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29. Vehicular stopping distance Based on data from the U.S. 
Bureau of Public Roads, a model for the total stopping distance of 
a moving car in terms of its speed is

s = 1.1y + 0.054y2,

  where s is measured in ft and y in mph. The linear term 1.1y
models the distance the car travels during the time the driver per-
ceives a need to stop until the brakes are applied, and the qua-
dratic term 0.054y2 models the additional braking distance once 
they are applied. Find ds>dy at y = 35 and y = 70 mph, and 
interpret the meaning of the derivative.

30. Inflating a balloon The volume V = (4>3)pr3 of a spherical 
balloon changes with the radius.

a. At what rate (ft3>ft) does the volume change with respect to 
the radius when r = 2 ft?

b. By approximately how much does the volume increase when 
the radius changes from 2 to 2.2 ft?

31. Airplane takeoff Suppose that the distance an aircraft travels 
along a runway before takeoff is given by D = (10>9)t2, where D is 
measured in meters from the starting point and t is measured in sec-
onds from the time the brakes are released. The aircraft will become 
airborne when its speed reaches 200 km>h. How long will it take to 
become airborne, and what distance will it travel in that time?

32. Volcanic lava fountains Although the November 1959 Kilauea 
Iki eruption on the island of Hawaii began with a line of fountains 
along the wall of the crater, activity was later confined to a single 

vent in the crater’s floor, which at one point shot lava 1900 ft 
straight into the air (a Hawaiian record). What was the lava’s exit 
velocity in feet per second? In miles per hour? (Hint: If y0 is the 
exit velocity of a particle of lava, its height t sec later will be 
s = y0t - 16t2 ft. Begin by finding the time at which ds>dt = 0.
Neglect air resistance.)

Analyzing Motion Using Graphs
Exercises 33–36 give the position function s = ƒ(t) of an object mov-
ing along the s-axis as a function of time t. Graph ƒ together with the 
velocity function y(t) = ds>dt = ƒ′(t) and the acceleration function 
a(t) = d2s>dt2 = ƒ″(t). Comment on the object’s behavior in relation 
to the signs and values of y and a. Include in your commentary such 
topics as the following:

a. When is the object momentarily at rest?

b. When does it move to the left (down) or to the right (up)?

c. When does it change direction?

d. When does it speed up and slow down?

e. When is it moving fastest (highest speed)? Slowest?

f. When is it farthest from the axis origin?

33. s = 200t - 16t2, 0 … t … 12.5 (a heavy object fired straight 
up from Earth’s surface at 200 ft > sec)

34. s = t2 - 3t + 2, 0 … t … 5

35. s = t3 - 6t2 + 7t, 0 … t … 4

36. s = 4 - 7t + 6t2 - t3, 0 … t … 4

T

3.5 Derivatives of Trigonometric Functions

Many phenomena of nature are approximately periodic (electromagnetic fields, heart rhythms, 
tides, weather). The derivatives of sines and cosines play a key role in describing periodic 
changes. This section shows how to differentiate the six basic trigonometric functions.

Derivative of the Sine Function

To calculate the derivative of ƒ(x) = sin x, for x measured in radians, we combine the limits 
in Example 5a and Theorem 7 in Section 2.4 with the angle sum identity for the sine function:

sin (x + h) = sin x cos h + cos x sin h.

If ƒ(x) = sin x, then

ƒ′(x) = lim
hS0

ƒ(x + h) - ƒ(x)
h

= lim
hS0

sin (x + h) - sin x
h

Derivative definition

= lim
hS0

(sin x cos h + cos x sin h) - sin x
h

= lim
hS0

sin x (cos h - 1) + cos x sin h
h

= lim
hS0
asin x # cos h - 1

h
b + lim

hS0
acos x # sin h

h
b

= sin x # lim
hS0

cos h - 1
h

+ cos x # lim
hS0

sin h
h

= sin x # 0 + cos x # 1 = cos x.
                         (++)++*           (11)11* Example 5a and 

limit 0 limit 1 Theorem 7, Section 2.4
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EXAMPLE 1  We find derivatives of the sine function involving differences, products, 
and quotients.

(a) y = x2 - sin x:
dy
dx

= 2x - d
dx

(sin x) Difference Rule

   = 2x - cos x

(b) y = exsin x:
dy
dx

= ex d
dx

(sin x) + d
dx

(ex) sin x Product Rule

= ex cos x + ex sin x

= ex (cos x + sin x)

(c) y = sin x
x :

dy
dx

=
x # d

dx
(sin x) - sin x # 1

x2 Quotient Rule

   = x cos x - sin x
x2

Derivative of the Cosine Function

With the help of the angle sum formula for the cosine function,

cos (x + h) = cos x cos h - sin x sin h,

we can compute the limit of the difference quotient:

d
dx

(cos x) = lim
hS0

cos (x + h) - cos x
h

Derivative definition

= lim
hS0

(cos x cos h - sin x sin h) - cos x
h

Cosine angle sum
identity

= lim
hS0

cos x (cos h - 1) - sin x sin h
h

= lim
hS0

cos x # cos h - 1
h

- lim
hS0

sin x # sin h
h

= cos x # lim
hS0

cos h - 1
h

- sin x # lim
hS0

sin h
h

= cos x # 0 - sin x # 1 Example 5a and
Theorem 7, Section 2.4

= -sin x.

The derivative of the sine function is the cosine function:

d
dx

(sin x) = cos x.

The derivative of the cosine function is the negative of the sine function:

d
dx

(cos x) = -sin x.

Figure 3.22 shows a way to visualize this result in the same way we did for graphing 
derivatives in Section 3.2, Figure 3.6.

1

x

y

0

1

x

y′

0
−1

−1

y = cos x

y′ = −sin x

−p p

−p p

FIGURE 3.22 The curve y′ = -sin x
as the graph of the slopes of the tangents to 
the curve y = cos x.
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EXAMPLE 2  We find derivatives of the cosine function in combinations with other 
functions.

(a) y = 5ex + cos x:

dy
dx

= d
dx

(5ex) + d
dx

(cos x) Sum Rule

= 5ex - sin x

(b) y = sin x cos x:

dy
dx

= sin x
d
dx

(cos x) + cos x
d
dx

(sin x) Product Rule

= sin x (-sin x) + cos x (cos x)

= cos2 x - sin2 x

(c) y = cos x
1 - sin x

:

dy
dx

=
(1 - sin x)

d
dx

(cos x) - cos x
d
dx

(1 - sin x)

(1 - sin x)2 Quotient Rule

=
(1 - sin x)(-sin x) - cos x(0 - cos x)

(1 - sin x)2

= 1 - sin x
(1 - sin x)2 sin2 x + cos2 x = 1

= 1
1 - sin x

Simple Harmonic Motion

The motion of an object or weight bobbing freely up and down with no resistance on the 
end of a spring is an example of simple harmonic motion. The motion is periodic and 
repeats indefinitely, so we represent it using trigonometric functions. The next example 
describes a case in which there are no opposing forces such as friction to slow the motion.

EXAMPLE 3  A weight hanging from a spring (Figure 3.23) is stretched down 5 units 
beyond its rest position and released at time t = 0 to bob up and down. Its position at any 
later time t is

s = 5 cos t.

What are its velocity and acceleration at time t?

Solution We have

Position: s = 5 cos t

Velocity: y = ds
dt

= d
dt

(5 cos t) = -5 sin t

Acceleration: a = dy
dt

= d
dt

(-5 sin t) = -5 cos t.

Notice how much we can learn from these equations:

1. As time passes, the weight moves down and up between s = -5 and s = 5 on the 
s-axis. The amplitude of the motion is 5. The period of the motion is 2p, the period of 
the cosine function.

2. The velocity y = -5 sin t attains its greatest magnitude, 5, when cos t = 0, as the 
graphs show in Figure 3.24. Hence, the speed of the weight, 0 y 0 = 5 0 sin t 0 , is greatest 

s

0

−5

5

Rest
position

Position at
t = 0

FIGURE 3.23 A weight hanging from 
a vertical spring and then displaced oscil-
lates above and below its rest position 
(Example 3).
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when cos t = 0, that is, when s = 0 (the rest position). The speed of the weight is 
zero when sin t = 0. This occurs when s = 5 cos t = {5, at the endpoints of the 
interval of motion.

3. The weight is acted on by the spring and by gravity. When the weight is below the rest 
position, the combined forces pull it up, and when it is above the rest position, they pull it 
down. The weight’s acceleration is always proportional to the negative of its displacement. 
This property of springs is called Hooke’s Law, and is studied further in Section 6.5.

4. The acceleration, a = -5 cos t, is zero only at the rest position, where cos t = 0 and 
the force of gravity and the force from the spring balance each other. When the weight 
is anywhere else, the two forces are unequal and acceleration is nonzero. The accel-
eration is greatest in magnitude at the points farthest from the rest position, where 
cos t = {1.

EXAMPLE 4  The jerk associated with the simple harmonic motion in Example 3 is

j = da
dt

= d
dt

(-5 cos t) = 5 sin t.

It has its greatest magnitude when sin t = {1, not at the extremes of the displacement 
but at the rest position, where the acceleration changes direction and sign.

Derivatives of the Other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, the related functions

tan x = sin x
cos x , cot x = cos x

sin x
, sec x = 1

cos x , and csc x = 1
sin x

are differentiable at every value of x at which they are defined. Their derivatives, calcu-
lated from the Quotient Rule, are given by the following formulas. Notice the negative 
signs in the derivative formulas for the cofunctions.

t
0

s, y

y = −5 sin t s = 5 cos t

p p
2

3p 2p
2

5p
2

5

−5

FIGURE 3.24 The graphs of the position 
and velocity of the weight in Example 3.

The derivatives of the other trigonometric functions:

d
dx

(tan x) = sec2 x
d
dx

(cot x) = -csc2 x

d
dx

(sec x) = sec x tan x
d
dx

(csc x) = -csc x cot x

To show a typical calculation, we find the derivative of the tangent function. The other 
derivations are left to Exercise 60.

EXAMPLE 5 Find d(tan x)>dx.

Solution We use the Derivative Quotient Rule to calculate the derivative:

d
dx

(tan x) = d
dx
a sin x

cos xb =
cos x

d
dx

(sin x) - sin x
d
dx

(cos x)

cos2 x
Quotient Rule

=
cos x cos x - sin x (-sin x)

cos2 x

= cos2 x + sin2 x
cos2 x

= 1
cos2 x

= sec2 x.
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EXAMPLE 6 Find y″ if y = sec x.

Solution Finding the second derivative involves a combination of trigonometric 
derivatives.

y = sec x

y′ = sec x tan x Derivative rule for secant function

y″ = d
dx

(sec x tan x)

= sec x
d
dx

(tan x) + tan x
d
dx

(sec x) Derivative Product Rule

= sec x (sec2 x) + tan x (sec x tan x) Derivative rules

= sec3 x + sec x tan2 x

The differentiability of the trigonometric functions throughout their domains gives 
another proof of their continuity at every point in their domains (Theorem 1, Section 3.2). 
So we can calculate limits of algebraic combinations and composites of trigonometric 
functions by direct substitution.

EXAMPLE 7  We can use direct substitution in computing limits provided there is no 
division by zero, which is algebraically undefined.

lim
xS0

22 + sec x
cos (p - tan x)

= 22 + sec 0
cos (p - tan 0)

= 22 + 1
cos (p - 0)

= 23
-1

= -23

Derivatives
In Exercises 1–18, find dy>dx.

1. y = -10x + 3 cos x 2. y = 3
x + 5 sin x

3. y = x2 cos x 4. y = 2x sec x + 3

5. y = csc x - 41x + 7
ex 6. y = x2 cot x - 1

x2

7. ƒ(x) = sin x tan x 8. g(x) = cos x
sin2 x

9. y = xe-x sec x 10. y = (sin x + cos x) sec x

11. y = cot x
1 + cot x

12. y = cos x
1 + sin x

13. y = 4
cos x + 1

tan x 14. y = cos x
x + x

cos x

15. y = (sec x + tan x) (sec x - tan x)

16. y = x2 cos x - 2x sin x - 2 cos x

17. ƒ(x) = x3 sin x cos x 18. g(x) = (2 - x) tan2 x

In Exercises 19–22, find ds>dt.

19. s = tan t - e-t 20. s = t2 - sec t + 5et

21. s = 1 + csc t
1 - csc t

22. s = sin t
1 - cos t

In Exercises 23–26, find dr>du.
23. r = 4 - u2 sin u 24. r = u sin u + cos u

25. r = sec u csc u 26. r = (1 + sec u) sin u

In Exercises 27–32, find dp>dq.

27. p = 5 + 1
cot q 28. p = (1 + csc q) cos q

29. p =
sin q + cos q

cos q 30. p =
tan q

1 + tan q

31. p =
q sin q

q2 - 1
32. p =

3q + tan q
q sec q

33. Find y″ if

a. y = csc x. b. y = sec x.

34. Find y(4) = d4 y>dx4 if

a. y = -2 sin x. b. y = 9 cos x.

Tangent Lines
In Exercises 35–38, graph the curves over the given intervals, together 
with their tangents at the given values of x. Label each curve and tan-
gent with its equation.

35. y = sin x, -3p>2 … x … 2p

x = -p, 0, 3p>2

Exercises 3.5
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36. y = tan x, -p>2 6 x 6 p>2
x = -p>3, 0, p>3

37. y = sec x, -p>2 6 x 6 p>2
x = -p>3, p>4

38. y = 1 + cos x, -3p>2 … x … 2p

x = -p>3, 3p>2
Do the graphs of the functions in Exercises 39–42 have any horizontal 
tangents in the interval 0 … x … 2p? If so, where? If not, why not? 
Visualize your findings by graphing the functions with a grapher.

39. y = x + sin x

40. y = 2x + sin x

41. y = x - cot x

42. y = x + 2 cos x

43. Find all points on the curve y = tan x, -p>2 6 x 6 p>2, where 
the tangent line is parallel to the line y = 2x. Sketch the curve 
and tangent(s) together, labeling each with its equation.

44. Find all points on the curve y = cot x, 0 6 x 6 p, where the 
tangent line is parallel to the line y = -x. Sketch the curve and 
tangent(s) together, labeling each with its equation.

In Exercises 45 and 46, find an equation for (a) the tangent to the 
curve at P and (b) the horizontal tangent to the curve at Q.

45. 46.

x

y

0

1

1 2

2

Q

y = 4 + cot x − 2csc x

p
2

P , 2

p
2

a b

x

y

0 1 2

4

3

Q

p
4

P , 4

p
4

y = 1 +
"

2 csc x + cot x

a b

Trigonometric Limits
Find the limits in Exercises 47–54.

47. lim
xS2

sin a1x - 1
2
b

48. lim
xS -p>621 + cos (p csc x)

49. lim
uSp>6

sin u - 1
2

u - p
6

50. lim
uSp>4

tan u - 1
u - p

4

51. lim
xS0

sec c ex + p tan a p

4 sec x
b - 1 d

52. lim
xS0

sin a p + tan x
tan x - 2 sec x

b
53. lim

tS0
tan a1 - sin t

t b 54. lim
uS0

cos a pu
sin u
b

T

Theory and Examples
The equations in Exercises 55 and 56 give the position s = ƒ(t) of a 
body moving on a coordinate line (s in meters, t in seconds). Find the 
body’s velocity, speed, acceleration, and jerk at time t = p>4 sec.

55. s = 2 - 2 sin t 56. s = sin t + cos t

57. Is there a value of c that will make

ƒ(x) =
sin2 3x

x2 , x ≠ 0

c, x = 0

  continuous at x = 0? Give reasons for your answer.

58. Is there a value of b that will make

g(x) = e x + b, x 6 0

cos x, x Ú 0

  continuous at x = 0? Differentiable at x = 0? Give reasons for 
your answers.

59. By computing the first few derivatives and looking for a pattern, 
find d 999>dx999 (cos x).

60. Derive the formula for the derivative with respect to x of

a. sec x. b. csc x. c. cot x.

61. A weight is attached to a spring and reaches its equilibrium posi-
tion (x = 0). It is then set in motion resulting in a displacement of

x = 10 cos t,

  where x is measured in centimeters and t is measured in seconds. 
See the accompanying figure.

x

0

−10

10

Equilibrium
position
at x = 0

a. Find the spring’s displacement when t = 0, t = p>3, and 
t = 3p>4.

b. Find the spring’s velocity when t = 0, t = p>3, and 
t = 3p>4.

62. Assume that a particle’s position on the x-axis is given by

x = 3 cos t + 4 sin t,

  where x is measured in feet and t is measured in seconds.

a. Find the particle’s position when t = 0, t = p>2, and 
t = p.

b. Find the particle’s velocity when t = 0, t = p>2, and 
t = p.
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63. Graph y = cos x for -p … x … 2p. On the same screen, graph

y =
sin (x + h) - sin x

h

  for h = 1, 0.5, 0.3, and 0.1. Then, in a new window, try 
h = -1, -0.5, and -0.3. What happens as h S 0+? As h S 0-?
What phenomenon is being illustrated here?

64. Graph y = -sin x for -p … x … 2p. On the same screen, graph

y =
cos (x + h) - cos x

h

  for h = 1, 0.5, 0.3, and 0.1. Then, in a new window, try 
h = -1, -0.5, and -0.3. What happens as h S 0+? As h S 0-?
What phenomenon is being illustrated here?

65. Centered difference quotients The centered difference quotient

ƒ(x + h) - ƒ(x - h)
2h

  is used to approximate ƒ′(x) in numerical work because (1) its 
limit as h S 0 equals ƒ′(x) when ƒ′(x) exists, and (2) it usually 
gives a better approximation of ƒ′(x) for a given value of h than 
the difference quotient

ƒ(x + h) - ƒ(x)
h

.

  See the accompanying figure.

x

y

0 x

A

hh

C B

x − h x + h

y = f (x)

Slope = f ′(x)

Slope =

Slope =

h
f (x + h) − f (x)

f (x + h) − f (x − h)
2h

a. To see how rapidly the centered difference quotient for 
ƒ(x) = sin x converges to ƒ′(x) = cos x, graph y = cos x
together with

y =
sin (x + h) - sin (x - h)

2h

  over the interval 3-p, 2p4  for h = 1, 0.5, and 0.3. Com-
pare the results with those obtained in Exercise 63 for the 
same values of h.

b. To see how rapidly the centered difference quotient for 
ƒ(x) = cos x converges to ƒ′(x) = -sin x, graph y = -sin x
together with

y =
cos (x + h) - cos (x - h)

2h

  over the interval 3-p, 2p4 for h = 1, 0.5, and 0.3. Compare 
the results with those obtained in Exercise 64 for the same 
values of h.

T

T

T

66. A caution about centered difference quotients (Continuation
of Exercise 65.) The quotient

ƒ(x + h) - ƒ(x - h)
2h

  may have a limit as h S 0 when ƒ has no derivative at x. As a 
case in point, take ƒ(x) = 0 x 0  and calculate

lim
hS0

0 0 + h 0 - 0 0 - h 0
2h

.

  As you will see, the limit exists even though ƒ(x) = 0 x 0  has no 
derivative at x = 0. Moral: Before using a centered difference 
quotient, be sure the derivative exists.

67. Slopes on the graph of the tangent function Graph y = tan x
and its derivative together on (-p>2, p>2). Does the graph of the 
tangent function appear to have a smallest slope? A largest slope? 
Is the slope ever negative? Give reasons for your answers.

68. Slopes on the graph of the cotangent function Graph y = cot x
and its derivative together for 0 6 x 6 p. Does the graph of the 
cotangent function appear to have a smallest slope? A largest 
slope? Is the slope ever positive? Give reasons for your answers.

69. Exploring (sin kx) ,x Graph y = (sin x)>x, y = (sin 2x)>x, and 
y = (sin 4x)>x together over the interval -2 … x … 2. Where 
does each graph appear to cross the y-axis? Do the graphs really 
intersect the axis? What would you expect the graphs of 
y = (sin 5x)>x and y = (sin (-3x))>x to do as x S 0? Why? 
What about the graph of y = (sin kx)>x for other values of k?
Give reasons for your answers.

70. Radians versus degrees: degree mode derivatives What hap-
pens to the derivatives of sin x and cos x if x is measured in 
degrees instead of radians? To find out, take the following steps.

a. With your graphing calculator or computer grapher in degree
mode, graph

ƒ(h) = sin h
h

  and estimate limhS0 ƒ(h). Compare your estimate with 
p>180. Is there any reason to believe the limit should be 
p>180?

b. With your grapher still in degree mode, estimate

lim
hS0

cos h - 1
h

.

c. Now go back to the derivation of the formula for the deriva-
tive of sin x in the text and carry out the steps of the deriva-
tion using degree-mode limits. What formula do you obtain 
for the derivative?

d. Work through the derivation of the formula for the derivative 
of cos x using degree-mode limits. What formula do you 
obtain for the derivative?

e. The disadvantages of the degree-mode formulas become 
apparent as you start taking derivatives of higher order. Try 
it. What are the second and third degree-mode derivatives of 
sin x and cos x?

T

T

T

T
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3.6 The Chain Rule

How do we differentiate F(x) = sin (x2 - 4)? This function is the composite ƒ ∘ g of two 
functions y = ƒ(u) = sin u and u = g(x) = x2 - 4 that we know how to differentiate. 
The answer, given by the Chain Rule, says that the derivative is the product of the deriva-
tives of ƒ and g. We develop the rule in this section.

Derivative of a Composite Function

The function y = 3
2

x = 1
2

(3x) is the composite of the functions y = 1
2

u and u = 3x.

We have

dy
dx

= 3
2

,
dy
du

= 1
2

, and
du
dx

= 3.

Since
3
2

= 1
2
# 3, we see in this case that

dy
dx

=
dy
du

# du
dx

.

If we think of the derivative as a rate of change, our intuition allows us to see that this rela-
tionship is reasonable. If y = ƒ(u) changes half as fast as u and u = g(x) changes three 
times as fast as x, then we expect y to change 3>2 times as fast as x. This effect is much 
like that of a multiple gear train (Figure 3.25). Let’s look at another example.

EXAMPLE 1  The function

y = (3x2 + 1)2

is the composite of y = ƒ(u) = u2 and u = g(x) = 3x2 + 1. Calculating derivatives, we 
see that

dy
du

# du
dx

= 2u # 6x

= 2(3x2 + 1) # 6x Substitute for u

= 36x3 + 12x.

Calculating the derivative from the expanded formula (3x2 + 1)2 = 9x4 + 6x2 + 1 gives 
the same result:

dy
dx

= d
dx

(9x4 + 6x2 + 1)

= 36x3 + 12x.

The derivative of the composite function ƒ(g(x)) at x is the derivative of ƒ at g(x)
times the derivative of g at x. This is known as the Chain Rule (Figure 3.26). 

32

1

C: y turns B: u turns A: x turns

FIGURE 3.25 When gear A makes 
x turns, gear B makes u turns and gear 
C makes y turns. By comparing cir-
cumferences or counting teeth, we see 
that y = u>2 (C turns one-half turn 
for each B turn) and u = 3x (B turns 
three times for A’s one), so y = 3x>2.
Thus, dy>dx = 3>2 = (1>2)(3) =
(dy>du)(du>dx).

x

g f

Composite f ˚ g

Rate of change at
x is f ′(g(x)) · g′(x).

Rate of change
at x is g′(x).

Rate of change
at g(x) is f ′(g(x)).

u = g(x) y = f (u) = f (g(x))

FIGURE 3.26 Rates of change multiply: The derivative of ƒ ∘ g at x is the 
derivative of ƒ at g(x) times the derivative of g at x.



A Proof of One Case of the Chain Rule:

Let ∆u be the change in u when x changes by ∆x, so that

∆u = g(x + ∆x) - g(x).

Then the corresponding change in y is

∆y = ƒ(u + ∆u) - ƒ(u).

If ∆u ≠ 0, we can write the fraction ∆y>∆x as the product

∆y
∆x =

∆y
∆u

# ∆u
∆x (1)

and take the limit as ∆xS 0:

dy
dx

= lim
∆xS0

∆y
∆x

= lim
∆xS0

∆y
∆u

# ∆u
∆x

= lim
∆xS0

∆y
∆u

# lim
∆xS0

∆u
∆x

= lim
∆uS0

∆y
∆u

# lim
∆xS0

∆u
∆x

(Note that ∆uS 0 as ∆xS 0
since g is continuous.)

=
dy
du

# du
dx

.

The problem with this argument is that if the function g(x) oscillates rapidly near x, then 
∆u can be zero even when ∆x ≠ 0, so the cancelation of ∆u in Equation (1) would be 
invalid. A complete proof requires a different approach that avoids this problem, and we 
give one such proof in Section 3.11.

EXAMPLE 2  An object moves along the x-axis so that its position at any time t Ú 0
is given by x(t) = cos (t2 + 1). Find the velocity of the object as a function of t.

Solution We know that the velocity is dx>dt. In this instance, x is a composite function: 
x = cos(u) and u = t2 + 1. We have

dx
du

= -sin(u) x = cos(u)

du
dt

= 2t. u = t2 + 1

THEOREM 2—The Chain Rule If ƒ(u) is differentiable at the point u = g(x)
and g(x) is differentiable at x, then the composite function (ƒ ∘ g) (x) = ƒ(g(x)) is 
differentiable at x, and

(ƒ ∘ g)′(x) = ƒ′(g(x)) # g′(x).
In Leibniz’s notation, if y = ƒ(u) and u = g(x), then

dy
dx

=
dy
du

# du
dx

,

where dy>du is evaluated at u = g(x).
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By the Chain Rule,

dx
dt

= dx
du

# du
dt

= -sin (u) # 2t dx
du

evaluated at u

= -sin (t2 + 1) # 2t

= -2t sin (t2 + 1).

“Outside-Inside” Rule

A difficulty with the Leibniz notation is that it doesn’t state specifically where the deriva-
tives in the Chain Rule are supposed to be evaluated. So it sometimes helps to think about 
the Chain Rule using functional notation. If y = ƒ(g(x)), then

dy
dx

= ƒ′(g(x)) # g′(x).

In words, differentiate the “outside” function ƒ and evaluate it at the “inside” function g(x)
left alone; then multiply by the derivative of the “inside function.”

EXAMPLE 3 Differentiate sin (x2 + ex)  with respect to x.

Solution We apply the Chain Rule directly and find

d
dx

sin (x2 + ex) = cos (x2 + ex) # (2x + ex).
(1)1* (1)1* (1)1*

inside inside derivative of
left alone the inside

EXAMPLE 4 Differentiate y = ecosx.

Solution Here the inside function is u = g(x) = cos x and the outside function is the 
exponential function ƒ(x) = ex. Applying the Chain Rule, we get

dy
dx

= d
dx

(ecos x) = ecos x d
dx

(cos x) = ecos x(-sin x) = -ecos x sin x.

Generalizing Example 4, we see that the Chain Rule gives the formula

d
dx

eu = eu du
dx

.

For example,

d
dx

(ekx) = ekx # d
dx

(kx) = kekx, for any constant k

and

d
dx
1ex22 = ex2 # d

dx
(x2) = 2xex2

.

Repeated Use of the Chain Rule

We sometimes have to use the Chain Rule two or more times to find a derivative.

Ways to Write the Chain Rule

(ƒ ∘ g)′(x) = ƒ′(g(x)) # g′(x)

dy
dx

=
dy
du

# du
dx

dy
dx

= ƒ′(g(x)) # g′(x)

d
dx

ƒ(u) = ƒ′(u)
du
dx
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EXAMPLE 5  Find the derivative of g(t) = tan (5 - sin 2t).

Solution Notice here that the tangent is a function of 5 - sin 2t, whereas the sine is a 
function of 2t, which is itself a function of t. Therefore, by the Chain Rule,

g′(t) = d
dt

(tan (5 - sin 2t))

= sec2(5 - sin 2t) # d
dt

(5 - sin 2t)
Derivative of tan u with 
u = 5 - sin 2t

= sec2(5 - sin 2t) # a0 - cos 2t # d
dt

(2t)b Derivative of 5 - sin u
with u = 2t

= sec2(5 - sin 2t) # (-cos 2t) # 2
= -2(cos 2t) sec2(5 - sin 2t).

The Chain Rule with Powers of a Function

If ƒ is a differentiable function of u and if u is a differentiable function of x, then substitut-
ing y = ƒ(u) into the Chain Rule formula

dy
dx

=
dy
du

# du
dx

leads to the formula

d
dx

ƒ(u) = ƒ′(u)
du
dx

.

If n is any real number and ƒ is a power function, ƒ(u) = un, the Power Rule tells us 
that ƒ′(u) = nun-1. If u is a differentiable function of x, then we can use the Chain Rule to 
extend this to the Power Chain Rule:

d
dx

(un) = nun-1 du
dx

. d
du

(un) = nun-1

EXAMPLE 6  The Power Chain Rule simplifies computing the derivative of a power 
of an expression.

(a) d
dx

(5x3 - x4)7 = 7(5x3 - x4)6 d
dx

(5x3 - x4)
Power Chain Rule with 
u = 5x3 - x4, n = 7

= 7(5x3 - x4)6(5 # 3x2 - 4x3)
= 7(5x3 - x4)6(15x2 - 4x3)

(b) d
dx
a 1

3x - 2
b = d

dx
(3x - 2)-1

= -1(3x - 2)-2 d
dx

(3x - 2)
Power Chain Rule with 
u = 3x - 2, n = -1

= -1(3x - 2)-2(3)

= - 3
(3x - 2)2

  In part (b) we could also find the derivative with the Derivative Quotient Rule.

(c) d
dx

(sin5 x) = 5 sin4 x # d
dx

sin x
Power Chain Rule with u = sin x, n = 5,
because sinn x means (sin x)n, n ≠ -1.

= 5 sin4 x cos x

HISTORICAL BIOGRAPHY

Johann Bernoulli
(1667–1748)
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(d) d
dx
1e23x+12 = e23x+1 # d

dx
123x + 12

= e23x+1 # 1
2

(3x + 1)-1>2 # 3 Power Chain Rule with u = 3x + 1, n = 1>2

= 3

223x + 1
e23x+1

EXAMPLE 7  In Section 3.2, we saw that the absolute value function y = 0 x 0  is not 
differentiable at x = 0. However, the function is differentiable at all other real numbers, 
as we now show. Since 0 x 0 = 2x2, we can derive the following formula:

d
dx

( 0 x 0 ) = d
dx
2x2

= 1

22x2
# d
dx

(x2)
Power Chain Rule with 
u = x2, n = 1>2, x ≠ 0

= 1
2 0 x 0 # 2x 2x2 = 0 x 0

= x0 x 0 , x ≠ 0.

EXAMPLE 8  Show that the slope of every line tangent to the curve y = 1>(1 - 2x)3

is positive.

Solution We find the derivative:

dy
dx

= d
dx

(1 - 2x)-3

= -3(1 - 2x)-4 # d
dx

(1 - 2x) Power Chain Rule with u = (1 - 2x), n = -3

= -3(1 - 2x)-4 # (-2)

= 6
(1 - 2x)4 .

At any point (x, y) on the curve, the coordinate x is not 1>2 and the slope of the tangent 
line is

dy
dx

= 6
(1 - 2x)4 ,

which is the quotient of two positive numbers.

EXAMPLE 9  The formulas for the derivatives of both sin x and cos x were obtained 
under the assumption that x is measured in radians, not degrees. The Chain Rule gives us 
new insight into the difference between the two. Since 180° = p radians, x° = px>180
radians where x° is the size of the angle measured in degrees.

By the Chain Rule,

d
dx

sin (x°) = d
dx

sin a px
180
b = p

180
cos a px

180
b = p

180
cos (x°).

See Figure 3.27. Similarly, the derivative of cos (x°) is -(p>180) sin (x°).
The factor p>180 would compound with repeated differentiation, showing an advan-

tage for the use of radian measure in computations.

Derivative of the 
Absolute Value Function

d
dx

( 0 x 0 ) = x0 x 0 , x ≠ 0

= e 1, x 7 0

-1, x 6 0
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x

y

1

180
y = sin x

y = sin(x°) = sin px
180

FIGURE 3.27 The function sin (x°) oscillates only p>180 times as often as sin x
oscillates. Its maximum slope is p>180 at x = 0 (Example 9).

Derivative Calculations
In Exercises 1–8, given y = ƒ(u) and u = g(x), find dy>dx =
ƒ′(g(x))g′(x).

1. y = 6u - 9, u = (1>2)x4 2. y = 2u3, u = 8x - 1

3. y = sin u, u = 3x + 1 4. y = cos u, u = e-x

5. y = 2u , u = sin x 6. y = sin u, u = x - cos x

7. y = tan u, u = px2 8. y = -sec u, u = 1
x + 7x

In Exercises 9–22, write the function in the form y = ƒ(u) and 
u = g(x). Then find dy>dx as a function of x.

9. y = (2x + 1)5 10. y = (4 - 3x)9

11. y = a1 - x
7
b-7

12. y = a2x
2

- 1b-10

13. y = ax2

8
+ x - 1

xb
4

14. y = 23x2 - 4x + 6

15. y = sec (tan x) 16. y = cot ap - 1
xb

17. y = tan3 x 18. y = 5 cos-4 x

19. y = e-5x 20. y = e2x>3
21. y = e5-7x 22. y = e142x+x22
Find the derivatives of the functions in Exercises 23–50.

23. p = 23 - t 24. q = 23 2r - r2

25. s = 4
3p

sin 3t + 4
5p

cos 5t 26. s = sin a3pt
2
b + cos a3pt

2
b

27. r = (csc u + cot u)-1 28. r = 6 (sec u - tan u)3>2

29. y = x2 sin4 x + x cos-2 x 30. y = 1
x sin-5 x - x

3
cos3 x

31. y = 1
18

(3x - 2)6 + a4 - 1
2x2b

-1

32. y = (5 - 2x)-3 + 1
8
a2x + 1b4

33. y = (4x + 3)4(x + 1)-3 34. y = (2x - 5)-1(x2 - 5x)6

35. y = xe-x + ex3
36. y = (1 + 2x)e-2x

37. y = (x2 - 2x + 2)e5x>2 38. y = (9x2 - 6x + 2)ex3

39. h(x) = x tan121x2 + 7 40. k(x) = x2 sec a1xb
41. ƒ(x) = 27 + x sec x 42. g(x) = tan 3x

(x + 7)4

43. ƒ(u) = a sin u
1 + cos u

b2

44. g(t) = a1 + sin 3t
3 - 2t

b-1

45. r = sin (u2) cos (2u) 46. r = sec2u tan a1
u
b

47. q = sin a t

2t + 1
b 48. q = cotasin t

t b
49. y = cos1e-u22 50. y = u3e-2ucos 5u

In Exercises 51–70, find dy>dt.

51. y = sin2 (pt - 2) 52. y = sec2pt

53. y = (1 + cos 2t)-4 54. y = (1 + cot (t>2))-2

55. y = (t tan t)10 56. y = (t-3>4 sin t)4>3
57. y = ecos2 (pt-1) 58. y = (esin (t>2))3

59. y = a t2

t3 - 4t
b3

60. y = a3t - 4
5t + 2

b-5

61. y = sin (cos (2t - 5)) 62. y = cos a5 sin a t
3
b b

63. y = a1 + tan4 a t
12
b b3

64. y = 1
6
11 + cos2 (7t)23

65. y = 21 + cos (t2) 66. y = 4 sin121 + 1t2
67. y = tan2 (sin3 t) 68. y = cos4 (sec2 3t)

69. y = 3t (2t2 - 5)4 70. y = 43t + 32 + 21 - t

Second Derivatives
Find y″ in Exercises 71–78.

71. y = a1 + 1
xb

3

72. y = 11 - 1x2-1

73. y = 1
9

cot (3x - 1) 74. y = 9 tan ax
3
b

75. y = x (2x + 1)4 76. y = x2 (x3 - 1)5

77. y = ex2 + 5x 78. y = sin (x2ex)

Exercises 3.6
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Finding Derivative Values
In Exercises 79–84, find the value of (ƒ ∘ g)′ at the given value of x.

79. ƒ(u) = u5 + 1, u = g(x) = 1x, x = 1

80. ƒ(u) = 1 - 1
u , u = g(x) = 1

1 - x
, x = -1

81. ƒ(u) = cot
pu
10

, u = g(x) = 51x, x = 1

82. ƒ(u) = u + 1
cos2 u

, u = g(x) = px, x = 1>4
83. ƒ(u) = 2u

u2 + 1
, u = g(x) = 10x2 + x + 1, x = 0

84. ƒ(u) = au - 1
u + 1

b2

, u = g(x) = 1
x2 - 1, x = -1

85. Assume that ƒ′(3) = -1, g′(2) = 5, g(2) = 3, and y = ƒ(g(x)).
What is y′ at x = 2?

86. If r = sin (ƒ(t)), ƒ(0) = p>3, and ƒ′(0) = 4, then what is dr>dt
at t = 0?

87. Suppose that functions ƒ and g and their derivatives with respect 
to x have the following values at x = 2 and x = 3.

  Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. 2ƒ(x), x = 2 b. ƒ(x) + g(x), x = 3

c. ƒ(x) # g(x), x = 3 d. ƒ(x)>g(x), x = 2

e. ƒ(g(x)), x = 2 f. 2ƒ(x), x = 2

g. 1>g2(x), x = 3 h. 2ƒ2(x) + g2(x), x = 2

88. Suppose that the functions ƒ and g and their derivatives with 
respect to x have the following values at x = 0 and x = 1.

  Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. 5ƒ(x) - g(x), x = 1 b. ƒ(x)g3(x), x = 0

c.
ƒ(x)

g(x) + 1
, x = 1 d. ƒ(g(x)), x = 0

e. g(ƒ(x)), x = 0 f. (x11 + ƒ(x))-2, x = 1

g. ƒ(x + g(x)), x = 0

89. Find ds>dt when u = 3p>2 if s = cosu and du>dt = 5.

90. Find dy>dt when x = 1 if y = x2 + 7x - 5 and dx>dt = 1>3.

Theory and Examples
What happens if you can write a function as a composite in different 
ways? Do you get the same derivative each time? The Chain Rule 
says you should. Try it with the functions in Exercises 91 and 92.

91. Find dy>dx if y = x by using the Chain Rule with y as a comps-
ite of

a. y = (u>5) + 7 and u = 5x - 35

b. y = 1 + (1>u) and u = 1>(x - 1).

92. Find dy>dx if y = x3>2 by using the Chain Rule with y as a com-
posite of

a. y = u3 and u = 1x

b. y = 1u and u = x3.

93. Find the tangent to y = ((x - 1)>(x + 1))2 at x = 0.

94. Find the tangent to y = 2x2 - x + 7 at x = 2.

95. a.  Find the tangent to the curve y = 2 tan (px>4) at x = 1.

b. Slopes on a tangent curve What is the smallest value the 
slope of the curve can ever have on the interval 
-2 6 x 6 2? Give reasons for your answer.

96. Slopes on sine curves

a. Find equations for the tangents to the curves y = sin 2x and 
y = -sin (x>2) at the origin. Is there anything special about 
how the tangents are related? Give reasons for your answer.

b. Can anything be said about the tangents to the curves 
y = sin mx and y = -sin (x>m) at the origin 
(m a constant ≠ 0)? Give reasons for your answer.

c. For a given m, what are the largest values the slopes of the 
curves y = sin mx and y = -sin (x>m) can ever have? Give 
reasons for your answer.

d. The function y = sin x completes one period on the interval 
30, 2p4 , the function y = sin 2x completes two periods, the 
function y = sin (x>2) completes half a period, and so on. Is 
there any relation between the number of periods y = sin mx
completes on 30, 2p4  and the slope of the curve y = sin mx
at the origin? Give reasons for your answer.

97. Running machinery too fast Suppose that a piston is moving 
straight up and down and that its position at time t sec is

s = A cos (2pbt),

  with A and b positive. The value of A is the amplitude of the 
motion, and b is the frequency (number of times the piston moves 
up and down each second). What effect does doubling the fre-
quency have on the piston’s velocity, acceleration, and jerk? 
(Once you find out, you will know why some machinery breaks 
when you run it too fast.)

98. Temperatures in Fairbanks, Alaska The graph in the accom-
panying figure shows the average Fahrenheit temperature in 
Fairbanks, Alaska, during a typical 365-day year. The equation 
that approximates the temperature on day x is

y = 37 sin c 2p
365

(x - 101) d + 25

  and is graphed in the accompanying figure.

x ƒ(x) g(x) ƒ′(x) g′(x)

2 8 2 1>3 -3
3 3 -4 2p 5

x ƒ(x) g(x) ƒ′(x) g′(x)

0 1 1 5 1>3
1 3 -4 -1>3 -8>3
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a. On what day is the temperature increasing the fastest?

b. About how many degrees per day is the temperature increas-
ing when it is increasing at its fastest?
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99. Particle motion The position of a particle moving along a 
coordinate line is s = 21 + 4t, with s in meters and t in sec-
onds. Find the particle’s velocity and acceleration at t = 6 sec.

100. Constant acceleration Suppose that the velocity of a falling 
body is y = k1s m>sec (k a constant) at the instant the body 
has fallen s m from its starting point. Show that the body’s 
acceleration is constant.

101. Falling meteorite The velocity of a heavy meteorite entering 
Earth’s atmosphere is inversely proportional to 2s when it is 
s km from Earth’s center. Show that the meteorite’s acceleration 
is inversely proportional to s2.

102. Particle acceleration A particle moves along the x-axis with 
velocity dx>dt = ƒ(x). Show that the particle’s acceleration is 
ƒ(x)ƒ′(x).

103. Temperature and the period of a pendulum For oscillations 
of small amplitude (short swings), we may safely model the rela-
tionship between the period T and the length L of a simple pen-
dulum with the equation

T = 2pA
L
g ,

where g is the constant acceleration of gravity at the pendulum’s 
location. If we measure g in centimeters per second squared, we 
measure L in centimeters and T in seconds. If the pendulum is 
made of metal, its length will vary with temperature, either 
increasing or decreasing at a rate that is roughly proportional to 
L. In symbols, with u being temperature and k the proportional-
ity constant,

dL
du

= kL.

Assuming this to be the case, show that the rate at which the 
period changes with respect to temperature is kT>2.

104. Chain Rule Suppose that ƒ(x) = x2 and g(x) = � x � . Then the 
composites

(ƒ ∘ g)(x) = � x �2 = x2 and (g ∘ ƒ)(x) = � x2 � = x2

  are both differentiable at x = 0 even though g itself is not dif-
ferentiable at x = 0. Does this contradict the Chain Rule? 
Explain.

105. The derivative of sin 2x Graph the function y = 2 cos 2x for 
-2 … x … 3.5. Then, on the same screen, graph

y =
sin 2(x + h) - sin 2x

h

  for h = 1.0, 0.5, and 0.2. Experiment with other values of h,
including negative values. What do you see happening as 
h S 0? Explain this behavior.

106. The derivative of cos (x2) Graph y = -2x sin (x2) for -2 …
x … 3. Then, on the same screen, graph

y =
cos ((x + h)2) - cos (x2)

h

  for h = 1.0, 0.7, and 0.3. Experiment with other values of h.
What do you see happening as h S 0? Explain this behavior.

Using the Chain Rule, show that the Power Rule (d>dx)xn = nxn-1

holds for the functions xn in Exercises 107 and 108.

107. x1>4 = 21x 108. x3>4 = 2x1x

COMPUTER EXPLORATIONS
Trigonometric Polynomials
109. As the accompanying figure shows, the trigonometric “polyno-

mial”

s = ƒ(t) = 0.78540 - 0.63662 cos 2t - 0.07074 cos 6t

-  0.02546cos 10t - 0.01299cos 14t

  gives a good approximation of the sawtooth function s = g(t)
on the interval 3-p, p4 . How well does the derivative of ƒ 
approximate the derivative of g at the points where dg>dt is 
defined? To find out, carry out the following steps.

a. Graph dg>dt (where defined) over 3-p, p4 .
  b. Find dƒ>dt.

c. Graph dƒ>dt. Where does the approximation of dg>dt by 
dƒ>dt seem to be best? Least good? Approximations by trig-
onometric polynomials are important in the theories of heat 
and oscillation, but we must not expect too much of them, as 
we see in the next exercise.

t

s

0−p p

2
p

s = g(t)

s = f (t)

110. (Continuation of Exercise 109.) In Exercise 109, the trigonomet-
ric polynomial ƒ(t) that approximated the sawtooth function g(t)
on 3-p, p4  had a derivative that approximated the derivative 
of the sawtooth function. It is possible, however, for a trigono-
metric polynomial to approximate a function in a reasonable 
way without its derivative approximating the function’s deriva-
tive at all well. As a case in point, the trigonometric “polynomial”

s = h(t) = 1.2732 sin 2t + 0.4244 sin 6t + 0.25465 sin 10t

+ 0.18189 sin 14t + 0.14147 sin 18t

T
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  graphed in the accompanying figure approximates the step func-
tion s = k(t) shown there. Yet the derivative of h is nothing like 
the derivative of k.

1

t

s

0 p
2

p−p p
2

−

−1

s = k(t)

s = h(t)

  a. Graph dk>dt (where defined) over 3-p, p4 .
  b. Find dh>dt.

  c. Graph dh>dt to see how badly the graph fits the graph of 
dk>dt. Comment on what you see.

3.7 Implicit Differentiation

Most of the functions we have dealt with so far have been described by an equation of the 
form y = ƒ(x) that expresses y explicitly in terms of the variable x. We have learned rules 
for differentiating functions defined in this way. Another situation occurs when we encoun-
ter equations like

x3 + y3 - 9xy = 0, y2 - x = 0, or x2 + y2 - 25 = 0.

(See Figures 3.28, 3.29, and 3.30.) These equations define an implicit relation between the 
variables x and y. In some cases we may be able to solve such an equation for y as an 
explicit function (or even several functions) of x. When we cannot put an equation 
F(x, y) = 0 in the form y = ƒ(x) to differentiate it in the usual way, we may still be able 
to find dy>dx by implicit differentiation. This section describes the technique.

Implicitly Defined Functions

We begin with examples involving familiar equations that we can solve for y as a function of 
x to calculate dy>dx in the usual way. Then we differentiate the equations implicitly, and find 
the derivative to compare the two methods. Following the examples, we summarize the steps 
involved in the new method. In the examples and exercises, it is always assumed that the 
given equation determines y implicitly as a differentiable function of x so that dy>dx exists.

EXAMPLE 1 Find dy>dx if y2 = x.

Solution The equation y2 = x defines two differentiable functions of x that we can actu-
ally find, namely y1 = 2x and y2 = -2x (Figure 3.29). We know how to calculate the 
derivative of each of these for x 7 0:

dy1

dx
= 1

21x
and

dy2

dx
= - 1

21x
.

But suppose that we knew only that the equation y2 = x defined y as one or more differen-
tiable functions of x for x 7 0 without knowing exactly what these functions were. Could 
we still find dy>dx?

The answer is yes. To find dy>dx, we simply differentiate both sides of the equation 
y2 = x with respect to x, treating y = ƒ(x) as a differentiable function of x:

y2 = x The Chain Rule gives 
d
dx

(y2) =

d
dx
3ƒ(x)42 = 2ƒ(x)ƒ′(x) = 2y

dy

dx
.2y

dy
dx

= 1

dy
dx

= 1
2y

.

x

y

0 5

5

A

x3 + y3 − 9xy = 0

y = f1(x)
(x0, y1)

y = f2(x)

y = f3(x)

(x0, y2)

(x0, y3)

x0

FIGURE 3.28 The curve 
x3 + y3 - 9xy = 0 is not the graph of any 
one function of x. The curve can, however, be 
divided into separate arcs that are the graphs 
of functions of x. This particular curve, called 
a folium, dates to Descartes in 1638.
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