriented, object-relational, and XML-
based databases in Chapters 8—10, ending with a solid and up-to-date overview
of NoSQL technologies in Chapter 11. This part also includes a comprehensive
overview of the Structured Query Language (SQL) in Chapter 7.

In Part II1, physical data storage, transaction management, and database
access are discussed in depth. Chapter 12 discusses physical file organization
and indexing, whereas Chapter 13 elaborates on physical database organization
and business continuity. This is followed by an overview on the basics of

transaction management in Chapter 14. Chapter 15 introduces database access

mechanisms and various database application programming interfaces (APIs).
Chapter 16 concludes this part of the book by zooming in on data distribution
and distributed transaction management.

Chapters 17-20 form the last part of the book. Here, we zoom out and
elaborate on data warehousing and emerging interest areas such as data

governance, Big Data, and analytics. Chapter 17 discusses data warehouses and

business intelligence in depth; Chapter 18 covers managerial concepts such as
data integration, data quality, and data governance; Chapter 19 provides an in-
depth overview of Big Data and shows how a solid database set-up can form the
cornerstone of a modern analytical environment. Chapter 20 concludes this part
and the book by examining different types of analytics.

By the end of the book, you will have gained a strong knowledge of all
aspects that make up a database management system. You will be able to discern
the different database systems, and to contrast their advantages and
disadvantages. You will be able to make the best (investment) decisions through
conceptual, logical, and physical data modeling, all the way to Big Data and
analytical applications. You’ll have gained a strong understanding of SQL, and
will also understand how database management systems work at the physical
level — including transaction management and indexing. You’ll understand how
database systems are accessed from the outside world and how they can be
integrated with other systems or applications. Finally, you’ll also understand the
various managerial aspects that come into play when working with databases,
including the roles involved, data integration, quality, and governance aspects,
and you will have a clear idea on how the concept of database management

systems fits in the Big Data and analytics story.

How to Read this Book

This book can be used as both a reference manual for more experienced readers
wishing to brush up their skills and knowledge regarding certain aspects, as well
as an end-to-end overview on the whole area of database management systems.
Readers are free to read this book cover to cover, or to skip certain chapters and
start directly with a topic of interest. We have separated the book clearly into
different parts and chapters so readers should have little trouble understanding
the global structure of the book and navigating to the right spot. Whenever a
topic is expanded upon in a later chapter or re-uses concepts introduced in an
earlier chapter, we include clear “Connections” boxes so readers can (re-)visit
earlier chapters for a quick refresher before moving on, or move ahead to other
places in the book to continue their learning trail.

The following overview provides some common “reading trails”,

depending on your area of interest:

e Newcomers wishing to get up to speed quickly with relational database
systems and SQL.: start with Part [(Chapters 1-4), then read Chapters
6-9.

e Experienced users wishing to update their knowledge on recent trends:

read Chapter 11, and then Chapters 15-20.

¢ Daily database users wishing to have high-level knowledge about

database systems: Part [(Chapters 1-4) is for you.

e Managers wishing to get a basic overview on fundamental concepts and a

broad idea of managerial issues: start with Part I (Chapters 1-4), then

move on to Chapters 17, 18, 19, and 20.

e Professors teaching an undergraduate course in database management:

Parts I and II.

e Professors teaching a postgraduate course in advanced database

management: Parts [l and [V.

The recommended chapters for each of these profiles, together with some

others (which will be discussed in Chapter 4), are summarized in the table.

Professo
Experienced Database (undergrad
Chapter Newcomers users users Managers course)

1

2

o T TR
o T TR
b TR T

o TR T

10

e T T o T T S S R

11 X

12

13

14

15

16

17

18

19

o T T B S A S R

o TR TR

20

Every chapter aims to strike a balance between theory and practice, so
theoretical concepts are often alternated with examples from industry in small
“Drill Down” boxes that provide more background knowledge or an interesting
story to illustrate a concept. We also include theoretical discussions on pros and
cons of a specific technique or technology. Each chapter closes with a set of
exercises to test your understanding. Both multiple-choice and open questions

have been included.

Cross-Chapter Case Study: Sober

Throughout the book we use an encompassing case (about a fictional self-
driving car taxi company called “Sober”) that will be revisited and expanded in
each chapter. When reading the book from cover to cover you’ll therefore be
able to learn together with the people at Sober, experiencing how their database
management system evolves from a simple small-scale system toward a more
modern and robust set-up as they continue to grow. This way, the different
chapters also form a cohesive whole from a practical perspective, and you’ll see

how all the technologies and concepts fit together.

Additional Material

We are also happy to refer you to our book website at www.pdbmbook.com. The

site includes additional information such as updates, PowerPoint slides, video
lectures, additional appendices, and a Q&A section. It also features a hands-on,
online environment where readers can play around with a MySQL relational
database management system using SQL, explore NoSQL database systems, and
other small examples without having to install anything. You’ll find a guide in

the Appendix that will set you on your way.

http://www.pdbmbook.com

Acknowledgments

It is a great pleasure to acknowledge the contributions and assistance of various
colleagues, friends, and fellow database management lovers in the writing of this
book. This book is the result of many years of research and teaching in database
management.

We first would like to acknowledge our publisher, Cambridge University
Press, for accepting our book proposal about two years ago. We would like to
thank Lauren Cowles for supervising the entire process. We first met Lauren in
August 2016 in San Francisco, discussing the book details during dinner (crab
cakes paired with Napa white) while overlooking an ensemble of sunbathing
seals. This turned out to be the perfect setting for initiating a successful
partnership. We are also thankful to everyone at Cambridge University Press for
their help in the editing, production, and marketing processes.

Gary J. O’Brien deserves a special mention as well. His careful
proofreading of the text proved invaluable. Although opening a Word document
with Gary’s comments sometimes felt like being thrown in the ocean knowing
sharks had been spotted, the mix of to-the-point remarks with humorous notes
made the revision a truly enjoyable experience.

We would like to thank professor Jacques Vandenbulcke, who was the first
to introduce us to the magical world of database management. Jacques’ exquisite
pedagogical talent can only be surpassed by his travel planning skills. His legacy
runs throughout the entire book, not only in terms of database concepts and
examples, but also travel experiences (e.g., the Basilica Cistern on the front

cover, Meneghetti wine).

We would also like to acknowledge the direct and indirect contributions of
the many colleagues, fellow professors, students, researchers, business contacts,
and friends with whom we collaborated during the past years. We are grateful to
the active and lively database management community for providing various
user fora, blogs, online lectures, and tutorials that proved very helpful.

Last but not least, we are grateful to our partners, kids, parents, and families
for their love, support, and encouragement! We trust they will read this book
from the first page to the last, which will yield ample topics for lively and
interesting discussions at the dinner table.

We have tried to make this book as complete, accurate, and enjoyable as
possible. Of course, what really matters is what you, the reader, think of it.
Please share your views by getting in touch. The authors welcome all feedback

and comments, so do not hesitate to let us know your thoughts.

Front cover: The cover picture represents the Basilica Cistern, an immense
subterranean water storage facility built in the sixth century by the Romans in
Istanbul. Why this picture? Well, overall it is a spectacular location in a truly
magnificent city, which throughout its history has been a meeting point of
cultures, civilizations, and, literally, continents. However, more to the point, it is
definitely a storage infrastructure organized as rows and columns, which even
involves replication and mirroring, not to mention historical data. In addition, it
contained one of the most famous primary keys ever: 007, as it featured

prominently in the James Bond movie From Russia With Love.

1000%o Driven by Technology

Sober is a new taxi company deploying self-driving cars to provide cab
services. Although it operates its own fleet of self-driving cabs, people
can also register their cars as Sober cabs and have them provide taxi
services whenever they are not using their cars. For the latter, Sober also
wants to keep track of the car owners.

Sober offers two types of taxi services: ride-hailing and ride-
sharing. Ride-hailing is a service whereby customers can hail a taxi so
they can be picked up and driven to their destination for a time- and
distance-based fee. The hailing is an immediate, on-demand service and
requests can be made with the Sober App. With just one tap on the
screen, a customer can request a cab from anywhere, receive an
estimated wait time, and a notification when the car has arrived. Besides
the Sober App, users can also hail Sober cabs by hand-waving them as
they see them pass, in which case Sober’s deep-learning based image
recognition system identifies the wave gesture as a cab request. For each
use of the ride-hail service, Sober wants to store the time of pick-up and
drop-off, the location of pick-up and drop-off, the ride duration, the
distance, the number of passengers, the fee, the type of request (via
Sober App or hand-waving) and the number and name of the lead
customer (the one who pays). The maximum number of passengers for a
ride-hail service is six.

Ride-sharing is another service offered by Sober, which requires
more careful planning. It can also be referred to as carpooling and aims
at reducing costs, traffic congestion, and the carbon footprint. Because of

the planning, both Sober and its customers can negotiate the fee whereby

more customers per cab means a lower fee per customer (flexible
pricing). To provide an eco-friendly incentive, Sober pledges to plant a
tree for each customer who books 20 uses of the Sober ride-sharing
service. For each ride-share service, Sober wants to store the time of
pick-up and drop-off, the location of pick-up and drop-off, the ride
duration, the distance, the number and names of all customers, and the
upfront negotiated fee. The maximum number of passengers for a ride-
share service is ten.

Due to the novelty of the self-driving car technology, accidents
cannot be 100% ruled out. Sober also wants to store information about

accident dates, location, and damage amounts per car.

Part I

&

Databases and Database Design

1 Fundamental Concepts of Database Management

2 Architecture and Categorization of DBMSs

3 Conceptual Data Modeling using the (E)ER Model and UML Class
Diagram

4 Organizational Aspects of Data Management

1

Fundamental Concepts of Database
Management

Chapter Objectives

In this chapter, you will learn to:

¢ understand the differences between the file versus database approach

to data management;
e discern the key elements of a database system;

¢ identify the advantages of database systems and database

management.

Opening Scenario

Since Sober is a startup company, it must carefully decide how it will
manage all its data. The company is thinking about storing all its data in
Word documents, Excel files, and maybe some other files (e.g., Notepad)

as well.

In this chapter, we discuss the fundamental concepts of database management.
Many ideas presented here are elaborated in later chapters. We kick off by
reviewing popular applications of database technology, and follow this by
defining key concepts such as a database and a database management system, or
DBMS. Next, we step back in time and discuss the file-based approach and
contrast it with the database approach to data management. We then zoom into
the elements of a database system. We conclude by discussing the advantages of

database design.

1.1 Applications of Database Technology

Data are everywhere and come in different shapes and volumes. These data need
to be stored and managed using appropriate data management or database
technologies. Think about the storage and retrieval of traditional numeric and
alphanumeric data in an application developed to keep track of the number of
products in stock. For each product, the product number, product name, and
available quantity needs to be stored. Replenishment orders need to be issued as
soon as the quantity drops below the safety limit. Every replenishment order has
an order number, order date, supplier number, supplier name, and a set of
product numbers, names, and quantities.

Database technology is not just for traditional numeric and alphanumeric
data. It can also store multimedia data such as pictures, audio, or video —
YouTube and Spotify support the querying of music based upon artist, album,
genre, playlist, or record label. Biometric data, including fingerprints and retina
scans, are often used for security, such as border control as you enter a country.
Information is also gathered by wearables, such as a Fitbit or an Apple Watch,
which continuously monitor and analyze your health and fitness. Geographical
information systems (GIS) applications, such as Google Maps, store and retrieve
all types of spatial or geographical data.

Database technology can also store and retrieve volatile data. One example
is high-frequency trading, where automated, algorithmic platforms are used by
investment banks or hedge funds to process a large number of orders at
extremely high speed based upon events happening in the environment or

macro-economy. Another example is sensors monitoring the key parameters of a

nuclear reactor, whereby an automatic system shutdown may be enacted if
certain thresholds are hit.

You may have heard the term Big Data, referring to the huge amounts of
data being gathered and analyzed by companies such as Google, Facebook, and
Twitter. Look at Walmart, America’s largest retailer with over 11,000 locations
worldwide, $4.8 billion in annual sales and over 100 million customers per
week. Its point-of-sale (POS) database system stores an enormous amount of
data such as which customer bought what products, in what quantities, at which
location, and at what time. All these data can then be intelligently analyzed using
analytical data modeling to reveal unknown but interesting purchase patterns,
such as which products are frequently purchased together. Better still, certain
analysis techniques allow one to make predictions about the future (e.g., which
customers are most likely to respond positively to a sales promotion). We discuss
this in more detail in Chapter 20.

These are just a few examples of database applications; many others exist.

Drill Down

The Internet of Things (IoT) provides many examples of Big Data
applications. Moocall is a Dublin-based startup providing sensors for
farmers to reduce the mortality rates of calves and cows during birthing.
The sensor is attached to the cow’s tail. They measure specific
movements of the tail triggered by labor contractions as the calving
begins. These sensor data are then sent through the Vodafone IoT
network to a farmer’s smartphone. Using an app, the farmer gets up-to-
date information about the calving process and can intervene or call a vet
when needed. The app can generate alerts, and includes a herd

management facility. This technology improves both the farmer’s

productivity and the survival probabilities of calves and cows during the

birthing process.

Retention Questions

e Give some examples of applications of database technology.

1.2 Key Definitions

We have briefly introduced the concept of a database by exploring the various
types of databases you may encounter every day. A database can be defined as a
collection of related data items within a specific business process or problem
setting. Consider a purchase order system, where you have data items such as
products, suppliers, and purchase orders. Each data item has characteristics: a
product has a product number, product name, and product color; a supplier has a
supplier name and a supplier address; a purchase order has a reference number
and date. These data items are also related. A product can be supplied by one or
more suppliers. A purchase order is always connected to exactly one supplier. A
supplier can supply one or more products. These are examples of relationships
between the data items that should be adequately captured by a database. A
database has a target group of users and applications. An inventory manager uses
our purchase order system to manage the inventory and issue purchase orders; a
product manager uses it for monitoring trends in product sales.

A database management system (DBMS) is the software package used to

define, create, use, and maintain a database. It typically consists of several
software modules, each with their own functionality, as we discuss in Chapter 2.
Popular DBMS vendors are Oracle, Microsoft, and IBM. MySQL is a well-
known open-source DBMS. The combination of a DBMS and a database is then

often called a database system.

Drill Down

Gartner! estimated the total DBMS market value at $35.9 billion for
2015, which represented an 8.7% growth when compared to 2014.
According to the IDC, the overall market for database management

solutions is estimated to reach over $50 billion by 2018.

Connections

In Chapter 2 we discuss the internal architecture of a DBMS. We also

provide a categorization of DBMSs along various dimensions.

Retention Questions

e Define the following concepts:
e database
e DBMS

e database system

1.3 File versus Database Approach to Data
Management

Before we further explore database technology, let’s step back and see how data
management has evolved. This will give us a proper understanding of the legacy

problems many companies are still facing.

1.3.1 The File-Based Approach

In the early days of computing, every application stored its data into its own

dedicated files. This is known as a file-based approach and is illustrated in

Figure 1.1.

CustomerNr
CustomerName
VATcode

Applications
A

CustomerNr
CustomerName
Turnover

CustomerNr
CustomerName
ZipCode

Files
sk

Duplicate data!

Figure 1.1 File-based approach to data management.

Suppose we have a traditional invoicing application, written in a
programming language such as COBOL or C, that makes use of customer
information such as customer number, customer name, VAT code, etc., stored in
a separate file. A separate application, such as a customer relationship
management (CRM) system, makes use of a different file containing the same
data. Finally, a third application (GIS) stores information such as customer
number, customer name, and ZIP code in yet another file. The data files only
contain the data themselves; the data definitions and descriptions are included in
each application separately. An application can make use of one or more files.
As more applications are developed with corresponding data files, this file-based

approach to data management will cause serious problems.

Since each application uses its own data files and many applications use
similar data, duplicate or redundant information will be stored, which is a waste
of storage resources. If this is not appropriately managed there is a danger that
customer data will be updated in only one file and not elsewhere, resulting in
inconsistent data. In this file-based approach to data management there is a
strong coupling, or dependency, between the applications and the data. A
structural change in a data file necessitates changes in all applications that use it,
which is not desirable from a maintenance perspective. It is hard to manage
concurrency control (i.e., the simultaneous access by different users or
applications to the same data without conflicts). For example, if one application
performs a cash transfer while another application calculates the account
balance, and the data operations of both applications are interleaved for
efficiency, this can easily lead to inconsistent data in cases where there are no
adequate concurrency control facilities provided. Since the applications each
work independently with their own ecosystem of data files, it is difficult and
expensive to integrate applications aimed at providing cross-company services.
Although this file approach to data management has serious disadvantages,
many firms still struggle with “legacy” file-based systems in their current

information and communications technology (ICT) environment.

1.3.2 The Database Approach

The emergence of database technology provided a new paradigm for data

management. In this database approach, all data are stored and managed

centrally by a DBMS, as illustrated in Figure 1.2.

-~

W
| =
2 -
E < Invoicing CREM GIS
i<
jo
<
~
F(
‘ DBMS ‘
2
@ 4
Raw data Catalog
-

Figure 1.2 Database approach to data management.

The applications now directly interface with the DBMS instead of with
their own files. The DBMS delivers the desired data at the request of each
application. The DBMS stores and manages two types of data: raw data and
metadata. Metadata refers to the data definitions that are now stored in the
catalog of the DBMS. This is a key difference to the file-based approach. The
metadata are no longer included in the applications, but are now properly
managed by the DBMS itself. From an efficiency, consistency, and maintenance
perspective, this approach is superior.

Another key advantage of the database approach is the facilities provided
for data querying and retrieval. In the file-based approach, every application had
to explicitly write its own query and access procedures. Consider the following

example in pseudo-code:

Procedure FindCustomer;
Begin
open file Customer.txt;
Read(Customer)
While not EOF(Customer)
If Customer.name='Bart' Then
display(Customer);
EndIf
Read(Customer);
EndWhile;
End;

Here, we first open a Customer.txt file and read the first record. We then
implement a while loop that iterates through each record in the file until the end
of the file is reached (indicated by EOF(Customer)). If the desired information is
found (Customer.name="Bart"), it will be displayed. This requires a lot of coding.
Because of the tight coupling between data and applications, many procedures
would be repeated in various applications, which is again not very appealing
from a maintenance perspective. As noted, DBMSs provide database languages
that facilitate both data querying and access. A well-known language, which we
discuss extensively in Chapter 7, is Structured Query Language (SQL). SQL can
be used to formulate database queries in a structured and user-friendly way, and
is one of the most popular data querying standards used in the industry. An
example SQL query that gives the same output as our pseudo-code above could
be:

SELECT *
FROM Customer
WHERE

name = 'Bart'

Here, you only need to specify what information you want. In our case, we
want all customer information for customer 'Bart'. This SQL query will then be
executed by the DBMS in a transparent way. In the database approach, we only
need to specify which data we are interested in, and no longer how we should
access and retrieve them. This facilitates the development of database
applications because we no longer need to write complex data retrieval
procedures.

To summarize, the file-based approach results in a strong application—data
dependence, whereas the database approach allows for applications to be

independent from the data and data definitions.

Drill Down

One of the key disadvantages of a file-based approach to data
management is that the data typically sit all over the organization in
silos; therefore, an overall, comprehensive view is lacking. For example,
the city of Amsterdam has data spread across 12,000 different datasets.
Because of the lack of integration, no one knows exactly how many
bridges span Amsterdam’s famous canals, because each of the city’s
individual districts has its own data and no overall comprehensive
database is available. It turned out that many of these siloed datasets
adopted their own data definition of a bridge, which further complicates

matters. See http://sloanreview.mit.edu/case-study/lessons-from-

becoming-a-data-driven-organization.

Retention Questions

http://sloanreview.mit.edu/case-study/lessons-from-becoming-a-data-driven-organization

e Contrast the file versus database approach to data management.

1.4 Elements of a Database System

In this section we discuss database model versus instances, data models, the
three-layer architecture, the role of the catalog, the various types of database

users, and DBMS languages.

1.4.1 Database Model versus Instances

In any database implementation, it is important to distinguish between the
description of the data, or data definitions, and the actual data. The database

model or database schema provides the description of the database data at

different levels of detail and specifies the various data items, their
characteristics, and relationships, constraints, storage details, etc.”? The database
model is specified during database design and is not expected to change

frequently. It is stored in the catalog, which is the heart of the DBMS. The

database state then represents the data in the database at a particular moment. It
is sometimes also called the current set of instances. Depending upon data
manipulations, such as adding, updating, or removing data, it typically changes
on an ongoing basis.

The following are examples of data definitions that are an essential part of

the database model stored in the catalog.

Database model
Student (number, name, address, email)
Course (number, name)

Building (number, address)

We have three data items: Student, Course, and Building. Each of these data
items can be described in terms of its characteristics. A student is characterized
by a number, name, address, and email; a course by a number and name; and a

building by a number and address.

Figure 1.3 shows an example of a corresponding database state. You can see
the database includes data about three students, three courses, and three

buildings.

0157895 Wilfried Lemahieu 644, Wacker Drive, Chicago Wilfried.Lemahieu@kuleuven.be

COUR

-'f'i:. B | Name | H A s |

|
| I
DOT21A Big Data & Analytics 0589 Tiensestraat 115, Leuven

Figure 1.3 Example database state.

1.4.2 Data Model

A database model comprises different data models, each describing the data from
different perspectives. A good data model is the start of every successful
database application. It provides a clear and unambiguous description of the data
items, their relationships, and various data constraints from a particular
perspective. Several types of data models will be developed during a database
design process.

A conceptual data model provides a high-level description of the data

items (e.g., supplier, product) with their characteristics (e.g., supplier name,
product number) and relationships (e.g., a supplier can supply products). It is a
communication instrument between the information architect (see Chapter 4)
and business user to make sure the data requirements are adequately captured
and modeled. Therefore, the conceptual data model should be implementation-
independent, user-friendly, and close to how the business user perceives the data.
It will usually be represented using an Enhanced Entity Relationship (EER)
model or an object-oriented model, as we discuss in Chapter 3.

A logical data model is a translation or mapping of the conceptual data

model toward a specific implementation environment. The logical data items
may still be understood by business users, but are not too far removed from the
physical data organization. Depending upon the ICT environment available, it
can be a hierarchical (see Chapter 5), CODASYL (see Chapter 5), relational (see
Chapters 6 and 7), object-oriented (see Chapter 8), extended relational (see
Chapter 9), XML (see Chapter 10), or NoSQL model (see Chapter 11).

The logical data model can be mapped to an internal data model that
represents the data’s physical storage details. It clearly describes which data are

stored where, in what format, which indexes are provided to speed up retrieval,

etc. It is therefore highly DBMS-specific. We discuss internal data models in
Chapters 12 and 13.

The external data model contains various subsets of the data items in the

logical model, also called views, tailored toward the needs of specific

applications or groups of users.

Connections

In Chapter 3 we discuss the EER and UML conceptual data models in
more detail. Later chapters cover logical (and sometimes external) data
models: the hierarchical and CODASYL model in Chapter 5, the
relational model in Chapters 6 and 7, the object-oriented model in
Chapter 8, the extended relational model in Chapter 9, the XML data
model in Chapter 10 and various NoSQL data models in Chapter 11.
Chapters 12 and 13 elaborate on internal data models.

1.4.3 The Three-Layer Architecture

The three-layer architecture is an essential element of every database

application and describes how the different underlying data models are related.?

It is illustrated in Figure 1.4.

External Layer

llogical

i LN \ Lo e
Conceptual/Logical Layer \ / \ / \
Data item A | | Data item B | | Data item C | | Data item D |

|

L

Internal Layer

Figure 1.4 The three-layer database architecture.

We start with the conceptual/logical layer. Here, we have the conceptual
and logical data models. Both focus on the data items, their characteristics, and
relationships without bothering too much about the actual physical DBMS
implementation. The conceptual data model should be a user-friendly,
implementation-independent, and transparent data model, constructed in close
collaboration between the information architect and business user(s). It will be
refined to a logical data model based upon the implementation environment.

In the external layer we have the external data model, which includes views
offering a window on a carefully selected part of the logical data model. A view
describes the part of the database that a particular application or user group is
interested in, hiding the rest of the database. It is used to control data access and

enforce security. The views will be tailored to the data needs of an application or

(group of) user(s). A view can serve one or more applications. Consider a view
offering only student information to a student registration application, or a view
offering only building information to a capacity planning application.

The internal layer includes the internal data model, which specifies how

the data are stored or organized physically. Ideally, changes in one layer should
have no to minimal impact on the others. It should be possible to physically
reorganize the data with little impact on the conceptual/logical or external layer
(physical data independence). Likewise, changes to the conceptual/logical layer
can be made with minimal impact on the external layer (logical data
independence). We elaborate on both types of data independence in Section

Figure 1.5 illustrates the three-layer architecture for a procurement business
process. The conceptual/logical layer defines the data items such as Product,
Customer, Invoice, and Delivery. The internal layer contains the physical storage
details specifying how and where the data are stored. The external layer has
three views offering specific information to the finance, customer service, and
logistics departments. This three-layer database architecture has several

advantages in efficiency, maintenance, performance, security, etc.

Finance department Customer service Logistics department

External layer

Product name, description, cost, ...

Customer name, phone, address, ... Conceptualiogical layer
Invoice customer, date, products (with price and amount), ...

Delivery invoice, address, date, ...

Internal layer

London Washington

Figure 1.5 Three-layer database architecture for a business procurement

process.

1.4.4 Catalog

The catalog is the heart of the DBMS. It contains the data definitions, or
metadata, of your database application. It stores the definitions of the views,
logical and internal data models, and synchronizes these three data models to

ensure their consistency.”

1.4.5 Database Users

As we discuss more extensively in Chapter 4, various types of users interact with
the database. An information architect designs the conceptual data model.
He/she closely interacts with the business user to make sure the data
requirements are fully understood and modeled. A database designer translates
the conceptual data model into a logical and internal data model. The database
administrator (DBA) is responsible for the implementation and monitoring of
the database. He/she sets up the database infrastructure and continuously
monitors its performance by inspecting key performance indicators such as
response times, throughput rates, and storage space consumed (see Section
1.5.9). The application developer develops database applications in a general-
purpose programming language such as Java or Python. He/she provides the data
requirements, which are then translated by the database designer or DBA into
view definitions. The business user will run these applications to perform
specific database operations. He/she can also directly query the database using

interactive querying facilities for reporting purposes.

1.4.6 Database Languages

Every DBMS comes with one or more accompanying database languages. The
data definition language (DDL) is used by the DBA to express the database’s
external, logical, and internal data models. These definitions are stored in the

catalog. The data manipulation language (DML) is used to retrieve, insert,

delete, and modify data. DML statements can be embedded in a general-purpose
programming language, or entered interactively through a front-end querying

tool. SQL offers both DDL and DML statements for relational database systems
(see Chapter 7).

Retention Questions

e What are the key elements of a database system?

e Discuss the three-layer architecture of a database application. Illustrate

with an example.

e What is a catalog and why is it needed?

1.5 Advantages of Database Systems and
Database Management

Databases, if adequately designed and managed, offer advantages such as data
independence; managing structured, semi-structured, and unstructured data;
database modeling; managing data redundancy; specifying integrity rules;
concurrency control; backup and recovery facilities; data security and

performance utilities. We elaborate on these elements in this section.

1.5.1 Data Independence

Data independence means changes in data definitions have minimal to no

impact on the applications using the data. These changes may occur in the

internal or the conceptual/logical layer. Physical data independence implies

that neither the applications, views, or logical data model must be changed when
changes are made to the data storage specifications in the internal data model.
Consider reorganizing the data across different storage locations or media, the
definition of new access paths or indexes, etc. The applications will keep
running successfully, and may be even faster than they were before because of
the physical reorganization of the data. To adequately guarantee physical data
independence, the DBMS should provide interfaces between the logical and
internal data models.

Logical data independence implies that software applications are

minimally affected by changes in the conceptual or logical data model. Consider
the example of adding new data items, characteristics, or relationships. The
views in the external data model will act as a protective shield and mitigate the
effect of these modifications on the applications. To guarantee logical data
independence, the DBMS must provide interfaces between the

conceptual/logical and external layer.

1.5.2 Database Modeling

A data model is an explicit representation of the data items together with their
characteristics and relationships. It can also include integrity rules and functions.
A conceptual data model should provide a formal and perfect mapping of the
data requirements of the business process and is made in close collaboration with
the business user. It is then translated into a logical data model and, finally, an
internal data model. Unfortunately, a best-case scenario with perfect mapping is
often unrealistic, and it is important that a data model’s assumptions and
shortcomings are clearly documented. Popular examples of data models are the
hierarchical model, the CODASYL model, the (E)ER model, the relational

model, and the object-oriented model. We discuss these more extensively in

Chapters 5-8.

1.5.3 Managing Structured, Semi-Structured, and Unstructured Data

It is important to note that not all kinds of data can be described according to a

formal logical data model. This is only possible for structured data, which was
the only kind of data the earlier DBMS implementations focused on. With
structured data, individual characteristics of data items can be identified and
formally specified, such as the number, name, address, and email of a student, or
the number and name of a course. The advantage is the ability to express
integrity rules and in this way enforce the correctness of the data. As we will
discuss in, e.g., Chapters 7-9, it also facilitates searching, processing, and
analyzing data, because both the DBMS and the data processing applications
have fine-grain control over the data. They can, for example, discriminate
between a series of characters representing a student’s name and a student’s
address. In this way, it becomes possible to retrieve, for example, all the names
of students that live in New York.

With unstructured data, there are no finer-grain components in a file or
series of characters that can be interpreted in a meaningful way by a DBMS or
application. Consider a long text document containing the biographies of famous
New York citizens. In this plain text it is possible to search for the terms “name”,
“student”, and “New York” occurring closely together, but it is impossible to
assess whether they pertain to students who lived in New York, students who
were born in New York or maybe even students for which the text explains they
always wore the same sweater, with the imprint “New York” on it. Moreover, it
is not possible to retrieve only the series of characters that represent these
students’ names. In spite of that, many recent database management systems
provide facilities to efficiently store and search such full-text documents. This is

especially important, since the volume of unstructured data largely surpasses that

of structured data in most organizations. These unstructured data may contain
lots of useful information, if they can be extracted efficiently. Consider
improving customer interaction by storing and analyzing complaints letters,
classifying legal documents according to their content, or assessing the market’s
sentiment toward a new product by analyzing tweets that refer to the product.
Moreover, modern-day DBMSs are not restricted to storing and managing
unstructured textual data, but other kinds of data as well, such as still images,
video, and audio.

Finally, it should be stressed that not all data are completely structured or
completely unstructured. In later chapters we will discuss how recent DBMS
types, such as XML databases (Chapter 10) and NoSQL databases (Chapter 11),

aim explicitly at dealing efficiently with semi-structured data. These are data

that have a certain structure, but the structure may be very irregular or highly
volatile. Typical examples are individual users’ webpages on a large social
media platform, or resumé documents in a human resources database, which
may loosely exhibit the same structure, but which do not comply entirely with a

single, rigid format.

1.5.4 Managing Data Redundancy

One of the key drawbacks of the file-based approach to data management is
undesirable duplication of data, which can easily lead to inconsistent data. In the
database approach, redundant data can be successfully managed. Duplication of
data can be desirable in distributed environments to improve data retrieval
performance by providing local access to data rather than using resource-
intensive network connections. The DBMS is now responsible for the
management of the redundancy by providing synchronization facilities to
safeguard data consistency. As an example, an update of a local data copy will
be automatically propagated to all duplicate data copies stored at other locations.
Compared to the file approach, the DBMS guarantees correctness of the data. It
also requires no user intervention and is much more efficient and less error-

prone.

1.5.5 Specifying Integrity Rules

Data integrity rules can also be explicitly defined. These rules can be used to
enforce the correctness of the data. Syntactical rules specify how the data should
be represented and stored. Examples are: customerID should be represented as
an integer (e.g., 100, 125, and 200 are correct, but 1.20 or 2a are not); birth date
should be stored as month, day, and year (e.g., 02/27/1975 is correct, but
27/02/1975 is not). Semantic rules focus on the semantic correctness or meaning
of the data. Examples are: customerID should be unique; account balance should
be bigger than 0; and a customer cannot be deleted if he/she has pending
invoices. In the file-based approach, these integrity rules have to be embedded in
every single application. In the database approach, they are specified as part of
the conceptual/logical data model and are stored centrally in the catalog. This
substantially improves the efficiency and maintainability of the applications
since the integrity rules are now directly enforced by the DBMS whenever
anything is updated. In the file-based approach, the applications themselves have
to explicitly manage all integrity rules, resulting into a lot of duplication of code,

with the accompanying risk of inconsistencies.

1.5.6 Concurrency Control

A DBMS has built-in facilities to support concurrent or parallel execution of
database programs, which allows for good performance. A key concept is a
database transaction that is a sequence of read/write operations, considered to be
an atomic unit in the sense that either all operations are executed or none at all
(more details on transactions are provided in Chapter 14). Typically, these
read/write operations can be executed at the same time by the DBMS. However,
this should be carefully supervised to avoid inconsistencies. Let’s illustrate this

with an example (Table 1.1).

Table 1.1 Illustrating concurrency control

Time T1 T2 Balance
t1 Begin transaction $100

t2 Begin transaction read(balance) $100

t3 read(balance) balance = balance + 120 $100

t4 balance = balance — 50 write(balance) $220

t5 write(balance) End transaction $50

t6 End transaction $50

Table 1.1 shows two database transactions: T1 and T2. T1 updates the
account balance by withdrawing $50. T2 deposits $120. The starting balance is
$100. If both transactions were to run sequentially, instead of in parallel, the
ending balance should be $100-$50 + $120 = $170. If the DBMS interleaves the

actions of both transactions, we get the following. T2 reads the balance at t2 and

finds it is $100. T1 reads the balance at t3 and finds it is $100. At t3, T2 updates
the balance to $220. However, it still needs to write (or save) this value. At t4,
T1 calculates the balance as $100-$50 = $50 whereas T2 saves the balance,
which now becomes $220. T1 then saves the balance as $50 at t5. It overwrites
the value of $220 with $50, after which both transactions are ended. Since T1
updates the balance based on the value it had before the update by T2, and then
writes the updated balance after T2 is finished, the update effect of T2 is lost. It
is as if transaction T2 did not take place. This is commonly called a lost-update
problem. The DBMS should avoid the inconsistencies that emanate from the
interference between simultaneous transactions.

To ensure database transactions are processed in a reliable way, the DBMS
must support the ACID (Atomicity, Consistency, Isolation, Durability)
properties. Atomicity, or the all-or-nothing property, requires that a transaction
should either be executed in its entirety or not at all. Consistency assures that a
transaction brings the database from one consistent state to another. Isolation
ensures that the effect of concurrent transactions should be the same as if they
had been executed in isolation. Finally, durability ensures that the database
changes made by a transaction declared successful can be made permanent under

all circumstances.

1.5.7 Backup and Recovery Facilities

A key advantage of using databases is the availability of backup and recovery
facilities. These facilities can be used to deal with the effect of loss of data due to
hardware or network errors, or bugs in system or application software. Typically,
backup facilities can perform either a full or incremental backup. In the latter
case, only the updates since the previous backup will be considered. Recovery

facilities allow restoration of data to a previous state after loss or damage.

Connections

Chapter 14 introduces the basics of transactions, transaction
management, recovery, and concurrency control. It describes how the
interplay between these concepts guarantees concurrent access by
different users to shared data. Chapter 16 then further elaborates on this

by reviewing distributed transaction management.

1.5.8 Data Security

Data security can be directly enforced by the DBMS. Depending on the business
application considered, some users have read access, while others have write
access to the data (role-based functionality). This can also be further refined to
certain parts of the data. Trends such as e-business, B2B (business-to-business),
B2C (business-to-consumer), and CRM stress the importance of data security
because they increasingly expose databases to internal and external parties.
Consider the example of vendor-managed inventory (VMI), where a company
can get access to inventory details of its downstream supply chain partner. Using
the right security policies should enforce that only read access is provided and
no information from competitor products can be retrieved. Data access can be
managed via logins and passwords assigned to users or user accounts. Each

account has its own authorization rules that can again be stored in the catalog.

1.5.9 Performance Utilities

Three key performance indicators (KPIs) of a DBMS are: response time;
throughput rate; and space utilization. The response time denotes the time
elapsed between issuing a database request (e.g., a query or update instruction)
and the successful termination thereof. The throughput rate represents the
transactions a DBMS can process per unit of time. Space utilization refers to the
space utilized by the DBMS to store both the raw data and the metadata. A high-
performing DBMS is characterized by quick response times, high throughput
rates, and low space utilization.

DBMSs come with various types of utilities aimed at improving these three
KPIs. Examples are utilities to distribute and optimize data storage, to tune
indexes for faster query execution, to tune queries to improve application
performance, or to optimize buffer management (buffering is instrumental to the
exchange of data and updates between internal memory and disk storage). These

utilities are typically managed by the DBA.

Retention Questions

e What are the advantages of database systems and database

management?
e What is data independence and why is it needed?
e What are integrity rules? Illustrate with examples.

e What is the difference between structured, semi-structured, and

unstructured data?

e Define the ACID properties in a transaction management context.

Summary

We started this chapter by summarizing some key applications of database
technology. We defined the concepts of a database, DBMS, and database system.
We then reviewed the file approach to data management and contrasted it with
the database approach. We reviewed the elements of database systems. We also

discussed the advantages of database systems and database management.
Scenario Conclusion

Now that Sober understands the dangers of storing data in files and the

benefits of using databases, it has invested in database technology.

Key Terms List

ACID

catalog

conceptual data model

data definition language (DDL)
data independence

data manipulation language (DML)
database

database approach

database management system (DBMS)

database model

database schema
database state

database system

external data model
file-based approach
internal data model
internal layer

logical data independence
logical data model
metadata

physical data independence
semi-structured data
structured data
three-layer architecture
unstructured data

view

Review Questions

1.1. Which statement is not correct?

a. The file-based approach to data management causes the same

information to be stored separately for different applications.

b. In a file-based approach to data management, the data definitions

are included in each application separately.

c. In a file-based approach to data management, different applications

could be using older and newer versions of the same data.

d. In a file-based approach to data management, a change in the
structure of a data file is easily handled because each application has

its own data files.

1.2. Which statement is not correct?

a. In a database approach, applications don’t have their own files, but
all applications access the same version of the data by interfacing with
the DBMS.

b. In a database approach, the data definitions or metadata are stored

in the applications accessing the data.

c. In a database approach, there is typically less storage needed

compared to the file approach.

d. In a database approach, maintenance of data and metadata is easier.

1.3. Which statement is not correct?

a. In a file-based approach, every application has its own query and

access procedures, even if they want to access the same data.

b. SQL is a database language to manage DBMSs without having to

write a substantial amount of programming code.

c. SQL is a database language that focuses on how to access and

retrieve the data.

d. SQL is a database language that allows different applications to

access different subsets of the data necessary for each application.

1.4. Which statement is not correct?

a. In a conceptual data model, the data requirements from the business

should be captured and modeled.
b. A conceptual data model is implementation-dependent.

c. A logical data model translates the conceptual data model to a

specific implementation environment.

d. Examples of implementations of logical data models are

hierarchical, CODASYL, relational, or object-oriented models.

1.5. Complete the following sentence, choosing the right words in
positions A and B. A(n) ...A... data model is the mapping of a(n) ...B...
data model to a model that describes which data are stored where and in

what format.
a. A: internal, B: logical.
b. A: conceptual, B: internal.
c. A: logical, B: internal.

d. A: logical, B: conceptual.

1.6. What concept specifies the various data items, their characteristics,
and relationships, constraints, storage details, etc. and is specified during

the database design?
a. Database model.
b. Catalog.
c. Database state.

d. None of the above.

1.7. Which statement regarding the database state is correct?

a. The database state represents the data in the database when the

database is first created.
b. The database state changes when data are updated or removed.

c. The database state specifies the various data items, their
characteristics, and relationships, and is specified during the database

design.

d. The database state is stored in the catalog.

1.8. Complete this sentence: In the three-layer architecture, between the

external layer and the conceptual/logical layer, there is ...
a. physical data independence.
b. logical data independence.
c. no independence, they are basically the same thing.

d. the internal layer.

1.9. Which statement is correct?

Statement A: The middle layer of the three-layer architecture consists
of both the conceptual data model and the logical data model. The logical
data model is physically implemented in the internal layer.

Statement B: The top level of the three-layer architecture is the
external layer. Views for one or more applications always offer a window

on the complete logical model.
a. Only sentence A is right.
b. Only sentence B is right.
c. Sentences A and B are right.

d. Neither A nor B is right.

1.10. Which statement is correct?

Statement A: DDL is the language used to define the logical data
model, but no other data models.

Statement B: SQL is a DML language to retrieve, insert, delete, and

modify data. It is stored in the catalog.
a. Only A.
b. Only B.
c. A and B.

d. Neither A nor B.

1.11. Which statement is correct?
Statement A: Physical data independence implies that neither the

applications nor the views or logical data model must be changed when

changes are made to the data storage specifications in the internal data
model.

Statement B: Logical data independence implies that software
applications are minimally affected by changes in the conceptual or

logical data model.
a. Only A.
b. Only B.
c. A and B.

d. Neither A nor B.

1.12. Consider this rule: “An employee of a department can never earn

more than the manager of the department.” This is an example of a:
a. syntactical integrity rule.

b. semantical integrity rule.

Problems and Exercises

1.1E Discuss examples of database applications.

1.2E What are the key differences between the file-based and database

approaches to data management?

1.3E Discuss the elements of a database system.

1.4E What are the advantages of database systems and database management?

1 https://blogs.gartner.com/merv-adrian/2016/04/12/dbms-2015-numbers-

paint-a-picture-of-slow-but-steady-change.

2 We consider the terms model and schema as synonyms.

3 Some textbooks refer to the three-schema architecture instead of the three-
layer architecture. We prefer the latter since we are working with four data
models (conceptual data model, logical data model, internal data model, and
external data model) spread across three layers. This should not be confused
with a three-tier architecture, which we discuss in Chapter 15.

4 The conceptual data model is typically not stored in the catalog.

https://blogs.gartner.com/merv-adrian/2016/04/12/dbms-2015-numbers-paint-a-picture-of-slow-but-steady-change

2

Architecture and Categorization of
DBMSs

Chapter Objectives

In this chapter, you will learn to:
¢ identify the key components of a DBMS architecture;

e understand how these components work together for data storage,

processing, and management;

e categorize DBMSs based upon data model, degree of simultaneous

access, architecture, and usage.

Opening Scenario

To kick-start its business, Sober purchased the customer database of
Mellow Cab, a firm that recently stepped out of the taxi business.
Unfortunately, the database has been handed over in a legacy CODASYL

format that Sober is not familiar with. Sober also needs a new database

to store transaction details whenever passengers book either a ride-
hailing or ride-sharing service. Other data (e.g., multimedia) are an
option they are interested in. Sober wants to continuously store the
location of its taxis and periodically review hot-spot pick-up and drop-
off locations. Sober is looking at ways to manage all these data sources

in the optimal way.

As discussed in Chapter 1, a DBMS supports the creation, usage, and
maintenance of a database. It consists of several modules, each with their
specific functionality, that work together according to a predefined architecture.
In this chapter, we zoom into this internal architecture and provide a
categorization of DBMSs along various dimensions. The overview of the chapter
is straightforward. We start by discussing the components that together make up
a DBMS. Next, we provide a classification of DBMSs in terms of data model,

degree of simultaneous access, architecture, and usage.

2.1 Architecture of a DBMS

As discussed before, a DBMS needs to support various types of data
management-related activities, such as querying and storage. It also must
provide interfaces to its environment. To achieve both of these goals, a DBMS is
composed of various interacting modules that together make up the database

management system architecture. Figure 2.1 shows an overview of the key

components of a DBMS architecture. We review each component in more detail

in what follows.

<::> | Connection Manager | | Security Manager ‘ DBM
| DDL compiler | [Database utilities ‘
Interactive query <::> 2 ‘ DML compiler ‘ | Query parser |
o
5 | o | | e | | praces
% Query rewriter Query optimizer processor
2
(7}
=
Transaction Manager | Buffer Manager
Storage
Manager
Lock Manager Recovery Manager
Database tools <:>

‘t

ata indices catalog Database

Figure 2.1 Architecture of a database management system (DBMS).

Figure 2.1 is by no means exhaustive. Depending upon the vendor and

implementation, some components may be left out and others added. On the left,

you can see various ways of interacting with the DBMS. DDL statements create

data definitions that are stored in the catalog. Interactive queries are typically

executed from a front-end tool, such as a command-line interface, simple
graphical user interface, or forms-based interface. Applications interact with the

DBMS using embedded DML statements. Finally, the database administrator

(DBA) can use various database tools to maintain or fine-tune the DBMS. To
facilitate all these usages, the DBMS provides various interfaces that invoke its
components. The most important components are: the connection manager; the
security manager; the DDL compiler; various database utilities; the query
processor; and the storage manager. The query processor consists of a DML
compiler, query parser, query rewriter, query optimizer, and query executor. The
storage manager includes a transaction manager, buffer manager, lock manager,
and recovery manager. All these components interact in various ways depending
upon which database task is executed. The database itself contains the raw data
or database state and the catalog with the database model and other metadata,
including the indexes that are part of the internal data model providing quick
access to the data. In the rest of this section we discuss each component more

extensively.

2.1.1 Connection and Security Manager

The connection manager provides facilities to set-up a database connection. It

can be set-up locally or through a network, the latter being more common. It
verifies the logon credentials, such as user name and password, and returns a
connection handle. A database connection can run either as a single process or as
a thread within a process. Remember, a thread represents an execution path
within a process and represents the smallest unit of processor scheduling.
Multiple threads can run within a process and share common resources such as
memory. The security manager verifies whether a user has the right privileges to
execute the database actions required. For example, some users can have read
access while others have write access to certain parts of the data. The security

manager retrieves these privileges from the catalog.

2.1.2 DDL Compiler

The DDL. compiler compiles the data definitions specified in DDL. Ideally, the
DBMS should provide three DDLs: one for the internal data model; one for the
logical data model; and one for the external data model. Most implementations,
however, have a single DDL with three different sets of instructions. This is the
case for most relational databases that use SQL as their DDL. The DDL compiler
first parses the DDL definitions and checks their syntactical correctness. It then
translates the data definitions to an internal format and generates errors if
required. Upon successful compilation, it registers the data definitions in the

catalog, where they can be used by all the other components of the DBMS.

Connections

Chapter 7 discusses how SQL can be used to define a logical and
external data model in a relational environment. Chapter 13 reviews how

SQL can be used to define an internal data model.

2.1.3 Query Processor

The query processor is one of the most important parts of a DBMS. It assists in
the execution of database queries such as retrieval of data, insertion of data,
update of data, and removal of data from the database. Although most DBMS
vendors have their own proprietary query processor, it usually includes a DML

compiler, query parser, query rewriter, query optimizer, and query executor.

2.1.3.1 DML Compiler

The DML compiler compiles the data manipulation statements specified in

DML. Before we explain its functioning, we need to elaborate on the different

types of DML. As discussed in Chapter 1, DML stands for data manipulation

language. It provides a set of constructs to select, insert, update, and delete data.
The first data manipulation languages developed were predominantly

procedural DML. These DML statements explicitly specified how to navigate

in the database to locate and modify the data. They usually started by positioning
on one specific record or data instance and navigating to other records using
memory pointers. Procedural DML is also called record-at-a-time DML.
DBMSs with procedural DML had no query processor. In other words, the
application developer had to explicitly define the query optimization and
execution him/herself. To write efficient queries, the developer had to know all
the details of the DBMS. This is not a preferred implementation since it
complicates the efficiency, transparency, and maintenance of the database
applications. Unfortunately, many firms are still struggling with procedural DML
applications due to the legacy DBMSs still in use.

Declarative DML is a more efficient implementation. Here, the DML

statements specify which data should be retrieved or what changes should be

made, rather than how this should be done. The DBMS then autonomously
determines the physical execution in terms of access path and navigational
strategy. In other words, the DBMS hides the implementation details from the
application developer, which facilitates the development of database
applications. Declarative DML is usually set-at-a-time DML, whereby sets of
records or data instances can be retrieved at once and provided to the
application. Only the selection criteria are provided to the DBMS; depending on
the actual database state, zero, one, or many records will qualify. A popular
example of declarative DML is SQL, which we discuss extensively in Chapter 7.

Many applications work with data stored in a database. To access a database
and work with it, DML statements will be directly embedded in the host
language. The host language is the general-purpose programming language that
contains the (non-database related) application logic. Obviously, both host
language and DML should be able to successfully interact and exchange data.

As an example, think about a Java application that needs to retrieve
employee data from a database. It can do this by using SQL, which is one of the
most popular querying languages used in the industry nowadays. In the

following Java program, the SQL. DML statements are highlighted in bold face.

import java.sql.*;

public class JDBCExamplel {

public static void main(String[] args) {

try {
System.out.println("Loading JDBC driver...");
Class.forName("com.mysql.jdbc.Driver");
System.out.println("JDBC driver loaded!");

} catch (ClassNotFoundException e) {
throw new RuntimeException(e);

}
String url = "jdbc:mysql://localhost:3306/employeeschema";

String username = "root";
String password = "mypassword123";
String query = "select E.Name, D.DName " +
"from employee E, department D " +
"where E.DNR = D.DNR;";
Connection connection = null;
Statement stmt = null;
try {
System.out.println("Connecting to database");
connection = DriverManager.getConnection(url, username,
password);
System.out.printin("MySQL Database connected!");
stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(query);
while (rs.next()) {
System.out.print(rs.getString(1));
System.out.print("");
System.out.println(rs.getString(2));
}
stmt.close();
} catch (SQLException e) {
System.out.println(e.toString());
} finally {
System.out.println("Closing the connection.");
if (connection != null) {
try {
connection.close();
} catch (SQLException ignore) {}}}}

Without going into any language or syntax specifics, this Java application
first initiates a database connection with a given username and password. Next,

the application executes an SQL query that asks for the employee names together

with their department names. It then iterates through the results, whereby at each
step the employee name and corresponding department name are displayed on
the screen.

Embedding DML statements into a host language is not as straightforward
as it may at first seem. The data structures of the DBMS and the DML may
differ from the data structures of the host language. In our example, we used
Java, which is an object-oriented host language, and combined it with MySQL,
which is a relational DBMS using SQL DML. The mapping between object-
oriented and relational concepts is often called the impedance mismatch
problem. It can be solved in various ways. First, we can choose a host language
and DBMS with comparable data structures. In other words, we combine Java
with an object-oriented DBMS, which allows transparent retrieval and storage of
data. As an alternative, we could also opt to use middleware to map the data
structures from the DBMS to the host language and vice versa. Both options
have their pros and cons and are discussed more extensively in Chapter 8.

Figure 2.2 shows the impedance mismatch problem. On the left, we have a
Java class Employee with characteristics such as EmployeelD, Name, Gender,
and DNR (which is the department number). It also has “getter” and “setter”
methods to implement the object-oriented principle of information hiding. To the
right, we have the corresponding SQL DDL that essentially stores information in

a tabular format.

Java
public class Employee {
private int EmployeelD;
private String Name;

SQL
CREATE TAELE Employee |
"EmployeeID’ INT NOT NULL,
public int getEmployeeID() { <::> ‘Name’ VARCHAR(45) NULL,
return EmployeeID; "Gender’ VARCHAR (45) NULL,
} "DNR’ INT NULL)

private String Gender;

private int DNR;

public veoid setEmployeeID(int id)
oveelD
this.EmployeelID = id;

1 100 Bart Baesens Male

public String getName() { 110 Wiliried Lemahieu Male
return Name;
}

public void setName(String name)} {

=2 &l -

120 Seppe vanden Broucke | Male

this.Name = name;
1
s}

Figure 2.2 The impedance mismatch problem.

The DML compiler starts by extracting the DML statements from the host
language. It then closely collaborates with the query parser, query rewriter, query
optimizer, and query executor for executing the DML statements. Errors are

generated and reported if necessary.

Connections

Chapter 5 introduces hierarchical and CODASYL data models which
both assume procedural, record-at-a-time DML. Chapter 7 reviews SQL,

which is declarative, set-at-time DML.

2.1.3.2 Query Parser and Query Rewriter

The query parser parses the query into an internal representation format that can
then be further evaluated by the system. It checks the query for syntactical and
semantical correctness. To do so, it uses the catalog to verify whether the data
concepts referred to are properly defined there, and to see whether the integrity

rules have been respected. Again, errors are generated and reported if necessary.

The query rewriter optimizes the query, independently of the current database

state. It simplifies it using a set of predefined rules and heuristics that are
DBMS-specific. In a relational database management system, nested queries
might be reformulated or flattened to join queries. We discuss both types of

queries more extensively in Chapter 7.

2.1.3.3 Query Optimizer

The query optimizer is a very important component of the query processor. It
optimizes the query based upon the current database state. It can make use of
predefined indexes that are part of the internal data model and provide quick
access to the data. The query optimizer comes up with various query execution
plans and evaluates their cost (in terms of resources required) by aggregating the
estimated number of input/output operations, the plan’s estimated CPU
processing cost and the plan’s estimated execution time into the total estimated
response time. A good execution plan should have a low response time. It is
important to note that the response time is estimated and not exact. The estimates
are made using catalog information combined with statistical inference
procedures. Empirical distributions of the data are calculated and summarized by
their means, standard deviations, etc. Coming up with accurate estimates is
crucial in a good query optimizer. Finding an optimal execution path is
essentially a classical search or optimization problem whereby techniques such
as dynamic programming can be used. As already mentioned, the
implementation of the query optimizer depends upon the type of DBMS and the

vendor, and is a key competitive asset.

2.1.3.4 Query Executor

The result of the query optimization procedure is a final execution plan which is

then handed over to the query executor. The query executor takes care of the

actual execution by calling on the storage manager to retrieve the data requested.

2.1.4 Storage Manager

The storage manager governs physical file access and as such supervises the

correct and efficient storage of data. It consists of a transaction manager, buffer

manager, lock manager, and recovery manager. Let’s zoom in for more detail.

2.1.4.1 Transaction Manager

The transaction manager supervises the execution of database transactions.
Remember, a database transaction is a sequence of read/write operations
considered to be an atomic unit. The transaction manager creates a schedule with
interleaved read/write operations to improve overall efficiency and execution
performance. It also guarantees the atomicity, consistency, isolation and
durability or ACID properties in a multi-user environment (see Chapter 1). The
transaction manager will “commit” a transaction upon successful execution, so
the effects can be made permanent, and “rollback” a transaction upon

unsuccessful execution, so any inconsistent or bad data can be avoided.

2.1.4.2 Buffer Manager

The buffer manager is responsible for managing the buffer memory of the

DBMS. This is part of the internal memory, which the DBMS checks first when
data need to be retrieved. Retrieving data from the buffer is significantly faster
than retrieving them from external disk-based storage. The buffer manager is
responsible for intelligently caching the data in the buffer for speedy access. It
needs to continuously monitor the buffer and decide which content should be
removed and which should be added. If data in the buffer have been updated, it
must also synchronize the corresponding physical file(s) on disk to make sure

updates are made persistent and are not lost. A simple buffering strategy is based

upon data locality that states that data recently retrieved are likely to be retrieved
again. Another strategy uses the 20/80 law, which implies that 80% of the
transactions read or write only 20% of the data. When the buffer is full, the
buffer manager needs to adopt a smart replacement strategy to decide which
content should be removed. Furthermore, it must be able to serve multiple
transactions simultaneously. Hence, it closely interacts with the lock manager to

provide concurrency control support.

2.1.4.3 Lock Manager

The lock manager is an essential component for providing concurrency control,
which ensures data integrity at all times. Before a transaction can read or write a
database object, it must acquire a lock which specifies what types of data
operations the transaction can carry out. Two common types of locks are read
and write locks. A read lock allows a transaction to read a database object,
whereas a write lock allows a transaction to update it. To enforce transaction
atomicity and consistency, a locked database object may prevent other
transactions from using it, hence avoiding conflicts between transactions that
involve the same data. The lock manager is responsible for assigning, releasing,
and recording locks in the catalog. It makes use of a locking protocol, which

describes the locking rules, and a lock table with the lock information.

2.1.4.4 Recovery Manager

The recovery manager supervises the correct execution of database

transactions. It keeps track of all database operations in a logfile, and will be

called upon to undo actions of aborted transactions or during crash recovery.

Connections

Chapter 14 elaborates further on the activities of the transaction, buffer,

lock, and recovery managers.

2.1.5 DBMS Utilities

Besides the components we discussed before, a DBMS also comes with various
utilities. A loading utility supports the loading of the database with information
from a variety of sources, such as another DBMS, text files, Excel files, etc. A
reorganization utility automatically reorganizes the data for improved

performance. Performance monitoring utilities report various key performance

indicators (KPIs), such as storage space consumed, query response times, and

transaction throughput rates to monitor the performance of a DBMS. User

management utilities support the creation of user groups or accounts, and the

assignment of privileges to them. Finally, a backup and recovery utility is

typically included.

2.1.6 DBMS Interfaces

A DBMS needs to interact with various parties, such as a database designer, a
database administrator, an application, or even an end-user. To facilitate this

communication, it provides various user interfaces such as a web-based

interface, a stand-alone query language interface, a command-line interface, a
forms-based interface, a graphical user interface, a natural language interface,
an application programming interface (API), an admin interface, and a network
interface.

Figure 2.3 shows an example of the MySQL Workbench interface. You can
see the navigator window with the management, instance, performance, and
schemas section. The query window provides an editor to write SQL queries. In
our case, we wrote a simple SQL query to ask for all information from the
product table. The results window displays the results of the execution of the

query. The log window provides a log with actions and possible errors.

B E LTFTEE ' Lol =

. Navigator” ERIETZ I ISaN] oo SIS RN jetieail
* window

Results
window

e Bon P
B 1 2015 e dmmpmasa LONTO 1000 i as S000umc F000M

Log window

Figure 2.3 MySQL interface.

Retention Questions

e What are the key components of a DBMS?
e What is the difference between procedural and declarative DML?

e Give some examples of DBMS utilities and interfaces.

2.2 Categorization of DBMSs

Given the proliferation of DBMSs available, in this section we introduce a
categorization according to various criteria. We discuss categorization of
DBMSs based upon data model, simultaneous access, architecture, and usage.
Note that our categorization is not to be interpreted in an exhaustive or exclusive
way. It can thus be that a DBMS falls into multiple categories simultaneously.

Other categories may also be considered.

2.2.1 Categorization Based on Data Model

Throughout the past decades, various types of data models have been introduced
for building conceptual and logical data models. We briefly summarize them

here and provide more detail in later chapters.

2.2.1.1 Hierarchical DBMSs

Hierarchical DBMSs were one of the first DBMS types developed, and adopt a

tree-like data model. The DML is procedural and record-oriented. No query
processor is included. The definitions of the logical and internal data model are
intertwined, which is not desirable from a usability, efficiency, or maintenance
perspective. Popular examples are IMS from IBM and the Registry in Microsoft

Windows.

2.2.1.2 Network DBMSs

Network DBMSs use a network data model, which is more flexible than a tree-
like data model. One of the most popular types are CODASYL DBMSs, which
implement the CODASYL data model. Again, the DML is procedural and

record-oriented, and no query processor is available. Consequently, the

definitions of the logical and internal data models are also intertwined. Popular
examples are CA-IDMS from Computer Associates, UDS from Siemens
Nixdorf, DMS 1100 from Unisys, and Image from HP. Both hierarchical and
CODASYL DBMSs are legacy database software.

2.2.1.3 Relational DBMSs

Relational DBMSs (RDBMSs) use the relational data model and are the most
popular in the industry. They typically use SQL for both DDL and DML

operations. SQL is declarative and set oriented. A query processor is provided to
optimize and execute the database queries. Data independence is available
thanks to a strict separation between the logical and internal data model. This
makes it very attractive to develop powerful database applications. Popular
examples are MySQL, which is open-source and maintained by Oracle, the
Oracle DBMS also provided by Oracle, DB2 from IBM, and Microsoft SQL

Server from Microsoft.

2.2.1.4 Object-Oriented DBMSs

Object-oriented DBMSs (OODBMSs) are based upon the object-oriented data

model. An object encapsulates both data (also called variables) and functionality
(also called methods). When combining an OODBMS with an object-oriented
programming language (e.g., Java, Python), there is no impedance mismatch
since the objects can be transparently stored and retrieved from the database.
Examples of OODBMSs are db4o, which is an open-source OODBMS
maintained by Versant, Caché from Intersystems, and GemStone/S from
GemTalk Systems. OODBMSs are not very popular in the industry, beyond

some niche markets, due to their complexity.

2.2.1.5 Object-Relational/Extended Relational DBMSs

An object-relational DBMS (ORDBMS), also commonly called an extended
relational DBMS (ERDBMS), uses a relational model extended with object-

oriented concepts, such as user-defined types, user-defined functions,
collections, inheritance, and behavior. Hence, an ORDBMS/ERDBMS shares
characteristics with both an RDBMS and an OODBMS. As with pure relational

DBMSs, the DML is SQL, which is declarative and set oriented. A query
processor is available for query optimization. Most relational DBMSs such as

Oracle, DB2, and Microsoft SQL Server incorporate object-relational extensions.

2.2.1.6 XML DBMSs

XML DBMSs use the XML data model to store data. XML is a data

representation standard. Here you can see an example of an XML fragment.

<employee>
<firstname>Bart</firstname>
<lastname>Baesens</lastname>
<address>
<street>Naamsestraat</street>
<number>69</number>
<zipcode>3000</zipcode>
<city>Leuven</city>
<country>Belgium</country>
</address>
<gender>Male</gender>
</employee>

You can see we have various tags, such as employee, firstname, lastname,
etc. The address tag is further subdivided into street, number, zip code, city, and
country tags. It is important that every <tag> is properly closed with a </tag>.
An XML specification essentially represents data in a hierarchical way. Figure

2.4 shows the tree corresponding to our XML specification.

employee

first last address | | gender |
name name
I street | | number | | Zipcode | | city| | country |

Figure 2.4 Tree-based XML representation.

XML is a very popular standard to exchange data between various
applications. Native XML DBMSs (e.g., BaseX, eXist) store XML data by using
the logical, intrinsic structure of the XML document. More specifically, they
map the hierarchical or tree structure of an XML document to a physical storage
structure. XML-enabled DBMSs (e.g., Oracle, IBM DB?2) are existing RDBMSs
or ORDBMSs that are extended with facilities to store XML data and structured
data in an integrated and transparent way. Both types of DBMSs also provide
facilities to query XML data.

2.2.1.7 NoSQL DBMSs

Finally, the last few years brought us a realm of new database technologies
targeted at storing big and unstructured data. These are often referred to using

the umbrella term not-only SQL (NoSQL) databases with popular examples

such as Apache Hadoop or Neo4j. As we explain in Chapter 11, NoSQL
databases can be classified according to data model into key—value stores, tuple,
or document stores, column-oriented databases, and graph databases. However,
even within such subcategories, the heterogeneity of the members is quite high.
The common denominator of all NoSQL databases is that they attempt to make
up for some shortcomings of relational DBMSs in terms of scalability and the

ability to cope with irregular or highly volatile data structures.

Connections

Chapter 5 reviews both hierarchical and network DBMSs. Chapters 6
and 7 discuss relational DBMSs. Object-oriented DBMSs are covered in
Chapter 8, whereas Chapter 9 reviews object-relational DBMSs. XML
DBMSs are introduced in Chapter 10. Chapter 11 discusses NoSQL
DBMSs.

2.2.2 Categorization Based on Degree of Simultaneous Access

DBMSs can also be categorized based upon the degree of simultaneous access.

In a single-user system, only one user at a time is allowed to work with the

DBMS. This is not desirable in a networked environment. Multi-user systems
allow multiple users to simultaneously interact with the database in a distributed

environment, as illustrated in Figure 2.5 where three clients are being served by

three server instances or threads.

Incoming
connections

\ Dispatcher

Server
instance 1

L instance 2
instance 3

Figure 2.5 Simultaneous access to a DBMS.

To do so successfully, the DBMS should support multi-threading and
provide facilities for concurrency control. A dispatcher component then typically

distributes the incoming database requests among server instances or threads.

2.2.3 Categorization Based on Architecture

The architectural development of DBMSs is similar to that of computer systems
in general. In a centralized DBMS architecture, the data are maintained on a
centralized host, e.g., a mainframe system. All queries will then have to be
processed by this single host.

In a client—server DBMS architecture, active clients request services from

passive servers. A fat client variant stores more processing functionality on the

client, whereas a fat server variant puts more on the server.

The n-tier DBMS architecture is a straightforward extension of the
client-server architecture. A popular example is a client with GUI (graphical
user interface) functionality, an application server with the various applications,
a database server with the DBMS and database, and a web server for the web-
based access. The communication between these various servers is then handled
by middleware.

In a cloud DBMS architecture, the DBMS and database are hosted by a

third-party cloud provider. The data can then be distributed across multiple

computers in a network. Although this is sometimes a cost-effective solution,
depending on the context it can perform less efficiently in terms of processing
queries or other database transactions. Popular examples are the Apache
Cassandra project and Google’s BigTable.

A federated DBMS is a DBMS that provides a uniform interface to

multiple underlying data sources such as other DBMSs, file systems, document
management systems, etc. By doing so, it hides the underlying storage details (in
particular the distribution and possible heterogeneity of data formats and data

management functionality) to facilitate data access.

An in-memory DBMS stores all data in internal memory instead of slower

external storage such as disk-based storage. It is often used for real-time
purposes, such as in Telco or defense applications. Periodic snapshots to external
storage can be taken to support data persistence. A popular example of an in-

memory DBMS is SAP’s Hana product.

2.2.4 Categorization Based on Usage

DBMSs can also be categorized based on usage. In what follows, we discuss
operational versus strategic usage, Big Data and analytics, multimedia DBMSs,
spatial DBMSs, sensor DBMSs, mobile DBMSs, and open-source DBMSs.
On-line transaction processing (OLTP) DBMSs focus on managing
operational or transactional data. Think of a point-of-sale (POS) application in a
supermarket, where data about each purchase transaction such as customer
information, products purchased, prices paid, location of the purchase, and
timing of the purchase need to be stored. In these settings, the database server
must be able to process lots of simple transactions per unit of time. Also, the
transactions are initiated in real-time, simultaneously, by many users and
applications, hence the DBMS must have good support for processing a high

volume of short, simple queries. On-line analytical processing (OLAP)

DBMSs focus on using operational data for tactical or strategical decision-
making. Here, a limited number of users formulates complex queries to analyze
huge amounts of data. The DBMS should support the efficient processing of
these complex queries, which often come in smaller volumes.

Big data and analytics are all around these days (see Chapters 19 and 20).
IBM projects that we generate 2.5 quintillion bytes of data every day. This is a
lot compared to traditional database applications. Hence, new database
technologies have been introduced to efficiently cope with Big Data. NoSQL is

one of these newer technologies. NoSQL. databases abandon the well-known

and popular relational database schema in favor of a more flexible, or even
schema-less, database structure. This is especially handy to store unstructured
information such as emails, text documents, Twitter tweets, Facebook posts, etc.

One of their key advantages is that they also scale more easily in terms of

storage capacity. We already mentioned four popular types of NoSQL database
technologies, classified according to data model: key—value-based databases
such as CouchDB; document-based databases such as MongoDB; column-based
databases such as Cassandra; and graph-based databases such as Neo4j. We
discuss these in more detail in Chapter 11.

Multimedia DBMSs allow for the storage of multimedia data such as text,
images, audio, video, 3D games, CAD designs, etc. They should also provide
content-based query facilities such as “find images of Bart” or “find images of
people who look like Bart”. Streaming facilities should also be included to
stream multimedia output. These are very resource-intensive transactions that
may require specific hardware support. Note that multimedia data are usually
stored as a binary large object (BLOB), supported by most modern-day
commercial DBMSs.

A spatial DBMS supports the storage and querying of spatial data. This

could include both 2D objects (e.g., points, lines, and polygons) and 3D objects.
Spatial operations such as calculating distances or relationships between objects
(e.g., whether one object is contained within another, intersects with another, is
detached from another, etc.) are provided. Spatial databases are a key building
block of geographical information systems (GIS). Most commercial DBMS
vendors offer facilities for spatial data management.

A sensor DBMS manages sensor data such as biometric data obtained from

wearables, or telematics data which continuously record driving behavior.
Ideally, it has facilities to formulate application-specific queries such as
spatial-temporal queries that ask for the shortest path between two locations
given the current state of the traffic. Most modern-day DBMSs provide support
for storing sensor data.

Mobile DBMSs are the DBMSs running on smartphones, tablets, and other

mobile devices. They should always be online, have a small footprint, and be

able to deal with limited processing power, storage, and battery life. Depending
upon the context, they could connect and synchronize to a central DBMS.
Ideally, they should be capable of handling queries and support self-management
without the intervention of a DBA. Some popular examples are: Oracle Lite,
Sybase SQL Anywhere, Microsoft SQL Server Compact, SQLite, and IBM DB2
Everyplace.

Finally, open-source DBMSs are DBMSs for which the code is publicly

available and can be extended by anyone. This has the advantage of having a
large development community working on the product. They are very popular
for small business settings and in developing countries where budgets are
limited. Most of the open-source DBMSs can be obtained from

www.sourceforge.net, which is a well-known website for open-source software.

Some examples are: MySQL, which is a relational DBMS maintained by Oracle;
PostgresSQL, which is also relational and maintained by the PostgresSQL
Global Development Group; Twig, which is an object-oriented DBMS
maintained by Google; and Perst, which is also an OODBMS maintained by
McObject.

Drill Down

Spotify streams more than 24 million songs to more than 40 million
users worldwide. It needed a database solution which ensures data
availability at all times, even in the event of crashes or bugs. It turned to
Apache Cassandra as the database technology of choice since its cloud-

based architecture ensures high availability.

Drill Down

http://www.sourceforge.net

Gartner! estimates that by 2018 more than 70% of new applications will
be developed using open-source DBMSs. This clearly illustrates that
open-source solutions have significantly matured into viable and robust

alternatives to their commercial counterparts.

Retention Questions

e How can DBMSs be categorized based on data model?

e How can DBMSs be categorized based on usage?

Summary

In this chapter we first zoomed in on the architecture of a DBMS. We discussed
the components that together comprise a DBMS. We illustrated how they
collaborate for data storage, processing, and management.

Next, we provided a categorization of DBMSs in terms of data model,
degree of simultaneous access, architecture, and usage. This categorization is by
no means exhaustive or exclusive since a DBMS can support various
functionalities simultaneously. It is just handy to set the stage for the later

chapters that provide more detail.
Scenario Conclusion

The CODASYL customer database Sober received from Mellow Cab is
an example of a network database. To retrieve the customer information,
Sober will have to work with record-at-a-time and procedural DML,
which is not efficient. Another option is that Sober could load the data
into an RDBMS where it could access it in a more friendly way using
SQL, which is set-at-time and declarative DML. If it would also like to
store images of its taxis and other multimedia data, it could even
contemplate using an ORDBMS instead. Storing the location of Sober’s
taxis is an example of a Big Data application where NoSQL databases
can come in handy. Alternatively, a DBMS capable of storing sensor data
can be considered as well. To continuously monitor the geographical
positioning of its fleet, Sober might consider the development of a GIS

built on top of a spatial database. The transaction information about ride-

hailing and ride-sharing taxis should be stored using an OLTP database,
whereas the analysis of hot-spot pick-up and drop-off locations could be

implemented using OLAP facilities.

Key Terms List

backup and recovery utility

buffer manager

centralized DBMS architecture
client—server DBMS architecture

cloud DBMS architecture

connection manager

database management system architecture
DDL compiler

DDL statements

declarative DML

DML compiler

embedded DML statements

extended relational DBMS (ERDBMS)
federated DBMS

hierarchical DBMSs

in-memory DBMS

interactive queries

loading utility

lock manager

mobile DBMSs

multimedia DBMSs

multi-user systems

network DBMSs

Not-only SQL (NoSQL)

n-tier DBMS architecture

object-oriented DBMS (OODBMYS)
object-relational DBMS (ORDBMS)

on-line analytical processing (OLAP) DBMSs
on-line transaction processing (OLTP) DBMSs
open-source DBMSs

performance monitoring utilities

procedural DML

query executor

query optimizer

query parser

query processor

query rewriter

read lock
record-at-a-time DML
recovery manager
relational DBMSs (RDBMS)
reorganization utility
sensor DBMS
set-at-a-time DML
simultaneous access
single-user system
spatial DBMS

storage manager
transaction manager

user interface

user management utilities
write lock

XML DBMS

Review Questions

2.1. Which of these is part of the query processor in the architecture of a
DBMS?

a. DDL compiler.

b. DML compiler.
c. Transaction manager.

d. Security manager.

2.2, Which of these is not part of the storage manager in the DBMS

architecture?
a. Connection manager.
b. Transaction manager.
c. Buffer manager.

d. Recovery manager.

2.3. Which statement(s) is/are correct?
Statement A: The DDL compiler compiles data definitions specified in
DDL. It is possible that there is only one DDL with three instruction sets.
Statement B: The first step of the DDL compiler is to translate the
DDL definitions.

a. Only A.
b. Only B.
c. A and B.

d. Neither A nor B.

2.4. Which statement(s) is/are correct?
Statement A: There is no query processor available in procedural
DML.

Statement B: With procedural DML, the DBMS determines the access
path and navigational strategy to locate and modify the data specified in

the query.
a. Only A.
b. Only B.
c. A and B.

d. Neither A nor B.

2.5. Evaluate the following statements:

1. Record-at-a-time DML means that the query gets recorded from the

user at the time the user inputs the query and then gets processed.

2. Record-at-a-time DML means that navigating the database starts
with positioning on one specific record and going from there onwards

to other records.

3. Set-at-a-time DML means that the query gets set beforehand and
then gets processed by the DBMS.

4. Set-at-a-time DML means that many records can be retrieved in one
DML statement.

a. 1 and 3 are right.
b. 2 and 3 are right.
c. 1 and 4 are right.

d. 2 and 4 are right.

2.6. Which statement(s) is/are correct?

Statement A: The impedance mismatch problem can be solved by
using middleware to map data structures between the DBMS and the
DDL statements.

Statement B: An object-oriented host language such as Java combined
with a document-oriented DBMS such as MongoDB does not require

mapping objects to documents and vice versa.
a. Only A.
b. Only B.
c. A and B.

d. Neither A nor B.

2.7. Which statement(s) is/are correct?

Statement A: The query parser optimizes and simplifies a query and
then passes it on to the query executor.

Statement B: In the DBMS architecture, the storage manager takes

care of concurrency control.
a. Only A.
b. Only B.
c.Aand B

d. Neither A nor B.

2.8. Fill in the gaps in the following sentences:
When, during crash recovery, aborted transactions need to be undone,

that is a task of the ...A...

The part of the storage manager that guarantees the ACID properties is
the ...B...

a. A: lock manager, B: recovery manager.
b. A: lock manager, B: lock manager.
c. A: recovery manager, B: buffer manager.

d. A: recovery manager, B: transaction manager.

2.9. CODASYL is an example of ...
a. a hierarchical DBMS.
b. a network DBMS.
c. a relational DBMS.

d. an object-oriented DBMS.

2.10. Which of the following DBMS types is not a classification based

on a data model?
a. Hierarchical DBMS.
b. Network DBMS.
c. Cloud DBMS.

d. Object-relational DBMS.

2.11. Which statement(s) is/are correct?
Statement A: In a hierarchical DBMS, DML is declarative and set

oriented with a query processor.

Statement B: In a relational DBMS, there is data independence

between the conceptual and internal data model.
a. Only A.
b. Only B.
c. A and B.

d. Neither A nor B

2.12. If you want to use a DBMS architecture that can access multiple
data sources itself and provides a uniform interface hiding the low-level

details, the most appropriate DBMS would be a(n)...
a. n-tier DBMS.
b. cloud DBMS.
c. client—server DBMS.

d. federated DBMS.

2.13. Which statement(s) is/are correct?

Statement A: An OLTP system is able to cope with real-time,
simultaneous transactions that the database server is able to process in a
large volume.

Statement B: An OLAP system uses large amounts of operational data
to run complex queries on and provide insights for tactical and strategic

decision-making.
a. Only A.

b. Only B

c. A and B.

d. Neither A nor B.

2.14. Which statement(s) is/are correct?

Statement A: Native XML DBMSs map the hierarchical structure of
an XML document to a physical storage structure, because they are able
to use the intrinsic structure of an XML document.

Statement B: XML-enabled DBMSs are able to store XML data in an
integrated and transparent way, because they are able to use the intrinsic

structure of an XML document.
a. Only A.
b. Only B.
c. A and B.

d. Neither A nor B.

Problems and Exercises

2.1E What are the key components of a DBMS architecture and how do they

collaborate?

2.2E What is the difference between procedural and declarative DML?

2.3E Why is it important that a DBMS has a good query optimizer?

2.4E Give some examples of DBMS utilities and interfaces.

2.5E How can DBMSs be categorized in terms of the following?
e data model
e degree of simultaneous access
e architecture
e usage

1 www.forbes.com/sites/benkerschberg/2016/03/08/how-postgres-and-open-

source-are-disrupting-the-market-for-database-management-
systems/#1d9cca320a3d.

https://www.forbes.com/sites/benkerschberg/2016/03/08/how-postgres-and-open-source-are-disrupting-the-market-for-database-management-systems/#1d9cca320a3d

3

Conceptual Data Modeling Using the
(E)ER Model and UML Class
Diagram
@

Chapter Objectives

In this chapter, you will learn to:

¢ understand the different phases of database design: conceptual design,

logical design, and physical design;

¢ build a conceptual data model using the ER model and understand the

limitations thereof;

¢ build a conceptual data model using the EER model and understand

the limitations thereof;

e build a conceptual data model using the UML class diagram and

understand the limitations thereof.

Opening Scenario

Sober has decided to invest in a new database and begin a database
design process. As a first step, it wants to formalize the data
requirements in a conceptual data model. Sober asks you to build both an
EER and a UML data model for its business setting. It also wants you to
extensively comment on both models and properly indicate their

shortcomings.

In this chapter we start by zooming out and reviewing the database design
process. We elaborate on conceptual, logical, and physical database design. We
continue the chapter with conceptual design, which aims at elucidating the data
requirements of a business process in a formal way. We discuss three types of
conceptual data models: the ER model; the EER model; and the UML class
diagram. Each model is first defined in terms of its fundamental building blocks.
Various examples are included for clarification. We also discuss the limitations
of the three conceptual data models and contrast them in terms of their
expressive power and modeling semantics. Subsequent chapters continue from
the conceptual data models of this chapter and map them to logical and internal

data models.

3.1 Phases of Database Design

Designing a database is a multi-step process, as illustrated in Figure 3.1. It starts

from a business process. As an example, think about a B2B procurement

application, invoice handling process, logistics process, or salary administration.

A first step is requirement collection and analysis, where the aim is to

carefully understand the different steps and data needs of the process. The
information architect (see Chapter 4) will collaborate with the business user to
elucidate the database requirements. Various techniques can be used, such as
interviews or surveys with end-users, inspections of the documents used in the
current process, etc. During the conceptual design, both parties try to formalize

the data requirements in a conceptual data model. As mentioned before, this

should be a high-level model, meaning it should be both easy to understand for
the business user and formal enough for the database designer who will use it in
the next step. The conceptual data model must be user-friendly, and preferably
have a graphical representation such that it can be used as a handy
communication and discussion instrument between both information architects
and business users. It should be flexible enough that new or changing data
requirements can easily be added to the model. Finally, it must be DBMS- or
implementation-independent since its only goal is to adequately and accurately
collect and analyze data requirements. This conceptual model will also have its
limitations, which should be clearly documented and followed up during

application development.

—_— Database requirements

Conceptual data model

DBMS-independent
DBMS-specific

Logical data model

e

‘ — Internal data model

Figure 3.1 The database design process.

Once all parties have agreed upon the conceptual data model, it can be
mapped to a logical data model by the database designer during the logical
design step. The logical data model is based upon the data model used by the
implementation environment. Although at this stage it is already known what
type of DBMS (e.g., RDBMS, OODBMS, etc.) will be used, the product itself
(e.g., Microsoft, IBM, Oracle) has not been decided yet. Consider a conceptual
EER model that will be mapped to a logical relational model since the database
will be implemented using an RDBMS. The mapping exercise can result in a
loss of semantics which should be properly documented and followed up during
application development. It might be possible that additional semantics can be
added to further enrich the logical data model. Also, the views of the external
data model can be designed during this logical design step.

In a final step, the logical data model can be mapped to an internal data
model by the database designer. The DBA can also give some recommendations
regarding performance during this physical design step. In this step, the DBMS
product is known, the DDL is generated, and the data definitions are stored in the

catalog. The database can then be populated with data and is ready for use.

Again, any semantics lost or added during this mapping step should be
documented and followed up.

In this chapter, we elaborate on the ER model, EER model, and UML class
diagram for conceptual data modeling. Subsequent chapters discuss logical and

physical database design.

Connections

We discuss logical data models in Chapter 5 (hierarchical and
CODASYL model), Chapters 6 and 7 (relational model), Chapter 8
(object-oriented model), Chapter 9 (extended relational model), Chapter
10 (XML model), and Chapter 11 (NoSQL models). Internal data models
are covered in Chapters 12 and 13.

3.2 The Entity Relationship Model

The entity relationship (ER) model was introduced and formalized by Peter
Chen in 1976. It is one of the most popular data models for conceptual data
modeling. The ER model has an attractive and user-friendly graphical notation.
Hence, it has the ideal properties to build a conceptual data model. It has three
building blocks: entity types, attribute types, and relationship types. We
elaborate on these in what follows. We also cover weak entity types and provide
two examples of ER models. This section concludes by discussing the

limitations of the ER model.

Drill Down

Peter Pin-Shan Chen is a Taiwanese-American computer scientist who
developed the ER model in 1976. He has a PhD in computer
science/applied mathematics from Harvard University and held various
positions at MIT Sloan School of Management, UCLA Management
School, Louisiana State University, Harvard, and National Tsing Hua
University (Taiwan). He is currently a Distinguished Career Scientist and
faculty member at Carnegie Mellon University. His seminal paper “The
Entity—Relationship Model: Toward A Unified View of Data” was
published in 1975 in ACM Transactions on Database Systems. It is
considered one of the most influential papers within the field of
computer software. His work initiated the research field of conceptual

modeling.

3.2.1 Entity Types

An entity type represents a business concept with an unambiguous meaning to a
particular set of users. Examples of entity types are: supplier, student, product, or
employee. An entity is one particular occurrence or instance of an entity type.
Deliwines, Best Wines, and Ad Fundum are entities from the entity type
supplier. In other words, an entity type defines a collection of entities that have
similar characteristics. When building a conceptual data model, we focus on
entity types and not on individual entities. In the ER model, entity types are
depicted using a rectangle, as illustrated in Figure 3.2 for the entity type
SUPPLIER.

SUPPLIER

Figure 3.2 The entity type SUPPLIER.

3.2.2 Attribute Types

An attribute type represents a property of an entity type. As an example, name
and address are attribute types of the entity type supplier. A particular entity
(e.g., Deliwines) has a value for each of its attribute types (e.g., its address is
240, Avenue of the Americas). An attribute type defines a collection of similar
attributes, or an attribute is an instance of an attribute type. This is illustrated in
Figure 3.3. The entity type SUPPLIER has attribute types SUPNR (supplier
number), SUPNAME (supplier name), SUPADDRESS (supplier address),
SUPCITY (supplier city), and SUPSTATUS (supplier status). Entities then
correspond to specific suppliers such as supplier number 21, Deliwines, together

with all its other attributes.

|
0

ATTRIBUTE TYPE
SUPPLIER / l \

SUPNR SUPNAME SUPADDRESS SUPCITY SUPSTATUS
21 Deliwines 240, Avenue of the Americas New York 20

32 Best Wines 660, Market Street San Francisco | 90

a7 Ad Fundum 82, Wacker Drive Chicago 95

52 Spirits & Co. 928, Strip Las Vegas NULL

B8 The Wine Depot 132, M y Street San Francisco | 10

69 w | Vinos del Mundo 4, Collins Avenue Miami 92

/ g

ATTRIBUTES

Figure 3.3 Entity relationship model: basic concepts.

In the ER model, we focus on attribute types and represent them using
ellipses, as illustrated in Figure 3.4 for the entity type SUPPLIER and attribute
types SUPNR, STATUS, and DATE OF BIRTH.

DATE OF

SUPPLIER

Figure 3.4 The entity type SUPPLIER with attribute types SUPNR, STATUS,
and DATE OF BIRTH.

In the following subsections we elaborate on attribute types and discuss
domains, key attribute types, simple versus composite attribute types, single-

valued versus multi-valued attribute types and derived attribute types.

3.2.3.1 Domains

A domain specifies the set of values that may be assigned to an attribute for
each individual entity. A domain for gender can be specified as having only two
values: male and female. Likewise, a date domain can define dates as day,
followed by month, followed by year. A domain can also contain null values. A
null value means that a value is not known, not applicable, or not relevant. It is
thus not the same as the value 0 or as an empty string of text “”. Think about a
domain email address that allows for null values in case the email address is not

known. By convention, domains are not displayed in an ER model.

3.2.3.2 Key Attribute Types

A key attribute type is an attribute type whose values are distinct for each

individual entity. In other words, a key attribute type can be used to uniquely
identify each entity. Examples are: supplier number, which is unique for each

supplier; product number, which is unique for each product; and social security

number, which is unique for each employee. A key attribute type can also be a
combination of attribute types. As an example, suppose a flight is identified by a
flight number. However, the same flight number is used on each day to represent
a particular flight. In this case, a combination of flight number and departure
date is needed to uniquely identify flight entities. It is clear from this example
that the definition of a key attribute type depends upon the business setting. Key
attribute types are underlined in the ER model, as illustrated in Figure 3.5.

DATE OF

SUPPLIER

Figure 3.5 The entity type SUPPLIER with key attribute type SUPNR.

3.2.3.3 Simple versus Composite Attribute Types

A simple or atomic attribute type cannot be further divided into parts.

Examples are supplier number or supplier status. A composite attribute type is

an attribute type that can be decomposed into other meaningful attribute types.
Think about an address attribute type, which can be further decomposed into
attribute types for street, number, ZIP code, city, and country. Another example
is name, which can be split into first name and last name. Figure 3.6 illustrates
how the composite attribute types address and name are represented in the ER

model.

SUPPLIER

date of birth

Figure 3.6 The entity type SUPPLIER with composite attribute types address

‘

and name.

3.2.3.4 Single-Valued versus Multi-Valued Attribute Types

A single-valued attribute type has only one value for a particular entity. An

example is product number or product name. A multi-valued attribute type is
an attribute type that can have multiple values. As an example, email address can
be a multi-valued attribute type as a supplier can have multiple email addresses.
Multi-valued attribute types are represented using a double ellipse in the ER

model, as illustrated in Figure 3.7.

5
g

: SUPPLIER

date of birth

Figure 3.7 The entity type SUPPLIER with multi-valued attribute type email.

3.2.3.5 Derived Attribute Type

A derived attribute type is an attribute type that can be derived from another

attribute type. As an example, age is a derived attribute type since it can be
derived from birth date. Derived attribute types are depicted using a dashed
ellipse, as shown in Figure 3.8.

Figure 3.8 The entity type SUPPLIER with derived attribute type age.

SUPPLIER

3.2.4 Relationship Types

A relationship represents an association between two or more entities. Consider
a particular supplier (e.g., Deliwines) supplying a set of products (e.g., product
numbers 0119, 0178, 0289, etc.). A relationship type then defines a set of
relationships among instances of one, two, or more entity types. In the ER
model, relationship types are indicated using a rhombus symbol (see Figure 3.9).
The rhombus can be thought of as two adjacent arrows pointing to each of the
entity types specifying both directions in which the relationship type can be
interpreted. Figure 3.9 shows the relationship type SUPPLIES between the entity
types SUPPLIER and PRODUCT. A supplier can supply products (as indicated
by the downwards arrow) and a product can be supplied by suppliers (as
indicated by the upwards arrow). Each relationship instance of the SUPPLIES
relationship type relates one particular supplier instance to one particular product
instance. However, similar to entities and attributes, individual relationship

instances are not represented in an ER model.

SUPPLIER -

supname
supaddress

SUPPLIES

PRODUCT
e
available_quantity

Figure 3.9 Relationship type in the ER model.

In the following subsections we elaborate on various characteristics of
relationship types, such as degree and roles, cardinalities, and relationship

attribute types.

3.2.4.1 Degree and Roles

The degree of a relationship type corresponds to the number of entity types
participating in the relationship type. A unary or recursive relationship type has
degree one. A binary relationship type has two participating entity types whereas
a ternary relationship type has three participating entity types. The roles of a
relationship type indicate the various directions that can be used to interpret it.
Figure 3.9 represents a binary relationship type since it has two participating
entity types (SUPPLIER and PRODUCT). Note the role names (supprod and
prodsup) that we have added in each of the arrows making up the rhombus
symbol.

Figures 3.10 and 3.11 show two other examples of relationship types. The
SUPERVISES relationship type is a unary or recursive relationship type, which
models the hierarchical relationships between employees. In general, the
instances of a unary relationship relate two instances of the same entity type to
one another. The role names supervises and supervised by are added for further
clarification. The second example is an example of a ternary relationship type
BOOKING between the entity types TOURIST, HOTEL, and TRAVEL
AGENCY. Each relationship instance represents the interconnection between
one particular tourist, hotel, and travel agency. Role names can also be added but

this is less straightforward here.

SUPERVISES

@ EMPLOYEE

Figure 3.10 Unary ER relationship type.

BOOKING
TOURIST /\ HOTEL

ik

Figure 3.11 Ternary ER relationship type.

3.2.4.2 Cardinalities

Every relationship type can be characterized in terms of its cardinalities, which
specify the minimum or maximum number of relationship instances that an
individual entity can participate in. The minimum cardinality can either be O or
1. If it is O, it implies that an entity can occur without being connected through
that relationship type to another entity. This can be referred to as partial
participation since some entities may not participate in the relationship. If the
minimum cardinality is 1, an entity must always be connected to at least one
other entity through an instance of the relationship type. This is referred to as

total participation or existence dependency, since all entities need to

participate in the relationship, or in other words, the existence of the entity
depends upon the existence of another.

The maximum cardinality can either be 1 or N. In the case that it is 1, an
entity can be involved in only one instance of that relationship type. In other

words, it can be connected to at most one other entity through that relationship

type. In case the maximum cardinality is N, an entity can be connected to at
most N other entities by means of the relationship type. Note that N represents
an arbitrary integer number bigger than 1.

Relationship types are often characterized according to the maximum
cardinality for each of their roles. For binary relationship types, this gives four
options: 1:1, 1:N, N:1, and M:N.

Figure 3.12 illustrates some examples of binary relationship types together
with their cardinalities. A student can be enrolled for a minimum of one course
and a maximum of M courses. Conversely, a course can have minimum zero and
maximum N students enrolled. This is an example of an N:M relationship type
(also called many-to-many relationship type). A student can be assigned to
minimum zero and maximum one master’s thesis. A master’s thesis is assigned
to minimum zero and maximum one student. This is an example of a 1:1
relationship type. An employee can manage minimum zero and maximum N
projects. A project is managed by minimum one and maximum one, or in other
words exactly one employee. This is an example of a 1:N relationship type (also

called one-to-many relationship type).

ENROLLED FOR

STUDENT N Y COURSE N:M
ASSIGNED TO

STUDENT 01 01 MASTER'S THESIS 1:1
MANAGED BY

EMPLOYEE i o PROJECT 1:N

Figure 3.12 ER relationship types: examples.

3.2.4.3 Relationship Attribute Types

Like entity types, a relationship type can also have attribute types. These
attribute types can be migrated to one of the participating entity types in case of
a 1:1 or 1:N relationship type. However, in the case of an M:N relationship type,
the attribute type needs to be explicitly specified as a relationship attribute type.
This is illustrated in Figure 3.13. The attribute type hours represents the
number of hours an employee worked on a project. Its value cannot be
considered as the sole property of an employee or of a project; it is uniquely
determined by a combination of an employee instance and project instance —
hence, it needs to be modeled as an attribute type of the WORKS ON

relationship type which connects employees to projects.

”

WORKS ON

address

EMPLOYEE PROJECT

Figure 3.13 Relationship type with attribute type.

3.2.5 Weak Entity Types

A strong entity type is an entity type that has a key attribute type. In contrast, a

weak entity type is an entity type that does not have a key attribute type of its
own. More specifically, entities belonging to a weak entity type are identified by

being related to specific entities from the owner entity type, which is an entity

type from which they borrow an attribute type. The borrowed attribute type is
then combined with some of the weak entity’s own attribute types (also called
partial keys) into a key attribute type. Figure 3.14 shows an ER model for a hotel

administration.

G

e I e M
BELONGS TO \‘

Figure 3.14 Weak entity types in the ER model.

A hotel has a hotel number (HNR) and a hotel name (Hname). Every hotel
has a unique hotel number. Hence, HNR is the key attribute type of Hotel. A
room is identified by a room number (RNR) and a number of beds (Beds).
Within a particular hotel, each room has a unique room number but the same
room number can occur for multiple rooms in different hotels. Hence, RNR as
such does not suffice as a key attribute type. Consequently, the entity type
ROOM is a weak entity type since it cannot produce its own key attribute type.
More specifically, it needs to borrow HNR from HOTEL to come up with a key
attribute type which is now a combination of its partial key RNR and HNR.
Weak entity types are represented in the ER model using a double-lined

rectangle, as illustrated in Figure 3.14. The rhombus representing the

relationship type through which the weak entity type borrows a key attribute
type is also double-lined. The borrowed attribute type(s) is/are underlined using
a dashed line.

Since a weak entity type needs to borrow an attribute type from another
entity type, its existence will always be dependent on the latter. For example, in
Figure 3.14, ROOM is existence-dependent on HOTEL, as also indicated by the
minimum cardinality of 1. Note, however, that an existence-dependent entity
type does not necessarily imply a weak entity type. Consider the example in
Figure 3.15. The PURCHASE ORDER entity type is existence-dependent on
SUPPLIER, as indicated by the minimum cardinality of 1. However, in this case
PURCHASE ORDER has its own key attribute type, which is purchase order
number (PONR). In other words, PURCHASE ORDER is an existence-
dependent entity type but not a weak entity type.

@ SUPPLIER

ON_ORDER

PURCHASE
ORDER

Figure 3.15 Weak versus existence-dependent entity type in the ER model.

3.2.6 Ternary Relationship Types

The majority of relationship types in an ER model are binary or have only two

participating entity types. However, higher-order relationship types with more

than two entity types, known as ternary relationship types, can occasionally
occur, and special attention is needed to properly understand their meaning.
Assume that we have a situation in which suppliers can supply products for
projects. A supplier can supply a particular product for multiple projects. A
product for a particular project can be supplied by multiple suppliers. A project
can have a particular supplier supply multiple products. The model must also
include the quantity and due date for supplying a particular product to a
particular project by a particular supplier. This is a situation that can be perfectly

modeled using a ternary relationship type, as you can see in Figure 3.16.

SUPPLY

SUPPLIER |2-N 0.N I BROJECT
PRODUCT

Figure 3.16 Ternary relationship type: example.

A supplier can supply a particular product for 0 to N projects. A product for
a particular project can be supplied by 0 to N suppliers. A supplier can supply 0
to N products for a particular project. The relationship type also includes the
quantity and due date attribute types.!

An obvious question is whether we can also model this ternary relationship

type as a set of binary relationship types, as shown in Figure 3.17.

‘SUPPLIER [N " 0N B PROJECT

&>
\ 4

—— PRODUCT

CAN SUPPLY USES
CBRODNED

Figure 3.17 Ternary versus binary relationship types.

We decomposed the ternary relationship type into the binary relationship
types “SUPPLIES” between SUPPLIER and PROJECT, “CAN SUPPLY”
between SUPPLIER and PRODUCT, and “USES” between PRODUCT and
PROJECT. We can now wonder whether the semantics of the ternary
relationship type is preserved by these binary relationship types. To properly
understand this, we need to write down some relationship instances. Say we have
two projects: Project 1 uses a pencil and a pen, and Project 2 uses a pen. Supplier
Peters supplies the pencil for Project 1 and the pen for Project 2, whereas
supplier Johnson supplies the pen for Project 1.

Figure 3.18 shows the relationship instances for both cases. At the top of
the figure are the relationship instances that would be used in a ternary
relationship type “SUPPLY”. This can be deconstructed into the three binary
relationship types: “SUPPLIES”, “USES”, and “CAN SUPPLY”.

SUPPLY

Supplier Product Project

Peters Pencil Project 1

Peters Pen Project 2

Johnson Pen Project 1
SUPPLIES USES CAN SUPPLY
Peters Project 1 Pencil Project 1 Peters Pencil
Peters Project 2 Pen Project 1 Peters Pen
Johnson Project 1 Pen Project 2 Johnson Pen

Figure 3.18 Ternary versus binary relationship types: example instances.

From the “SUPPLIES” relationship type, we can see that both Peters and
Johnson supply to Project 1. From the “CAN SUPPLY” relationship type, we
can see that both can also supply a pen. The “USES” relationship type indicates
that Project 1 needs a pen. Hence, from the binary relationship types, it is not
clear who supplies the pen for Project 1. This is, however, clear in the ternary
relationship type, where it can be seen that Johnson supplies the pen for Project
1. By decomposing the ternary relationship types into binary relationship types,
we clearly lose semantics. Furthermore, when using binary relationship types, it
is also unclear where we should add the relationship attribute types such as
quantity and due date (see Figure 3.16). Binary relationship types can, however,
be used to model additional semantics.

Figure 3.19 shows another example of a ternary relationship type between
three entity types: INSTRUCTOR with key attribute type INR representing the
instructor number; COURSE with key attribute type CNR representing the
course number; and SEMESTER with key attribute type SEM-YEAR
representing the semester year. An instructor can offer a course during zero to N
semesters. A course during a semester is offered by one to N instructors. An
instructor can offer zero to N courses during a semester. In this case, we also
added an extra binary relationship type QUALIFIED between INSTRUCTOR
and COURSE to indicate what courses an instructor is qualified to teach. Note
that, in this way, it is possible to model the fact that an instructor may be
qualified for more courses than the ones she/he is actually teaching at the

moment.

OFFERS

0.N I SEMESTER

INSTRUGTOR | N &
0--N T
0.N

COURSE

QUALIFIED

Figure 3.19 Ternary relationship type in the ER model.

Another alternative to model a ternary relationship type is by using a weak
entity type as shown in Figure 3.20. The weak entity type SUPPLY is existence-
dependent on SUPPLIER, PRODUCT, and PROJECT, as indicated by the
minimum cardinalities of 1. Its key is a combination of supplier number, product
number, and project number. It also includes the attribute types quantity and due
date. Representing a ternary relationship type in this way can be handy in case

the database modeling tool only supports unary and binary relationship types.

PRODNR

SUPPLIER PRODUCT PROJECT

1.1

Figure 3.20 Modeling ternary relationship types as binary relationship types.

3.2.7 Examples of the ER Model

Figure 3.21 shows the ER model for a human resources (HR) administration. It
has three entity types: EMPLOYEE, DEPARTMENT, and PROJECT. Let’s read
some of the relationship types. An employee works in minimum one and
maximum one, so exactly one, department. A department has minimum one and
maximum N employees working in it. A department is managed by exactly one
employee. An employee can manage zero or one department. A department is in
charge of zero to N projects. A project is assigned to exactly one department. An
employee works on zero to N projects. A project is being worked on by zero to
M employees. The relationship type WORKS ON also has an attribute type
hours, representing the number of hours an employee worked on a project. Also
note the recursive relationship type to model the supervision relationships
between employees. An employee supervises zero to N employees. An employee

is supervised by zero or one employees.

0.1
EMPLOYEE § @
WORKS ON
- 0..N
g

> MANAGES stz

1.N
IN CHARGE OF

DEPARTMENT

1.1

Figure 3.21 ER model for HR administration.

Figure 3.22 shows another example of an ER model for a purchase order
administration. It has three entity types: SUPPLIER, PURCHASE ORDER, and

PRODUCT. A supplier can supply zero to N products. A product can be supplied
by zero to M suppliers. The relationship type SUPPLIES also includes the
attribute types purchase_price and deliv_period. A supplier can have zero to N
purchase orders on order. A purchase order is always assigned to one supplier. A
purchase order can have one to N purchase order lines with products.
Conversely, a product can be included in zero to M purchase orders. In addition,
the relationship type PO_LINE includes the quantity of the order. Also note the
attribute types and key attribute types of each of the entity types.

deliv_period

PRODNR

prodname

SUPPLIES g N

PRODUCT

0..N

PO_LINE

PURCHASE
ORDER 0.M P B
<>

Figure 3.22 ER model for purchase order administration.

1]

prodtype

available
quantity

3.2.8 Limitations of the ER Model

Although the ER model is a very user-friendly data model for conceptual data
modeling, it also has its limitations. First of all, the ER model presents a
temporary snapshot of the data requirements of a business process. This implies

that temporal constraints, which are constraints spanning a particular time

interval, cannot be modeled. Some example temporal constraints that cannot be
enforced are: a project needs to be assigned to a department after one month, an
employee cannot return to a department of which he previously was a manager,
an employee needs to be assigned to a department after six months, a purchase
order must be assigned to a supplier after two weeks. These rules need to be
documented and followed up with application code.

Another shortcoming is that the ER model cannot guarantee consistency
across multiple relationship types. Some examples of business rules that cannot
be enforced in the ER model are: an employee should work in the department
that he/she manages, employees should work on projects assigned to
departments to which the employees belong, and suppliers can only be assigned
to purchase orders for products they can supply. Again, these business rules need
to be documented and followed up with application code.

Furthermore, since domains are not included in the ER model, it is not
possible to specify the set of values that can be assigned to an attribute type (e.g.,
hours should be positive; prodtype must be red, white, or sparkling, supstatus is
an integer between 0 and 100). Finally, the ER model also does not support the

definition of functions (e.g., a function to calculate an employee’s salary).

Retention Questions

What are the key building blocks of the ER model?
Discuss the attribute types supported in the ER model.
Discuss the relationship types supported in the ER model.

What are weak entity types and how are they modeled in the ER

model?

Discuss the limitations of the ER model.

3.3 The Enhanced Entity Relationship (EER)
Model

The Enhanced Entity Relationship model or EER model is an extension of

the ER model. It includes all the modeling concepts (entity types, attribute types,
relationship types) of the ER model, as well as three new additional semantic
data modeling concepts: specialization/generalization, categorization, and

aggregation. We discuss these in more detail in the following subsections.

3.3.1 Specialization/Generalization

The concept of specialization refers to the process of defining a set of
subclasses of an entity type. The set of subclasses that form a specialization is
defined on the basis of some distinguishing characteristic of the entities in the
superclass. As an example, consider an ARTIST superclass with subclasses
SINGER and ACTOR. The specialization process defines an “IS A”
relationship. In other words, a singer is an artist. Also, an actor is an artist. The
opposite does not apply. An artist is not necessarily a singer. Likewise, an artist
is not necessarily an actor. The specialization can then establish additional
specific attribute types for each subclass. A singer can have a music style
attribute type. During the specialization, it is also possible to establish additional
specific relationship types between each subclass and other entity types. An
actor can act in movies. A singer can be part of a band. A subclass inherits all
attribute types and relationship types from its superclass.

Generalization, also called abstraction, is the reverse process of
specialization. Specialization corresponds to a top-down process of conceptual
refinement. As an example, the ARTIST entity type can be specialized or refined
in the subclasses SINGER and ACTOR. Conversely, generalization corresponds
to a bottom-up process of conceptual synthesis. As an example, the SINGER and
ACTOR subclasses can be generalized in the ARTIST superclass.

Figure 3.23 shows how our specialization can be represented in the EER
model. An artist has a unique artist number and an artist name. The ARTIST
superclass is specialized in the subclasses SINGER and ACTOR. Both SINGER
and ACTOR inherit the attribute types ANR and aname from ARTIST. A singer
has a music style. An actor can act in zero to N movies. Conversely, in a movie

one to M actors can act. A movie has a unique movie number and a movie title.

e

./. 'SINGER ACTOR

MOVIE

Figure 3.23 Example of EER specialization.

A specialization can be further qualified in terms of its disjointness and
completeness constraints. The disjointness constraint specifies what subclasses
an entity of the superclass can belong to. It can be set to either disjoint or
overlap. A disjoint specialization is a specialization where an entity can be a
member of at most one of the subclasses. An overlap specialization is a
specialization where the same entity may be a member of more than one

subclass. The completeness constraint indicates whether all entities of the

superclass should belong to one of the subclasses or not. It can be set to either
total or partial. A total specialization is a specialization where every entity in
the superclass must be a member of some subclass. A partial specialization
allows an entity to only belong to the superclass and to none of the subclasses.
The disjointness and completeness constraints can be set independently, which
gives four possible combinations: disjoint and total; disjoint and partial;
overlapping and total; and overlapping and partial. Let’s illustrate this with some
examples.

Figure 3.24 gives an example of a partial specialization with overlap. The

specialization is partial since not all artists are singers or actors; think about

painters, for example, which are not included in our EER model. The

specialization is overlap since some artists can be both singers and actors.

1 ARTIST

p

./ SINGER ACTOR

Figure 3.24 Example of partial (p) specialization with overlap (o).

Figure 3.25 illustrates a total disjoint specialization. The specialization is
total, since according to our model all people are either students or professors.

The specialization is disjoint, since a student cannot be a professor at the same

./‘ PERSON
@ t

time.

PROFESSOR STUDENT

Figure 3.25 Example of total (t) and disjoint (d) specialization.

A specialization can be several levels deep: a subclass can again be a
superclass of another specialization. In a specialization hierarchy, every subclass
can only have a single superclass and inherits the attribute types and relationship
types of all its predecessor superclasses all the way up to the root of the

hierarchy. Figure 3.26 shows an example of a specialization hierarchy. The

STUDENT subclass is further specialized in the subclasses BACHELOR,
MASTER, and PHD. Each of those subclasses inherits the attribute types and
relationship types from STUDENT, which inherits both in turn from PERSON.

»/‘\x

PROFESSOR STUDENT
/é\
BACHELOR MASTER PHD

Figure 3.26 Example of specialization hierarchy.

In a specialization lattice, a subclass can have multiple superclasses. The
concept in which a shared subclass or a subclass with multiple parents inherits
from all of its parents is called multiple inheritance. Let’s illustrate this with an
example.

Figure 3.27 shows a specialization lattice. The VEHICLE superclass is
specialized into MOTORCYCLE, CAR, and BOAT. The specialization is partial
and with overlap. TRIKE is a shared subclass of MOTORCYCLE and CAR and
inherits the attribute types and relationship types from both. Likewise,
AMPHIBIAN is a shared subclass of CAR and BOAT and inherits the attribute
types and relationship types from both.

Figure 3.27 Example of specialization lattice.

3.3.2 Categorization

Categorization is the second important modeling extension of the EER model.

A category is a subclass that has several possible superclasses. Each superclass
represents a different entity type. The category then represents a collection of
entities that is a subset of the union of the superclasses. Therefore, a
categorization is represented in the EER model by a circle containing the letter

“u” (from union) (see Figure 3.28).

i PERSON COMPANY

ACCOUNT
HOLDER

Figure 3.28 EER categorization.

Inheritance in the case of categorization corresponds to an entity inheriting
only the attributes and relationships of that superclass of which it is a member.

This is also referred to as selective inheritance. Similar to a specialization, a

categorization can be total or partial. In a total categorization, all entities of the

superclasses belong to the subclass. In a partial categorization, not all entities

of the superclasses belong to the subclass. Let’s illustrate this with an example.
Figure 3.28 shows how the superclasses PERSON and COMPANY have
been categorized into an ACCOUNT HOLDER subclass. In other words, the
account holder entities are a subset of the union of the person and company
entities. Selective inheritance in this example implies that some account holders
inherit their attributes and relationships from person, whereas others inherit them

from company. The categorization is partial as represented by the letter “p”. This

implies that not all persons or companies are account holders. If the
categorization had been total (which would be represented by the letter “t”
instead), then this would imply that all person and company entities are also
account holders. In that case, we can also model this categorization using a
specialization with ACCOUNT HOLDER as the superclass and PERSON and
COMPANY as the subclasses.

3.3.3 Aggregation
Aggregation is the third modeling extension provided by the EER model. The

idea here is that entity types that are related by a particular relationship type can
be combined or aggregated into a higher-level aggregate entity type. This can be
especially useful when the aggregate entity type has its own attribute types
and/or relationship types.

Figure 3.29 gives an example of aggregation. A consultant works on zero to
N projects. A project is being worked on by one to M consultants. Both entity
types and the corresponding relationship type can now be aggregated into the
aggregate concept PARTICIPATION. This aggregate has its own attribute type,
date, which represents the date at which a consultant started working on a
project. The aggregate also participates in a relationship type with CONTRACT.
Participation should lead to a minimum of one and maximum of one contract.
Conversely, a contract can be based upon one to M participations of consultants

in projects.

CONSULTANT

PROJECT

PARTICIPATION

CONTRACT

Figure 3.29 EER aggregation.

3.3.4 Examples of the EER Model

Figure 3.30 presents our earlier HR administration example (see Figure 3.21),
but now enriched with some EER modeling concepts. More specifically, we
partially specialized EMPLOYEE into MANAGER. The relationship type
MANAGES then connects the MANAGER subclass to the DEPARTMENT
entity type. DEPARTMENT and PROJECT have been aggregated into
ALLOCATION. This aggregate then participates in the relationship type
WORKS ON with EMPLOYEE.?

MANAGES

ALLOCATION

IN CHARGE OF

Figure 3.30 EER model for HR administration.

3.3.5 Designing an EER Model

To summarize, an EER conceptual data model can be designed according to the

following steps:
1. Identify the entity types.
2. Identify the relationship types and assert their degree.

3. Assert the cardinality ratios and participation constraints (total versus

partial participation).

4. Identify the attribute types and assert whether they are simple or

composite, single- or multi-valued, derived or not.

5. Link each attribute type to an entity type or a relationship type.
6. Denote the key attribute type(s) of each entity type.

7. Identify the weak entity types and their partial keys.

8. Apply abstractions such as generalization/specialization, categorization,

and aggregation.

9. Assert the characteristics of each abstraction such as disjoint or

overlapping, total or partial.

Any semantics that cannot be represented in the EER model must be
documented as separate business rules and followed up using application code.
Although the EER model offers some new interesting modeling concepts such as
specialization/generalization, categorization, and aggregation, the limitations of
the ER model unfortunately still apply. Hence, temporal constraints still cannot
be modeled, the consistency among multiple relationship types cannot be

enforced and attribute type domains or functions cannot be specified. Some of

these shortcomings are addressed in the UML class diagram, which is discussed

in the next section.

Retention Questions

e What modeling extensions are provided by the EER model? Illustrate

with examples.

e What are the limitations of the EER model?

3.4 The UML Class Diagram

The Unified Modeling L.anguage (UML) is a modeling language that assists in

the specification, visualization, construction, and documentation of artifacts of a

software system.” UML is essentially an object-oriented system modeling

notation which focuses not only on data requirements, but also on behavioral
modeling, process, and application architecture. It was accepted as a standard by
the Object Management Group (OMG) in 1997 and approved as an ISO standard
in 2005. The most recent version is UML 2.5, introduced in 2015. To model both
the data and process aspects of an information system, UML offers various
diagrams such as use case diagrams, sequence diagrams, package diagrams,
deployment diagrams, etc. From a database modeling perspective, the class
diagram is the most important. It visualizes both classes and their associations.
Before we discuss this in more detail, let’s first provide a recap of object

orientation (OO).

3.4.1 Recap of Object Orientation

Two important building blocks of OO are classes and objects. A class is a
blueprint definition for a set of objects. Conversely, an object is an instance of a
class. In other words, a class in OO corresponds to an entity type in ER, and an
object to an entity. Each object is characterized by both variables and methods.*
Variables correspond to attribute types and variable values to attributes in the
EER model. The EER model has no equivalent to methods. You can think of an
example class Student and an example object student Bart. For our student
object, example variables could be the student’s name, gender, and birth date.
Example methods could be calcAge, which calculates the age of the student
based upon the birth date; isBirthday to verify whether the student’s birthday is
today; hasPassed(courselD), which verifies whether the student has passed the

course represented by the courselD input parameter, etc.

Information hiding (also referred to as encapsulation) states that the
variables of an object can only be accessed through either getter or setter
methods. A getter method is used to retrieve the value of a variable, whereas a
setter method assigns a value to it. The idea is to provide a protective shield
around the object to make sure that values are always correctly retrieved or
modified by means of explicitly defined methods.

Similar to the EER model, inheritance is supported. A superclass can have
one or more subclasses which inherit both the variables and methods from the
superclass. As an example, Student and Professor can be a subclass of the Person
superclass. In OO, method overloading is also supported. This implies that
various methods in the same class can have the same name, but a different

number or type of input arguments.

Connections

We discuss object orientation in greater detail in Chapter 8.

3.4.2 Classes

In a UML class diagram, a class is represented as a rectangle with three sections.
Figure 3.31 illustrates a UML class SUPPLIER. In the upper part, the name of
the class is mentioned (e.g., SUPPLIER), in the middle part the variables (e.g.,
SUPNR, Supname), and in the bottom part the methods (e.g., getSUPNR). You
can compare this with the corresponding ER representation in Figure 3.2.

SUPPLIER

SUPNR
Supname

getSUPNR
setSUPNR(newSUPNR)
getSupname
setSupname(newSupname)

Figure 3.31 UML class.

Example methods are the getter and setter methods for each of the
variables. The method getSUPNR is a getter method that retrieves the supplier
number of a particular supplier object, whereas the method
setSUPNR(newSUPNR) assigns the value newSUPNR to the SUPNR variable

of a supplier object.

3.4.3 Variables

Variables with unique values (similar to key attribute types in the ER model) are
not directly supported in UML. The reason is because a UML class diagram is
assumed to be implemented using an OODBMS in which every object created is
assigned a unique and immutable object identifier (OID) that it keeps during its
entire lifetime (see Chapter 8). Hence, this OID can be used to uniquely identify
objects and no other variables are needed to serve as a key. To explicitly enforce
the uniqueness constraint of a variable, you can use OCL, as we discuss in
Section 3.4.9.2.

UML provides a set of primitive types such as string, integer, and Boolean,

which can be used to define variables in the class diagram. It is also possible to
define your own data types or domains and use them. This is illustrated in Figure
3.32. The variables SUPNR and status are defined as integers. The variable

address is defined using the domain Address_Domain.

SUPPLIER

SUPNR: Integer

first name: String

last name: String

address: Address_Domain
email: String [0..4]

status: Integer

date of birth: Date

/age: Integer

getSUPNR
setSUPNR(newSUPNR)
getSupname
setSupname(newSupname)

Figure 3.32 UML class with refined variable definitions.

Composite variables (similar to composite attribute types in the ER model)
can be tackled in two ways. A first option is to decompose them into their parts.
In our example, we decomposed Supname into first name and last name.
Another alternative is by creating a new domain as we did for the address
variable.

Multi-valued variables can also be modeled in two ways. A first option is to
indicate the multiplicity of the variable. This specifies how many values of the
variable will be created when an object is instantiated. In our example, we
specified that a supplier can have 0 to 4 email addresses. An infinite number of
email addresses can be defined as “email: String[*]”. Another option is by using
an aggregation, as we discuss in what follows.

Finally, derived variables (e.g., age) need to be preceded by a forward slash.

3.4.4 Access Modifiers

In UML, access modifiers can be used to specify who can access a variable or
method. Example choices are: private (denoted by the symbol “—”), in which
case the variable or method can only be accessed by the class itself; public
(denoted by the symbol “+”), in which case the variable or method can be
accessed by any other class; and protected (denoted by the symbol “#”), in which
case the variable or method can be accessed by both the class and its subclasses.
To enforce the concept of information hiding, it is recommended to declare all
variables as private and access them using getter and setter methods. This is

illustrated in Figure 3.33, where all variables are private and all methods public.

SUPPLIER

- SUPNR: Integer

- first name: String

- last name: String

- address: Address_Domain
- email: String [0..4]

- status: Integer

- date of birth: Date

- /age: Integer

+ getSUPNR

+ setSUPNR(newSUPNR)

+ getSupname

+ setSupname(newSupname)

Figure 3.33 Access modifiers in UML.

You can compare this with the corresponding ER representation in Figure
3.2. From this comparison, it is already clear that UML models more semantics

than its ER counterpart.

3.4.5 Associations

Analogous to relationship types in the ER model, classes can be related using
associations in UML. Multiple associations can be defined between the same
classes. Also, unary (or reflexive) and n-ary (e.g., ternary) associations are
possible. An association corresponds to a relationship type in the ER model,
whereas a particular occurrence of an association is referred to as a link that
corresponds to a relationship in the ER model.

An association is characterized by its multiplicities, which indicate the
minimum and maximum number of participations of the corresponding classes
in the association. Hence, this corresponds to the cardinalities we discussed in
the ER model. Table 3.1 lists the options available and contrasts them with the
corresponding ER model cardinalities. An asterisk (*) is introduced to denote a

maximum cardinality of N.

Table 3.1 UML multiplicities versus ER cardinalities

UML class diagram multiplicity ER model
cardinality

* 0.N

0..1 0..1

1..% 1..N

1 1.1

In what follows, we elaborate further on associations and discuss
association classes, unidirectional versus bidirectional associations, and qualified

associations.

3.4.5.1 Association Class

If an association has variables and/or methods on its own, it can be modeled as
an association class. The objects of this class then represent the links of the
association. Consider the association between SUPPLIER and PRODUCT as
depicted in Figure 3.34. The association class SUPPLIES has two variables: the

purchase price and delivery period for each product supplied by a supplier. It can
also have methods such as getter and setter methods for these wvariables.
Association classes are represented using a dashed line connected to the

association.

SUPPLIER PRODUCT

- SUPNR: Integer - PRODNR: Integer
- first name: String - Prodname: String
- last name: String

+ getSUPNR SUPPLIES + getPRODNR
+ setSUPNR(newSUPNR) + setPRODNR(newPRODNR)
+ getSupname - price: Integer + getProdname

+ setSupname(newSupname) + setprodname(newProdname)

- deliv_period: Integer

+ getPrice

+ setPrice(newPrice)

Figure 3.34 Association class.

3.4.5.2 Unidirectional versus Bidirectional Association

Associations can be augmented with direction reading arrows, which specify the
direction of querying or navigating through it. In a unidirectional association,
there is only a single way of navigating, as indicated by the arrow. Figure 3.35
gives an example of a unidirectional association between the classes SUPPLIER
and PURCHASE_ORDER. It implies that all purchase orders can be retrieved
through a supplier object. Hence, according to this model, it is not possible to
navigate from a purchase order object to a supplier object. Also note the

multiplicities of the association.

SUPPLIER PURCHASE ORDER

- SUPNR: Integer - PONR: Integer

- first name: String ON_ORDER - POdate: Date

- last name: String

i *

+ getSUPNR + getPONR
+ setSUPNR(newSUPNR) + setPONR({newPONR)
+ getSupname + getPOdate
+ setSupname(newSupname) + setPOdate(newPOdate)

Figure 3.35 Unidirectional association.

In a bidirectional association, both directions are possible, and hence there

is no arrow. Figure 3.34 is an example of a bidirectional association between the
classes SUPPLIER and PRODUCT. According to this UML class diagram, we
can navigate from SUPPLIER to PRODUCT as well as from PRODUCT to
SUPPLIER.

3.4.5.3 Qualified Association

A qualified association is a special type of association that uses a qualifier to
further refine the association. The qualifier specifies one or more variables that
are used as an index key for navigating from the qualified class to the target
class. It reduces the multiplicity of the association because of this extra key.

Figure 3.36 gives an example.

PLAYS AT

TEAM ’ PLAYER
1.1 0.N

PLAYS AT

TEAM position - PLAYER
] i

Figure 3.36 Qualified association.

We have two classes, TEAM and PLAYER. They are connected using a 1:N

relationship type in the ER model (upper part of the figure) since a team can

have zero to N players and a player is always related to exactly one team. This
can be represented in UML using a qualified association by including the
position variable as the index key or qualifier (lower part of the figure). A team
at a given position has zero or one players, whereas a player always belongs to
exactly one team.

Qualified associations can be used to represent weak entity types. Figure
3.37 shows our earlier example of ROOM as a weak entity type, being
existence-dependent on HOTEL. In the UML class diagram, we can define room
number as a qualifier or index key. In other words, a hotel combined with a
given room number corresponds to zero or one room, whereas a room always

belongs to one hotel.

o
[[

BELONGS TO
D

HOTEL
RGOM BELONGS TO

- Hotel name: String
—| RNR |

0.1 1

Figure 3.37 Qualified associations for representing weak entity types.

3.4.6 Specialization/Generalization

Similar to the EER model, UML also supports specialization or generalization
relationships. Figure 3.38 shows the UML representation of our earlier EER
specialization of Figure 3.24 with ARTIST, SINGER, and ACTOR.

ARTIST

Z} {partial; overlap}

SINGER ACTOR

Figure 3.38 Specialization/generalization in UML.

The hollow triangle represents a specialization in UML. The specialization
characteristics such as total/partial or disjoint/overlap can be added next to the
triangle. UML also supports multiple inheritance where a subclass can inherit

variables, methods, and associations from multiple superclasses.

3.4.7 Aggregation

Similar to EER, aggregation represents a composite to part relationship whereby
a composite class contains a part class. Two types of aggregation are possible in
UML: shared aggregation (also referred to as aggregation) and composite
aggregation (also referred to as composition). In shared aggregation, the part
object can simultaneously belong to multiple composite objects. In other words,
the maximum multiplicity at the composite side is undetermined. The part object
can also occur without belonging to a composite object. A shared aggregation
thus represents a rather loose coupling between both classes. In composite
aggregation or composition, the part object can only belong to one composite.
The maximum multiplicity at the composite side is 1. According to the original
UML standard, the minimum multiplicity can be either 1 or 0. A minimum
cardinality of 0 can occur in case the part can belong to another composite.
Consider two composite aggregations — one between engine and boat and one
between engine and car. Since an engine can only belong to either a car or a
boat, the minimum cardinality from engine (the part) to boat and car will be 0,
respectively. A composite aggregation represents a tight coupling between both
classes, and the part object will be automatically removed when the composite
object is removed. Note that a part object can also be deleted from a composite
before the composite is deleted.

Figure 3.39 illustrates both concepts. A shared aggregation is indicated by a
hollow diamond and a composite aggregation by a filled diamond. We have a
shared aggregation between COMPANY and CONSULTANT. A consultant can
work for multiple companies. When a company is removed, any consultants that

worked for it remain in the database. We have a composite aggregation between

BANK and ACCOUNT. An account is tightly coupled to one bank only. When

the bank is removed, all connected account objects disappear as well.

Shared aggregation

Figure 3.39 Shared versus composite aggregation in UML.

3.4.8 UML Example

Figure 3.40 shows our earlier EER HR example of Figure 3.30 in UML notation.
It has six classes including two association classes (Manages and Works_On).
Note the different variables and methods for each of the classes. The access
modifiers for each of the variables have been set to private so as to enforce
information hiding. Getter and setter methods have been added for each of the
variables. We also included a shared aggregation between DEPARTMENT and
LOCATION and between PROJECT and LOCATION. Hence, this implies that
location information is not lost upon removal of a department or project. We
have two unidirectional associations: between EMPLOYEE and PROJECT, and
between DEPARTMENT and PROJECT. The unary association for the
EMPLOYEE class models the supervision relationship. When you contrast this
UML class diagram with the EER model of Figure 3.30, it is clear that the

former has a lot more semantics embedded.

1.+ Works In 1

EMPLOYEE = DEPARTMENT
1 0.1
- S8N: Integer p - DNR: Integer
- Ename: String - Dname: String
- Address:Address_Domain Manages

+ getDNR

- StariDate: Date + selDNR(newDNR) >
+getSsN
supervises| + selSSN(newSSN) 1.
; 1 LOCATION
|
:jemgm L - Lname: String
P Works_On In Charge Of

= Hours: Integer + getname

1.1

PROJECT —
- PNR: Integer
- Pname: String

+ getPNR
+ setPNR({newPNR)

Figure 3.40 HR example in UML.

3.4.9 Advanced UML Modeling Concepts

UML offers various advanced modeling concepts to further add semantics to our
data model. In the following subsections, we discuss the changeability property,

the object constraint language (OCL), and the dependency relationship.

3.4.9.1 Changeability Property
The changeability property specifies the type of operations that are allowed on

either variable values or links. Three common choices are: default, which allows
any type of edit; addOnly, which only allows additional values or links to be
added (no deletions); and frozen, which allows no further changes once the value

or link is established. You can see this illustrated in Figure 3.41.

SUPPLIER PURCHASE ORDER
- SUPNR: Integer {frozen} o z
~fret R String ON_ORDER PONR: Integer {frozen}

- POdate: Date

- last name: String

- languages: String [0..4] {addOnly} 1.1 {addOnI;'}

+ getPONR

+ getSUPNR + setPONR(newPONR)
+ setSUPNR(newSUPNR) + getPOdate

+ getSupname + setPOdate(newPOdate)

Figure 3.41 Changeability property in UML.

The supplier and purchase order number are both declared as frozen, which
means that once a value has been assigned to either of them it can no longer
change. The languages variable of the SUPPLIER class defines a set of
languages a supplier can understand. It is defined as addOnly since languages
can only be added and not removed from it. Also note the addOnly characteristic
that was added to the ON_ORDER association. It specifies that for a given

supplier, purchase orders can only be added and not removed.

3.4.9.2 Object Constraint Language (OCL)
The object constraint language (OCL), which is also part of the UML

standard, can be used to specify various types of constraints. The OCL

constraints are defined in a declarative way. They specify what must be true, but
not how this should be accomplished. In other words, no control flow or
procedural code is provided. They can be used for various purposes, such as to
specify invariants for classes, to specify pre- and post-conditions for methods, to
navigate between classes, or to define constraints on operations.

A class invariant is a constraint that holds for all objects of a class. An

example could be a constraint specifying that the supplier status of each supplier

object should be greater than 100:
SUPPLIER: SUPSTATUS>100

Pre- and post-conditions on methods must be true when a method either
begins or ends. For example, before the method withdrawal can be executed, the
balance must be positive. After it has been executed, the balance must still be
positive.

OCL also supports more complex constraints. Figure 3.42 illustrates the
two classes EMPLOYEE and DEPARTMENT. These two classes are connected
with two associations to define which employee works in which department and
which employee manages what department. Note the role names that have been
added to both associations. Various constraints can now be added. A first
constraint states that a manager of a department should have worked there for at

least ten years:

EMPLOYEE workers works_in DEPARTMENT
; B 1

- SSN: Integer - DNR: Integer
- Ename: String - Dname: String
+ getDNR
+ setDNR(newNR)
+ getSSN managed_by manages | .

+ setSSN(newSSN) 0.1

Figure 3.42 OCL constraints in UML.

Context: Department
invariant: self.managed_by.yearsemployed>10

The context of this constraint is the DEPARTMENT class. The constraint
applies to every department object, hence the keyword invariant. We use the
keyword self to refer to an object of the DEPARTMENT class. We then used the
role name managed_by to navigate to the EMPLOYEE class and retrieve the
yearsemployed variable.

A second constraint states: a department should have at least 20 employees:

Context: Department
invariant: self.workers - size() >20

The context is again DEPARTMENT. Note that self.workers returns the set
of employees working in a specific department. The size method is then used to
calculate the number of members in the set.

A final constraint says: A manager of a department must also work in the

department. In OCL, this becomes:

Context: Department
Invariant: self.managed_by.works_in=self

From these examples, it is clear that OCL is a very powerful language that

adds a lot of semantics to our conceptual data model. For more details on OCL,

refer to www.omg.org/spec/OCL.

3.4.9.3 Dependency Relationship

In UML, dependency defines a “using” relationship that states that a change in
the specification of a UML modeling concept may affect another modeling
concept that uses it. It is denoted by a dashed line in the UML diagram. An
example could be when an object of one class uses an object of another class in
its methods, but the referred object is not stored in any variable. This is

illustrated in Figure 3.43.

EMPLOYEE COURSE
- SSN: Integer - CNR: Integer
- Ename: String - Cname: String
-

+ getCNR

+ getSSN + setCNR(newCNR)
+ setSSN(newSSN)
+ tookCourse(CNR)

Figure 3.43 Dependency relationship in UML.

We have two classes, EMPLOYEE and COURSE. Let’s say an employee
can take courses as part of a company education program. The EMPLOYEE
class includes a method, tookCourse, that determines whether an employee took
a particular course represented by the input variable CNR. Hence, an employee
object makes use of a course object in one of its methods. This explains the

dependency between both classes.

http://www.omg.org/spec/OCL

3.4.10 UML versus EER

Table 3.2 lists the similarities between both the UML class diagram and the EER
model. From the table, it can be seen that the UML class diagram provides a
richer set of semantics for modeling than the EER model. The UML class
diagram can define methods that are not supported in the EER model. Complex
integrity constraints can be modeled using OCL, which is also not available in
the EER model.

Table 3.2 UML versus EER concepts

UML class diagram
Class

Object

Variable

Variable value
Method

Association

Link

Qualified association
Specialization/generalization
Aggregation

OCL

EER model
Entity type
Entity
Attribute type

Attribute

Relationship type
Relationship

Weak entity type
Specialization/generalization

Aggregation (composite/shared)

Multiplicity * Cardinality 0.N

0..1 0..1
1..* 1..N
1 1..1

Drill Down

Some popular examples of conceptual modeling tools are: Astah
(Change Vision), Database Workbench (Upscene Productions),
Enterprise Architect (Sparx Systems), ER/Studio (Idera), and Erwin Data
Modeler (Erwin). These tools typically provide facilities to build a
conceptual model (e.g., EER or UML class diagram) and then
automatically map it to a logical or internal data model for various target
DBMS platforms. Most of them also include reverse engineering
facilities whereby an existing internal data model can be turned back into

a conceptual data model.

Retention Questions

e What are the key concepts of object orientation (OO)?

Discuss the components of a UML class diagram.

e How can associations be modeled in UML?

What types of aggregation are supported in UML?

What advanced modeling concepts are offered by UML?

e Contrast the UML class diagram with the EER model.

Summary

In this chapter we discussed conceptual data modeling using the ER model, EER
model, and UML class diagram. We started the chapter by reviewing the phases
of database design: requirement collection and analysis, conceptual design,
logical design, and physical design. The aim of a conceptual model is to
formalize the data requirements of a business process in an accurate and user-
friendly way. The ER model is a popular technique for conceptual data
modeling. It has the following building blocks: entity types, attribute types, and
relationship types. The EER model offers three additional modeling constructs:
specialization/generalization, categorization, and aggregation. The UML class
diagram is an object-oriented conceptual data model and consists of classes,
variables, methods, and associations. It also supports
specialization/generalization and aggregation, and offers various advanced
modeling concepts such as the changeability property, object constraint
language, and dependency relationships. From a pure semantic perspective,
UML is richer than both ER and EER. In subsequent chapters, we elaborate on
how to proceed to both logical and physical design.

Scenario Conclusion

Figure 3.44 shows the EER model for our Sober scenario case. It has
eight entity types. The CAR entity type has been specialized into
SOBER CAR and OTHER CAR. Sober cars are owned by Sober,
whereas other cars are owned by customers. The RIDE entity type has
been specialized into RIDE HAILING and RIDE SHARING. The shared

attribute types between both subclasses are put in the superclass: RIDE-
NR (which is the key attribute type), PICKUP-DATE-TIME,
DROPOFF-DATE-TIME, DURATION, PICKUP-LOC, DROPOFF-
LOC, DISTANCE, and FEE. Note that DURATION is a derived attribute
type since it can be derived from PICKUP-DATE-TIME and DROPOFF-
DATE-TIME. DISTANCE is not a derived attribute type since there
could be multiple routes between a pick-up location and a drop-off
location. Three attribute types are ad