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Introduction

Introduction

Three different types of maintenance

Periodic maintenance or preventive maintenance, then we have predictive
maintenance or what is known as condition-based maintenance, and then
we have reactive maintenance

Failure Modes Effects and Criticality Analysis

How FMECA could be used to identify the critical equipment or machinery
or operation so, our maintenance efforts need to be strengthened, and we
need to put in more maintenance efforts.

certain definitions of fault diagnosis

How can | find out if a fault has occurred? what kind of fault has
occurred? which component in the machine has failed? and if it has failed
or if it is deteriorating! how long is it going to last till the machine totally
fails?
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Introduction
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As time goes by, the maintenance of machines accrues costs due to the
increasing wear and tear, which may escalate repair expenses. However, a
point will eventually be reached where continuing these repairs becomes
economically impractical. At this juncture, it becomes clear that it's time
to contemplate replacing the machine.
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Elements of CBM Cycle

Sensors (Smart-Fault Tolerant).
Data

e Processing
o Feature Extraction.

Fault Classification

Prediction of Fault Evolution

Schedule Required Maintenance.
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Elements of CBM Cycle
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Elements of CBM Cycle
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Fault Diagnosis

Fault Diagnosis

fault diagnosis means detecting, isolating and identifying an impending or
incipient failure condition and the affected components of the system are
still operational even though at a degraded mode. (Many times the defect
has occurred that does not totally impair the machine, it will be still
running, but then the fault that | have identified is very important and you
will see a lot of this data analytics or signal feature extraction, helps us
find out the defect in the machine.)
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Fault Diagnosis
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Fault Diagnosis

Failure diagnosis

Failure diagnosis

detecting, isolating and identifying a component that has ceased (STOP)
to operate because the failure has occurred, and then we are asked what
was the reason, why did the machine fails, and that is what we do which is

known as failure analysis.
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Fault Diagnosis

Fault (Failure) Detection

An abnormal operating condition is detected and reported. Today the
sensors are so smartly available, that the machines themselves through the
right data analytics will indicate that a failure has occurred or what kind
of corrections needs to be taken and so on.

Fault (Failure) Isolation

Determining which component (subsystem, system) is failing or has failed.
So, determining which component subsystem is failing or has failed.

Fault (Failure) ldentification

Estimating the nature and the extent(range) of the fault (Failure); is also
sometimes very important because when we are talking about the RUL,
this information is going to help us.
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Fault Diagnosis Techniques

Fault Diagnosis Techniques

@ Model Based: eg. In the nuclear reactor, you have to develop a lot of
models; like a neural network.

e Data-driven (signal based): We have a machine, put a transducer, get
some signal, analyze it, see the characteristic frequency spectrum, and
then try to correlate with the machine component
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Data driven Fault Classification

@ Stored fault pattern library (fault classification)that means, the
characteristic defect signatures are already there. Eg. Next Sild
o Feature Vectors (a feature vector is an n-dimensional vector of
numerical features that represent some object e.g RGB
(red-green-blue))
@ Decision making and fault classification
o Detectors

o Neyman-Pearson Detectors
o Neural Networks, Fuzzy Logic.

@ Diagnosed Faults.
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Fault Diagnosis Techniques
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ault Diagnosis Techniques Bayesian Detection

Bayesian Detection

1 Introduction

Classification appears in many disciplines for pattern recognition and detection methods. In this
lecture we introduce the Bayesian decision theory, which i based on the existence of prior distri-
butions of the parameters.

1.1 Bayesian Detection Framework

Before we discuss the details of the Bavesian detection, let us take a quick vour about the overall
framework to detect (or classify) an object in practice. In the Bayesian setting, we model ohser-
vations as random samples drawn from some probability distributions. The classification process
usually involves extracting features from the ohservations, and a decision rule that satisfies certain
optimality criterion. See Figure 1.

3 3
Measurement ]—-[ Feature Extraction —\-[ Classifier —h[ Classification ]

J

Figure 1: Block diagram of a classifier

When the distributions of the random samples are not known (which is true in most real-world
applications), we might need an estimation algorithm to first determine the parameters of the
distributions, e.g., mean and standard deviation. A decision rule can then designed based on these
estimated parameters. To verify the efficiency of the classifier, testing data are used to calculate
the error rate or false alarm rate. In most cases, a classifier with small false alarm rate is sought.
This process is shown in Figure 2.
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Techniques Bayesian Detection

classifiers in this course. Interested readers can consult standard textbooks on pattern recognitio
for detailed discussions on these practical issues.

1.2 Objectives and Organizations

We begin this lecture note with a brief review of probability. We assume that readers are familiar
with intraductory probahility theory (e.g., ECE 600). After reviewing probability theory, we will
discuss the general Bayes’ decision rule. Then, wo will discuss three special cases of the general
Bayes’ decision rule: Maximum-a-posteriori (MAP) decision, Binary hypothesis testing, and M-ary
hypothesis testing.

2 Review of Probability

2.1 Probability Space

Any random experiment can be defined using the probability space (8, . P) where & is the sample
space, I is the event space, and ¥ is the probability mapping. The sample space & is a non-empty
set. containing all outcomes of the experiments. The event space F 1s a collection of subsets of &
to which probabilitics are assigned. The event space F must be a non-empty set that satisfies the
praparties of a o-field. The probahility mapping is a set function that assigns a real mumber to
avery set:

P:FR )

and must satisfy the following three probability axioms:

Non-negativity: P(A)
Normalization:  F(S)
Addicivity P(AUB) =P(A) + B(B) If AN B =4

>0, forall A€ F

2.2 Conditional Probability

In many situations we would want to know the probability of an event A occurring given that
another ovent B has ocenrred. In this caso, the probability of an event A given that another event
B has oceured is called conditional probability. The condition probability of A given B is defined
as:

assuming P(B) > 0.

Example 1.
Consider rolling a die. The probability of event A = 6 is equal to 1/6. However, if someone
provides additional information, lat's say that the event B —roll of a die was bigger than 4, then

the probability of A given B s

BANB) 1/6 s

PUAIB) = —grp = 3
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ault Diagnosis Techniques Bayesian Detection

2.4 Expectations

The expectation of a random variable described by a probability mass function or a probability
density function is

gy {2 X s disrets, -
7. 2fx(x)dz, i X is continuons.
The conditional expectation is
B =) [ sty (el 13)
The variance is defined as:
Var|X] = E[(X — EIX])? — EIX?) - E[X]?. (14)

A very useful result of the expectation is the total expectation formula, also known as the
iterated expectation.

Theorem 3. ToTAL

ELX] = Ey[Ey y IX[Y = o) (15)

Proof.

E[X] f; £lx(z)dr fi rfi Ty la,u)dzdy
f; rf: Fapy ely)dydz
f:: fv:w/il‘lw'-ﬂ'\MT

f EX|Y = ulfy (u)dy — By [Exy X|¥ = u]

2.5 Gaussian Distribution

ally we review the Gaussian distribution. A single variable Gaussian distribution is defined as

fx(z) - (16)

where 4 is the mean and o is the variance. We write
X o N, %) 17

to denote a random variable X drawn from a Caussian distribution
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Techniques Bayesian Detection

For multivariate Canssia

, the distribution is

1 ;
ix(z) me{ sle - 'lr*#l} (18)
where X = [X;, ) Xy[T is a d-dimensional vector, g = [y, jra, -+~ ,pg]" is the mean vector,
and
Var(X;) -+ CoviXy, Xg)
E=E(X - p)X - p)] : - : (19)
Cov(Xy, Xa) - VariXs) |
is the covariance matrix.
1f Cov(Xe, X;) = 0 then X, and X, are said to be uncorrelated. If Cov(X,, X;) > 0 then
X, and X are said to be positively correlated. However, it should be clarified uncorrelated

does not imply independent, because Cov(X,¥) = 0 only impli
fxr(2.) = fx(z)fy (v). The converse is true however. That is, if
Cov{X.¥) = 0. Hero is a counter examplo by C. Sha

E[XY] = E[X[E[Y] but not
nd ¥ are mdependent, then

Example 2.
Let X ~ Uniform{~1,1), and let Y = |X]. Then,

'
EXY|X >0] fﬂda /3
o

o
E[XY|X <] ]z?dr -
!

Thus, by Law of Total Expectation we have E[XY] = 0. However, X and ¥ are clearly dependent.

3 Bayesian Decision Theory

In Bayes’s detection theory, we are interested in computing the posterior distribution fgy (8z).
Using Bayes' theorem, it is easy to show that the posterior distribution fg,y (d]r) can be computed
via the conditional distribution fy|(x/6) and the prior distribution fa(@). The prior distribution
fa(#) represents the prior knowledge we may have for the distribution of the # parameter before
we obtain additional information for our dataset. In other words, Bayes” detection theory utilizes
prior knowledge in the decision.

Bayes” theorem can be used for discrete or continuous random variables. For discreto random
variables it takes the form

pyjelulf)pa(f)
P 0lg) = "reW)ee) )
i
where p represents the probability mass function. For continuous random variables:
fy| aly\ﬁ )
faw (Bly) = == (21)

=)

where f is the probability density function
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Techniques Bayesian Detection

3.1 Notations

To facilitate the subsequent discussion, we introduce the following notations
1. Parameter ©. We assume that 8 is a random variable with realization © — 4. The domain
of 4 s defined as A. For detection, we assume that A i a collection of M states, Le.,
Ao, M -1y

Prior distributions mo, 7,
be 1

-, where %

4). Note that the sum of all 7; should

3. Conditional distribution of observing ¥ = y given that @ = j:
§ % By | "
i) = PO = y|H;), (23)
where H; denotes the hypothesis that € = j
4. Posterior distributions of having 6 = j given the chservation ¥ = y
af e |
() = PHY =) (24
By Bayes” theorem, we can show that
-y BY = ulHG)p(H;) .
BV =4 = T (2
and so
(26)
5. Decision rule & : T — A. The decision rule i a function that takes an mput y € I' and sends

u to a value 4

6. Cost function Cfi, ) or Cyy. In detection or ation of objects, every decksion is accom-
panied by a cost. If, for example, there is a flying object or a disease and we are not able
to deteet, then there is cost with this decision. That &, if we decide that there is no signal
but instead thera is stgnal, then we call this a miss. In the case were there is nothing present
but we decide that there is, then we have a false alarm. Sometimes the cost s very small or
significant depending on the situation. For axamplo, it is proferable to have falso alarm than
a miss in the case of disease detection. The cost assoctated with each decision s described by
the cast function. Here, we use €y to describe the eost of choosing H; when Hy; holds. For a
binary hypothesis, the cast fanction can be represented by a table:

() =0 Coo Con
Sw)=1]|Co Cu

For example, Coy 15 the cast associated with selecting Ho when Hy was the true value, i.e.,
the cast of having a miss. Similarly, Cig is the cost of having a false alarm. Cg and €y, are
the cost. of having the correct detection
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ault Diagnosis Techniques Bayesian Detection

3.2 Bayesian Risk

The goal of Bayesian detection is to minimize the risk, defined as

R(8) = Evs[C(8(Y ), 8)]

In other words, the optimal decision rule is

$(y) = argmin  R(5). (28)
i

Minimizing the risk defined as the expectation of the cost function is analytically very difficult as
it involves the minimization of the double integral. To solve this problem we observe the following
result:

Proposition 1.

M-1
(y) = argmin Eyg[C(§(Y),8)] = argmin Z(‘(v F)msu). (29)
s i

To prove the above propesitin we need to make use of the total expectation, and in particular
the following lemma

Lemma 1

EyalC(5(Y ), 0)] = Ey [EgyIC(5(Y),0)Y =yl (30)

Proof.
By definition of Eye[C(3(Y).8)], we have

EvelC(5(Y).0)] f C(8(u).8)fv 8 (v, 6)dyds.

Since fye(.8) = ey (@lu)fy (4) by Bayes’ theorem, we have

ExolCU1), 001 [ C16(5) 00y Ol )b
Switching the order of integration yields

I e

in which we see that the inner integration is Eeyy [C(3(Y),8)]Y = y]. Therefore,

[ |

9.0 ey O s — [ g

Ve (6ly)dddy,

(41.0) oy (Olu)dddy f Fr5)Eop [CB(Y OV = vidy
Ey[EoyIC((Y), 8)1Y =]

Using the Lemma we can prove the proposition.
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ult Diagnosis Techniques Bayesian Detection

Proof.
By Lemma, we have that

argmin Eyg|C argmin /F_gy\(‘m(}wem vl (v)dy.
i s

Since fy(y) is non-negative, the minimizer of the integral is the same as the minimizer of the tnner
expectation. Therefore, we have

argmin Eye[C(4(Y), 0)] = argmin gy [C(6(V). )Y = 4]
3 i

ing out the definition of the conditional expectation, we have

M1
#(y) = argmin Z O, )i (y)-
F—

We remark that () is a funetion of y. That is, for a different ohservation y, the decision valua
4(y) is different. To denote that this the Bayesian decision rule, we put a subseript dg(y).

rule

3.3 Maximum-A-Posteriol

We now consider a special casa where the eost function is uniform, defined 2

[
Ci,5) # (31)
0, i=j

sion rule becomes

s case, the dec
M1

Sp(y) = argmin 3 C(i, )7
o=

o

argmin Y m(y)
‘ =0

argmin (1 - m3(y))

argmax m(y).

Therefore, for uniform cost, the risk is minimized by maximizing the posterior distribution. Thus
we call the resulting decision rule as the Maximum-A-Posteriori (MAP) rule
An important property of the MAP rule is that is minimizes the probability of error.
Deftnition 1.
The probability of error s defined as
Purror = B8 £ (Y)). (32)
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ault Diagnosis Techniques Bayesian Detection

Proposition 2.
For any decision rule 6, and for a uniform cost,

Prpror = R(S)

Proof.
First of all, we note by the law of total probability that

Porrur = B(8 # 4(Y )) fx P(6 # 6(Y)|Y =) fy (v)dy.

The conditional probability inside the integral can be written as

PO # (V)Y =) = 1 — BB =4(Y)]Y =5)
M-1

S PO =Y =u)
=
By using the uniform cost, we have
M-1 M-1
P RO =Y =u) = Cl6(w).FO = (Y)Y = u)
= =
Eoy[C($(Y),8),8]Y].
Therefore the probability of error becomes:
P [ PO £ 80 — )y~ [ ey 0G0V, 61,01y 1)y

which is aqual to the expectation of the cost which is the definition of the risk. Therefore,

Perror = By [C(8(Y), 8] = R(8).

The restlt of this proposition says that since the prabability of errar is equal to the risk for the
case of a uniform cost function, and since the Bayes' decision rule minimizes the risk, the Bayes’
deciston rule should also minimize the probability of error.

3.4 Binary Hypothesis Testing

ting problem. To begin with, let us consider the general
“1n as the cost and g, m1 as the prior, we can write Bayesian

‘We now discuss the binary hyp:
cost function. Denating Coo, Cor,
decision rule as

M1
Sply) = argmin 3 Cymi(y).
1
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Techniques Bayesian Detection

Since there are only two possible choices of decisions (hecause it is a binary decision problem), we
have

Coome

‘With some simple calculations we can show that

Coooly) + Conmaly) S50 Cuomol

)G = Cu)  Epg) To()(Cro —
<o C
SHy T —Cu

where the last inequality follows because Cog < Cig and €y < Coy. Since 7;(u)
have

£(8) oy [Coo— Cra)Ta
folw) ~™ - G

1f we define
ar [ily)

Joly)®

Lly)

and §
der (Con = Cro)
©Cr = Conmt

n

then the decision rule becomes
H
Liy) £5t
The function L(y) is called the likelihood ratio and the above decision rule the likelihood ration
test (LRT).

Example 3.
Lat two sample data drawn from two classes. The classas are described by two Ganssian distribu-
tions having equal variance but different means:
Hy Y ~ N(0,6%)
HL Y~ Ni,o%)
To determine the Bayes” decision rule, we first compute the likelihood ratio
e

L) = ——77
PR

By taking log on both sides, we have

Ing.

2+ (Coo — Cra) def
InL(y) £ p Lo~ CuoTo
@ % Gy = Cam

‘With some calculations we can show that this is equivalent to

T3

p, o2lny
e

Thus, if the observed vahue y is larger that the right hand side of the above equation then must
choose class i = 1. If not, we must choose class i = 0. Figure 3 illustrates an numerical example
for the 1D and the 2D case.
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Figure 3: Decision houndaries for a binary hypothesis testing problem of 1D and 21) Gaussian

The above general Bayes decision rule can be simplified when we assume a uniform cost. In

this ease, we have

Ny
Tolw)

which is equivalent to

) S aly)

Therefore, we will elaim Hy if mo(y) > m(y) and vice versa. Or squivalently, we have
4(y) = argmax g (y)

Since mi(y) & the posterior probabillty, we can the resulting decislon rule s the maximum-a-
posteriori docision.

Example 4.
Consider Example 3 with uniform cost. Then, the MAP decision rule is (with 7= 1)

3.5 M-ary Hypothesis Testing

We can generalize the above binary hypothesis testing problem to a M-ary hypothesis testing
problem. In M-ary hypothasis tasting, ther are M hypothases or classes which we wish to assign
our ohservations. The Bayestan decision rule is based again on minimizing the risk similarly to the
binary case:

-1
Sp(y) = argmin z("‘f"x'“' (33)
=]
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Techniques Bayesian Detection

By Bayes’ theorem, we have

Ilw)

s
dny) = argmin Y (6.5
.-

Now, we can divide the posterior distribution by the posterior of Ho without affecting the minimizer
of the optimizaiton:

By defining

N M
y def J(w) ) i ) )
<, and hy M otz
)= e d hutw) % (6:3) L0,

we can show that

() = argmin Ay (y).

Therefore, our goal is to seloct hypothesis Hy if ho < hy and Ao < hy and kg < hg up to
ho < ha_r. To visualize this, let's consider three hypotheses described by three 1-d Gaussian
distributions (Figure 4). In this case, there can be no single boundary as in the binary hypothesis
testing, instead the observed value has to be compared with all individual hypotheses to reach a
conelusion

TO DO: Add an example to example M-ary hypothesis testing

4 Numerical Example

In this example, we generate data from a random mumber generator. Our goal is to use Bayes'
decision rule to classify the data into 2 classes. The m-fle is provided in the appendix. Two sets
of experiments were performed. The first one was based on equal priors for class 1 and class 2,
T =72 = 0.5. 1000 samples were drawn. The probability density functions were assumed to be
Gausstan to represent the two classes but they differed in mean valie. Two typical probability
density distributions that were used and the sampled data are shown in Figure 5a. For different
priors 7, — 0.0 and 7, — 0.1 the probability density distributions that were nsed and the sampled
data are shown in Figure 5b. It can be seen that the sampled data for the second pdf are more
scarce. However, the decision boundary can be easily drawn. Finally, two pdfs with different
standard deviations is shown in Figure 6. In this case, there is significant overlap between the two
distributions and the decision boundary is more complicated than before

o simplicity, lot’s start the cassification example with equal standard deviations for both
Gausstans distributions, Le., o3 = 03 = 2.0. For class 1, the average value was selected to be
my = 1.0 and was kept constant. For class 2, the average value m; varied from 4.0 ta 20.0 with a step
of 2. That is my — 4,6,8,10,12,14, 16, 18,20 and therefore my —m; ", 19,
This experiment was performed 10 times and the mumber of misclassifications was measnred as
shown in the following Figure Ta. The priors were different in this case, 7, = 0.2 and
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abitrary scale

66 68 70 72 74 75 78 &0

X vahues

Figure 4: M=3 hypothases

It appears that increasing the distance betwsen the distributions, the error is reduced and from
approximately 00 decreases to 0 for my —m; > 12. Therefore, for completely soparated classes the
misclassifications are almost zero, as expected.

The second experiment considers equal prior: 05 and 7 = 0.5. The results are shown
graphically in Figure Th. In this case, the number of misclassifications is larger and approaches
approximately 250 for mean different lss than 4.

Overall, it was shown that for well separated classes the error of classifieation is very small
and tends asymptotically to zero as the separation increases. On the contrary, for poor separation
between the two classas the error was large and was approaching the priors. Finally, it is observed
that when the priors and the probability density distributions are known, Bayes rule is an efficient
and simple ool to provide classification decisions in an optimal way
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Figure 5: Gaussian distributions and sampled data
6 Appendix

Matlab code:
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Figure 6: Gaussian distributions with different standard deviations and priors
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Figure 7: Misclassifications for equal and different priors
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Fault Diagnosis Techniques Bayesian Detection

Data diagnostic methods

@ Alarm Bounds

e Statistical Correlation and Regression methods.(identifying the
relationship between a dependent variable and one or more
independent variables.)

e Fuzzy Logic Classification. (It is the process of grouping elements
into a fuzzy set whose membership function is defined by the truth
value of a fuzzy propositional function.)

o Neural Network Classification and clustering.(They take input data,
process the data through the hidden layers, and return output. In
other words, they map inputs to outputs, and learn to approximate a
function between any input x and any output y.)

Wavelet Neural Network.
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Fault prognosis

prognosis is the ability to predict accurately and precisely the remaining
useful life (RUL) of a failed component or subsystem. i.e. prognostics is
nothing, but what is known as the fault forecast to determine RUL.
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Thank You!
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